- software

On Model-Driven Software Engineering

Bran Selic
IBM Distinguished Engineer
IBM Rational Software
bselic@ca.lbm.com

1. Software engineering is in much greater need of
engineering methods than many of its practitioners
assume

2. The current situation can be greatly improved through
the systematic application of model-driven design and
development methods

2 IBM Software Group | [Rationald software

ANGTENISSIESKSHY

Edsger Wybe Dijkstra (1930 — 2002)

* ‘| see no meaningful difference between programming
methodology and mathematical methodology” (EWD 1209)

¢ “[The Iinterrupt] was a great invention, but also a Pandora’s Box.
....essentially, for the sake of efficiency, concurrency [became]
visible... and then, all hell broke loose” (EWD 1303)

3 IBM Software Group | [Rationald software

‘Because [programs] are put together in the context of a set of
Information requirements, they observe no natural limits other
than those imposed by those requirements. Unlike the world of
engineering, there are no immutable laws to violate.”

- Wel-Lung Wang
Comm. of the ACM (45, 5)
May 2002

“All machinery is derived from nature, and Is founded on the
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

18t Century BC

4 IBM Software Group | [Rationald software

=ENOIMEENNY

* Merriam-Webster Collegiate Dictionary:

engineering: the application of science and
mathematics by which the properties of matter and the
sources of energy In nature are made useful to people

+ What does this have to do with software design?
= “ ..no natural limits...no immutable laws to violate”

IBM Software Group |-soiftwa|re

/

/ Non-functional requwements
~ (primarily quantitative)
Construction

Material N
Anticipated

System
Functionality

T
Y v

- s s s s s e s
- e e e e e e o .

Desigr

6 IBM Software Group | [Rationald software

What I1s Software Made of?

7 IBM Software Group |-software

IMENCASEIOINDISIIUIECSSYSIEMS

+ Possibility of out of date status information due to
transmission delays

Cifotiriel Siteitje) SICCECTEl

observer

* The physical characteristics of the computing
environment affect the control logic

8 IBM Software Group | [Rationald software

echoipCommuncanenivedis:

* Inconsistent views of system state:
= (different observers see different event orderings

clientA notifierl notifier2 clientB

A = N

ez
el

el

ez

time
\ 4

+ Can we not hide this by adding “fault transparency” layers?

9 IBM Software Group | [Rationald software

AvElRdamentainnesreucaifResi

It Is not possible to guarantee that agreement can be

reached In finite time over an asynchronous
communication medium, if the medium is lossy or one of

the distributed sites can fail

= Fischer, M., N. Lynch, and M. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process” Journal of

the ACM, (32, 2) April 1985.

10 IBM Software Group | [Rationals software

WIELSSOIWARENSHVIAUEN0);

SOIWAESARIICALION

Operating System

Computing Hardware

\ Platform /

+ The raw material of software Is its platform
= Combination of software and hardware
= Always bottoms out with the hardware

= The hardware imposes its physical properties to the software (speed,
reliability, capacity, etc.)

11 IBM Software Group | [Rationals software

SEHYSICAINOEEMMING S

+ Computer System = Software + Hardware

+ Claim: the physical characteristics of the platform
should, In many cases, be a first-order concern when
designing software

= More applicable by the day as our demands for availability
and reliability of software grow and as the levels of
distribution increase

* The bad news: the physical world is inherently complex

+ ...and, what about platform independence?

12 IBM Software Group | [Rationals software

Models in Engineering and Software

13 IBM Software Group |-soiftware

Vigelgls igFretelitiogrl =nlefinigeinie)

* Probably as old as engineering (e.g., Vitruvius)

é “{I“ﬁ*

14 IBM Software Group | [Rationald software

=ENOIMEEHRONVIGUEEIS
¢ Engineering model:

A reduced representation of some system that highlights
the properties of interest from a given viewpoint

g5 gl ILTH

Digitizer System

Modeled system Functional Model

+ We don'’t see everything at once

+ \We use a representation (notation) that is easily understood for
the purpose on hand
15 IBM Software Group | [Rationals software

HOWAEROTREERNENV OUEISTENENISEM

1. To help us understand complex systems
= Useful for both requirements and designs

= Minimize risk by detecting errors and omissions early in the

design cycle (at low cost)

« Through analysis and experimentation
Investigate and compare alternative solutions

= To communicate understanding
Stakeholders: Clients, users, implementers, testers, documenters, etc.

