
Supplementary material for Chapter 2 of the McGraw Hill book:
“Object Oriented Software Engineering:
Practical Software Development Using UML and Java”

Copyright © 2001 Timothy C. Lethbridge and Robert Laganière

See www.lloseng.com for more information.

Progr amm ing Styl e Gui deli nes

A n impor ta nt pa r t of de ve loping good sof twa re is to make sur e progra ms follow consiste nt
guide lines that ma ke them ea sy to r e ad. I n this book we use the guideline s descr ibe d below ; w e
r ec ommend tha t you a lso f ollow these guideline s in the progr a ms that you wr ite .

Programming can be seen as the most detailed level of design, so the guidelines described
here can be seen as design guidelines. Later on, in Chapter 8, we will discuss design at a higher
level. You will then see that some of the principles mentioned here also apply to other aspects of
design.

Gen eral princip le: R ememb er th at pro grams are fo r p eo ple t o read

A lthough pr ogra ms ar e e xe c uted by c ompute rs, a lmost a ll the guide lines in this se ction a re de signe d
to ma ke the m ea sie r to re a d and unde rsta nd by huma ns. Simple r progra ms sa ve mone y bec a use
sof tw a re de ve loper s a re more like ly to notice de fe c ts. A lso, when changes a r e ne e de d, it is e asier to
c ha nge simple r progr a ms. A gene ra l princ iple the re f or e is:

• I f you have two alte r na tive wa ys of pr ogr amming something and one alte r na tive ma kes the code
simple r, then c hoose that simpler a lte rna tive .

Corollaries to this are:

• A ctive ly se ek simple r a lte rnative s, re str uc tur ing the c ode if nec e ssa ry.
• Rejec t ‘ cle ve r’ or ‘ c ool’ coding te c hniques unle ss they ma ke the c ode simple r to unde r stand.
• Remember that shor te r c ode is not ne ce ssa rily be tte r code, but unnec essar ily long c ode is a lso

bad.

The only exception to the above rules occurs when simplification requires a significant drop
in efficiency. By significant, we mean that the efficiency drop will have a financial impact on
end-users (slowing them down or forcing them to buy faster hardware) that will more than
counterbalance the benefits of simpler code to the software developers.

C ho ose g oo d n ames

W e discusse d na ming of cla sses ea rlier in this c ha pte r; the naming of a ll othe r e le me nts of a
progr a m, such a s var iable s, me thods and pac ka ges, is equally impor ta nt. G ood name s ensur e tha t
people c an re ad the c ode e asily.

• A lw ays c hoose na me s f or va riables, c la sse s, pa ckage s and methods tha t a re highly de sc r iptive of
the purpose a nd func tion of the e le ment.

• D o not w or r y about using ver y long names if the le ngth is justifie d be c ause it a dds c lar ity.
• A void na me s less tha n a bout six c ha r ac te r s, e xce pt pe rha ps f or loop counter va ria bles, w he r e i

a nd j ar e c ommonly used.

Programming Style Guidelines 2

C ommen t ef f ectively

A lthough c ode should be w r itte n a s c le ar ly as possible, it c a nnot alwa ys be ma de completely
obvious. Comments ar e the r ef or e e sse ntia l to give r ea de r s an over vie w a nd to help the m unde rsta nd
its c omple xitie s quic kly. The f ollow ing a re some ve ry ge ne ra l c ommenting guide lines:

• Comme nt wha te ve r is non-obvious. Unf or tunately, it is not alw ays c le ar what is ‘ non-obvious.
So er r on the side of c aution: Pr ovide c omments if ther e is a ny r isk that some one r ea ding the
c ode may not complete ly unde rstand some a spec t of it. Re me mbe r tha t the a udience for your
c omme nts w ill be othe r de signe r s and progra mme rs; a s you w rite comme nts, tr y to ima gine how
the y w ill think and w ha t inf or mation the y may ne ed.

• A void wr iting c omments tha t sta te the obvious, sinc e the y add c lutte r. For e xa mple, f ollow ing
the de clar a tion int foobar; ther e is no ne e d to sa y in a c omme nt /* foobar is an
int */.

• T he c omments in code should nor ma lly r ange be twe en about 20% and 35% of the tota l length of
the c ode .

