
IBM Software Group

®

Clic
k to 

IBM Software Group

On Model-Driven Software EngineeringOn Model-Driven Software Engineering
Bran Selic

IBM Distinguished Engineer
IBM Rational Software

bselic@ca.ibm.com

Bran Selic
IBM Distinguished Engineer

IBM Rational Software
bselic@ca.ibm.com



22 IBM Software Group  |IBM Software Group  |

ThesisThesis

1. Software engineering is in much greater need of 
engineering methods than many of its practitioners 
assume

2. The current situation can be greatly improved through 
the systematic application of model-driven design and 
development methods

1. Software engineering is in much greater need of 
engineering methods than many of its practitioners 
assume

2. The current situation can be greatly improved through 
the systematic application of model-driven design and 
development methods



33 IBM Software Group  |IBM Software Group  |

A Giant Speaks…A Giant Speaks…

“I see no meaningful difference between programming 
methodology and mathematical methodology” (EWD 1209)
“[The interrupt] was a great invention, but also a Pandora’s Box.
.…essentially, for the sake of efficiency, concurrency [became] 
visible… and then, all  hell  broke loose” (EWD 1303)

“I see no meaningful difference between programming 
methodology and mathematical methodology” (EWD 1209)
“[The interrupt] was a great invention, but also a Pandora’s Box.
.…essentially, for the sake of efficiency, concurrency [became] 
visible… and then, all  hell  broke loose” (EWD 1303)

Edsger Wybe Dijkstra (1930 – 2002)Edsger Wybe Dijkstra Edsger Wybe Dijkstra (1930 (1930 –– 2002)2002)



44 IBM Software Group  |IBM Software Group  |

“Because [programs] are put together in the context of a set of 
information requirements, they observe no natural limits other 
than those imposed by those requirements. Unlike the world of 
engineering, there are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002

“All machinery is derived from nature, and is founded on the 
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC

“Because [programs] are put together in the context of a set of 
information requirements, they observe no natural limits other 
than those imposed by those requirements. Unlike the world of 
engineering, there are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002

“All machinery is derived from nature, and is founded on the 
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC



55 IBM Software Group  |IBM Software Group  |

EngineeringEngineering
Merriam-Webster Collegiate Dictionary:

engineering: the application of science and 
mathematics by which the properties of matter and the 
sources of energy in nature are made useful to people 

What does this have to do with software design?
“…no natural limits…no immutable laws to violate”

Merriam-Webster Collegiate Dictionary:

engineering: the application of science and 
mathematics by which the properties of matter and the 
sources of energy in nature are made useful to people 

What does this have to do with software design?
“…no natural limits…no immutable laws to violate”



66 IBM Software Group  |IBM Software Group  |

The Classical Engineering Design ProblemThe Classical Engineering Design Problem

Construction
Material

ConstructionConstruction
MaterialMaterial

160,000 kg
160,000 kg

Anticipated
Load

AnticipatedAnticipated
LoadLoadSystem

Functionality
SystemSystem

FunctionalityFunctionality

Ξ = cos (η + π/2)
+ ξ∗5

Ξ = cos (η + π/2)
+ ξ∗5

DesignDesignDesign

Non-functional requirements
(primarily quantitative)



77 IBM Software Group  |IBM Software Group  |

What is Software Made of?What is Software Made of?



88 IBM Software Group  |IBM Software Group  |

Ground StationGround Station SpacecraftSpacecraft

observer
on offoffon

State?State?

“on”“on”

“on”“on”

The Case of Distributed SystemsThe Case of Distributed Systems
Possibility of out of date status information due to 
transmission delays
Possibility of out of date status information due to 
transmission delays

The physical characteristics of the computing 
environment affect the control logic
The physical characteristics of the computing 
environment affect the control logic



99 IBM Software Group  |IBM Software Group  |

clientAclientAclientA notifier1notifier1notifier1 notifier2notifier2notifier2 clientBclientBclientB

e1e1
e1e1

e2e2

e2e2

timetime

The Effect of Communication MediaThe Effect of Communication Media
Inconsistent views of system state:

different observers see different event orderings
Inconsistent views of system state:

different observers see different event orderings

Can we not hide this by adding “fault transparency” layers?Can we not hide this by adding “fault transparency” layers?



