
A Probabilistic Process Learning Approach for

Service Composition in Cloud Networks

Ismaeel Al Ridhawi, Yehia Kotb

College of Engineering and Technology

American University of the Middle East (AUM)

Egaila, Kuwait

{Ismaeel.Al-Ridhawi; Yehia.Kotb}@aum.edu.kw

Moayad Aloqaily, Burak Kantarci

School of Electrical Engineering and Computer Science

University of Ottawa

Ottawa, Ontario, Canada

{maloqaily; burak.kantarci}@uottawa.ca

Abstract—We present a formal probabilistic framework for

process learning to compose service specific overlays (SSO) in

cloud networks. The approach provides a learning mechanism

that relies on previous composition results to build service

composition process models that can be adopted for future

composition requests. The process is then translated into a

workflow-net to provide guaranteed delivery of requested cloud

media services to clients. A mathematical merge technique is also

presented to converge multiple process threads into a single

composed process. We provide simulation results to show that

our approach can adequately establish sound composition paths

in a timely manner.

Keywords—Workflow-net, Petri-net, service composition,

overlay networks, cloud networks.

I. INTRODUCTION

Nowadays, in order to cope with the boundless service
preferences of cloud subscribers, current approaches such as
centralized cloud service provisioning that incorporates
increased amounts of resources at the datacenter is becoming
ineffective in terms of scalability, cost and flexibility. With the
aid of network-side devices, distributed cloud service
availability provides an enhanced alternative. More
specifically, service subscriber devices can be used as service
adaptation nodes to help in the process of providing user-
tailored composite cloud services.

The Service Oriented Architecture (SOA) has become a
standard for service composition solutions [1]. With today’s
mobile cloud advancements and rapid deployment of roaming
devices, the SOA paradigm has begun its shift to wireless
networks. Most service composition solutions do not take into
consideration mobility issues [2]. The seamless composition of
distributed service components into more complex ones in
mobile environments is a sensitive process. Issues such as
service disruption caused by movement of service providers,
heterogeneity of devices and resource variability all are
examples of how unpredictable a mobile cloud environment
can be.

Overlays provide a layer of abstraction and thus made it
possible to use the lower-level network infrastructure to
provide higher-level services to users. With the aid of mobile
cloud service subscribers, service-specific overlays can be
constructed to provide composable services such as user-
tailored media content to help cloud application providers

achieve QoS guarantees. Nonetheless, service-specific overlay
composition in a dynamic mobile environment is a challenging
contemporary issue for cloud management systems.

In this paper, we define a probabilistic framework for
process learning using previous SSO composition node log
files. Service composition logs or history is used to enhance
system management issues such as learning and network
optimization. This continuous feedback about the process
execution and its impact on the network performance is very
essential for cloud service providers. Previous composition
results are used to build service composition process models
that can be adopted for similar future composition requests.
Process models are translated into workflow-nets to provide
guaranteed delivery of cloud services to clients. We define
process threads and a merge technique to combine multiple
process threads that are part of the same process into a single
composed composition process.

The paper is organized as follows. Section II discusses
related literature review. Section III provides a model for the
composition problem. Section IV introduces the probabilistic
process learning approach. A representation of the learnt
process using Workflow-nets is provided in Section V. Section
VI provides some simulation results. Finally, Section VII
concludes the paper and discusses some ongoing future work.

II. RELATED WORK

 Developing efficient solutions to achieve automated
service composition has been a hot topic since the introduction
of web services. Since composite services are usually
requested in a dynamic environment, adapting solutions
applied on different network environments leads to inadequate
composition results. Reinforcement learning is one commonly
adopted technique used to achieve automation for service
composition [3]-[6].

 Casser et al. [7] presented a method using a probabilistic
machine learning technique that processes service request
templates or keyword queries and retrieves the most relevant
services to the submitted request. The solution extracts latent
factors from semantically enriched service descriptions which
are then used to construct a model to represent different types
of service descriptions in a vector form. A vector distance
model is used to calculate the similarity of vector
representations in the latent factor space. The similarity value
is then used as a notion for similarity ranking. Although the

solution adopts a learning mechanism when composing
services, the work is not intended for service overlay node
composition.