2. To drive Iimplementation

= The model as a blueprint for construction

16 IBM Software Group | [Rationals software

Tos hll ma Wiaduct

> ¢ ldiosyncrasies of actual
construction materials

' Differences due to:
» Construction methods
\/ » Scaling-up effects

« Skill sets/technologies
« Misunderstandings

e Can lead to serious errors
and discrepancies in the
realization

17 IBM Software Group | [Rationald software

CHEIECIENISUCS OINUSEIUINVOUEIS

* Abstract

= Emphasize important aspects while removing irrelevant ones

¢+ Understandable
= Expressed in a form that is readily understood by observers

+ Accurate
= Faithfully represents the modeled system

* Predictive
= Can be used to answer questions about the modeled system

* |Inexpensive
= Much cheaper to construct and study than the modeled system

To be useful, engineering models must satisfy
all of these characteristics!

18 IBM Software Group | [Rationals software

AVBIROIRIV OISOV ArE:

SC_MODULE (producer)

{

sc_outmaster<int> outl;
sc_in<bool> start; // kick-start
void generate data ()

{

for(int i =0; i <10; i++) {

outl =i ; //to invoke slave;}

SC_CTOR (producer)

SC_METHOD (generate data) ;
sensitive << start;}};

SC_MODULE (consumer)
sc_inslave<int> inl;

int sum; // state variable

void accumulate () {

sum += inl;

“ << sum << endl;}

cout << “Sum =

19

SC _CTOR (consumer)
SC_SLAVE (accumulate, inl);
?um = 0; // initialize

SC MODULE (top) // container
{

producer *Al;

consumer *Bl;

sc_link mp<int> linkl;
SC_CTOR (top)

{

Al = new producer (“Al”) ;
Al.outl(linkl);

Bl = new consumer (“Bl”) ;
Bl.inl(1link1);}};

Can you spot the

architecture?

IBM Software Group |-soﬁtwa|re

ranENISTONVIEIVIeEE]

«sC_link_mp»

«SC_Ctor» link1 «SC_ctor»
. consumer

producer

Can you spot the

architecture?

20 IBM Software Group | [Rationals software

IESeae RSV oue)

(jﬂ%ﬁ“ﬂmuﬁuﬁﬁedﬂﬂﬂr) SC_CTOR (consumer
{ {

sc_outmaster<int> outl; SC SLAVE (accumulate, inl);
sc_in<bool> start; // kick-start ium = 0; // initialize
~void generate data ()
for(int i =0; i <10; i++) {
outl =i ; //to invoke slave;}

}

SC_CTOR (producer)
SC_METHOD (generate data) ;
sensitive << start;}};
SC_MODULE (consumer)
sc_inslave<int> inl;

int sum; // state variable

SC MODULE (top) // container

{

producer *Al;

consumer *Bl;

sc_link mp<int> linkl;

SC_CTOR (top)

{

Al = new producer (“Al}

Al.outl(linkl);

Bl = new consumer
inl (linkl1);}

void accumulate
04 «SC_Ctor» ' p» «SC_Ctor»

H producer linkl

<< end

+= inl;

| consumer

cout <«

21 IBM Software Group | [Rationals software

VioEE EVEI UWeRFRENNEMERt

«SC_method»
u producer u
start outl
producer

void generate_data()
producer {for (int i=0; i<10; i++)

{outl =i;}}

. Started

* Models can be refined continuously until the
specification is complete
22 IBM Software Group |-soiftwa|re

Software has the rare property that it allows
us to directly evolve models into full-fledged
Implementations without changing the
engineering medium, tools, or methods!

