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Abstract—We present a formal probabilistic framework for 

process learning to compose service specific overlays (SSO) in 

cloud networks. The approach provides a learning mechanism 

that relies on previous composition results to build service 

composition process models that can be adopted for future 

composition requests. The process is then translated into a 

workflow-net to provide guaranteed delivery of requested cloud 

media services to clients. A mathematical merge technique is also 

presented to converge multiple process threads into a single 

composed process. We provide simulation results to show that 

our approach can adequately establish sound composition paths 

in a timely manner.  

Keywords—Workflow-net, Petri-net, service composition, 

overlay networks, cloud networks. 

I. INTRODUCTION 

Nowadays, in order to cope with the boundless service 
preferences of cloud subscribers, current approaches such as 
centralized cloud service provisioning that incorporates 
increased amounts of resources at the datacenter is becoming 
ineffective in terms of scalability, cost and flexibility. With the 
aid of network-side devices, distributed cloud service 
availability provides an enhanced alternative. More 
specifically, service subscriber devices can be used as service 
adaptation nodes to help in the process of providing user-
tailored composite cloud services. 

The Service Oriented Architecture (SOA) has become a 
standard for service composition solutions [1]. With today’s 
mobile cloud advancements and rapid deployment of roaming 
devices, the SOA paradigm has begun its shift to wireless 
networks. Most service composition solutions do not take into 
consideration mobility issues [2]. The seamless composition of 
distributed service components into more complex ones in 
mobile environments is a sensitive process. Issues such as 
service disruption caused by movement of service providers, 
heterogeneity of devices and resource variability all are 
examples of how unpredictable a mobile cloud environment 
can be.  

Overlays provide a layer of abstraction and thus made it 
possible to use the lower-level network infrastructure to 
provide higher-level services to users. With the aid of mobile 
cloud service subscribers, service-specific overlays can be 
constructed to provide composable services such as user-
tailored media content to help cloud application providers 

achieve QoS guarantees. Nonetheless, service-specific overlay 
composition in a dynamic mobile environment is a challenging 
contemporary issue for cloud management systems. 

In this paper, we define a probabilistic framework for 
process learning using previous SSO composition node log 
files. Service composition logs or history is used to enhance 
system management issues such as learning and network 
optimization. This continuous feedback about the process 
execution and its impact on the network performance is very 
essential for cloud service providers. Previous composition 
results are used to build service composition process models 
that can be adopted for similar future composition requests. 
Process models are translated into workflow-nets to provide 
guaranteed delivery of cloud services to clients. We define 
process threads and a merge technique to combine multiple 
process threads that are part of the same process into a single 
composed composition process. 

The paper is organized as follows. Section II discusses 
related literature review. Section III provides a model for the 
composition problem. Section IV introduces the probabilistic 
process learning approach. A representation of the learnt 
process using Workflow-nets is provided in Section V. Section 
VI provides some simulation results. Finally, Section VII 
concludes the paper and discusses some ongoing future work. 

II. RELATED WORK 

 Developing efficient solutions to achieve automated 
service composition has been a hot topic since the introduction 
of web services. Since composite services are usually 
requested in a dynamic environment, adapting solutions 
applied on different network environments leads to inadequate 
composition results. Reinforcement learning is one commonly 
adopted technique used to achieve automation for service 
composition [3]-[6]. 

 Casser et al. [7] presented a method using a probabilistic 
machine learning technique that processes service request 
templates or keyword queries and retrieves the most relevant 
services to the submitted request. The solution extracts latent 
factors from semantically enriched service descriptions which 
are then used to construct a model to represent different types 
of service descriptions in a vector form. A vector distance 
model is used to calculate the similarity of vector 
representations in the latent factor space. The similarity value 
is then used as a notion for similarity ranking. Although the 



solution adopts a learning mechanism when composing 
services, the work is not intended for service overlay node 
composition. 