• W rite comme nts w he n you f irst w rite the c ode. In f a ct it is a n exc elle nt ide a to wr ite the
c omme nts before wr iting the code – w riting comme nts c an he lp you think and design the code
e ff ec tively.

The following is a list of types of comments you should provide:

• Pla ce a block c omment a t the top of ea ch class desc ribing the pur pose of the c la ss, how it should
be use d, its authors and its histor y of modif ica tion.

• E ac h method should a lso ha ve a comme nt a t its he ad de sc r ibing its func tion a nd usage.
• E ac h non-obvious var iable should ha ve a c omme nt.
• L oops and c onditiona l sta tements inside c omple x algor ithms should ha ve comme nts. In ge ne ra l,

r ea de r s of complex a lgorithms should be a ble to re a d the c omments alone , in or de r to under sta nd
r oughly wha t the a lgorithm doe s.

• Comme nt any c ha nge s to the c ode so tha t it is ea sy to se e wha t ha s c ha nge d f rom one ve rsion to
the ne xt.

• Follow the spec ific c onve ntions f or c ommenting c la sse s and methods tha t a llow for
doc ume ntation to be a utoma tica lly ge ne ra ted using a progra m c alle d ‘ ja vadoc ’ . Se e
http://java .sun.com/javadoc for details.

U se a lo gical o rderin g wit hin classes

I nside a c lass, or de r the eleme nts a s follows; w ithin e a ch gr oup, star t w ith the most public one s.

• Cla ss va ria bles
• I nsta nce va riables
• Constr uc tor s
• T he most importa nt public me thods
• Methods tha t ar e simply used to a cc e ss va riables
• Priva te me thods

We suggest using a horizontal line or some other comment to allow the reader to clearly see
the divisions between the above sections.

• K ee p r elate d me thods toge the r, wher e this doe s not conf lic t w ith the a bove.
• I f a c la ss ha s many methods, group them into logic al se ctions with a c le ar comme nt se pa ra ting

e ac h sec tion.

Programming Style Guidelines 3

Pay at tent ion t o d et ailed layo u t

T he re ar e a number of dif f er ent deta iled stylistic appr oac he s f or how to la y out code within
methods. T he most impor ta nt rule is:

• Be consiste nt in your a ppr oa ch to la yout: Follow the sa me style throughout your c ode a nd f ollow
the sa me a ppr oa c h as the other softw ar e develope rs who w or k in your compa ny or te am.

The web site http://java.sun.com/docs/codeconv/ provides a good set of layout principles. The
following are some highlights.

• A lw ays inde nt the conte nts of neste d bloc ks c a re fully.
• T ry to minimize the numbe r of sta te ments that ta ke more than one line.
• W he n long sta te ments ar e nec essar y, divide them into multiple lines such that the sec ond a nd

subse que nt line s begin with an oper a tor a nd a r e indente d.
• E nsur e tha t no line is longe r tha n 80 cha ra cte rs, so tha t re a de rs do not ha ve to sc roll right, a nd so

tha t the c ode a lwa ys pr ints cor re ctly.

The following are some stylistic rules that we like to follow, but with which some people may
disagree:

• D o not e mbe d ‘ta b’ c har ac ter s in your code. U se tw o spa c es f or indenta tion. Ta b c ha ra c te rs ca n
be fa st to type ; but when code is pr inte d on c er ta in pr inter s, or displayed in c e rtain e ditor s, the
w idth of the indenta tion r esulting f rom the ta b ca n var y a nd ma ke the c ode har d to re a d.

• W e use the following la yout style f or blocks:

if(condition)
{
 // statements
}

instead of the following alternative which some people, including Sun, prefer:

if(condition) {
 // statements
}

The first style ensures that the open and close braces always line up at the same level of
indentation, at the cost of having a few extra lines of code. About half of the books we looked at
do it the first way and the other half do it the second way. The most important point, however, is
to be consistent in all the code you write.

A vo id du plicatio n

I t is a big proble m to ha ve the same or ver y simila r code in tw o or mor e pla ce s. It incr ea ses the total
volume of c ode a nd me ans tha t if you c ha nge the code in one pla ce , the n you might f orget to c ha nge
the c ode in the othe r pla c es.