= This ensures perfect accuracy of software models;
since the model and the system that it models are
the same thing

The model evolves into the system it was modeling

23

IBM Software Group |-soﬁtwa|re

I OVWACOITPULEISHEE!

void generate_data()

producer {for (int i=0; i<10; i++)
{outl =i;}}

.\vStarted

Stl St2

+ We hide detall by selecting a view and letting the
computer do the rest
24 IBM Software Group | [Rationald software

VIGLEIEIDHVENSSIYIENOIRPEVEIOPIMENTA(VIDID)

* An approach to software development in which the focus and
primary artifacts of development are models (as opposed to
programs)

+ Based on two time-proven methods

(1) ABSTRACTION (2) AUTOMATION
«SC_module» «sc_module»

. .

start outl start outl

1 k2

o)

SC_MODULE (producer) SC_MODULE (producer)

Realm of
modeling

languages

{sc_inslave<int> inl; {sc_inslave<int> inl;
int sum; // int sum; //

void accumulate () { void accumulate (){
sum += inl; sum += inl;

cout << “Sum_= “ << cout << “Sum_= “ <<
sum << endl;} sum << endl;}

25 IBM Software Group | [Rationals software

OV (GISHV OEEIEDHVERAYCHTECLUTEN VDAY

¢ An OMG Initiative
= A framework for a set of open standards in support of MDD

(1) ABSTRACTION (2) AUTOMATION

«sc_module» «SC_module»
| producer [] H producer [l
outl outl

start start

MDA

Standards for:
‘Modeling languages
*Model transformations
Software processes
‘Model interchange...

26 IBM Software Group | [Rationals software

The Engineering of Software

27 IBM Software Group |-software

/

/ Non-functional requwements
~ (primarily quantitative)
Construction

Material N
Anticipated

System
Functionality

T
Y v

- s s s s s e s
- e e e e e e o .

Desigr

28 IBM Software Group | [Rationals software

QUEITYACTFSEIVIEC

+ The physical characteristics of software can be specified using
the general notion of Quality of Service (QoS):

a specification of how well a service can or should be
performed

= throughput, latency, capacity, response time, availability, security...

= ysually a quantitative measure

+ QoS concerns have two sides:
= offered QoS: the QoS that Is available (supply)
= required QoS: the QoS that is required to do a job (demand)

29 IBM Software Group | [Rationals software

RESOUICESIANT Clos Copjireicts

* Resource:

an element whose ability or capacity is limited, directly or
indirectly, by the finite capacities of the underlying physical
platform

* The relationship between resources and resource users

ReadDB()

Resource
(e.g., data base)

RequiredQoS OfferedQoS
(e.g., 2 ms response) (e.9., 1 ms response)

Key issue:
(RequiredQoS < OfferedQoS) ?

30 IBM Software Group | [Rationals software

Varliyine) Clos Copjifelers

+ Can QoS contracts be statically checked by a compiler?
= The good news: Yes (in most cases)
= The bad news: it is usually hard

+ Some Issues:

= |n most cases QoS verification cannot be done incrementally
— the full system context is required

= Each type of QoS (e.qg., bandwidth, CPU performance)
combines differently — no general theory for QoS analysis

+ Fortunately, much of this can be automated

31 IBM Software Group | [Rationals software

AULOMEUNENERCINEERNENAAISIS

* |nter-working of specialized tools via shared standards

32

Model Editing
Tool

QoS Annotations Automatically
Overlay derived analysis

model

Model Analysis

Inverse automated
model conversion

IBM Software Group |-soﬁtwa|re

=EXAIES

~

SCIEM

«SASituation»

IEONTAARIIG

«SAAction»
{SAPriority=2,
SAWorstCase=(93,'ms’),

RTduration=(33.5,'ms")}
A.l.1:main ()

«SASchedulable»

IGClock : Clack

«SATrigger»
{SASchedulable=$R2,
RTat=('periodic',60,'ms")}
«SAResponse»
{SAAbsDeadline=(60,'ms'
C.l:displayData ()

«SASchedulable»

TelemetryDisplayer

TelemetryGatherer

IAUIONS

«SATrigger»

RTat:('periodic',lOO,'ms')}m

«SAResponse»

{SAAbsDeadline=(100,'ms")}

A.1l:gatherData ()
-

_DataGatherer

«SAAction»