The authors in [8] introduced a service specific overlay 
composition method which considers semantic similarity and 
semantic nearness between overlay nodes. A decentralized 
solution is adopted such that each overlay node will determine 
how semantically similar it is to the other mobile nodes in a 
dynamic network environment. Semantic similarity refers to 
how identical a node’s service description is in relation to the 
requested service task description. According to the similarity 
score provided by a node, a decision is made to either accept 
or reject a service node from the overlay composition path. 
The solution does not consider a learning mechanism when 
creating composition paths, rather, the solution reiterates 
every time a node joins or leaves the network. 

Despite the abundant research involved in applying 
reinforcement learning techniques for composite service 
adaptability, there is still limited research involved that aims 
to provide adaptable service specific overlays for today’s 
cloud networks. This paper proposes a probabilistic learning 
technique used to create service composition processes which 
are adapted to newly introduced composite service requests in 
the cloud. 

III. MODELING THE COMPOSITION PROBLEM 

A. Preliminaries 

We model the service overlay composition problem as a 
set of processes. A process is a series of actions performed to 
achieve a task. We assume that each action is performed by 
service nodes. For instance, assume that a media content exists 
at one of the mobile nodes in the cloud in which we call 
Media Server (MS). A request from the Media Client (MC) is 
received for that particular media content with some 
modifications to the original content, such as the addition of 
subtitles, encoding conversion, or size compression. In order 
to deliver the requested service, a set of actions must be 
performed to add the subtitles or compress the size of the 
content. To do so, those actions must be performed in 
sequence by other nearby mobile service nodes which we call 
Media Ports (MP). The set of mobile nodes involved in the 
service composition process from the MS to the MC form a 
SSO.  

Figure 1 depicts an example of a service specific overlay 
such that MS provides the original media contents, MP1, MP2, 
and MP3 add media enhancements to the original content in 
sequence to provide and deliver the requested composite 
service to the MC. An action performed by MP1 in this 

example would be to encode the original video to another 
format provided by the MS. A second example of an action 
would be, after the encoding format conversion, MP2 adds 
subtitles. The same process repeats for the other service node 
MP3 until the requested composite service is delivered to the 
MC. 

Events are the driving force behind any action. An 
example of an event is a movie that exists on the MS has been 
converted to another type of video encoding format. Provided 
this event an action can now be performed by an MP. We 
assume that there is a set Λ = {𝜆1, 𝜆2, … , 𝜆𝑚}  of primitive 
events that cannot be fragmented into simpler events, where 𝑚 
is the number of distinct events in a process. We further 
classify Λ into two distinctive sets: Λ0 and Λ𝑐 . The former is 
the set of events in which a process begins with, such that 

Λ0 = {𝜆1
0, 𝜆2

0 , … , 𝜆𝑗
0}. The latter is the set of events that follow, 

such that Λ𝑐 = {𝜆1
𝑐 , 𝜆2

𝑐 , … , 𝜆𝑘
𝑐 }. The properties for Λ are defined 

as follows: 
Λ0 ∪ Λ𝑐 =  Λ                                   (1) 

Λ0 ∩ Λ𝑐 =  ∅                                   (2) 

∀ 𝜆 ∈ Λ0, 𝜆 = ∅                                (3) 

∀ 𝜆 ∈ Λ𝑐 , 𝜆 ≠ ∅                                (4) 
where 𝜆 is the set of earlier events that lead to 𝜆. Given the 
definitions in (1) and (2), if 𝑗 is the number of events in Λ0 and 
𝑘 is the number of events in Λ𝑐, then 𝑗 + 𝑘 = 𝑚. 

B. Workflow-Net 

Processes are modelled using Workflow-nets which are an 
extension to Petri-nets. A Petri-net is a directed graph in 
which nodes are either transitions or places. A place is 
connected to one or more transitions. A transition is connected 
to one or more places. Places cannot be connected to places, 
and transitions cannot be connected to transitions. Thus, a 
transition must exist between places. The connections are 
made through directed arcs. Transitions perform actions and 
are represented as tokens residing in places. A transition is 
enabled only when there are no empty places (i.e. places with 
no tokens) connected to it as input. A transition executes (i.e. 
performs an action) after being enabled. The result of the 
execution is the removal of tokens from each of the 
transition’s input places and the creation of tokens in each of 
its output places. Workflow-nets constitute an extension to 
Petri-nets such that they possess a single source and sink 
nodes. In other words, the Workflow-net possesses exactly 
one place with no incoming transition and exactly one place 
with no outgoing transition. This property achieves the notion 
of soundness which implies that the model is both structurally 
and behaviorally well-formed. Figure 2 depicts a Workflow-
net model for the service composition process example 
outlined in Figure 1. 
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Fig.2. Service-specific overlay composition model using Workflow-net. 
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C. Definitions 

