
Scenario Synthesis from Imprecise Requirements

Bill Mitchell, Robert Thomson, Paul Bristow

Enterprise Development Process

Groups

Technical
Marketing

Feature
Teams

Box Teams

Integration
Teams

Testing
Teams

Customers
Feature

High Level
Designs

Detailed
Designs

Technical
Marketing
Requirements

Functional
Requirements

System

Architecture
Requirements

Standards

System
Requirements

Component
Requirements

Telecoms Example

• Network provider deploying 3G.

• Placing order for handsets.

• One of the many features included will be access to network Java
game repository.

User Interface
Java Game Menu

Network
Infrastructure

Java Game
Repository

Initial Customer Requirements
User Handset Network

Menu Key

Options

Select
Fetch

Resource

Java Game

Confirmation

Technical Marketing Scenarios

Signal Battery

Default Screen
Display

B1 B2 B3

B4 B5 B6

Power Java Ack

Ph. Bk Menu Hold

Java Key Press

Each event
modifies functionality
and UI configuration

Signal Battery

Java Games

B1 B2 B3

B4 B5 B6

Power Java Ack

Back Menu Select

• Doom 8
• Quake 9
• etc......

Customer Scenario
broken down into
sequence of atomic
events, which change
interface functionality.

Functional Requirements

Technical Marketing Scenarios
Normative scenarios are very focused on isolated behaviour of

feature in these requirements:
• What if voice or data call received during download?
• If memory is expandable (as with some PIM-phone hybrids)

how should the mem-full error be handled if the user could add
extra memory with, say, a USB flash memory stick?

• What if during the download the network service provider tries
to update the phone configuration via the air interface for
enhanced game play?

Need to synthesise model of system from all MSC requirements
scenarios for simulation and analysis.
Problem:
• Practitioners use states imprecisely
• Different engineering groups define scenarios differently
• Legacy requirements

Deadlock example from TETRA PPT
ruthless pre-empt

A B

S0

S2

a

c

S0

S1

S3S2

!a

FSA for A

S0

S1

S2

!b

!c ?d
S1

A B

S0

S3

b

d

S1

S0

S1

S3S2

?a

FSA for B

?b

?c !d

S0

S1

S3

agreed pre-empt

Example Deadlock Avoided
Composite States
• Anonymous internal states
• Multiple entry/exit states

ruthless pre-empt

A B

S0

S2

a

c

S1

A B

S0

S3

b

d

S1

A B

S0

S2

a

c

S1

S0

S1 S2
!a !b

!c

Extended DFSA for A

S3

?d

S0

S1

S2

A B

S0

S3

b

d

S1

S0

S1

S3

agreed pre-empt

Too Weak to ever give any interactions!

Example, Call Waiting from paper in FIW 2000

Sys B C D

call_setup[B]

call(B)

accept(D)

hang_up_on(C)

ack_accept(D)

disconnect(B)

call_active(B)

call_active[B,D]

idle

call_active[B,C]

Example, RBWF, from paper in FIW 2000

A Sys B

call_setup[B]

call(B)

rbwf(B)

call_active[B,C]

hang_up_on(C)
idle

ring(A,B)

ring(A,B)

rbwf_call_progressing[A,B]

Example, FI from paper in FIW 2000

A Sys B C

call_setup[B]

call(B)

rbwf(B)

D

call_setup[B]
idle call(B)

accept(D)

hang_up_on(C)

ack_accept(D)

disconnect(B)

call_active(B)

call_active[B,D]

idle

call_active[B,C]

call_active[B,C]

Whenever in these
composite states CW
can happen

Trace semantics for states

S0 S2

u v w x y
!a ?b !c ?d

S1

State x is (In, Out), where In and Out are sets of traces.

u xt1
For every trace t1 of In there is a path

some initial state u

x yt2
For every trace t2 of Out there is a path

some accepting state y

Deterministic trace semantics

S0 S2

u v w x y
!a ?b !c ?d

S1

u xt1
For any t1 of In if there is a path

for some initial state u

x yt2
then for every trace t2 of Out there is a path

for some accepting state y

MSC trace semantics for exit/entry states
S0 S2

u v w x y
!a ?b !c ?d

S1

Every MSC trace t can be split into pairs (t1,t2) where
t1 leads to exit state.

u xt1
For any t1 if there is a path

for any state u

x yt2
then there is a path

for some state y

State semantics

S0 S1

v’ w’ x’
?b !c

S3

y’
?e

S0: ?b S0: !c S1: ?e

Overlapping Processes, continued

S0 S2

u v w x y
!a ?b !c ?d

Scenario 1, machine for A

S0 S1 S3

v’ w’ x’ y’
?b !c ?e

Scenario 2, machine for A

S1

S0: !a
S0: ?b
S0: !c

S0: ?b
S0: !c

Match

ε

Overlapping Composition of Processes

P trace simulates Q when:
given any (state annotated) execution traces t1 and t2:

P P1t1

Q Q1t2

where t1 matches t2, then P1 must be able to simulate Q1

Livelock from naive composite state semantics

A B

S0

a

a

S1

b

b

x

!a

?b

S0

S1

DFSA for A

y!a

?b

?b

!a

S0

S1

Exit State transition matching

P trace simulates Q when:
given any (state annotated) execution traces t1 and t2:

P P1t1

Q Q1t2

where t1 matches t2,
and t1, t2 have reached exit states

then P1 must be able to simulate Q1.

where t1 matches t2,
and t1, t2 have reached entry states

then P1 must be able to simulate Q1.

Temporal contexts for defining matching traces

LTL semantics for execution trace

LTL formula defining context

Composite stateEvent

Download File with Browser

Overlap of Java Game and Browser Download

Error Check

Will have universal scope
over exit states

Overlap Java App + Browser + Error Check

Questions

	Scenario Synthesis from Imprecise Requirements
	Enterprise Development Process
	Telecoms Example
	Initial Customer Requirements
	Technical Marketing Scenarios
	Functional Requirements
	Technical Marketing Scenarios
	Deadlock example from TETRA PPT
	Example Deadlock Avoided
	Example, Call Waiting from paper in FIW 2000
	Example, RBWF, from paper in FIW 2000
	Example, FI from paper in FIW 2000
	Trace semantics for states
	Deterministic trace semantics
	MSC trace semantics for exit/entry states
	State semantics
	Overlapping Processes, continued
	Overlapping Composition of Processes
	Livelock from naive composite state semantics
	Exit State transition matching
	Temporal contexts for defining matching traces
	Download File with Browser
	Overlap of Java Game and Browser Download
	Error Check
	Overlap Java App + Browser + Error Check
	Questions

