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Abstract— The Smart City vision is to improve quality of 

life and efficiency of urban operations and services while 

meeting economic, social, and environmental needs of its 

dwellers. Realizing this vision requires cities to make 

significant investments in all kinds of smart objects. 

Recently, the concept of smart vehicle has also emerged as 

a viable solution for various pressing problems such as 

traffic management, drivers’ comfort, road safety and on-

demand provisioning services. With the availability of on-

board vehicular services, these vehicles will be a 

constructive key enabler of smart cities. Smart vehicles are 

capable of sharing and storing digital content, sensing and 

monitoring its surroundings, and mobilizing on-demand 

services. However, the provisioning of these services is 

challenging due to different ownerships, costs, demand 

levels, and rewards. In this paper, we present the concept 

of Smart Vehicle as a Service (SVaaS) to provide 

continuous vehicular services in smart cities. The solution 

relies on a location prediction mechanism to determine a 

vehicle’s future location. Once a vehicle’s predicted 

location is determined, a Quality of Experience (QoE) 

based service selection mechanism is used to select services 

that are needed before the vehicle’s arrival. We provide 

simulation results to show that our approach can 

adequately establish vehicular services in a timely and 

efficient manner. It also shows that the number of utilized 

services have been doubled when prediction and service 

discovery is applied. 

Index Terms—cloud computing, location prediction, 

mobility, service availability, quality of experience. 

I. INTRODUCTION 

With the evolving nature of the smart city 

environment, smart objects have risen as inseparable 

components of such an environment [1]. The 

transformation of a city into a smart form requires the 

integration of all these objects into a smart system. This 

concept is becoming more popular and of a great value 

due to the fact that current cities are suffering (in terms 

of, for example, pollution, resources, and energy) and a 

new solution is desperately needed.  

Automotive technology is evolving very rapidly and 

the emerging applications of vehicular cloud computing 

and on-demand service provisioning have been 

developed in recent years [2]. On-demand transportation 

services (e.g., ride-hailing, carpooling, and/or public 

transit) are converging with the disruptive vehicular 

technology of electrification, wireless connectivity, and 

autonomous capability to create a low-carbon 

transportation system for cities over the next 25 years. 

Thus, smart vehicles are no longer a stand-alone smart 

concept but rather key enablers for smart city 

environments. Smart vehicles are equipped with 

supplementary on-board gear to enable on-demand 

services for vehicle occupants and surrounding 

environments. It is expected that more than 1.2 billion 

smart vehicles will be connected to each other globally, 

to the infrastructure (cloud) and/or to their surroundings 

through either built-in or brought-in communications 

technologies [3]. 

A smart city retrieves and communicates information 

from surrounding environments and stores it to the 

internet cloud. As a key enabler of smart cities, the 

vehicular cloud (i.e. smart vehicles) is a development 

domain very rapidly expanding. The main goal of the 

vehicular cloud is to offer vehicular communication 

technologies and infrastructures for the vehicles to 

communicate with other parties, among themselves and 

with the cloud [4]. To date, two standards have been 

implemented: IEEE 802.11.p and IEEE 1609. With the 

aid of these two standards and the collaborative research, 

ideas, and expertise in this domain, smart vehicles are 

classified as of the most important components of the 

smart city [5]. By utilizing smart vehicle technology and 

connecting smart cities with automotive technology, 

smart vehicles would be a great source of information and 

service for smart cities. This paper aims to meet this 

objective by employing a Smart Vehicle as a Resource 

(SVaaR) solution for providing continuous service 

availability in the smart city. 

An SVaaR in the smart city will be used for the 

purposes of sensing, storing, computing, infotainment, 
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and/or mobilizing services. However, the provision of 

these services and the availability of such great resources 

will be challenging due to different ownerships, costs, 

demand levels, requesters and players, and different 

rewards. Thus, in this paper, we introduce a solution that 

provides continuous vehicular services by predicting the 

future location of vehicles and preparing/utilizing the 

requested services ahead of time. 

