Model checking secrecy

Sjouke Mauw
joint work with Cas Cremers

ECSS group
Eindhoven University of Technology
The Netherlands

TU/e
Outline

- Security protocols and secrecy.
- Example: Bilateral Key Exchange.
- Model checking algorithm.
- Comparison.
- Concluding remarks.
Motivation

“Security protocols are three-line programs that people still manage to get wrong”

(Roger Needham)

- Security protocol = set of interaction rules to guarantee security property (plus some intended functionality).
- Formal validation is imperative and feasible.
- Security properties: secrecy, authentication, non-repudiation, availability, ...
Model checking secrecy

- Well-understood property.
- Several tools available.
- Often: general purpose model checker instantiated for this problem.

Conjecture.
A model checker dedicated to verifying secrecy in security protocols will outperform general purpose model checkers applied to this problem.
Example

Bilateral Key Exchange (BKE):

Given a Public Key Infrastructure, two agents should agree upon the value of a freshly generated symmetric key. This key should remain secret.
SK_i, PK_i, PK_r

1. Nonce n_i

\[\{n_i, I\}_{PK_r}\]

2. Nonce n_r

\[\{h(n_i), n_r, kir\}_{PK_i}\]

\[\{h(n_r)\}_{kir}\]

Secret kir
Intruder model (Dolev-Yao)

- Intruder has complete control over network.
Intruder model (Dolev-Yao)

- Intruder has complete control over network.
- Intruder can pack/unpack messages as long as he knows the cryptographic key.

Possibly conspiring agents, i.e. intruder knows their secret keys.
Intruder model (Dolev-Yao)

- Intruder has complete control over network.
- Intruder can pack/unpack messages as long as he knows the cryptographic key.
- Possibly conspiring agents, i.e. intruder knows their secret keys.
Finite scenario

SK_a, PK_a, PK_b

$a : I(a, b)$

nonce na
var U, K

$\{na, a\}_{PK_b}$

$\{h(na), U, K\}_{PK_a}$

$\{h(U)\}_K$

secret K

SK_a, PK_a, PK_e

$a : I(a, e)$

nonce na'
var V, L

$\{na', a\}_{PK_e}$

$\{h(na'), V, L\}_{PK_a}$

$\{h(V)\}_L$

SK_b, PK_b, PK_a

$b : R(a, b)$

nonce nb
key k_{ab}
var W

$\{W, a\}_{PK_b}$

$\{h(W), nb, k_{ab}\}_{PK_a}$

$\{h(nb)\}_{k_{ab}}$

secret k_{ab}
State space

Initial intruder knowledge: PKa, PKb, PKe, SKe

1: $s(a, b, \{na, a\}_{PKb})$
State space

Initial intruder knowledge: \(PK_a, PK_b, PK_e, SK_e \)

1: \(s(a, b, \{na, a\}_{PK_b}) \)

2: \(r(a, b, \{na, a\}_{PK_b}) \)

3: \(r(a, b, \{na, a\}_{PK_b}) \)
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e

1: $s(a, b, \{na, a\}_{PK_b})$

2: $r(a, b, \{na, a\}_{PK_b})$

3: $s(b, a, \{h(na), nb, kab\}_{PK_a})$

4: $\{h(na), nb, kab\}_{PK_a}$
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e

1 : $r(b, a, \{h(na), nb, kab\}_{PK_a})$

3 : $s(b, a, \{h(na), nb, k_{ab}\}_{PK_a})$

3 : $r(a, b, \{na, a\}_{PK_b})$

1 : $s(a, b, \{na, a\}_{PK_b})$
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e

1: $s(a, b, \{h(nb)\}_{kab})$

1: $r(b, a, \{h(na), nb, kab\}_{PK_a})$

$\{h(na), nb, kab\}_{PK_a}$

3: $s(b, a, \{h(na), nb, kab\}_{PK_a})$

3: $r(a, b, \{na, a\}_{PK_b})$

$\{na, a\}_{PK_b}$

1: $s(a, b, \{na, a\}_{PK_b})$
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e

1. $s(a, b, \{h(nb)\}_{kab})$
2. $r(b, a, \{h(na), nb, k_{ab}\}_{PK_a})$
3. $s(b, a, \{h(na), nb, k_{ab}\}_{PK_a})$
4. $r(a, b, \{na, a\}_{PK_b})$
5. $s(a, b, \{na, a\}_{PK_b})$
6. $r(a, b, \{h(nb)\}_{kab})$
7. $\{h(nb)\}_{kab}$
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e
State space