1010 IBM Software Group  |IBM Software Group  |

A Fundamental Theoretical ResultA Fundamental Theoretical Result

It is not possible to guarantee that agreement can be 
reached in finite time over an asynchronous 
communication medium, if the medium is lossy or one of 
the distributed sites can fail

Fischer, M., N. Lynch, and M. Paterson, “Impossibility of 
Distributed Consensus with One Faulty Process” Journal of 
the ACM, (32, 2) April 1985.

It is not possible to guarantee that agreement can be 
reached in finite time over an asynchronous 
communication medium, if the medium is lossy or one of 
the distributed sites can fail

Fischer, M., N. Lynch, and M. Paterson, “Impossibility of 
Distributed Consensus with One Faulty Process” Journal of 
the ACM, (32, 2) April 1985.



1111 IBM Software Group  |IBM Software Group  |

PlatformPlatform

What Software is Made ofWhat Software is Made of

The raw material of software is its platform
Combination of software and hardware
Always bottoms out with the hardware
The hardware imposes its physical properties to the software (speed, 
reliability, capacity, etc.)

The raw material of software is its platform
Combination of software and hardware
Always bottoms out with the hardware
The hardware imposes its physical properties to the software (speed, 
reliability, capacity, etc.)

Software ApplicationSoftware ApplicationSoftware Application

Operating SystemOperating SystemOperating System

Computing HardwareComputing HardwareComputing Hardware



1212 IBM Software Group  |IBM Software Group  |

“Physical Programming”“Physical Programming”

Computer System = Software + Hardware
Claim: the physical characteristics of the platform 
should, in many cases, be a first-order concern when 
designing software

More applicable by the day as our demands for availability 
and reliability of software grow and as the levels of 
distribution increase 

The bad news: the physical world is inherently complex
…and, what about platform independence?

Computer System = Software + Hardware
Claim: the physical characteristics of the platform 
should, in many cases, be a first-order concern when 
designing software

More applicable by the day as our demands for availability 
and reliability of software grow and as the levels of 
distribution increase 

The bad news: the physical world is inherently complex
…and, what about platform independence?



1313 IBM Software Group  |IBM Software Group  |

Models in Engineering and SoftwareModels in Engineering and Software



1414 IBM Software Group  |IBM Software Group  |

Models in Traditional EngineeringModels in Traditional Engineering
Probably as old as engineering (e.g., Vitruvius)Probably as old as engineering (e.g., Vitruvius)



1515 IBM Software Group  |IBM Software Group  |

Engineering ModelsEngineering Models
Engineering model:
A reduced representation of some system that highlights 
the properties of interest from a given viewpoint

Engineering model:
A reduced representation of some system that highlights 
the properties of interest from a given viewpoint

Functional ModelFunctional ModelModeled systemModeled system

We don’t see everything at once
We use a representation (notation) that is easily understood for
the purpose on hand

We don’t see everything at once
We use a representation (notation) that is easily understood for
the purpose on hand



1616 IBM Software Group  |IBM Software Group  |

How Engineering Models are UsedHow Engineering Models are Used

1. To help us understand complex systems
Useful for both requirements and designs
Minimize risk by detecting errors and omissions early in the 
design cycle (at low cost)

• Through analysis and experimentation
• Investigate and compare alternative solutions

To communicate understanding
• Stakeholders: Clients, users, implementers, testers, documenters, etc.

2. To drive implementation
The model as a blueprint for construction

1. To help us understand complex systems
Useful for both requirements and designs
Minimize risk by detecting errors and omissions early in the 
design cycle (at low cost)

• Through analysis and experimentation
• Investigate and compare alternative solutions

To communicate understanding
• Stakeholders: Clients, users, implementers, testers, documenters, etc.

2. To drive implementation
The model as a blueprint for construction



1717 IBM Software Group  |IBM Software Group  |

Models versus SystemsModels versus Systems

Differences due to:
• Idiosyncrasies of actual 

construction materials
• Construction methods
• Scaling-up effects
• Skill sets/technologies
• Misunderstandings

Can lead to serious errors 
and discrepancies in the 
realization

Differences due to:
• Idiosyncrasies of actual 

construction materials
• Construction methods
• Scaling-up effects
• Skill sets/technologies
• Misunderstandings

Can lead to serious errors 
and discrepancies in the 
realization

...
...