The remainder of the paper is organized as follows. 

Related work is presented in Section II. Section III covers 

the problem and solution overview. The location 

prediction model and QoE game model will be discussed 

in IV and V respectively. Numerical results are presented 

and discussed in Section VI. Finally, we conclude the 

paper in Section VII. 

II. RELATED WORK 

The Vehicle as a Resource (VaaR) concept has been 

proposed previously by the authors in [6]. In addition to 

introducing VaaR, the authors also enumerated different 

services that a smart vehicle could provide, indicating 

that a smart vehicle could be a significant service 

provider in a variety of situations and demonstrate an 

illustrative scenario supporting the viability of VaaR.  

The authors in [5] proposed an architecture (i.e. 

Car4ICT) for making cars the main ICT resource in smart 

cities. Car4ICT gives the users the opportunity to offer 

and request services. The vehicles components are the 

central part of their proposed architecture. A proof of 

concept based simulation has been presented showing 

that service discovery is fast and reliable even under poor 

communication circumstances. The work is indeed 

promising; however, one area of concern is that the 

architecture appears to be centralized as specific entities 

within the architecture are in charge of service discovery 

and of routing data between users. In addition, the 

services identifications are insufficient in such mobile 

environment. In [7], the authors extend Car4ICT 

architecture to interconnect smart cities and rural areas. 

This extension increases the number of available services 

and makes the connecting link between smart cities more 

resilient in the event of infrastructure failures. To this end, 

the authors in [8] experimentally investigated the 

performance of the Car4ICT architecture by providing a 

prototype to emulate multiple vehicles on a few 

machines.  

Location-based discovery services, incentives 

mechanisms, and context-awareness are also needed for 

the success of the proposed integration. The authors in [9] 

proposed a context-aware and location-based service 

discovery protocols for vehicular networks and its 

variant. The proposed solution is clustered-based and 

shows a 20% success rate comparing to other solutions 

(e.g. Vehicular Information Transfer Protocol [10]). 

III. PROBLEM AND SOLUTION OVERVIEW 

This paper incorporates a Trusted Third Party (TTP) 

cloud entity and QoE game model that was introduced 

earlier in [11] and [12] which acts as a mediator between 

Smart Vehicular nodes (SV) and Service Providers (SP) 

and handles all communication with the SP. TTPs are 

well-known profitable commercial organizations that 

provide and sell service to users. TTPs thus provide an 

abstraction layer between the vehicular service users and 

providers and will simplify the process of resource 

discovery and selection in a smart city. 

Continuous service availability has become an 

essential part of mobile users’ daily lives. With the rise of 

smart vehicles, continuous service availability provides a 

wide range of services such as traffic management and 

road safety. Additionally, on-demand applications such 

as multimedia streaming and content sharing between 

vehicular nodes has become a widely accepted vehicular 

service. Although most vehicles have only recently 

become acquainted with ‘all-time’ network connection, 

some are starting to pose more and more stringent service 

quality demands on service providers. User satisfaction 

(QoE) can be achieved through the use of TTP nodes.   

Vehicles can either be service providers or service 

requestors. Location Prediction uses a prediction engine 

based on the Dempster-Shafer theory [13] and relies on 

contextual information such as user schedule, tasks, 

interests, and location history to predict future user 

locations. Details pertaining to the prediction module are 

discussed in Section IV. The location prediction module 

is incorporated within the TTP Service Mediator module 

found in TTPs. Additionally, service discovery, selection, 

and TTP negotiations are found in the TTP service 

mediator module which relies on a collaborative game-

theory approach where TTPs play the roles of buyers and 

sellers at the same time; buying from the SPs (or SVs) 

and selling to the SVs. Details pertaining to service 

discovery and selection are discussed in Section V. 