The authors in [8] introduced a service specific overlay
composition method which considers semantic similarity and
semantic nearness between overlay nodes. A decentralized
solution is adopted such that each overlay node will determine
how semantically similar it is to the other mobile nodes in a
dynamic network environment. Semantic similarity refers to
how identical a node’s service description is in relation to the
requested service task description. According to the similarity
score provided by a node, a decision is made to either accept
or reject a service node from the overlay composition path.
The solution does not consider a learning mechanism when
creating composition paths, rather, the solution reiterates
every time a node joins or leaves the network.

Despite the abundant research involved in applying
reinforcement learning techniques for composite service
adaptability, there is still limited research involved that aims
to provide adaptable service specific overlays for today’s
cloud networks. This paper proposes a probabilistic learning
technique used to create service composition processes which
are adapted to newly introduced composite service requests in
the cloud.

III. MODELING THE COMPOSITION PROBLEM

A. Preliminaries

We model the service overlay composition problem as a
set of processes. A process is a series of actions performed to
achieve a task. We assume that each action is performed by
service nodes. For instance, assume that a media content exists
at one of the mobile nodes in the cloud in which we call
Media Server (MS). A request from the Media Client (MC) is
received for that particular media content with some
modifications to the original content, such as the addition of
subtitles, encoding conversion, or size compression. In order
to deliver the requested service, a set of actions must be
performed to add the subtitles or compress the size of the
content. To do so, those actions must be performed in
sequence by other nearby mobile service nodes which we call
Media Ports (MP). The set of mobile nodes involved in the
service composition process from the MS to the MC form a
SSO.

Figure 1 depicts an example of a service specific overlay
such that MS provides the original media contents, MP1, MP2,
and MP3 add media enhancements to the original content in
sequence to provide and deliver the requested composite
service to the MC. An action performed by MP1 in this

example would be to encode the original video to another
format provided by the MS. A second example of an action
would be, after the encoding format conversion, MP2 adds
subtitles. The same process repeats for the other service node
MP3 until the requested composite service is delivered to the
MC.

Events are the driving force behind any action. An
example of an event is a movie that exists on the MS has been
converted to another type of video encoding format. Provided
this event an action can now be performed by an MP. We
assume that there is a set Λ = {𝜆1, 𝜆2, … , 𝜆𝑚} of primitive
events that cannot be fragmented into simpler events, where 𝑚
is the number of distinct events in a process. We further
classify Λ into two distinctive sets: Λ0 and Λ𝑐 . The former is
the set of events in which a process begins with, such that

Λ0 = {𝜆1
0, 𝜆2

0 , … , 𝜆𝑗
0}. The latter is the set of events that follow,

such that Λ𝑐 = {𝜆1
𝑐 , 𝜆2

𝑐 , … , 𝜆𝑘
𝑐 }. The properties for Λ are defined

as follows:
Λ0 ∪ Λ𝑐 = Λ (1)

Λ0 ∩ Λ𝑐 = ∅ (2)

∀ 𝜆 ∈ Λ0, 𝜆 = ∅ (3)

∀ 𝜆 ∈ Λ𝑐 , 𝜆 ≠ ∅ (4)
where 𝜆 is the set of earlier events that lead to 𝜆. Given the
definitions in (1) and (2), if 𝑗 is the number of events in Λ0 and
𝑘 is the number of events in Λ𝑐, then 𝑗 + 𝑘 = 𝑚.