1818 IBM Software Group  |IBM Software Group  |

Characteristics of Useful ModelsCharacteristics of Useful Models
Abstract

Emphasize important aspects while removing irrelevant ones
Understandable

Expressed in a form that is readily understood by observers
Accurate

Faithfully represents the modeled system
Predictive

Can be used to answer questions about the modeled system
Inexpensive

Much cheaper to construct and study than the modeled system

Abstract
Emphasize important aspects while removing irrelevant ones

Understandable
Expressed in a form that is readily understood by observers

Accurate
Faithfully represents the modeled system

Predictive
Can be used to answer questions about the modeled system

Inexpensive
Much cheaper to construct and study than the modeled system

To be useful, engineering models must satisfy 
all of these characteristics!
To be useful, engineering models must satisfy 
all of these characteristics!



1919 IBM Software Group  |IBM Software Group  |

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize 
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

A Bit of Modern Software…A Bit of Modern Software…

Can you spot the Can you spot the 
architecture?architecture?



2020 IBM Software Group  |IBM Software Group  |

…and its UML Model…and its UML Model

«sc_ctor»
consumer

«sc_«sc_ctorctor»»
consumerconsumer

«sc_ctor»
producer

«sc_«sc_ctorctor»»
producerproducer

start out1 in1

«sc_link_mp»

link1

Can you spot the Can you spot the 
architecture?architecture?



2121 IBM Software Group  |IBM Software Group  |

The Software and Its ModelThe Software and Its Model

«sc_ctor»
consumer

«sc_«sc_ctorctor»»
consumerconsumer

«sc_ctor»
producer
«sc_«sc_ctorctor»»

producerproducer
start out1 in1

«sc_link_mp»

link1

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize 
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};



2222 IBM Software Group  |IBM Software Group  |

refine

NotStarted

Started

start

producer

Model Evolution: RefinementModel Evolution: Refinement

Models can be refined continuously until the 
specification is complete
Models can be refined continuously until the 
specification is complete

«sc_method»
producer

«sc_method»
producer

start out1

NotStarted

Started

start

producer

St1 St2

void generate_data()
{for (int i=0; i<10; i++) 
{out1 = i;}}

/generate_data( )



2323 IBM Software Group  |IBM Software Group  |

The Remarkable Thing About SoftwareThe Remarkable Thing About Software

Software has the rare property that it allows 
us to directly evolve models into full-fledged 
implementations without changing the 
engineering medium, tools, or methods! 

Software has the rare property that it allows 
us to directly evolve models into full-fledged 
implementations without changing the 
engineering medium, tools, or methods! 

⇒ This ensures perfect accuracy of software models; 
since the model and the system that it models are 
the same thing
The model evolves into the system it was modeling

⇒ This ensures perfect accuracy of software models; 
since the model and the system that it models are 
the same thing
The model evolves into the system it was modeling



2424 IBM Software Group  |IBM Software Group  |

NotStarted

Started

start

producer

How Computers HelpHow Computers Help

We hide detail by selecting a view and letting the 
computer do the rest
We hide detail by selecting a view and letting the 
computer do the rest

St1 St2

void generate_data()
{for (int i=0; i<10; i++) 
{out1 = i;}}

/generate_data( )



2525 IBM Software Group  |IBM Software Group  |

Model-Driven Style of Development (MDD)Model-Driven Style of Development (MDD)
An approach to software development in which the focus and 
primary artifacts of development are models (as opposed to 
programs)
Based on two time-proven methods

An approach to software development in which the focus and 
primary artifacts of development are models (as opposed to 
programs)
Based on two time-proven methods

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ << 
sum << endl;}

«sc_module»«sc_module»
producerproducer

start out1

(1) ABSTRACTION (2) AUTOMATION

«sc_module»«sc_module»
producerproducer

start out1

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ << 
sum << endl;}

Realm of 
modeling
languages

Realm of 
tools



2626 IBM Software Group  |IBM Software Group  |

OMG’s Model-Driven Architecture (MDA)OMG’s Model-Driven Architecture (MDA)
An OMG initiative