RTend=(33.5,'ms")}

~ DataDisplayer

SAAccessControl=Prioritylnheritance}

«SAResource»
{SACapacity=1,

TGClack : Clock

{RTstart=(16.5,'ms'),

A.1.1.1: writeStorage ()

SensorData

~RawDataStorage

«SAAction»

{RTstart=(3,'ms'),

RTend=(5,'ms")}

C.1.1.1: readStorage ()

b

«SAResponse»

«SAAction»
{RTstart=(10,'ms"),
RTend=(31.5,'ms")}
B.1.1.1: readStorage

{SAPriority=1,
SAWorstCase=(50.5,'ms'),

RTduration=(12.5,'ms")}
C.1.1:main ()

IBM Software Group || Rational. software

«SAResponse»
{SAPriority=3,

SAWorstCase=(177,'ms'"),
RTduration=(46.5,'ms")}
B.1.1: main ()

«SASchedulable»

«SATrigger»
{SASchedulable=$R3,
RTat=('periodic',200,'ms")}

«SAResponse» ‘
{SAAbsDeadline=(200,'ms")}
B.1:filterData ()

l&'.e_m_e_tQLEI 0CeSSOI

_~DataProcessor

[GClock : Clock

«SASchedulable» «SASchedulable» «SASchedulable»

TelemetryDisplayer TelemetryGatherer TelemetryProcessor
. DataDisplayer :DataGatherer :DataProcessor

«GRMdeploys»

SAEnNgine
(ESARatge;:l» «SAOwNS» «SAResource»

SASchedulingPolicy=FixedPriority} rData
:Ix86Processor :RawDataStorage

34 IBM Software Group || Rational. software

EXAMPIESANIEISISIRESUILS

«SASituation»

«SAAction»
{SAPriority=2,
SAWorstCase=(93,'ms’), «SATrigger»
RTduration=(33.5,'ms")}
A.L.1:main () RTat=(periodic',100,'ms')}
«SAResponse»
; {SAAbsDeadline=(100,'ms")}
A.1l:gatherData ()
«SASchedulable» -—

TelemetryGatherer TGClock : Clock
-DataGatherer

«SAAction»
{RTstart=(16.5,'ms'),

TGClock : C Kk RTend:(S(_S.S,'ms')}

A.1.1.1: writeStorage ()

«SAResource»
{SACapacity=1,
RTat=(periodic’,60,ms’)} SAAccessControl=Prioritylnheritance} «SAResponse»

«SAResponse» SensorData {SAPriority=3

{Sﬁiﬁgssﬁ;ﬁ;f?’)ms ~RawDataStorage SAWorstCase=(177,'ms’),

RTduration=(46.5,'ms")}
«SAAction» «SAAction» B.1.1: main ()
{RTstart=(3,'ms'), {RTstart=(10,'ms'),

RTend=(5,'ms")} RTend=(31.5,'ms")} 6

C.1.1.1: readStorage () B.1.1.1: readStorage
«SASchedulable» «SASchedulable»

TelemetryDisplayet TelemetryProcesso
~ DataDisplayer _~DataProcessor

{ «SATrigger»

«SAResponse» . RTat=('periodic’,200,'ms")}
{SAPriority=1, «SAResponse» |
SAWorstCase=(50.5,'ms"), ‘Di {SAAbsDeadline=(200,'ms")}
RTduration=(12.5,'ms")} B.1:filterData ()
C.1.1:main ()

«SATrigger»

TGClock : Clock

IBM Software Group || Rational. software

* Models a particular situation that needs to be analyzed
for some time-related property (e.g., response time)

Anticipated Functional Construction
Load Materials

— AnalysisContext r

0..1 Resourcelnstance

UsageDemand ResourceUsage | g

+workload

.