B. Workflow-Net

Processes are modelled using Workflow-nets which are an
extension to Petri-nets. A Petri-net is a directed graph in
which nodes are either transitions or places. A place is
connected to one or more transitions. A transition is connected
to one or more places. Places cannot be connected to places,
and transitions cannot be connected to transitions. Thus, a
transition must exist between places. The connections are
made through directed arcs. Transitions perform actions and
are represented as tokens residing in places. A transition is
enabled only when there are no empty places (i.e. places with
no tokens) connected to it as input. A transition executes (i.e.
performs an action) after being enabled. The result of the
execution is the removal of tokens from each of the
transition’s input places and the creation of tokens in each of
its output places. Workflow-nets constitute an extension to
Petri-nets such that they possess a single source and sink
nodes. In other words, the Workflow-net possesses exactly
one place with no incoming transition and exactly one place
with no outgoing transition. This property achieves the notion
of soundness which implies that the model is both structurally
and behaviorally well-formed. Figure 2 depicts a Workflow-
net model for the service composition process example
outlined in Figure 1.

P2

Original Media
Content

Other service
composition actions

P3

P1

P5

Media being
encoded to

different format

Media with
different encoding

format

Subtitles being
added to media.

Media with
different encoding

format and
subti tles

Composite
Media

Fig.2. Service-specific overlay composition model using Workflow-net.

MS

MP1

MP2

MP3

MC

Cloud Network

Service-Specific Overlay

Fig.1. Service-specific overlay.

C. Definitions

The following are concepts used throughout this paper
which are applied within the proposed composition solution.

Definition 1: a pre-stage process source event 𝑖 for Λ0 is
used to ensure that regardless of the events that are happening,
the process will always have a single event to start with. This
aligns with the definition of a workflow-net in which the
model contains a single place with no incoming transitions.

Definition 2: a post-stage process sink event 𝑜 for Λ𝑐 is
used to ensure regardless of the flow of the process, it will
always have a single event in which it terminates with. Again
this aligns with the definition of a workflow-net in which the
model contains a single place with no outgoing transitions.

Definition 3: an activity 𝜉𝑘 is the lifetime of the media
content 𝑘 being composed inside a process, in which multiple
actions are applied to produce the composed media content.
An activity has to start with the source event 𝑖 and end with
the sink event 𝑜.

Definition 4: a process thread 𝜖 is a description of the
process flow from source 𝑖 to sink 𝑜, such that {𝜖1, 𝜖𝑢 , … , 𝜖𝑢}
is the set of threads that build up a process.

Definition 5: a dependency matrix 𝔇 is a two dimensional
matrix with length equal to the number of events defined in Λ.
The matrix defines the dependencies between events as
follows:

𝔇[𝑖, 𝑗] = {
0 𝑖𝑓 𝜆𝑖 = 𝜆𝑗 | 𝜆𝑖 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝜆𝑗

1 𝑖𝑓 𝜆𝑖 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝜆𝑗
 (5)

Definition 6: a projection vector 𝜌 is used to project the
dependency of a certain event with all events defined in Λ.
Using a mask, only certain rows from the dependency matrix
are shown while the others are hidden. For example 𝜌 =
[0 0 1 0] is a vector used to study the dependency of 𝜆3 on
four events defined in Λ.

 Definition 6: a projected event dependency �́� is a vector
which outlines the dependency of a single event from matrix
𝔇, and is derived as follows:

 �́� = 𝜌×𝔇 (6)

Definition 7: an executed vector dependency �⃗⃗⃗́� determines

the dependency of a certain event upon Λ⃗⃗ , which is the set of
events that have already been executed. The vector is derived
as follows:

�⃗⃗⃗́� =

Λ⃗⃗ ×�́� (7)

IV. PROCESS LEARNING APPROACH

The composition process is based on a learning approach,
such that node log files from previously successful
composition processes are used to recreate similar
compositions for similar events in the future. Service node log
files include process threads’ descriptions such as the events
that lead to an action to be considered, the events which
occurred after applying the action, list of nodes that preceded
the considered node in the composition, and the node that
followed the considered node in the composition.

Three steps are involved in the proposed service
composition process learning method: candidate events
selection, probability of event occurrence, and converging
threads into a process. The first step derives a list of candidate
events that may occur when applying a particular action. The
second step calculates the probability that the selected
candidate events will occur. The last step involves the
convergence of threads into a process. A service composition
process which may be made up of different or somewhat
similar process threads (i.e. a series of events that occur
following the actions performed by multiple service nodes) is
formed by merging those threads. These steps are repeated for
all process threads for newly composed service log files until
all events are handled.