Initial intruder knowledge: PKa, PKb, PKe, SKe

1: $s(a, b, \{h(nb)\}_kab)$

2: $s(a, e, \{na', a\}_PKe)$

3: $r(a, b, \{h(nb)\}_kab)$

3: $r(b, a, \{h(na), nb, kab\}_PKa)$

3: $s(b, a, \{h(na), nb, kab\}_PKa)$

1: $s(a, b, \{na, a\}_PKb)$

1: $r(b, a, \{h(na), nb, kab\}_PKa)$

1: $s(a, b, \{h(na), nb, kab\}_PKa)$

3: $r(a, b, \{na, a\}_PKb)$
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e
State space

Initial intruder knowledge: PK_a, PK_b, PK_e, SK_e

1: $s(a, b, \{h(nb)\}_{kab})$
2: $s(a, e, \{na', a\}_{PK_e})$
3: $r(a, b, \{na, a\}_{PK_b})$
3: $r(a, b, \{h(na'), nb, k_{ab}\}_{PK_a})$
3: $s(b, a, \{h(na'), nb, k_{ab}\}_{PK_a})$
3: $r(a, b, \{h(na'), nb, k_{ab}\}_{PK_a})$
1: $r(b, a, \{h(na), nb, k_{ab}\}_{PK_a})$
1: $s(a, b, \{h(nb)\}_{kab})$

TU/e
Correctness criterion

A security protocol is correct w.r.t. secrecy if

- for every finite scenario,
- for every possible trace of that scenario, under control of the intruder,
- whenever an agent reaches a secrecy claim,
- the claimed secret will never occur in the intruder knowledge.
Auxiliary definitions

match The match function determines whether the intruder can satisfy the required message format.

enabled An event is enabled if it is the first to be executed in a run and in case it is a read it must have a match with the intruder knowledge.

after The after function returns the new system state after executing a run.
General model checking algorithm

$$\text{modelcheck}(\sigma) =$$

if σ does not satisfy property then
 exit ("property fails")
else
 for all $ev \in \text{enabled}(\sigma)$ do
 modelcheck(after(\sigma, ev))
 end
end

Correct if state space forms directed acyclic graph.
traverseFull (runs, know, secrets)

if any secret in know then
 exit ("attack") ;
else
 for all ev ∈ enabled (runs, know) do
 if ev = secret (m) then
 traverseFull (after (runs, ev), know, secrets ∪ {m}) ;
 end
 if ev = send (m) then
 traverseFull (after (runs, ev), know ⊕ m, secrets) ;
 end
 if ev = read (m) then
 for all m' ∈ match (know, m) do
 traverseFull (after (runs, read (m'))), know, secrets) ;
 end
 end
 end
end
traverseFull (runs, know, secrets)

if any secret in know then
 exit ("attack") ;
else
 for all ev ∈ enabled(runs, know) do
 if ev = secret(m) then
 traverseFull(after(runs, ev), know, secrets ∪ {m}) ;
 end
 if ev = send(m) then
 traverseFull(after(runs, ev), know ⊕ m, secrets) ;
 end
 if ev = read(m) then
 for all m' ∈ match() do
 traverseFull(runs, read(m')), know, secrets) ;
 end
 end
 end
end
traverseFull \((\text{runs}, \text{know}, \text{secrets}) \)

\[
\text{if any secret in know then}
\]
\[
\quad \text{exit ("attack") ;}
\]
\[
\text{else}
\]
\[
\quad \text{Choose } ev \in \text{enabled(\text{runs}, \text{know}) do}
\]
\[
\quad \quad \text{if } ev = \text{secret}(m) \text{ then}
\]
\[
\quad \quad \quad \text{traverseFull(after(\text{runs}, ev), know, secrets \cup \{m\}) ;}
\]
\[
\quad \text{end}
\]
\[
\quad \text{if } ev = \text{send}(m) \text{ then}
\]
\[
\quad \quad \text{traverseFull(after(\text{runs}, ev), know \oplus m, secrets) ;}
\]
\[
\quad \text{end}
\]
\[
\quad \text{if } ev = \text{read}(m) \text{ then}
\]
\[
\quad \quad \text{for all } m' \in \text{match(know, m) do}
\]
\[
\quad \quad \quad \text{traverseFull(after(\text{runs, read(m')}, \text{know, secrets}) ;}
\]
\[
\quad \text{end}
\]
\[
\quad \text{end}
\]
\[
\text{end}
\]
\textbf{traverseFull (runs, know, secrets)}