IV. LOCATION PREDICTION MODEL 

To predict a smart vehicle user’s future location, the 

method requires access to essential contextual parameters 

such as user schedule, tasks, interests, activities, current 

location, and location history. Such context will be used 

to generate hypotheses and bodies of evidence which will 

be used to determine future high dense spots.  

Evidence extraction is applied on four types of 

parameters (user interests, schedule constraints, tasks, 

and location history). For each, a frame of discernment Θ 

is generated from all potential future destinations: 

Θ = {𝑂𝑖 ∶  𝑂𝑖  𝜖 𝑂}                          (1) 

 

 

 

 



where 𝑂 represents the target locations of a user. 

Hypothesis construction for each context parameter is 

performed as follows:  

For each evidence based on an interest, a group of 

hypotheses is constructed such that: 

𝐻𝑗
(𝑖)

= {𝑂𝐾: 𝑂𝐾 ∈  𝛩 | 𝐶𝑗
𝑖 ∈  𝐶𝑜(𝑂𝐾) }              (2) 

where 𝐶𝑗
(𝑖)

= {𝑐1
(𝑖)

, 𝑐2
(𝑖)

, … , 𝑐𝑛
(𝑖)

} is the set of 

characteristics related to an interest 𝑖, and 𝐶𝑜 represents a 
function of a set of characteristics for destination location 

𝑂𝐾 . A belief mass value 𝓂 is associated with 𝐻𝑗
(𝑖)

 such 

that: 

𝓂 (𝐻𝑗
(𝑖)

) =  
1

𝑛
                                  (3) 

For each piece of evidence based on a user’s schedule 

constraint, a group of hypotheses is constructed such that: 

𝐻𝑗
(𝑆)

= {𝑂𝐾: 𝑂𝐾 ∈  𝛩 | (
𝑡(𝑂𝐶 , 𝑂𝐾) + 𝑡(𝑂𝐾 , 𝑂𝑆)

≤ 𝑗 ×
𝑡𝑠

𝑛

)}   (4) 

where 𝑂𝑐 is the vehicle’s current location, and 
𝑡(𝑂𝐶 , 𝑂𝐾) is the time that it takes the user’s vehicle to go 
from 𝑂𝐶  to 𝑂𝐾 .  𝑂𝑠 represents the location of the earliest 
scheduled appointment and 𝑡𝑠 the time left before the 
scheduled appointment takes place. A belief mass value 

𝓂 is associated with 𝐻𝑗
(𝑠)

 such that: 

𝓂 (𝐻𝑗
(𝑠)

) =  
1

𝑛
                                   (5) 

For each evidence based on a user’s task, a group of 

hypotheses is constructed such that: 

𝐻𝑗
(𝑡)

= {𝑂𝐾: 𝑂𝐾 ∈  Θ | 𝐶𝑗
𝑡 ∈  𝐶𝑜(𝑂𝐾) }              (6) 

 A belief mass value 𝓂 is associated with 𝐻𝑗
(𝑡)

 such 

that: 

𝓂 (𝐻𝑗
(𝑡)

) =  
1

𝑛
                                  (7) 

For each piece of evidence based on a user’s vehicle 

location history, a weighted sum of the fraction of time a 

vehicle has spent in the previous 𝐿 locations are obtained, 

such that:   

𝑂𝐾 = ∑ (
𝑇(𝑂𝑙)

𝑇(𝑂𝐾,𝑂𝐿)
) 𝑓𝑙𝐿

𝑙=0                          (8) 

where 𝑇(𝑂𝑙) is the time spent in location 𝑙 and 𝑇(𝑂𝐾 , 𝑂𝐿) 
is the time duration required to go from the previous 𝑙 
location to the target destination 𝐾. 𝑓𝑙, 0 ≤ 𝑓𝑙 ≤ 1, is a 
forgetting weight factor that is used to give more 
significance for recent visited locations such that:  

∑ 𝑓𝑙𝐿
𝑙=0 = 1                                  (9) 