A. Candidate Event Selection

A set of events that are candidates for processing are

selected in this step. The set of candidate events Λ́ are selected
according to (8), such that it contains all events that could start
a particular process and do not depend on any previous events
Λ0 , union with the set of events that depend on the already

fired events (�⃗⃗⃗́� ×Λ𝑐).

Λ́ = Λ0 ∪ (�⃗⃗⃗́� ×Λ𝑐) (8)

Those candidate events provide an overview of the events’
sequence in a service composition process beginning with the
pre-stage process source event 𝑖 and ending with the post-stage

process sink event 𝑜. The set Λ́ contains all possible process
threads’ events that may exist in a single composition process
and thus multiple event sequences are generated, which in turn
form multiple threads.

B. Event Occurrence Probability

Once the set of candidate events Λ́ have been derived
according to (8), the next step is to determine the probability
for an event to occur. This is achieved by first calculating a
belief value for an event occurrence according to (9).

𝑏𝑒𝑙(𝜆𝑖) = ∫ 𝑃(𝜆𝑖|𝜆𝑗)×𝑀𝐴𝑋(�⃗⃗⃗́� 𝑗 , 𝜎(‖𝜆𝑖 ∩ Λ0‖))𝑑𝜆
𝑛

𝑗=1
 (9)

where 𝑃(𝜆𝑖|𝜆𝑗) is the probability for the event 𝜆𝑖 to occur

given the occurrence of the event 𝜆𝑗 . This probability is

calculated according to a uniform distribution function. For
instance, if the occurrence of event 𝜆𝑗 attains three other

possibilities of events which are 𝜆𝑖1, 𝜆𝑖2 and 𝜆𝑖3 , then

𝑃(𝜆𝑖1|𝜆𝑗) = 1/3 . ‖𝜆𝑖 ∩ Λ0‖ is the magnitude of the

intersection between event 𝜆𝑖 and the set of events in which a
process begins with, 𝜎 is a step function which produces 0 if
the magnitude is 0 and 1 otherwise.

Thereafter, once the believe values have been derived for
all candidate events, a normalized probability is calculated for
each event as follows:

𝑃𝑁(𝜆𝑖) =
𝑏𝑒𝑙(𝜆𝑖)

∑ 𝑏𝑒𝑙(𝜆𝑗)
𝑛
𝑗=0

 (10)

C. Converging Threads into a Process

As defined in Section III.C, process threads are the building
blocks for a process. A thread provides a description of the
events that are produced in a process following the actions

performed by service nodes. More specific towards media
service composition, threads constitute the different node
composition paths taken to provide the composite service. The
previous two steps of the process learning method develops a
composition path (thread) from the set of candidate events. In
this step the process which may be composed of multiple
threads is built by converging those threads together. Thread
convergence is the operation of redefining the relationship
between threads and merging them into a bigger entity.

We assume that thread events are defined through a
sequence of levels in which events are categorized by their
hierarchy level. Two different threads having the same set of
events occurring at the same hierarchy level can be merged
into the same process. Therefore, the operation of thread
convergence is achieved through thread hierarchy level
comparison. For instance, the example depicted in Figure 1
illustrates the nodes selected and the path considered to
compose the requested service. The same requested service can
also be composed through a different set of nodes and path (i.e.
different overlay). Both solutions may create similar thread
events that belong to the same execution sequence level. Given
such circumstances, we can converge the two threads into a
single process.

The steps involved in the convergence process are as
follows:

1. Create a common start event 𝜆0 which is the starting
event for all different composition paths (threads). E.g.
availability of original non-enhanced movie on a node.

2. Create a common end event 𝜆𝑒𝑛𝑑 which is the final
event for all different composition paths. E.g. movie
enhancements completed.

3. ∀ (𝑙𝑖 ∈ 𝜖𝑛 and ∀ 𝑙𝑗 ∈ 𝜖𝑚), if 𝑖 = 𝑗 then ∀ (𝜆𝑠 ∈ 𝑙𝑖 and

𝜆𝑡 ∈ 𝑙𝑗), 𝜆𝑐 = 𝜆𝑠 ∪ 𝜆𝑡.