\begin{verbatim}
if any secret in know then
 exit ("attack") ;
else
 Choose \(ev \in enabled(runs, know) \) do
 if \(ev = secret(m) \) then
 traverseFull(after(runs, ev), know, secrets \(\cup \{m\} \)) ;
 end
 if \(ev = send(m) \) then
 traverseFull(after(runs, \(m \oplus m \), secrets) ;
 end
 if \(ev = read(m) \) then
 for all \(m' \in read(know, m) \) do
 traverseFull(after(runs, read(m')), know, secrets) ;
 end
 end
 end
end
\end{verbatim}

Fast but incorrect:
General model checking algorithm with tail recursion

```
modelcheck (σ, except) =
    if σ does not satisfy property then
        exit ("property fails")
    else
        if enabled(σ) \ except ≠ ∅ then
            ev = choose(enabled(σ) \ except);
            modelcheck(after(σ, ev), ∅);
            modelcheck(σ, except ∪ {ev});
        end
    end
end
```
traverseFull2 \(\langle \text{runs}, \text{know}, \text{secrets}, \text{except} \rangle \)

if any secret in know then
- exit ("attack")
else
 if enabled2\(\langle \text{runs}, \text{know}, \text{except} \rangle \) \(\neq\) \(\emptyset\) then
 \(ev = \text{choose}(\text{enabled2}\langle \text{runs}, \text{know}, \text{except} \rangle)\)
 if \(ev = \text{secret}(m)\) then
 traverseFull2(after\(\langle \text{runs}, ev \rangle\), know, secrets \(\cup\) \{m\}, \emptyset)
 traverseFull2\(\langle \text{runs}, \text{know}, \text{secrets}, \text{except} \cup \{ev\} \rangle\)
 end
 if \(ev = \text{send}(m)\) then
 traverseFull2(after\(\langle \text{runs}, ev \rangle\), know \(\oplus\) m, secrets, \emptyset)
 traverseFull2\(\langle \text{runs}, \text{know}, \text{secrets}, \text{except} \cup \{ev\} \rangle\)
 end
 if \(ev = \text{read}(m)\) then
 for all \(m' \in \text{match}(\text{know}, m)\) do
 traverseFull2(after\(\langle \text{runs}, \text{read}(m') \rangle\), know, secrets, \emptyset)
 end
 traverseFull2\(\langle \text{runs}, \text{know}, \text{secrets}, \text{except} \cup \{ev\} \rangle\)
 end
 end
end

For-loop replaced by tail recursion
traverseFull2 *(runs, know, secrets, except)*

if any secret in know then

 exit ("attack")

else

 if enabled2(runs, know, except) ≠ ∅ then

 ev = choose(enabled2(runs, know, except))

 if ev = secret(m) then

 traverseFull2(after(runs, ev), know, secrets ∪ {m}, ∅)

 traverseFull2(runs, know, secrets, except ∪ {ev})

 end

 if ev = send(m) then

 traverseFull2(after(runs, ev), know ⊕ m, secrets, ∅)

 traverseFull2(runs, know, secrets, except ∪ {ev})

 end

 if ev = read(m) then

 for all m' ∈ match(know, m) do

 traverseFull2(after(runs, read(m')), know, secrets, ∅)

 end

 traverseFull2(runs, know, secrets, except ∪ {ev})

 end

 end

end

enabled2(runs, know, except) = enabled(runs, know) \ except
Partial order reduction

Lemma.
If at a given state closed events e and f from different runs can be executed, then.

■ after executing event e, event f can still be executed;
■ after executing event f, event e can still be executed;
■ the states reached after ef and fe are both equal.