The following are concepts used throughout this paper 
which are applied within the proposed composition solution. 

Definition 1: a pre-stage process source event 𝑖 for Λ0  is 
used to ensure that regardless of the events that are happening, 
the process will always have a single event to start with. This 
aligns with the definition of a workflow-net in which the 
model contains a single place with no incoming transitions. 

Definition 2: a post-stage process sink event 𝑜  for Λ𝑐  is 
used to ensure regardless of the flow of the process, it will 
always have a single event in which it terminates with. Again 
this aligns with the definition of a workflow-net in which the 
model contains a single place with no outgoing transitions. 

Definition 3: an activity 𝜉𝑘  is the lifetime of the media 
content 𝑘 being composed inside a process, in which multiple 
actions are applied to produce the composed media content. 
An activity has to start with the source event 𝑖 and end with 
the sink event 𝑜. 

Definition 4: a process thread 𝜖  is a description of the 
process flow from source 𝑖 to sink 𝑜, such that {𝜖1, 𝜖𝑢 , … , 𝜖𝑢} 
is the set of threads that build up a process. 

Definition 5: a dependency matrix 𝔇 is a two dimensional 
matrix with length equal to the number of events defined in Λ. 
The matrix defines the dependencies between events as 
follows: 

𝔇[𝑖, 𝑗] = {
0 𝑖𝑓 𝜆𝑖 = 𝜆𝑗  | 𝜆𝑖  𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝜆𝑗

1 𝑖𝑓 𝜆𝑖  𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝜆𝑗
   (5) 

Definition 6: a projection vector 𝜌 is used to project the 
dependency of a certain event with all events defined in Λ. 
Using a mask, only certain rows from the dependency matrix 
are shown while the others are hidden. For example 𝜌 =
[0 0 1 0] is a vector used to study the dependency of 𝜆3  on 
four events defined in Λ. 

 Definition 6: a projected event dependency �́� is a vector 
which outlines the dependency of a single event from matrix 
𝔇, and is derived as follows: 

 �́� = 𝜌×𝔇                                    (6) 

Definition 7: an executed vector dependency �⃗⃗⃗́�  determines 

the dependency of a certain event upon Λ⃗⃗ , which is the set of 
events that have already been executed. The vector is derived 
as follows: 

�⃗⃗⃗́� =
 

Λ⃗⃗ ×�́�                                    (7) 

IV. PROCESS LEARNING APPROACH 

The composition process is based on a learning approach, 
such that node log files from previously successful 
composition processes are used to recreate similar 
compositions for similar events in the future. Service node log 
files include process threads’ descriptions such as the events 
that lead to an action to be considered, the events which 
occurred after applying the action, list of nodes that preceded 
the considered node in the composition, and the node that 
followed the considered node in the composition.  

Three steps are involved in the proposed service 
composition process learning method: candidate events 
selection, probability of event occurrence, and converging 
threads into a process. The first step derives a list of candidate 
events that may occur when applying a particular action. The 
second step calculates the probability that the selected 
candidate events will occur. The last step involves the 
convergence of threads into a process. A service composition 
process which may be made up of different or somewhat 
similar process threads (i.e. a series of events that occur 
following the actions performed by multiple service nodes) is 
formed by merging those threads. These steps are repeated for 
all process threads for newly composed service log files until 
all events are handled. 