4. 𝑏𝑒𝑙(𝜆𝑐) = ∫𝑃(𝜆𝑐) = ∫𝑃(𝜆𝑠) + 𝑃(𝜆𝑡)𝑑𝜆.
5. After convergence is complete for all threads, obtain

the normalized probabilities from the belief values
found in step 4.

where 𝑙𝑖 is a hierarchy level in thread 𝜖𝑛 and 𝑙𝑗 is a hierarchy

level in thread 𝜖𝑚. The convergence process starts by creating
a single starting event 𝜆0 and ending event 𝜆𝑒𝑛𝑑 that is
common among all threads. Then, for each hierarchy level, the
common events are modeled once with a probability of
occurrence equal to the sum of the two occurrences before
convergence. Finally, the probability is then normalized.

Figure 3 provides an illustrative example of two overlay
composition paths (threads) considered for the addition of
media enhancements requested by a MC to an original movie
content found at a MS. Figure 3a illustrates the thread events
involved in the composition process. Figure 3b illustrates
different but similar thread events in the composition process.
Figure 3c provides an illustration of the convergence of the two
threads in which common events are modelled once only.

V. WORKFLOW-NET REPRESENTATION OF THE LEARNT

PROCESS

A. Node Selection

Once the process learning of previous composition tasks is
complete, current composition requests would rely on those
learnt processes to generate a new composition path that is
adequate for the current network configuration. Therefore,
when a service request from the current service node 𝑀𝑃𝑖 is
transmitted to another node 𝑀𝑃𝑖+1, the thread to be followed to
achieve the requested process must be determined. The
decision of which thread to follow is determined based on the
task coverage achieved by employing the currently available
nodes. Task coverage is defined as follows:

∀𝜗 ∈ 𝑅, ℒ(𝜗, 𝜆) ≠ ∅ and 𝜆 ∈ Λ (11)

in other words, for all actions 𝜗 that form the requested service
𝑅, those actions must be part of the set of capabilities provided
by the process. ℒ is an association function that associates an
action 𝜗 to an event 𝜆 occurrence.

If the node receiving the service request can achieve the
requested action independently, that is:

∀𝜗 ∈ 𝑅, 𝜗 ∈ 𝜚(𝑀𝑃𝑖 , 𝜗) (12)

then the node will no longer need to send a service composition
request to another node, hence, the task is achieved
independently. 𝜚 is a mapping function that maps capabilities
to nodes. Otherwise, if a single node cannot provide the
requested service, then the service must be composed with the
aid of other service nodes. This is achieved using a capability
matrix (13).

A capability matrix 𝑀 outlines each node’s capabilities:

𝑀 =

 𝜗1 𝜗2 ⋯ 𝜗𝑛

𝑀𝑃1

𝑀𝑃2

⋮
𝑀𝑃𝑘

[

1 0 ⋯ 1
0 1 ⋯ 0
0
0

1
0

⋯
⋯

0
1

]
 (13)

λA1 λA2 λA3 λA4 λA5

Original pre-
processed movie

available

Movie encoded
to MP4 format

Color filtrations
performed

Subtitles added

Dubbing effects
added

λA6

Movie
enhancements

completed

(a)

λB1 λB2 λB4 λB5 λB6

Original pre-
processed movie

available

Movie encoded
to AVI format

Color
correction
performed

Subtitles added

Dubbing effects
added

λB7

Movie
enhancements

completed

λB3

Movie encoded
to MP4 format

Color filtrations
performed

λB8

(b)

λ0

λ1.1

λ2 λ3 λ4

Original pre-
processed movie

available

Movie
encoded to
AVI format

Color
correction
performed

Subtitles added

Dubbing effects
added

λ5

Movie
enhancements

completed

λ1.2

Movie encoded
to MP4 format

Color filt rations
performed

λend

(c)

Fig.3. (a) Process thread 1 – events for service overlay composition path 1,

(b) Process thread 2 - events for service overlay composition path 2, (c)

Process convergence – merged threads for the same composition process.

where

𝑀(𝑀𝑃𝑘, 𝜗) = {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑀𝑃𝑖 𝑐𝑎𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝜗𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14)

The service node that receives the composition request will
traverse the matrix until all required actions are selected for a
particular composition to be attained. This traversal will feature
the set of nodes considered and their capabilities used to
compose the requested service.