Example:

$e_1; e_2; e_3; send_1; send_2; e_4; e_5, \ldots$

$e_1; e_2; e_3; send_2; send_1; e_4; e_5, \ldots$

$e_1; e_2; e_3; send_2; e_4; send_1; e_5, \ldots$

All result in the same state, so we only have to traverse one of these.
traverseFull2 (runs, know, secrets, except)

if any secret in know then
 exit ("attack") ;
else
 if enabled2(runs, know, except) ≠ ∅ then
 ev = choose(enabled2(runs, know, except)) ;
 if ev = secret(m) then
 traverseFull2(after(runs, ev), know, secrets U {m}, ∅) ;
 traverseFull2(runs, know, secrets, except U {ev})
 end
 if ev = send(m) then
 traverseFull2(after(runs, ev), know ⊕ m, secrets, ∅) ;
 traverseFull2(runs, know, secrets, except U {ev})
 end
 if ev = read(m) then
 for all m' ∈ match(know, m) do
 traverseFull2(after(runs, read(m')), know, secrets, ∅) ;
 end
 traverseFull2(runs, know, secrets, except U {ev})
 end
 end
end
end
traverseFull2 \((\text{runs}, \text{know}, \text{secrets}, \text{except}) \)

\[
\begin{array}{l}
\text{if any secret in know then} \\
\quad \text{exit ("attack");} \\
\text{else} \\
\quad \text{if enabled2(\text{runs, know, except})} \neq \emptyset \text{ then} \\
\qquad \text{ev = choose(enabled2(\text{runs, know, except}));} \\
\qquad \text{if ev = secret(m) then} \\
\qquad \quad \text{traverseFull2(after(\text{runs, ev}), know, secrets} \cup \{m\}, \emptyset); \\
\qquad \quad \text{traverseFull2(\text{runs, know, secrets, except} \cup \{ev\})}; \\
\quad \end{array}
\]

\[
\begin{array}{l}
\quad \text{if ev = send(m) then} \\
\qquad \text{traverseFull2(after(\text{runs, ev}), know} \oplus m, \text{secrets, } \emptyset); \\
\qquad \text{traverseFull2(\text{runs, know, secrets, except} \cup \{ev\})} \\
\qquad \text{end} \\
\quad \text{if ev = read(m) then} \\
\qquad \text{for all } m' \in \text{match(know, m) do} \\
\qquad \quad \text{traverseFull2(after(\text{runs, read(m')}, know, secrets, } \emptyset); \\
\qquad \text{end} \\
\text{end} \\
\text{end}
\end{array}
\]
\textbf{traverseFull2}(\texttt{runs, know, secrets, except})

\begin{verbatim}
if any secret in know then
 exit ("attack")
else
 if \texttt{enabled2(runs, know, except) \neq \emptyset} then
 \texttt{ev = choose(enabled2(runs, know, except))}
 if \texttt{ev = secret(m)} then
 traverseFull2(after(runs, ev), know, secrets \cup \{m\}, \emptyset)
 traverseFull2(runs, know, secrets, except \cup \{ev\})
 end
 if \texttt{ev = send(m)} then
 traverseFull2(after(runs, ev), know \oplus m, secrets, \emptyset)
 traverseFull2(runs, know, secrets, except \cup \{ev\})
 end
 if \texttt{ev = read(m)} then
 for all \texttt{m' \in match(know, m)} do
 traverseFull2(after(runs, read(m')), know, secrets, \emptyset)
 end
 traverseFull2(runs, know, secrets, except \cup \{ev\})
 end
 end
end
\end{verbatim}

Not needed
traverseFull2 (runs, know, secrets, except)

if any secret in know then
 exit ("attack") ;
else
 if enabled2(runs, know, except) ≠ ∅ then
 ev = choose(enabled2(runs, know, except)) ;
 if ev = secret(m) then
 traverseFull2(after(runs, ev), know, secrets ∪ {m}, ∅) ;
 traverseFull2(runs, know, secrets, except ∪ {ev})
 end
 if ev = send(m) then
 traverseFull2(after(runs, ev), know ⊕ m, secrets, ∅) ;
 traverseFull2(runs, know, secrets, except ∪ {ev})
 end
 if ev = read(m) then
 for all m' ∈ match(know, m) do
 traverseFull2(after(runs, read(m')), know, secrets, ∅) ;
 end
 traverseFull2(runs, know, secrets, except ∪ {ev}) ;
 end
 end
end
end
traverse \((\text{runs, know, secrets, forbidden})\)