A framework for a set of open standards in support of MDD
An OMG initiative

A framework for a set of open standards in support of MDD

MDA
OpenOpen

StandardsStandards

«sc_module»«sc_module»
producerproducer

start out1

(1) ABSTRACTION (2) AUTOMATION

«sc_module»«sc_module»
producerproducer

start out1

Standards for:Standards for:
••Modeling languagesModeling languages
••Model transformationsModel transformations
••Software processesSoftware processes
••Model interchange…Model interchange…



2727 IBM Software Group  |IBM Software Group  |

The Engineering of SoftwareThe Engineering of Software



2828 IBM Software Group  |IBM Software Group  |

The Classical Engineering Design ProblemThe Classical Engineering Design Problem

Construction
Material

ConstructionConstruction
MaterialMaterial

160,000 kg
160,000 kg

Anticipated
Load

AnticipatedAnticipated
LoadLoadSystem

Functionality
SystemSystem

FunctionalityFunctionality

Ξ = cos (η + π/2)
+ ξ∗5

Ξ = cos (η + π/2)
+ ξ∗5

DesignDesignDesign

Non-functional requirements
(primarily quantitative)



2929 IBM Software Group  |IBM Software Group  |

Quality of ServiceQuality of Service

The physical characteristics of software can be specified using 
the general notion of Quality of Service (QoS):

a specification of how well a service can or should be 
performed 
throughput, latency, capacity, response time, availability, security...

usually a quantitative measure

QoS concerns have two sides: 
offered QoS: the QoS that is available (supply)

required QoS: the QoS that is required to do a job (demand)

The physical characteristics of software can be specified using 
the general notion of Quality of Service (QoS):

a specification of how well a service can or should be 
performed 
throughput, latency, capacity, response time, availability, security...

usually a quantitative measure

QoS concerns have two sides: 
offered QoS: the QoS that is available (supply)

required QoS: the QoS that is required to do a job (demand)



3030 IBM Software Group  |IBM Software Group  |

Resource
(e.g., data base)
ResourceResource
(e.g., data base)(e.g., data base)

Resources and QoS ContractsResources and QoS Contracts
Resource: 

an element whose ability or capacity is limited, directly or 
indirectly, by the finite capacities of the underlying physical 
platform

The relationship between resources and resource users

Resource: 
an element whose ability or capacity is limited, directly or 
indirectly, by the finite capacities of the underlying physical 
platform

The relationship between resources and resource users

ClientClientClient QoS ContractQoS Contract
ReadDBReadDB()()

Key issue:
(RequiredQoS ≤ OfferedQoS) ?

Key issue:
(RequiredQoS ≤ OfferedQoS) ?

RequiredQoS
(e.g., 2 ms response)

RequiredQoS
(e.g., 2 ms response)

ReadDBReadDB()()

OfferedQoS
(e.g., 1 ms response)

OfferedQoS
(e.g., 1 ms response)



3131 IBM Software Group  |IBM Software Group  |

Verifying QoS ContractsVerifying QoS Contracts

Can QoS contracts be statically checked by a compiler?
The good news: Yes (in most cases)
The bad news: it is usually hard

Some issues:
In most cases QoS verification cannot be done incrementally 
– the full system context is required
Each type of QoS (e.g., bandwidth, CPU performance) 
combines differently – no general theory for QoS analysis

Fortunately, much of this can be automated

Can QoS contracts be statically checked by a compiler?
The good news: Yes (in most cases)
The bad news: it is usually hard

Some issues:
In most cases QoS verification cannot be done incrementally 
– the full system context is required
Each type of QoS (e.g., bandwidth, CPU performance) 
combines differently – no general theory for QoS analysis

Fortunately, much of this can be automated



3232 IBM Software Group  |IBM Software Group  |

Automating Engineering AnalysisAutomating Engineering Analysis
Inter-working of specialized tools via shared standardsInter-working of specialized tools via shared standards

Model EditingModel Editing
ToolTool

55

3.13.1

44

Model AnalysisModel Analysis
ToolTool

Automatically
derived analysis

model

AutomaticallyAutomatically
derived analysisderived analysis

modelmodel

µµ

Inverse automated
model conversion
Inverse automatedInverse automated
model conversionmodel conversion