• A void c loning more than about one line of c ode . Cloning me a ns de libe r ately c opying c ode to
use some whe re e lse . I f you f ee l tempte d to do this, you should nor ma lly c re a te a se pa r ate
method tha t has the c ommon c ode , and c all it f rom the or igina l loc ation a nd any other ne ede d
loc ations.

• I f you f ind seve ra l substa ntia lly simila r line s of code in se ve ra l pla c es, the n nor ma lly you should
w rite a single method to c onta in the c ode , and c all it w he re ver ne ce ssa ry.

• I f the duplic ation e xists in tw o se par ate c la sse s, then conside r c re ating a common super cla ss
(although stick to the rules disc ussed e a rlie r tha t dete rmine w ha t c onstitutes a good
gener a liza tion – suc h a s the isa rule) .

Programming Style Guidelines 4

A dh ere t o o bject o rient ed prin cip les

• T ake f ull a dvantage of polymor phism and inher ita nc e a s w ell a s abstr ac t c la sse s a nd me thods.
• E nsur e the ‘isa ’ r ule is r eligiously a pplie d.
• E nsur e tha t a nything that is tr ue in a supe rc lass is also tr ue in its subcla sses.
• A void over - use of cla ss va riables or c la ss me thods. W he r ever possible try to c re a te de signs tha t

use instanc e va r ia ble s and instance me thods instea d.
• Cre ate seve ra l sma ll cla sses, r ather than one big, complex class.
• K ee p the number of instanc e va r ia ble s sma ll. I f this numbe r e xc ee ds 10, the n c onsider splitting

the c lass into separ a te c lasse s – e .g. a supe r class a nd a subclass.

Prefer p rivat e as op p osed to p u blic

Favour ing priva c y improve s e nc a psula tion, by e nsur ing that only pr ogra mme rs working inside a
c la ss (or inside a pa ckage) ca n use all of its f ac ilitie s. T his a llows changes to be mor e e asily made
since one c an be c onf ident tha t ‘ outside r s’ a r e not r elying on too many deta ils.

• Make var ia ble s a nd me thods a s priva te as possible. In othe r w or ds, pre f er p ri va t e to
protected; protected to the de f ault pa cka ge a c ce ss, a nd pa cka ge a c ce ss to public.

• U nless the r e is a compe lling r e ason to the contr ar y, de c la re insta nc e var ia ble s to be private,
a nd pr ovide methods to ac c ess the pr ivate var iable s if nec essar y.

R estrict u ser in terf ace st at ement s t o classes sp ecifically d esign ed fo r t his

T his guide line is one tha t w e w ill r e- visit in muc h mor e deta il in late r cha pter s. How ever , it is so
impor tant, ye t so of ten r e ma ins unknow n to be ginne r s, that it nee ds me ntioning now. Most of the
c la sse s in the syste m should do not inte r ac t w ith the user in a ny wa y (ne ither using w indow s nor
using system.in and system.out obje c ts). Most classes should simply store da ta in the ir
insta nce va riables, a nd pr ovide methods f or ma nipulating those insta nc e var iable s. Whe n you nee d
to ge t inf ormation f r om the use r, you should set up a se pa ra te se t of c la sse s to do this.

Oth er ways to simp lif y co d e

• I n gene ra l, ensur e tha t the re is only one plac e f rom w hic h a method r eturns to its c aller ; this
should be the la st stateme nt. T his r ule c an be violated if a dhe ring to it w ould a dd e xtr a
indentation or sever a l extra stateme nts.

• A void too many levels of nesting (i.e. inde nta tion) , w he re possible. You should think ca r ef ully if
the ne sting leve l exc ee ds five – the c ode the n bec ome s quite ha rd to unde rstand.

• D ivide up long methods into shorter ones. I f a method e xce eds a bout 20 line s, se e if you c a n ta ke
par t of the method a nd ma ke it into a se par ate method that c a n be ca lle d by the original me thod.

• Split complex c onditions. For e xa mple, imagine you ha d the f ollow ing:

if(a==5 &&(b > 40 || c) && (d > a+2 || e==5))

A sta tement like this might be ea sie r to re ad if the pa r ts of the condition we re plac e d on se pa r ate
lines like this:

if(a==5
 && (b > 40 || c)
 && (d > a+2 || e==5))