T +usedSeryices 5
‘ ResourceServicelnstance

\ \
StaticUsage DynamicUsage J

IBM Software Group | Rational. software

+ Like all guarantees, the offered QoS Is conditional on
the resource Itself getting what it needs to do its job

¢ This extends in two dimensions:
= the peer dimension
=« the layering dimension: for platform dependencies

- ResourceB

h——————————r——d

Eﬂ_ l

37 IBM Software Group | [Rationald software

Plajor ¢)os

+ Example platform QoS characteristics
= Maximum acceptable context switching times
= Minimum CPU execution speeds
= Minimal memory requirements
= Maximum acceptable communication delay

= Minimal communication throughput

+ Unfortunately, most software today is not explicit about its
platform QoS requirements

= Makes porting difficult

38 IBM Software Group | [Rationals software

U

Linux

Comnouting rlercweare-1

Platform1

4

+ Portability
+ Protection from technology change
+ Separation of concerns

39

U

Windows

Comnguing rlercweare-2

Platform?2 s

IBM Software Group |-soﬁtwa|re

ACHIEVINUNHAUGHTINNUERENUENCE

+ Dilemma: How can we achieve platform independence If
our application has to be aware of platform
characteristics?

+ Solution: Include a technology-independent specification
of the required QoS as part of the application

= Defines the envelope of acceptable platforms for the
application independently of specific technologies

40 IBM Software Group | [Rationald software

REGUINEUERVINGNITENNEEIIONS

+ Example: an Internet-based video application

QoS domain

vw : VideoWindow b : Browser %/

ENVirenmentAs

= |PCiale="..

- CPUISpeed = ...
—= aVallalliy =

vp : VideoPlayer

ws : WebServer E”V”O”f“r‘_‘)”[5:

= |PCale ="

- CRUISpeed = ...
=~ aVallanility ==,

vs : VideoServer

ERVIrenment C: Environment D:

- |PC rate = th —
Clale= ... -- throughput = ...
- CPUISpEed = ... -- dela g: p

— avallanility=s.. - availability = ...

IBM Software Group |

QOSHDOMEAINS

+ A domain in which certain QoS values apply uniformly:
= CPU performance
= communications characteristics (delay, throughput, capacity)
= failure characteristics (e.g., availability, reliability)
= etc.

+ The QoS values of a domain can be compared against
those of any concrete platform to determine its suitability

42 IBM Software Group | [Rationald software

VIGEENNONOOSHPOIIEISHIINCIVILE

* «GRMrequires» = stereotype of «<GRMdeploys»
* Defines a reference platform for an application

ws : WebServer

|

«WSdomain»
Environment-A: Environment-B:
{IPCrate =, {IPCrate =,
CPUspeed=...} CPUspeed=...}

A

«GRMrequires» |

«ComDomain»

Environment-B:

{throughput =,
delay=...}

IBM Software Group | Rational. software

Coneclisiorns

+ Software design can be much more than applied logic:
The design of software Is, In many cases, strongly dependent on
the physical characteristics of the underlying platform

* Model-driven software engineering, characterized by:
= Models of both application software and platforms

= Qualitative and quantitative analysis techniques (including
computer-based model execution)

* Resulting In increased productivity and product
reliability:
= Early detection of design flaws
= Increased levels of abstraction

= |ncreased levels of automation

44 IBM Software Group | [Rationald software

-
QUESTIONS?

(bselic@ca.lbm.com)

	On Model-Driven Software Engineering
	Thesis
	A Giant Speaks…
	Engineering
	The Classical Engineering Design Problem
	The Case of Distributed Systems
	The Effect of Communication Media
	A Fundamental Theoretical Result
	What Software is Made of
	“Physical Programming”
	Models in Traditional Engineering
	Engineering Models
	How Engineering Models are Used
	Models versus Systems
	Characteristics of Useful Models
	A Bit of Modern Software…
	…and its UML Model
	The Software and Its Model
	Model Evolution: Refinement
	The Remarkable Thing About Software
	How Computers Help
	Model-Driven Style of Development (MDD)
	OMG’s Model-Driven Architecture (MDA)
	The Classical Engineering Design Problem
	Quality of Service
	Resources and QoS Contracts
	Verifying QoS Contracts
	Automating Engineering Analysis
	Example: Schedulability Annotations
	Example: Deployment Specification
	Example: Analysis Results
	Basic Resource Usage Model
	Offered vs. Required QoS
	Platform QoS
	The Blessings of Platform Independence
	Achieving Platform Independence
	Required Environment Partitions
	QoS Domains
	Modeling QoS Domains in UML
	Conclusions