A. Candidate Event Selection 

A set of events that are candidates for processing are 

selected in this step. The set of candidate events Λ́ are selected 
according to (8), such that it contains all events that could start 
a particular process and do not depend on any previous events 
Λ0 , union with the set of events that depend on the already 

fired events (�⃗⃗⃗́� ×Λ𝑐). 

Λ́ = Λ0 ∪ (�⃗⃗⃗́� ×Λ𝑐)                               (8) 

Those candidate events provide an overview of the events’ 
sequence in a service composition process beginning with the 
pre-stage process source event 𝑖 and ending with the post-stage 

process sink event 𝑜. The set Λ́ contains all possible process 
threads’ events that may exist in a single composition process 
and thus multiple event sequences are generated, which in turn 
form multiple threads. 

B. Event Occurrence Probability 

Once the set of candidate events Λ́  have been derived 
according to (8), the next step is to determine the probability 
for an event to occur. This is achieved by first calculating a 
belief value for an event occurrence according to (9). 

𝑏𝑒𝑙(𝜆𝑖) = ∫ 𝑃(𝜆𝑖|𝜆𝑗)×𝑀𝐴𝑋(�⃗⃗⃗́� 𝑗 , 𝜎(‖𝜆𝑖 ∩ Λ0‖))𝑑𝜆
𝑛

𝑗=1
   (9) 

where 𝑃(𝜆𝑖|𝜆𝑗)  is the probability for the event 𝜆𝑖  to occur 

given the occurrence of the event 𝜆𝑗 . This probability is 

calculated according to a uniform distribution function. For 
instance, if the occurrence of event 𝜆𝑗  attains three other 

possibilities of events which are 𝜆𝑖1, 𝜆𝑖2  and 𝜆𝑖3 , then 

𝑃(𝜆𝑖1|𝜆𝑗) = 1/3 . ‖𝜆𝑖 ∩ Λ0‖  is the magnitude of the 

intersection between event 𝜆𝑖 and the set of events in which a 
process begins with, 𝜎 is a step function which produces 0 if 
the magnitude is 0 and 1 otherwise. 

Thereafter, once the believe values have been derived for 
all candidate events, a normalized probability is calculated for 
each event as follows: 

𝑃𝑁(𝜆𝑖) =
𝑏𝑒𝑙(𝜆𝑖)

∑ 𝑏𝑒𝑙(𝜆𝑗)
𝑛
𝑗=0

                               (10) 

C. Converging Threads into a Process 

As defined in Section III.C, process threads are the building 
blocks for a process. A thread provides a description of the 
events that are produced in a process following the actions 



performed by service nodes. More specific towards media 
service composition, threads constitute the different node 
composition paths taken to provide the composite service. The 
previous two steps of the process learning method develops a 
composition path (thread) from the set of candidate events. In 
this step the process which may be composed of multiple 
threads is built by converging those threads together. Thread 
convergence is the operation of redefining the relationship 
between threads and merging them into a bigger entity. 

We assume that thread events are defined through a 
sequence of levels in which events are categorized by their 
hierarchy level. Two different threads having the same set of 
events occurring at the same hierarchy level can be merged 
into the same process. Therefore, the operation of thread 
convergence is achieved through thread hierarchy level 
comparison. For instance, the example depicted in Figure 1 
illustrates the nodes selected and the path considered to 
compose the requested service. The same requested service can 
also be composed through a different set of nodes and path (i.e. 
different overlay). Both solutions may create similar thread 
events that belong to the same execution sequence level. Given 
such circumstances, we can converge the two threads into a 
single process. 

The steps involved in the convergence process are as 
follows: 

1. Create a common start event 𝜆0 which is the starting 
event for all different composition paths (threads). E.g. 
availability of original non-enhanced movie on a node. 

2. Create a common end event 𝜆𝑒𝑛𝑑  which is the final 
event for all different composition paths. E.g. movie 
enhancements completed. 

3. ∀ (𝑙𝑖 ∈ 𝜖𝑛  and ∀ 𝑙𝑗 ∈ 𝜖𝑚), if 𝑖 = 𝑗 then ∀ (𝜆𝑠 ∈ 𝑙𝑖  and 

𝜆𝑡 ∈ 𝑙𝑗), 𝜆𝑐 = 𝜆𝑠 ∪ 𝜆𝑡. 