𝑓0 > 𝑓1 > 𝑓2 > ⋯ > 𝑓𝐿                    (10) 

where the most recent and oldest services are indexed by 
𝑙 = 0 and 𝑙 = 𝐿, respectively. A group of hypotheses is 
then constructed such that: 

𝐻𝑗
(𝑙)

= {𝑂𝐾: 𝑂𝐾 ∈  Θ | 𝐶𝑗
𝑙 ∈  𝐶𝑜(𝑂𝐾) }         (11) 

 A belief mass value 𝓂 is associated with 𝐻𝑗
(𝑙)

 such 

that: 

𝓂 (𝐻𝑗
(𝑙)

) =  
1

𝑛
                                (12) 

Finally, each pair of hypothesis-belief mass is 

combined using the Dempster-Shafer rule of combination 

(13) to produce a list of candidate future locations.  

𝑚𝑖 ⊕ 𝑚𝑗 (𝐶) =
∑ 𝑚𝑖(𝑋) 𝑚𝑗(𝑌)𝑋⋂𝑌=𝐶≠0

1−𝐾
                 (13) 

𝐾 = ∑ 𝑚𝑖(𝑋)𝑚𝑗(𝑌)𝑋⋂𝑌=∅                        (14) 

where 𝑋 and 𝑌 are all the possible subsets of belief mass 
values for a particular interest, the denominator 1 −  𝐾 is 
a normalization factor, and C is the set of characteristics 
for a related interest. A belief value (15) associated with 
each candidate location 𝐴 is produced, describing the 
degree of support for each.  

𝐵𝑒𝑙 (𝐴) = ∑ 𝑚(𝐶)𝐶|𝐶⊆𝐴                       (15) 

The location with the highest belief value (16) is 

chosen as the vehicle’s predicted future location.  

D =  argAϵθ(max(Bel(A)))                  (16) 

Predicted vehicle locations will trigger the TTPs to 

negotiate on service provisioning for vehicles that are 

currently being served and ones that will be served in the 

future at different cloud service areas. 

V. QOE GAME MODEL 

QoE methodology can be considered as the most 

appropriate solution for vehicular cloud service 

provisioning. It has been used widely and with different 

applications (e.g. video streaming [14]). QoE improves 

sharing services among vehicular cloud networks. It will 

enable service providers to improve resource utilization 

by incorporating information and feedback from various 

vehicle drivers and thereby deliver improved service 

quality. In our previous work [11]-[12], a game theory 

model to manage on-demand service provisioning in a 

vehicular cloud has been proposed. A QoE framework to 

provide several vehicular cloud services in a vehicular 

cloud at low cost, with the least possible revealed 

information and minimal service latency has been 

implemented as well. A rating measure to quantify the 

reputation of each service provider and their available 

services based on overall level of satisfaction of the 

provided services is also implemented according to (17). 

𝑄𝑜𝐸 = 𝛼. 𝐷 + 𝛽. 𝑃 + 𝛾. 𝐼   |  𝛼 + 𝛽 + 𝛾 = 1  (17) 

where D, P and I represent the service latency, price and 
information revealed (Privacy), respectively. As shown, 
the sum of the coefficients in the equation equals one. 
QoE components are obtained via feedback from 
previously provisioned vehicles in a vehicular cloud and 
formulated according to a weighted combination of the 
three key factors. Each participant describes their overall 
satisfaction of the service by providing a 1 to 10 rating 
value where 10 denotes excellent and 1 denotes the worst 
experience. QoE reputation value for each service 
provider is presented to guide service requesters with 



their selection. The framework has shown great 
improvements to service cost, service latency, and 
drivers’ privacy. However, unbalance in the service 
distribution among potential service providers (game 
players) appears. A cooperative decision-theoretic 
approach to formulate the interaction among vehicular 
cloud on the requested services by players has been 
formalized and optimized in [12]. 

