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Telecoms Example

• Network provider deploying 3G.

• Placing order for handsets.

• One of the many features included will be access to network Java
game repository.
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Initial Customer Requirements
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Technical Marketing Scenarios
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• Doom 8
• Quake 9
• etc......

Customer Scenario
broken down into
sequence of atomic
events, which change
interface functionality.



Functional Requirements



Technical Marketing Scenarios
Normative scenarios are very focused on isolated behaviour of 

feature in these requirements:
• What if voice or data call received during download?
• If memory is expandable (as with some PIM-phone hybrids) 

how should the mem-full error be handled if the user could add 
extra memory with, say, a USB flash memory stick? 

• What if during the download the network service provider tries 
to update the phone configuration via the air interface for 
enhanced game play?

Need to synthesise model of system from all MSC requirements 
scenarios for simulation and analysis.
Problem: 
• Practitioners use states imprecisely
• Different engineering groups define scenarios differently
• Legacy requirements



Deadlock example from TETRA PPT
ruthless pre-empt
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Example Deadlock Avoided
Composite States
• Anonymous internal states
• Multiple entry/exit states

ruthless pre-empt
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Example, Call Waiting from paper in FIW 2000 

Sys B C D

call_setup[B]

call(B)
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call_active[B,C]



Example, RBWF, from paper in FIW 2000
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Example, FI from paper in FIW 2000
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Trace semantics for states
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State x is  (In, Out), where In and Out are sets of traces.

u xt1
For every trace t1 of In there is a path 

some initial state u 

x yt2
For every trace t2 of Out there is a path 

some accepting state y 



Deterministic trace semantics
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u xt1
For any t1 of In if there is a path 

for some initial state u 

x yt2
then for every trace t2 of Out there is a path 

for some accepting state y 



MSC trace semantics for exit/entry states
S0 S2

u v w x y
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Every MSC trace t can be split into pairs (t1,t2) where
t1 leads to exit state. 

u xt1
For any t1 if there is a path 

for any state u 

x yt2
then there is a path 

for some state y 



State semantics
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Overlapping Processes, continued
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Overlapping Composition of Processes

P trace simulates Q when:
given any (state annotated) execution traces t1 and t2:

P P1t1

Q Q1t2

where t1 matches t2, then P1 must be able to simulate Q1



Livelock from naive composite state semantics
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Exit State transition matching

P trace simulates Q when:
given any (state annotated) execution traces t1 and t2:

P P1t1

Q Q1t2

where t1 matches t2, 
and t1, t2 have reached exit states

then P1 must be able to simulate Q1.

where t1 matches t2, 
and t1, t2 have reached entry states

then P1 must be able to simulate Q1.



Temporal contexts for defining matching traces

LTL semantics for execution trace

LTL formula defining context

Composite stateEvent



Download File with Browser



Overlap of Java Game and Browser Download



Error Check

Will have universal scope
over exit states



Overlap Java App + Browser + Error Check



Questions
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