4. 𝑏𝑒𝑙(𝜆𝑐) = ∫𝑃(𝜆𝑐) = ∫𝑃(𝜆𝑠) + 𝑃(𝜆𝑡)𝑑𝜆. 
5. After convergence is complete for all threads, obtain 

the normalized probabilities from the belief values 
found in step 4. 

where 𝑙𝑖 is a hierarchy level in thread 𝜖𝑛 and 𝑙𝑗  is a hierarchy 

level in thread 𝜖𝑚. The convergence process starts by creating 
a single starting event 𝜆0  and ending event 𝜆𝑒𝑛𝑑  that is 
common among all threads. Then, for each hierarchy level, the 
common events are modeled once with a probability of 
occurrence equal to the sum of the two occurrences before 
convergence. Finally, the probability is then normalized.  

Figure 3 provides an illustrative example of two overlay 
composition paths (threads) considered for the addition of 
media enhancements requested by a MC to an original movie 
content found at a MS. Figure 3a illustrates the thread events 
involved in the composition process. Figure 3b illustrates 
different but similar thread events in the composition process. 
Figure 3c provides an illustration of the convergence of the two 
threads in which common events are modelled once only. 

V. WORKFLOW-NET REPRESENTATION OF THE LEARNT 

PROCESS 

A. Node Selection 

Once the process learning of previous composition tasks is 
complete, current composition requests would rely on those 
learnt processes to generate a new composition path that is 
adequate for the current network configuration. Therefore, 
when a service request from the current service node 𝑀𝑃𝑖  is 
transmitted to another node 𝑀𝑃𝑖+1, the thread to be followed to 
achieve the requested process must be determined. The 
decision of which thread to follow is determined based on the 
task coverage achieved by employing the currently available 
nodes. Task coverage is defined as follows: 

∀𝜗 ∈ 𝑅, ℒ(𝜗, 𝜆) ≠ ∅ and 𝜆 ∈ Λ                    (11) 

in other words, for all actions 𝜗 that form the requested service 
𝑅, those actions must be part of the set of capabilities provided 
by the process. ℒ is an association function that associates an 
action 𝜗 to an event 𝜆 occurrence. 

If the node receiving the service request can achieve the 
requested action independently, that is: 

∀𝜗 ∈ 𝑅, 𝜗 ∈ 𝜚(𝑀𝑃𝑖 , 𝜗)                        (12) 

then the node will no longer need to send a service composition 
request to another node, hence, the task is achieved 
independently. 𝜚 is a mapping function that maps capabilities 
to nodes. Otherwise, if a single node cannot provide the 
requested service, then the service must be composed with the 
aid of other service nodes. This is achieved using a capability 
matrix (13). 

A capability matrix 𝑀 outlines each node’s capabilities: 

𝑀  =    

 𝜗1 𝜗2 ⋯ 𝜗𝑛

𝑀𝑃1

𝑀𝑃2

⋮
𝑀𝑃𝑘

[ 

1 0 ⋯ 1
0 1 ⋯ 0
0
0

1
0

⋯
⋯

0
1

 ]
                  (13) 
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where 

𝑀(𝑀𝑃𝑘, 𝜗) = {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑀𝑃𝑖  𝑐𝑎𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝜗𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (14) 

The service node that receives the composition request will 
traverse the matrix until all required actions are selected for a 
particular composition to be attained. This traversal will feature 
the set of nodes considered and their capabilities used to 
compose the requested service.  