B. Workflow-net Formulation

Once the set of nodes used to attain a process are
determined, the workflow which describes the behavior of a
node 𝑀𝑃𝑖 is developed and executed as follows:

∀𝑀𝑃𝑖 ∈ 𝑀𝑃 ∃ 𝑤𝑓𝑗|𝑤𝑓𝑗 ∈ 𝜖𝑗 and ∀𝑖=1
𝑘 𝑀𝑃𝑖 ∙ 𝑀𝑃𝑖+1 (15)

such that the nodes ∀𝑖=1
𝑘 𝑀𝑃𝑖 ∙ 𝑀𝑃𝑖+1 execute the process

thread 𝜖𝑗 . This can be represented as a set of Workflow-nets

∀𝑀𝑃𝑖 ∈ 𝑀𝑃 , such that each Workflow-net is described as
follows:

𝑤𝑓 = 〈𝑃, 𝑇, 𝑃×𝑇 ∪ 𝑇×𝑃〉, and (16)

∃ 𝑝𝑖 ∈ 𝑃|𝑝𝑖 = ∅, and (17)

∃ 𝑝𝑜 ∈ 𝑃|𝑝𝑜 = ∅ (18)

where P and T are places and transitions in the workflow
respectively. Places are events and transitions perform actions.
𝑝𝑖 and 𝑝𝑜 are the input and output places to the workflow.

The complete service overlay composition framework ℱ is
described as follows:

ℱ = 〈𝑊𝐹,𝑤𝑓×𝑤𝑓, 𝜗, 𝑅,𝑀𝑃, 𝜚, 𝜍〉 (19)

where 𝑊𝐹 is the set of workflows, 𝑤𝑓×𝑤𝑓 describes the flow
of data from one node to another that belong to the
composition set, 𝜗 is the set of actions performed, 𝑅 is the
requested composite service, 𝑀𝑃 is the set of service nodes
that are part of the service specific overlay, 𝜚 is a mapping
function between a node and an action performed by that node,
𝜍 is a one to one mapping between a node 𝑀𝑃𝑖 and the
workflow 𝑤𝑓𝑗.

C. Soundness of the Framework

Soundness guarantees that the defined process will produce
an output (i.e. composed media content) when given an input
(i.e. original media content). In this section we introduce a
theorem of soundness to define the conditions that need to be
satisfied for a process to be sound. Additionally, proofs are
provided to support the theorem.

Theorem 1: A framework ℱ is sound if and only if:
1. ∀𝑟 ∈ 𝑅, 𝑟 ∈ 𝜗.
2. ∀𝑤𝑓 ∈ 𝑊𝐹,𝑤𝑓 is sound.
3. 𝑤𝑓×𝑤𝑓 is a sound wofkflow.
4. At any time 𝑡 , if a node 𝑀𝑃𝑖 leaves the network

∃𝑀𝑃𝑗|∀𝜗 ∈ 𝜚(𝑀𝑃𝑗 , 𝜗).

To proof the theory, we need to proof that if ℱ is sound,
then all four conditions are satisfied, and vice versa.

Proof 1: Since ℱ is sound, therefore for every input place
𝑝𝑖 there is a given output place 𝑝𝑜. Therefore ∀𝑟 ∈ 𝑅 ∃ 𝜗|𝑟 ≡
𝜗. Since the input 𝑝𝑖 exists in node 𝑀𝑃𝑖 and the output place 𝑝𝑜
is in node 𝑀𝑃𝑗, therefore ∀𝑤𝑓 ∈ 𝑊𝐹 such that 𝜍(𝑀𝑃𝑖 , 𝑤𝑓𝑗) is

true. Therefore 𝑤𝑓 is sound, and therefore ∀𝑤𝑓𝑖 , 𝑤𝑓𝑗|𝑤𝑓𝑖×
𝑤𝑓𝑗 ≠ ∅, 𝑤𝑓𝑖×𝑤𝑓𝑗 is also sound. Therefore ∀𝜗 ∈ 𝑅, the action

𝜗 satisfies the task coverage.