2.52.5

QoS Annotations 
Overlay

QoS Annotations QoS Annotations 
OverlayOverlay



3333 IBM Software Group  |IBM Software Group  |

Example: Schedulability AnnotationsExample: Schedulability Annotations

Sensors
:SensorInterface TelemetryGatherer

:DataGatherer

«SAResource»

SensorData
:RawDataStorage

TelemetryDisplayer
: DataDisplayer

TelemetryProcessor
:DataProcessor

Display
:DisplayInterface

TGClock : Clock

TGClock : Clock

A.1:gatherData ( )

C.1:displayData ( )

B.1:filterData ( )

TGClock : Clock

A.1.1:main ( )

A.1.1.1: writeStorage ( )

B.1.1 : main ( )

B.1.1.1: readStorage ( )C.1.1.1: readStorage ( )

C.1.1 : main ( )

«SASituation»

{SACapacity=1,
SAAccessControl=PriorityInheritance}

«SASchedulable»

«SASchedulable» «SASchedulable»

«SATrigger»
{SASchedulable=$R1,

RTat=('periodic',100,'ms')}
«SAResponse»

{SAAbsDeadline=(100,'ms')}

«SAAction»
{SAPriority=2,
SAWorstCase=(93,'ms'),
RTduration=(33.5,'ms')}

«SAAction»
{RTstart=(16.5,'ms'),
RTend=(33.5,'ms')}

«SATrigger»
{SASchedulable=$R2,

RTat=('periodic',60,'ms')}
«SAResponse»

{SAAbsDeadline=(60,'ms')}

«SATrigger»
{SASchedulable=$R3,

RTat=('periodic',200,'ms')}
«SAResponse»

{SAAbsDeadline=(200,'ms')}

«SAResponse»
{SAPriority=3,
SAWorstCase=(177,'ms'),
RTduration=(46.5,'ms')}

«SAAction»
{RTstart=(10,'ms'),
RTend=(31.5,'ms')}

«SAAction»
{RTstart=(3,'ms'),
RTend=(5,'ms')}

«SAResponse»
{SAPriority=1,
SAWorstCase=(50.5,'ms'),
RTduration=(12.5,'ms')}

ResultResult



3434 IBM Software Group  |IBM Software Group  |

Example: Deployment SpecificationExample: Deployment Specification

«SAEngine»
{SARate=1,

SASchedulingPolicy=FixedPriority}
:Ix86Processor

«SASchedulable»
TelemetryGatherer

:DataGatherer

«SASchedulable»
TelemetryDisplayer

: DataDisplayer

«SASchedulable»
TelemetryProcessor

:DataProcessor

«SAResource»
SensorData

:RawDataStorage

«SAOwns»

«GRMdeploys»



3535 IBM Software Group  |IBM Software Group  |

Sensors
:SensorInterface TelemetryGatherer

:DataGatherer

«SAResource»

SensorData
:RawDataStorage

TelemetryDisplayer
: DataDisplayer

TelemetryProcessor
:DataProcessor

Display
:DisplayInterface

TGClock : Clock

TGClock : Clock

A.1:gatherData ( )

C.1:displayData ( )

B.1:filterData ( )

TGClock : Clock

A.1.1:main ( )

A.1.1.1: writeStorage ( )

B.1.1 : main ( )

B.1.1.1: readStorage ( )C.1.1.1: readStorage ( )

C.1.1 : main ( )

{SACapacity=1,
SAAccessControl=PriorityInheritance}

«SASchedulable»

«SASchedulable» «SASchedulable»

«SATrigger»

RTat=('periodic',100,'ms')}
«SAResponse»

{SAAbsDeadline=(100,'ms')}

«SASituation»

«SAAction»
{SAPriority=2,
SAWorstCase=(93,'ms'),
RTduration=(33.5,'ms')}

«SAAction»
{RTstart=(16.5,'ms'),
RTend=(33.5,'ms')}

«SATrigger»

RTat=('periodic',60,'ms')}
«SAResponse»

{SAAbsDeadline=(60,'ms')}

«SATrigger»

RTat=('periodic',200,'ms')}
«SAResponse»