B. Workflow-net Formulation 

Once the set of nodes used to attain a process are 
determined, the workflow which describes the behavior of a 
node 𝑀𝑃𝑖  is developed and executed as follows: 

∀𝑀𝑃𝑖 ∈ 𝑀𝑃 ∃ 𝑤𝑓𝑗|𝑤𝑓𝑗 ∈ 𝜖𝑗 and ∀𝑖=1
𝑘 𝑀𝑃𝑖 ∙ 𝑀𝑃𝑖+1    (15) 

such that the nodes ∀𝑖=1
𝑘  𝑀𝑃𝑖 ∙ 𝑀𝑃𝑖+1  execute the process 

thread 𝜖𝑗 . This can be represented as a set of Workflow-nets 

∀𝑀𝑃𝑖 ∈ 𝑀𝑃 , such that each Workflow-net is described as 
follows: 

𝑤𝑓 = 〈𝑃, 𝑇, 𝑃×𝑇 ∪ 𝑇×𝑃〉, and                   (16) 

∃ 𝑝𝑖 ∈ 𝑃|𝑝𝑖 = ∅, and                           (17) 

∃ 𝑝𝑜 ∈ 𝑃|𝑝𝑜 = ∅                              (18) 

where P and T are places and transitions in the workflow 
respectively. Places are events and transitions perform actions. 
𝑝𝑖  and 𝑝𝑜 are the input and output places to the workflow.  

The complete service overlay composition framework ℱ is 
described as follows: 

ℱ = 〈𝑊𝐹,𝑤𝑓×𝑤𝑓, 𝜗, 𝑅,𝑀𝑃, 𝜚, 𝜍〉               (19) 

where 𝑊𝐹 is the set of workflows, 𝑤𝑓×𝑤𝑓 describes the flow 
of data from one node to another that belong to the 
composition set, 𝜗  is the set of actions performed, 𝑅  is the 
requested composite service, 𝑀𝑃  is the set of service nodes 
that are part of the service specific overlay, 𝜚  is a mapping 
function between a node and an action performed by that node, 
𝜍  is a one to one mapping between a node 𝑀𝑃𝑖  and the 
workflow 𝑤𝑓𝑗. 

C. Soundness of the Framework 

Soundness guarantees that the defined process will produce 
an output (i.e. composed media content) when given an input 
(i.e. original media content). In this section we introduce a 
theorem of soundness to define the conditions that need to be 
satisfied for a process to be sound. Additionally, proofs are 
provided to support the theorem. 

Theorem 1: A framework ℱ is sound if and only if: 
1. ∀𝑟 ∈ 𝑅, 𝑟 ∈ 𝜗. 
2. ∀𝑤𝑓 ∈ 𝑊𝐹,𝑤𝑓 is sound. 
3. 𝑤𝑓×𝑤𝑓 is a sound wofkflow. 
4. At any time 𝑡 , if a node 𝑀𝑃𝑖  leaves the network 

∃𝑀𝑃𝑗|∀𝜗 ∈ 𝜚(𝑀𝑃𝑗 , 𝜗). 

To proof the theory, we need to proof that if ℱ is sound, 
then all four conditions are satisfied, and vice versa. 

Proof 1: Since ℱ is sound, therefore for every input place 
𝑝𝑖  there is a given output place 𝑝𝑜. Therefore ∀𝑟 ∈ 𝑅 ∃ 𝜗|𝑟 ≡
𝜗. Since the input 𝑝𝑖  exists in node 𝑀𝑃𝑖  and the output place 𝑝𝑜 
is in node 𝑀𝑃𝑗, therefore ∀𝑤𝑓 ∈ 𝑊𝐹 such that 𝜍(𝑀𝑃𝑖 , 𝑤𝑓𝑗) is 

true. Therefore 𝑤𝑓  is sound, and therefore ∀𝑤𝑓𝑖 , 𝑤𝑓𝑗|𝑤𝑓𝑖×
𝑤𝑓𝑗 ≠ ∅, 𝑤𝑓𝑖×𝑤𝑓𝑗  is also sound. Therefore ∀𝜗 ∈ 𝑅, the action 

𝜗 satisfies the task coverage. 

Proof 2: Since ∀𝑟 ∈ 𝑅, 𝑟 ≡ 𝜗, therefore 𝜗 is self-sufficient. 
Since 𝑤𝑓  is sound and 𝑤𝑓×𝑤𝑓  is also sound, therefore the 
input place 𝑝𝑖  will eventually reach the output place 𝑝𝑜. Since 
task coverage is always maintained, therefore ℱ is sound. 