if any secret in \(\text{know}\) then
 exit ("attack") ;
else
 if \(\text{enabled}(\text{runs, know, forbidden}) \neq \emptyset\) then
 \(ev = \text{choose}(\text{enabled}(\text{runs, know, forbidden}))\)
 if \(ev = \text{secret}(m)\) then
 traverse\((\text{after}(\text{runs, } ev), \text{know, secrets} \cup \{m\}, \text{forbidden})\) ;
 end
 if \(ev = \text{send}(m)\) then
 traverse\((\text{after}(\text{runs, } ev), \text{know} \oplus m, \text{secrets, forbidden})\) ;
 end
 if \(ev = \text{read}(m)\) then
 for all \(m' \in \text{match}(\text{know, m}) \land m' \notin \text{forbidden}(\text{read}(m))\) do
 traverse\((\text{after}(\text{runs, } \text{read}(m')), \text{know, secrets, forbidden})\) ;
 end
 traverse\((\text{runs, know, secrets, forbidden}[ev \rightarrow \text{know}])\) ;
 end
 end
end


```plaintext
traverse (runs, know, secrets, forbidden)

if any secret in know then
    exit ("attack")
else
    if enabled3(runs, know, forbidden) ≠ ∅ then
        ev = choose(enabled3(runs, know, forbidden))
        if ev = secret(m) then
            traverse(after(runs, ev), know, secrets ∪ {m}, forbidden)
        end
        if ev = send(m) then
            traverse(after(runs, ev), know ⊕ m, secrets, forbidden)
        end
        if ev = read(m) then
            for all m' ∈ match(know, m) ∧ m' ∉ forbidden(read(m)) do
                traverse(after(runs, read(m')), know, secrets, forbidden)
            end
            traverse(runs, know, secrets, forbidden[ev → know])
        end
    end
end
```

\[\text{enabled3}(\text{runs, know, forbidden}) = \{ev ∈ \text{enabled}(\text{runs, know}) \mid ev = \text{read}(m) ⇒ \exists m' ∈ \text{match}(\text{know}, m) m' ∉ \text{forbidden}(ev)\}\]
BKE

\[SK_i, PK_i, PK_r \]

\[I \]

nonce \(n_i \)

\[\{ n_i, I \}_{PK_r} \]

nonce \(n_r \)

key \(k_{ir} \)

\[\{ h(n_i), n_r, k_{ir} \}_{PK_i} \]

\[\{ h(n_r) \}_{k_{ir}} \]

secret \(k_{ir} \)

\[SK_r, PK_r, PK_i \]

\[R \]
BKE without hash

SK_i, PK_i, PK_r

SK_r, PK_r, PK_i

nonce ni

nonce nr

key kir

secret kir

$\{ni, I\}_{PK_r}$

$\{ni, nr, kir\}_{PK_i}$

$\{nr\}_{kir}$
BKE without r

\[SK_i, PK_i, PK_r \]

\[SK_r, PK_r, PK_i \]

\[
\begin{align*}
&\text{nonce } n_i \\
&\{n_i, I\}^{PK_r} \\
&\{h(n_i), kir\}^{PK_i} \\
&\{0\}^{kir} \\
&\text{secret } kir
\end{align*}
\]
BKE k_{ir} **within encryption**

![Diagram showing the process of BKE with k_{ir}](image)
Attack visualization

assumes $e : R$

creates ni^0

knows $ne, e, b, a, h, PK, SK(e)$

creates nr^1, kir^1

assumes $a : I$

Intruder

Intruder

Intruder

$\{ni^0, a\}_{PK(e)}$

$\{h(ni^0), nr^1, kir^1\}_{PK(a)}$

$\{h(nr^1), kir^1\}_{PK(e)}$

$\{h(nr^1), kir^1\}_{PK(b)}$

$\neg secret[kir^1]$
Tool comparison: number of states

The graph shows the number of states traversed against the number of runs for different tools. The axes are labeled as follows:

- Y-axis: number of states traversed
- X-axis: number of runs

The graph includes three lines:
- TraverseFull
- Brutus
- Traverse

The data points are marked with specific symbols, and the lines connect these points to illustrate the trend as the number of runs increases.
Tool comparison: execution time

![Graph showing execution time comparison for different tools.](image)
Conclusions

- Fastest algorithm that we know of (only basic type flaw attacks).
- Tool produces visual attack trees.
- Possible improvements:
 1. Exploit symmetry in scenario’s.
 2. Combine with Constraint Logic approach ⇒ hybrid model checker.
- Extend algorithm to different intruder models.
- Similar algorithm for authentication properties.