Dynamic interaction among vehicular cloud 

providers and mainly service providers have been 

accomplished by using a Game Engine Service 

Management (GESM) model. GESM guarantees efficient 

and fair services/resource distribution across service 

providers or requesters by acquiring all service providers’ 

information including resources, available services, 

currently involved requesters, service charges, 

computation capabilities, game participants, game 

events, and QoE reputation values for each service. 

Given a system with a number of requested services 

and available resources, the potential participants can be 

clustered into sellers and buyers. Sellers are capable of 

providing different types of services to a different number 

of buyers. Each one of them has their own QoE reputation 

value for each type of different services, as follows, 

QoE = { 𝑄𝑜𝐸𝑉𝐷 , 𝑄𝑜𝐸𝑆𝑃}. Let𝑆 𝑎𝑛𝑑 𝐵 →  ℝ denote the 

sets of sellers and buyers, respectively, given that 

𝑆 𝑎𝑛𝑑 𝐵 are the total number of sellers and buyers in the 

game. A sub-set of 𝑆 𝑎𝑛𝑑 𝐵 are produced, namely, 

𝑆′𝑎𝑛𝑑 𝐵′, which represent the group of sellers who 

possess the requested services/resources by the buyers. 

Each seller, 𝑆′, provides a number of services defined by 

the following set, 𝑅 = {1, 2, 3, … , 𝑟}, where 𝑟 is the total 

number services. Each seller 𝑠𝑖  𝜖 𝑆 has a service 

𝑟𝑠
𝑖  available to provide to a buyer 𝑏𝑗  𝜖 𝐵 who is actively 

seeking this service, 𝑟𝑏
𝑗
. 𝑋𝑖(𝑗) is the total number of 

services provided from seller i to buyer j. 

In order to balance the load of the requested services 

from the buyers to the sellers and provide fairness in 

distrusting services among service providers, GESM 

module ensures that all service providers are equally 

loaded depending on their system capacity and resource 

availability. Let 𝑅𝑄𝑜𝐸(𝑛) = [𝑅𝑄𝑜𝐸1

𝑟1 + 𝑅𝑄𝑜𝐸2

𝑟2 + ⋯ +

𝑅𝑄𝑜𝐸𝑛

𝑟𝑛 ] denote the vector of summation of resources. 

Thus, our constructed resources function is: 

 
Φ(R) = [Xi(j) ∗ log (∑ RQoEn

rn

N

n=1

)]

− (Tr
i(j)) 

(18) 

where 𝑇𝑟
𝑖(𝑗) is the total number of third parties used 

between seller i and buyer j to request a service 𝑟. 

VI.  SIMULATION RESULTS 

Our simulations were conducted using NS-3 to test 

our proposed predictive TTP-based vehicular service 

acquisition approach where services are acquired and 

provided through TTP mediators against an original 

approach where services are acquired directly from the 

service providers and thus vehicular nodes must negotiate 

with SPs directly without TTP intervention. Different 

scenarios have been adopted using four service providers 

(SP1, SP2, SP3, and SP4), three trusted third-party nodes 

(TTP1, TTP2, and TTP3) and up to 50 vehicular nodes 

(SV1 – SV50) placed randomly in the environment. A 

Destination-Sequenced Distance Vector Routing 

(DSDV) protocol on the IEEE 802.11.p vehicular 

communication stack was employed with 1024 byte 

packets. The data rate is set at 2Mb/s at 204GHz 

bandwidth frequency.  

The two tested approaches are evaluated using three 

metrics: service delay, price, hit ratio, and a number of 

services discovered. Delay is the end-to-end latency 

required for an SV to receive the requested service from 

the SP or SV via the TTP. The price represents the service 

usage cost per time unit. Number of services discovered 

is the accumulated number of services discovered either 

by SVs or TTPs. Hit ratio is the ratio of the services 

retrieved from the TTP in the cloud service area where a 

SV was predicted to be available in at a future time point 

over the total of number of services requested using the 

location prediction technique. 