Proof 2: Since ∀𝑟 ∈ 𝑅, 𝑟 ≡ 𝜗, therefore 𝜗 is self-sufficient.
Since 𝑤𝑓 is sound and 𝑤𝑓×𝑤𝑓 is also sound, therefore the
input place 𝑝𝑖 will eventually reach the output place 𝑝𝑜. Since
task coverage is always maintained, therefore ℱ is sound.

VI. SIMULATION RESULTS

 To generalize the problem and test the system’s capability
regardless of the type of service requested, we developed a
simulator to analyze three different solutions: i) the proposed
learning-based node cooperation method, ii) a non-learning-
based node cooperation method, and iii) a non-cooperative
method. The first considers a solution which uses the
probabilistic process learning approach in which overlay
nodes cooperate to deliver the requested composite service.
The second solution considers a similar cooperative model in
which nodes cooperate to achieve the requested composite
service but without any aid from the probabilistic learning
module. The third solution disregards node cooperation and
hence services are composed (if possible) using a single
overlay node. The goal of these simulation tests is to
empirically demonstrate that our definition of learning-based
cooperation is correct and that process threads can be
adequately established and carried out.

The input to the simulator consists of a thread in the form
of a linear logic expression with operators described in [9].
Other input parameters consist of a set of nodes, each with a
set of service capabilities, expressed as Workflow-nets. Each
capability corresponds to one action defined in the process,
along with the cost associated with performing that action.
Actions that are not part of a node’s set of capabilities have
their cost set to infinity. A uniformly distributed random
variable is used to first determine the initial set of capabilities
for each node. When a node is assigned a service capability,
the cost for executing the action is randomly determined with
a normally distributed variable.

Once node capabilities are set, the simulator evaluates the
task coverage. If the generated nodes’ capabilities are
insufficient to provide a complete task coverage, the simulator
terminates with infinity as a cost for execution. Otherwise, the
cooperative process is constructed and executed. For
simplicity, the execution time is computed as the total
execution cost in the Workflow-net.

The first experiment conducted considers the delay
incurred to complete a certain number of service requests. The
results depicted in Figure 4 show that the non-cooperative
solution incurs the most delay in comparison with the two
cooperative solutions. Although both cooperative solutions
show that the time needed to complete the service requests
stabilizes as the number of service requests increases, the
probabilistic process learning approach outperforms the non-
learning approach by almost 29%. This is due to the use of

composition paths which have been applied for previously
considered composition requests.

The second experiment considers a service request which
requires a set of actions to be performed to achieve the task.
Results depicted in Figure 5 show that the learning
cooperative approach outperforms the non-learning
cooperative and non-cooperative approaches by 17 and 61
time units respectively (i.e. 30% and 61% reduction in delay
respectively).

The third experiment outlines the improvements achieved
as the number of nodes used for cooperation increases. Results
shown in Figure 6 prove that the learning approach adds an
increased benefit as the number of nodes increase such that
with the availability of 10 nodes to be used for cooperation,
the delay is reduced by 54% in comparison to the non-learning
approach.

Another simulation was conducted to test the stability of
the framework against node departure. Results depicted in
Figure 7 show that the overhead incurred to create a
cooperative composition solution increases almost
exponentially for the non-learning cooperative approach. On

the contrary, although the overhead also increases for the
learning cooperative approach, the delay incurred for creating
a cooperative composition is much lower than the non-
learning approach.

