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TMN (I)

• TMN is a standard infrastructure for managing 
telecommunication networks

• TMN architecture consists  of three parts:
– Functional architecture (functional blocks)
– Information architecture (information modeling)
– Physical architecture (physical blocks)
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TMN (II) 
• It is distributed in essence → implementation on a 

DPE is desired
• A framework for developing systems on DPEs

exists (ITU-T Rec. X.780)
• Main drawbacks:

– The target implementation platform has to be CORBA-
based

– It does not include formally specified behavior

• A component-oriented and technology-
independent development method would be 
desired
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Proposal (I)
• Enhancing CORBA-based TMN 

framework by means of eODL and SDL-
2000 patterns
– Using eODL instead of CORBA IDL

• Advantages
– Model driven approach, several mappings to developing 

languages
– Any target platform can be chosen
– Several views of the system can be described

• Drawbacks
– Lack of constructions for behavior definition
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Proposal (II)

– Using SDL-patterns
• Each pattern is a schema of a well-known solution 

and the rules to apply it
• Main advantages

– SDL-based → same benefits
– Improve reuse and sharing of expertise
– Development is less time-consuming

• A new notation is needed: PA-SDL
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Steps of the proposal
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Step 1: Mapping IDL into eODL
• Mapping of CORBA-IDL elements

– Straightforward:
• CORBA-IDL is a subset of eODL
• Its elements can be used without change

• New elements have to be added
– CO (computational view)

• One CO for every class in ITU-T information model
• Artifacts (implementation view)
• One artifact for every IDL interface

– Deployment and target environment views can not be 
extracted  from IDL
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Step 2: Mapping eODL into SDL 

• Following the guidelines in Annex C of 
Z.130 Rec.

• Result: SDL skeletons (structure)
– interface package
– definition package

• block type
– process types

• Behavior has to be added later
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Step 3: Adding behavior

• Choosing SDL-patterns
– From a pattern-pool if exists
– Develop a new one, if there is not an adequate 

pattern
• Find the context for the pattern
• Apply the rules in pattern template to obtain 

a correct SDL-2000 description
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Example: A generic MO with 
ARC feature

• Managed Object (MO) is the most simple object in 
the network-element hierarchy proposed by ITU 
(M.3120 Rec.)



Applying eODL and SDL-patterns for Developing TMN Systems 12/20

Example: ARC States (Rec. M.3120)
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Example: eODL definition for MO 
with ARC (I)

module itut_x780{

interface i_MO{

NameType nameGet () raises 
(ApplicationError); …

};

artefact a_MOImpl {

nameGet implements supply 
i_MO::nameGet …

};
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Example: eODL definition  for MO with 
ARC (II)

interface i_ARC{
boolean arcControl() raises 
(ApplicationError,NOarcPackage); …
};

artefact a_ARCImpl{
arcControl implements supply i_ARC::arcControl; …
};

CO o_MOARC{
supports i_MO, i_ARC;
provide i_MO mo; provide i_ARC arc;
/*requires nothing*/
implemented by a_MOImpl with Singleton, a_ARCImpl with 

Singleton;
};
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Example: SDL skeleton for MO with 
ARC
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Example: Adding behavior
• Adding ARC feature
• Using ARC pattern plus NALM-TI and 

NALM patterns
– ARC pattern is the basic one for ARC feature
– NALM-TI and NALM are optional
– There are two other optional patterns:

• NALM-QI and NALM-CD

– There must be at least two different patterns 
one being ALM
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Example: ARC pattern (excerpt)
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Example: ARC with ALM, NALM 
and NALM-TI
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Conclusions (I)
• eODL and SDL-patterns complement each 

other for obtaining enhanced models
• eODL gives a well-defined metamodel

– easy translation into different languages
– several views of the same model

• SDL-patterns allow:
– Formal specification of behavior
– Reusing and sharing of gained expertise in 

other projects
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Conclusions (II)

• Lack of tool support
– Too few SDL-2000 features supported in 

CASE tools
– Tool support for SDL pattern-based design 

needed
• Need of new options in eODL to SDL 

mapping
– Concurrent execution of artifacts implementing 

a CO
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