{SAAbsDeadline=(200,'ms')}

«SAResponse»
{SAPriority=3,
SAWorstCase=(177,'ms'),
RTduration=(46.5,'ms')}

«SAAction»
{RTstart=(10,'ms'),
RTend=(31.5,'ms')}

«SAAction»
{RTstart=(3,'ms'),
RTend=(5,'ms')}

«SAResponse»
{SAPriority=1,
SAWorstCase=(50.5,'ms'),
RTduration=(12.5,'ms')}

Example: Analysis ResultsExample: Analysis Results

{SASchedulable=$true,

{SASchedulable=$true

{SASchedulable=$true



3636 IBM Software Group  |IBM Software Group  |

Basic Resource Usage ModelBasic Resource Usage Model
Models a particular situation that needs to be analyzed 
for some time-related property (e.g., response time)
Models a particular situation that needs to be analyzed 
for some time-related property (e.g., response time)

StaticUsage DynamicUsage

AnalysisContext

10..1 1

+workload

0..1
UsageDemand

1

1..n

1

1..n
ResourceUsage

1

1..n

1

1..n

ResourceServiceInstance
1..n1..n

0..n
+usedServices

0..n

1..n0..n
+usedResources

1..n0..n
ResourceInstance

0..n

1..n

0..n

1..n

Construction
Materials

ConstructionConstruction
MaterialsMaterials

Functional
Requirements

FunctionalFunctional
RequirementsRequirements

160,000 kg
160,000 kg

Anticipated
Load

AnticipatedAnticipated
LoadLoad



3737 IBM Software Group  |IBM Software Group  |

Offered vs. Required QoSOffered vs. Required QoS
Like all guarantees, the offered QoS is conditional on 
the resource itself getting what it needs to do its job
Like all guarantees, the offered QoS is conditional on 
the resource itself getting what it needs to do its job

♦ This extends in two dimensions:
the peer dimension
the layering dimension: for platform dependencies

ClientClient S1S1

S1S1

ResourceAResourceA S2S2

S2S2

ResourceBResourceBResourceB

CPUCPUCPUCPU CPUCPU

CPU

PlatformPlatform
CPU

PlatformPlatform



3838 IBM Software Group  |IBM Software Group  |

Platform QoSPlatform QoS

Example platform QoS characteristics
Maximum acceptable context switching times

Minimum CPU execution speeds

Minimal memory requirements

Maximum acceptable communication delay

Minimal communication throughput

Unfortunately, most software today is not explicit about its 
platform QoS requirements

Makes porting difficult

Example platform QoS characteristics
Maximum acceptable context switching times

Minimum CPU execution speeds

Minimal memory requirements

Maximum acceptable communication delay

Minimal communication throughput

Unfortunately, most software today is not explicit about its 
platform QoS requirements

Makes porting difficult



3939 IBM Software Group  |IBM Software Group  |

The Blessings of Platform IndependenceThe Blessings of Platform Independence

Portability 
Protection from technology change
Separation of concerns

Portability 
Protection from technology change
Separation of concerns

Platform-independent Software ApplicationPlatformPlatform--independent Software Applicationindependent Software Application

LinuxLinuxLinux

Computing Hardware-1Computing HardwareComputing Hardware--11

WindowsWindowsWindows

and/or

Platform1Platform1

Computing Hardware-2Computing HardwareComputing Hardware--22

Platform2Platform2



4040 IBM Software Group  |IBM Software Group  |

Achieving Platform IndependenceAchieving Platform Independence

Dilemma: How can we achieve platform independence if 
our  application has to be aware of platform 
characteristics?

Solution: Include a technology-independent specification 
of the required QoS as part of the application

Defines the envelope of acceptable platforms for the 
application independently of specific technologies

Dilemma: How can we achieve platform independence if 
our  application has to be aware of platform 
characteristics?

