
University of Valladolid
Spain

Applying eODL and SDL-Patterns
for Developing TMN Managed

Systems

Manuel Rodríguez
Margarita de Cabo

Applying eODL and SDL-patterns for Developing TMN Systems 2/20

Index of contents
• TMN architecture
• Proposal: Using eODL and SDL-pattern in

TMN CORBA-based
– Step one: Mapping IDL into eODL
– Step two: Mapping eODL into SDL
– Step three: Adding behavior

• Example: a generic MO with ARC feature
• Conclusions

Applying eODL and SDL-patterns for Developing TMN Systems 3/20

TMN (I)

• TMN is a standard infrastructure for managing
telecommunication networks

• TMN architecture consists of three parts:
– Functional architecture (functional blocks)
– Information architecture (information modeling)
– Physical architecture (physical blocks)

Applying eODL and SDL-patterns for Developing TMN Systems 4/20

TMN (II)
• It is distributed in essence → implementation on a

DPE is desired
• A framework for developing systems on DPEs

exists (ITU-T Rec. X.780)
• Main drawbacks:

– The target implementation platform has to be CORBA-
based

– It does not include formally specified behavior

• A component-oriented and technology-
independent development method would be
desired

Applying eODL and SDL-patterns for Developing TMN Systems 5/20

Proposal (I)
• Enhancing CORBA-based TMN

framework by means of eODL and SDL-
2000 patterns
– Using eODL instead of CORBA IDL

• Advantages
– Model driven approach, several mappings to developing

languages
– Any target platform can be chosen
– Several views of the system can be described

• Drawbacks
– Lack of constructions for behavior definition

Applying eODL and SDL-patterns for Developing TMN Systems 6/20

Proposal (II)

– Using SDL-patterns
• Each pattern is a schema of a well-known solution

and the rules to apply it
• Main advantages

– SDL-based → same benefits
– Improve reuse and sharing of expertise
– Development is less time-consuming

• A new notation is needed: PA-SDL

Applying eODL and SDL-patterns for Developing TMN Systems 7/20

Steps of the proposal

Applying eODL and SDL-patterns for Developing TMN Systems 8/20

Step 1: Mapping IDL into eODL
• Mapping of CORBA-IDL elements

– Straightforward:
• CORBA-IDL is a subset of eODL
• Its elements can be used without change

• New elements have to be added
– CO (computational view)

• One CO for every class in ITU-T information model
• Artifacts (implementation view)
• One artifact for every IDL interface

– Deployment and target environment views can not be
extracted from IDL

Applying eODL and SDL-patterns for Developing TMN Systems 9/20

Step 2: Mapping eODL into SDL

• Following the guidelines in Annex C of
Z.130 Rec.

• Result: SDL skeletons (structure)
– interface package
– definition package

• block type
– process types

• Behavior has to be added later

Applying eODL and SDL-patterns for Developing TMN Systems 10/20

Step 3: Adding behavior

• Choosing SDL-patterns
– From a pattern-pool if exists
– Develop a new one, if there is not an adequate

pattern
• Find the context for the pattern
• Apply the rules in pattern template to obtain

a correct SDL-2000 description

Applying eODL and SDL-patterns for Developing TMN Systems 11/20

Example: A generic MO with
ARC feature

• Managed Object (MO) is the most simple object in
the network-element hierarchy proposed by ITU
(M.3120 Rec.)

Applying eODL and SDL-patterns for Developing TMN Systems 12/20

Example: ARC States (Rec. M.3120)

Applying eODL and SDL-patterns for Developing TMN Systems 13/20

Example: eODL definition for MO
with ARC (I)

module itut_x780{

interface i_MO{

NameType nameGet () raises
(ApplicationError); …

};

artefact a_MOImpl {

nameGet implements supply
i_MO::nameGet …

};

Applying eODL and SDL-patterns for Developing TMN Systems 14/20

Example: eODL definition for MO with
ARC (II)

interface i_ARC{
boolean arcControl() raises
(ApplicationError,NOarcPackage); …
};

artefact a_ARCImpl{
arcControl implements supply i_ARC::arcControl; …
};

CO o_MOARC{
supports i_MO, i_ARC;
provide i_MO mo; provide i_ARC arc;
/*requires nothing*/
implemented by a_MOImpl with Singleton, a_ARCImpl with

Singleton;
};

Applying eODL and SDL-patterns for Developing TMN Systems 15/20

Example: SDL skeleton for MO with
ARC

Applying eODL and SDL-patterns for Developing TMN Systems 16/20

Example: Adding behavior
• Adding ARC feature
• Using ARC pattern plus NALM-TI and

NALM patterns
– ARC pattern is the basic one for ARC feature
– NALM-TI and NALM are optional
– There are two other optional patterns:

• NALM-QI and NALM-CD

– There must be at least two different patterns
one being ALM

Applying eODL and SDL-patterns for Developing TMN Systems 17/20

Example: ARC pattern (excerpt)

Applying eODL and SDL-patterns for Developing TMN Systems 18/20

Example: ARC with ALM, NALM
and NALM-TI

Applying eODL and SDL-patterns for Developing TMN Systems 19/20

Conclusions (I)
• eODL and SDL-patterns complement each

other for obtaining enhanced models
• eODL gives a well-defined metamodel

– easy translation into different languages
– several views of the same model

• SDL-patterns allow:
– Formal specification of behavior
– Reusing and sharing of gained expertise in

other projects

Applying eODL and SDL-patterns for Developing TMN Systems 20/20

Conclusions (II)

• Lack of tool support
– Too few SDL-2000 features supported in

CASE tools
– Tool support for SDL pattern-based design

needed
• Need of new options in eODL to SDL

mapping
– Concurrent execution of artifacts implementing

a CO

	Applying eODL and SDL-Patterns for Developing TMN Managed Systems
	Index of contents
	TMN (I)
	TMN (II)
	Proposal (I)
	Proposal (II)
	Steps of the proposal
	Step 1: Mapping IDL into eODL
	Step 2: Mapping eODL into SDL
	Step 3: Adding behavior
	Example: A generic MO with ARC feature
	Example: ARC States (Rec. M.3120)
	Example: eODL definition for MO with ARC (I)
	Example: eODL definition for MO with ARC (II)
	Example: SDL skeleton for MO with ARC
	Example: Adding behavior
	Example: ARC pattern (excerpt)
	Example: ARC with ALM, NALM and NALM-TI
	Conclusions (I)
	Conclusions (II)