Three resource discovery and selection techniques 

were tested, namely: the proposed predictive TTP-based 

vehicular service acquisition approach (P-TTP), the 

original non-predictive TTP approach introduced in [12] 

(TTP), and a direct service acquisition approach (Direct) 

that does not incorporate a TTP in the model, where SVs 

directly search for the fittest SP and acquire service 

directly.  

Fig. 1 depicts the average delay encountered when 

adopting the three techniques. Results show that the 

proposed P-TTP technique outperforms the other two 

with a maximum average delay reduction of up to 7.2 ms 

(31.7% reduction). Although it can also be seen from the 

figure that the direct resource discovery and selection 

method outperforms the original TTP solution, it is 

worthy to note that the direct method does not receive the 

most optimal service experience (QoE) in most cases. On 

the contrary TTP and P-TTP receive the best service 

experience results. P-TTP outperforms TTP due to its 

capability of having the service ready in the location 

where the vehicle is predicted to be in, while in the TTP 

approach SVs will need to request the service once they 

arrive at a particular destination. 

The second experiment focuses on the cost of 

acquiring services from SPs using the three-different 

service discovery and selection techniques. Fig. 2 depicts 

the results and shows that the P-TTP method outperforms 

the other two methods. Due to the excessive time gained 

by predicting the location of SVs at a future time point, 

the game-based service selection method will determine 

the optimal service experience with a reduced cost. A 

total reduction of 4 price units is achieved when adopting 

the P-TTP over the TTP approach (14.8% reduction) and 



a reduction of 21 price units when adopting the P-TTP 

over the direct service selection solution (77.7% 

reduction). 

 
 

 
 

 

The third experiment focuses on the service hit ratio. 

Fig. 3 clearly shows that the direct approach will always 

end up with having a 100% hit ratio. This is due to the 

fact that since SVs are directly requesting service from 

SPs, SVs will always commit to a particular service after 

agreeing with the SPs. On the contrary, the TTP and P-

TTP approach will not always end up with a 100% hit 

ratio. This is due to having the TTP negotiate with many 

SPs and end up with selecting only one particular service 

from a SP. This decrease in hit ratio can be clearly seen 

in the P-TTP approach, where SV future locations are 

predicted and service negotiation through TTPs are 

initiated before SV arrival. Some location predictions 

might end up not being accurate and thus service 

acquisition is not initiated. Although a decrease in hit 

ratio is seen in the P-TTP approach, other performance 

metrics clearly show that the QoE gains outperform the 

losses. 

Fig. 4 outlines the number of services discovered 

using the proposed technique. The adopted approach 

shows that the total number of services discovered is 

more than doubled when compared to the TTP technique. 

Services are not only discovered in the current cloud 

service area but also discovered in other cloud services 

areas where SVs are predicted to be in at a future time 

point. This service discovery is achieved through the 

collaboration with other TTPs. The direct approach 

shows that service discovery is limited to the SV node’s 

capability of discovering services through direct 

negotiation with SPs. Undoubtedly, this limitation is due 

to constrained awareness of the available SPs in the cloud 

service area and the services they offer. By adopting a 

TTP approach, SVs will be made aware of the available 

services through the TTPs which have complete 

awareness of all available services in the environment. 

 

 

VII. CONCLUSION 

This paper has introduced the concept of Smart 

Vehicle as a Service (SVaaS) to provide continuous 

vehicular services in smart cities. The solution relies on a 

location prediction mechanism to determine a vehicle’s 

future location. Once a vehicle’s predicted location is 

determined, a QoE-based service selection mechanism is 

used to select services that are needed before the vehicle’s 

arrival. Simulation results show that our approach can 

adequately establish vehicular services in a timely and 

efficient manner. In future work, we are will implement 

the solution using real-time data collected from smart car 

sensors and test the solution against this data. 
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