VII. CONCLUSION

This paper introduced a probabilistic learning technique
used to create service composition processes which are
adapted to newly introduced composite service requests in the
cloud. Service composition logs are used to enhance system
management issues in which continuous feedback about the
process execution and its impact on the network performance
are used to build service composition process models that can
be adopted for similar future composition requests. Process
models are translated into workflow-nets to provide
guaranteed delivery of cloud services to clients. Simulations
were conducted to compare the proposed solution to two other
service composition techniques.

REFERENCES

[1] H. Petritsch. “Introduction to SOA and Web Services” in Integrating
SOA and Web Services, River Publishers, Denmark: River Publishers,
pp.9-10, 2011.

[2] S. Deng, L. Huang, J. Taheri, J. Yin, M. Zhou, A. Y. Zomaya,
"Mobility-Aware Service Composition in Mobile Communities," in
IEEE Transactions on Systems, Man, and Cybernetics: Systems , vol.
no.99, pp.1-14.

[3] H. Wang, G. Huang and Q. Yu, "Automatic Hierarchical Reinforcement
Learning for Efficient Large-Scale Service Composition," in Proc. 2016
IEEE International Conference on Web Services (ICWS), San
Francisco, CA, 2016, pp. 57-64.

[4] Y. Lei, Z. Jiantao, W. Fengqi, G. Yongqiang and Y. Bo, "Web Service
Composition Based on Reinforcement Learning," in Proc. 2015 IEEE
International Conference on Web Services, New York, NY, 2015, pp.
731-734.

[5] H. Wang, Q. Wu, X. Chen, Q. Yu, Z. Zheng and A. Bouguettaya,
"Adaptive and Dynamic Service Composition via Multi-agent
Reinforcement Learning," in Proc. 2014 IEEE International Conference
on Web Services, Anchorage, AK, 2014, pp. 447-454.

[6] L. Yu, W. Zhili, M. Lingli, W. Jiang, L. Meng and Q. Xue-song,
"Adaptive Web Services Composition Using Q-Learning in Cloud," in
Proc. 2013 IEEE Ninth World Congress on Services, Santa Clara, CA,
2013, pp. 393-396.

[7] G. Cassar, P. Barnaghi and K. Moessner, "Probabilistic Matchmaking
Methods for Automated Service Discovery," in IEEE Transactions on
Services Computing, vol. 7, no. 4, pp. 654-666, Oct.-Dec. 2014.

[8] Y. A. Ridhawi and A. Karmouch, "Decentralized Plan-Free Semantic-
Based Service Composition in Mobile Networks," in IEEE Transactions
on Services Computing, vol. 8, no. 1, pp. 17-31, Jan.-Feb. 2015.

[9] Y. T. Kotb, S. S. Beauchemin and J. L. Barron, "Workflow Nets for
Multiagent Cooperation," in IEEE Transactions on Automation Science
and Engineering, vol. 9, no. 1, pp. 198-203, Jan. 2012.

Fig.4. Time required to complete a number of service requests.

0

200

400

600

1 2 3 4 5 6 7 8 9 1 0

(T
im

e
U

n
it

s)
 t

o
 c

o
m

p
le

te

se
rv

ic
e

re
q

u
es

ts

Number of service requests

Non-Cooperative
Non-Learning Coorperative
Learning Cooperative

Fig.5. Time required to complete a single service request composed of

multiple of actions.

0

50

100

150

1 2 3 4 5 6 7 8 9 1 0

(T
im

e
U

n
it

s)
 t

o
 c

o
m

p
le

te

se
rv

ic
e

re
q

u
es

t

Number of actions performed

Non-Cooperative

Non-Learning Coorperative

Learning Cooperative

Fig.6. Time required to complete a single service request composed of

multiple actions as the number of nodes used for cooperation is varied.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

(T
im

e
U

n
it

s)
 t

o
 c

o
m

p
le

te

se
rv

ic
e

re
q

u
es

t

Number of nodes

Non-Learning Coorperative

Learning Cooperative

Fig.7. Overhead incurred as the probability of node departure increases.

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o

o
p

er
at

io
n

 o
ve

rh
ea

d

(T
im

e
U

n
it

s)

Probability of node departure

Non-Learning Coorperative

Learning Cooperative