Solution: Include a technology-independent specification 
of the required QoS as part of the application

Defines the envelope of acceptable platforms for the 
application independently of specific technologies



4141 IBM Software Group  |IBM Software Group  |

Required Environment PartitionsRequired Environment Partitions
Example: an Internet-based video applicationExample: an Internet-based video application

Environment A:Environment A:
---- IPC rate = …IPC rate = …
---- CPU speed = …CPU speed = …
---- availability = …availability = …

Environment D:Environment D:
---- throughput = …throughput = …
---- delay = …delay = …
---- availability = …availability = …

Environment C:Environment C:
---- IPC rate = …IPC rate = …
---- CPU speed = …CPU speed = …
---- availability = …availability = …

Environment B:Environment B:
---- IPC rate = …IPC rate = …
---- CPU speed = …CPU speed = …
---- availability = …availability = …

vpvp : : VideoPlayerVideoPlayer

vw vw : : VideoWindowVideoWindow b : Browserb : Browser

wsws : : WebServerWebServer

vsvs : : VideoServerVideoServer

QoS domainQoS domain



4242 IBM Software Group  |IBM Software Group  |

QoS DomainsQoS Domains

A domain in which certain QoS values apply uniformly:
CPU performance
communications characteristics (delay, throughput, capacity)
failure characteristics (e.g., availability, reliability)
etc.

The QoS values of a domain can be compared against 
those of any concrete platform to determine its suitability

A domain in which certain QoS values apply uniformly:
CPU performance
communications characteristics (delay, throughput, capacity)
failure characteristics (e.g., availability, reliability)
etc.

The QoS values of a domain can be compared against 
those of any concrete platform to determine its suitability



4343 IBM Software Group  |IBM Software Group  |

Modeling QoS Domains in UMLModeling QoS Domains in UML
«GRMrequires» = stereotype of «GRMdeploys» 
Defines a reference platform for an application
«GRMrequires» = stereotype of «GRMdeploys» 
Defines a reference platform for an application

«WSdomain»
Environment-B:

{IPCrate = , 
CPUspeed=…}

«WSdomain»
Environment-A:

{IPCrate = , 
CPUspeed=…}

«WSdomain»
Environment-C:

{IPCrate = , 
CPUspeed=…}

«ComDomain»
Environment-B:
{throughput = , 

delay=…}

b : Browser ws : WebServer vs : VideoServervp : VideoPlayer vw : VideoWindow

«GRMrequires»
«GRMrequires»

«GRMrequires»

«GRMrequires»



4444 IBM Software Group  |IBM Software Group  |

ConclusionsConclusions
Software design can be much more than applied logic: 
The design of software is, in many cases, strongly dependent on 
the physical characteristics of the underlying platform
Model-driven software engineering, characterized by:

Models of both application software and platforms
Qualitative and quantitative analysis techniques (including 
computer-based model execution)

Resulting in increased productivity and product 
reliability:

Early detection of design flaws 
Increased levels of abstraction
Increased levels of automation

Software design can be much more than applied logic: 
The design of software is, in many cases, strongly dependent on 
the physical characteristics of the underlying platform
Model-driven software engineering, characterized by:

Models of both application software and platforms
Qualitative and quantitative analysis techniques (including 
computer-based model execution)

Resulting in increased productivity and product 
reliability:

Early detection of design flaws 
Increased levels of abstraction
Increased levels of automation



4545 IBM Software Group  |IBM Software Group  |

QUESTIONS?
(bselic@ca.ibm.com)

QUESTIONS?
(bselic@ca.ibm.com)


	On Model-Driven Software Engineering
	Thesis
	A Giant Speaks…
	Engineering
	The Classical Engineering Design Problem
	The Case of Distributed Systems
	The Effect of Communication Media
	A Fundamental Theoretical Result
	What Software is Made of
	“Physical Programming”
	Models in Traditional Engineering
	Engineering Models
	How Engineering Models are Used
	Models versus Systems
	Characteristics of Useful Models
	A Bit of Modern Software…
	…and its UML Model
	The Software and Its Model
	Model Evolution: Refinement
	The Remarkable Thing About Software
	How Computers Help
	Model-Driven Style of Development (MDD)
	OMG’s Model-Driven Architecture (MDA)
	The Classical Engineering Design Problem
	Quality of Service
	Resources and QoS Contracts
	Verifying QoS Contracts
	Automating Engineering Analysis
	Example: Schedulability Annotations
	Example: Deployment Specification
	Example: Analysis Results
	Basic Resource Usage Model
	Offered vs. Required QoS
	Platform QoS
	The Blessings of Platform Independence
	Achieving Platform Independence
	Required Environment Partitions
	QoS Domains
	Modeling QoS Domains in UML
	Conclusions