VI. SIMULATION RESULTS 

 To generalize the problem and test the system’s capability 
regardless of the type of service requested, we developed a 
simulator to analyze three different solutions: i) the proposed 
learning-based node cooperation method, ii) a non-learning-
based node cooperation method, and iii) a non-cooperative 
method. The first considers a solution which uses the 
probabilistic process learning approach in which overlay 
nodes cooperate to deliver the requested composite service. 
The second solution considers a similar cooperative model in 
which nodes cooperate to achieve the requested composite 
service but without any aid from the probabilistic learning 
module. The third solution disregards node cooperation and 
hence services are composed (if possible) using a single 
overlay node. The goal of these simulation tests is to 
empirically demonstrate that our definition of learning-based 
cooperation is correct and that process threads can be 
adequately established and carried out. 

The input to the simulator consists of a thread in the form 
of a linear logic expression with operators described in [9]. 
Other input parameters consist of a set of nodes, each with a 
set of service capabilities, expressed as Workflow-nets. Each 
capability corresponds to one action defined in the process, 
along with the cost associated with performing that action. 
Actions that are not part of a node’s set of capabilities have 
their cost set to infinity. A uniformly distributed random 
variable is used to first determine the initial set of capabilities 
for each node. When a node is assigned a service capability, 
the cost for executing the action is randomly determined with 
a normally distributed variable. 

Once node capabilities are set, the simulator evaluates the 
task coverage. If the generated nodes’ capabilities are 
insufficient to provide a complete task coverage, the simulator 
terminates with infinity as a cost for execution. Otherwise, the 
cooperative process is constructed and executed. For 
simplicity, the execution time is computed as the total 
execution cost in the Workflow-net. 

The first experiment conducted considers the delay 
incurred to complete a certain number of service requests. The 
results depicted in Figure 4 show that the non-cooperative 
solution incurs the most delay in comparison with the two 
cooperative solutions. Although both cooperative solutions 
show that the time needed to complete the service requests 
stabilizes as the number of service requests increases, the 
probabilistic process learning approach outperforms the non-
learning approach by almost 29%. This is due to the use of 



composition paths which have been applied for previously 
considered composition requests.  

 

The second experiment considers a service request which 
requires a set of actions to be performed to achieve the task. 
Results depicted in Figure 5 show that the learning 
cooperative approach outperforms the non-learning 
cooperative and non-cooperative approaches by 17 and 61 
time units respectively (i.e. 30% and 61% reduction in delay 
respectively). 

 

The third experiment outlines the improvements achieved 
as the number of nodes used for cooperation increases. Results 
shown in Figure 6 prove that the learning approach adds an 
increased benefit as the number of nodes increase such that 
with the availability of 10 nodes to be used for cooperation, 
the delay is reduced by 54% in comparison to the non-learning 
approach. 

 

Another simulation was conducted to test the stability of 
the framework against node departure. Results depicted in 
Figure 7 show that the overhead incurred to create a 
cooperative composition solution increases almost 
exponentially for the non-learning cooperative approach. On 

the contrary, although the overhead also increases for the 
learning cooperative approach, the delay incurred for creating 
a cooperative composition is much lower than the non-
learning approach. 

 

VII. CONCLUSION 

This paper introduced a probabilistic learning technique 
used to create service composition processes which are 
adapted to newly introduced composite service requests in the 
cloud. Service composition logs are used to enhance system 
management issues in which continuous feedback about the 
process execution and its impact on the network performance 
are used to build service composition process models that can 
be adopted for similar future composition requests. Process 
models are translated into workflow-nets to provide 
guaranteed delivery of cloud services to clients. Simulations 
were conducted to compare the proposed solution to two other 
service composition techniques. 
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Fig.4. Time required to complete a number of service requests. 
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Fig.5. Time required to complete a single service request composed of 

multiple of actions. 
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Fig.6. Time required to complete a single service request composed of 

multiple actions as the number of nodes used for cooperation is varied. 
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Fig.7. Overhead incurred as the probability of node departure increases. 
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