
SIMPL-T:

SDL Intended for Management and Planning of Tests

By

Qing Li, Robert Probert, William Skelton, Yiqun Xu

SAM’04 Workshop, Ottawa, Canada

June, 2004

SAM'04 2

OutlineOutline

Background and Motivation
Approach
Assessment
Contributions and Future Work

SAM'04 3

Background and MotivationBackground and Motivation

Relative Error Correction Cost in a Software Life Cycle

Specification must be tested!

SAM'04 4

No Existing Formal Language is
Suitable for Testing SDL Specifications

Background and MotivationBackground and Motivation

• TTCN
• MSC
• UML
• URN/UCM
• LOTOS
• SDL

SAM'04 5

SDL SDL Task ForceForce

• The graphical representation,
ensuring auto-layout is possible

• Test capabilities, such as SDL
based test scripts

• ASN.1(1994) support, including
encoding/ decoding of PDUs

• Associated methodology issues,
such as maximum integration of
tool chain

Background and MotivationBackground and Motivation

SAM'04 6

Statement of Research ProblemStatement of Research Problem

To define and investigate the
applicability of a simple, useful and
efficient language for describing
tests of SDL specifications

Background and MotivationBackground and Motivation

SIMPL-T
-- SDL Intended for Management and

Planning of Tests

SAM'04 7

ApproachApproach

ApproachApproach

•Basic Testing Concepts
•Key Requirements
•Suitability of SDL for Test Specification
•SIMPL-T – SDL with Extensions

SAM'04 8

SDL & TTCN Overlap

ApproachApproach

SDL Overlap TTCN

TTCNSDL

Extensions to SDL

SAM'04 9

Test Architecture (Test Architecture (ITUITU--T Z.500)T Z.500)

Basic Testing ConceptsBasic Testing Concepts

SAM'04 10

Test Architecture (ISO 9646Test Architecture (ISO 9646))

Basic Testing ConceptsBasic Testing Concepts

IUT
L

U

Lower Tester Upper Tester

Underlying Service
Provider

* Test Configuration

SAM'04 11

Test ArchitectureTest Architecture

Basic Testing ConceptsBasic Testing Concepts

• Tester – Run test suite
• IUT
• Connection – PCOs
• Communication Channels

SAM'04 12

Test Case and Test SuiteTest Case and Test Suite

Basic Testing ConceptsBasic Testing Concepts

• Test Suite
• Test Case

–Test Purpose
–Test Case Behaviour

•Sending a stimulus to the IUT
•Specifying expected response
•Store and Transfer data
•Take alternative actions
•Repeated test steps or actions

SAM'04 13

ObservationsObservations

Basic Testing ConceptsBasic Testing Concepts

• Check the responses
• Measure the timing of response
• Assign Verdict

SAM'04 14

Key Requirements
ApproachApproach

• Test Architecture – Tester and SUT
• Connection between the Tester and the SUT
• Communication between the Tester and the SUT
• Organization and Management of Tests
• Sending Stimuli to the IUT
• Receiving Response from the IUT
• Storing and Transferring Data
• Flow Control
• Test Step Repetition
• Checking Responses and Matching Mechanism
• Measuring the Timing of Responses.
• Assigning and Handling of Verdict

SAM'04 15

Suitability of SDL for Test
Specification

ApproachApproach

Key Requirements SDL Features
Test Architecture – Tester, SUT & Test Context SDL Blocks

Test Architecture - Connecting between Tester and SUT (PCOs & IAPs) Gate & Channel

Test Architecture - Communication between Tester and SUT Signal Exchange

Organization and Management of Tests Not Supported

Test Case Behaviour - Sending Stimuli to SUT Output

Test Case Behaviour – Receiving Responses from SUT Input

Test Case Behaviour - Storing and Transferring data Variable & Data Type

Test Case Behaviour – Flow Control Decision

Test Case Behaviour - Test Step Repetition Procedure

Observation - Checking Responses Partially Supported

Observation - Measuring the Timing of Responses Timer

Assigning and Handling of Verdicts Not Supported

SAM'04 16

ApproachApproach

•Organization and Management of Tests

•Checking Responses
-- “Input Via” and Matching mechanism

•Assigning and Handling of Verdicts

Extensions

SAM'04 17

ApproachApproach

Testsuite_Definition ::= “TESTSUITE” TestsuiteName “;”
[Gate_Definition]
[Testsuite_Component]
“ENDTESTSUITE;”

Gate_Definition ::= “GATE” GateName “;”
[In_Signal_List] “;”
[Out_Signal_List]”;”

In_Signal_List ::= Signal_Identifier
[“,” In_Signal_List]

Out_Signal_List ::= Signal_Identifier
[“,” Out_Signal_List]

Testsuite_Component ::= ([Signal_Definition]
[Signal_List_Definition]
[Timer_Definition]

……
[Test_Group_Definition]
[Test_Case_Definition])
[Testsuite_Component]

Test_Group_Definition ::= “TESTGROUP” TestGroupName “;”
Test_Case_Definition_List

……
……

Organization and Management of Tests

SAM'04 18

ApproachApproach

New INPUT VIA Construct

STATE S1;
INPUT A VIA Gate1;

NEXTSTATE S2;

SAM'04 19

ApproachApproach

Specifying Expected Values of Parameters inside INPUT

Start
Test case 5

Password

Pass Fail

*Display(“Please Come In”, “Invalid Password! Please try again”)

S

SAM'04 20

ApproachApproach

•Unmatched Signal Handling:

– Disregard by default

– Explicitly use “Save” construct when necessary

Matching Mechanism

SAM'04 21

ApproachApproach

• Overlapped Signal Handling:
(1) the same signal arriving from different

gates/channels;

-- > They are not considered as overlap in SIMPL-T

(2) the parameters carried by the same signal have
different values and the values have overlap

-- > They are not allowed in SIMPL-T

Matching Mechanism

SAM'04 22

ApproachApproach

An Example of a SIMPL-T Test Case
Start

Test_case 6

B

Z(1:100) Via Gate1 Lower

SS

SET(NOW+5, Lower)

V=True

SS

V=True

Upper Otherwise

True False

pass

DCL
V Boolean := False;

TIMER
Lower := 5;
Upper := 9;

SET(NOW+9, Upper)

fail fail inconc

Startup

pass

pass

Preliminary Result

Final Verdict

SAM'04 23

ApproachApproach

An Example of a SIMPL-T Test Case (Cont.)

StartProcedure Startup

Reset

ResetACK

Pass Fail

*

SET(NOW+4, ResetTimer)

ResetTimer

Inconc

S

SAM'04 24

AssessmentAssessment

The Strengths and Limitations of SIMPL-T

Comparing to TTCN
+ Strength - Weakness = Same / Not needed

Number Description SIMPL-T TTCN

1 Easy to Learn for SDL Users + -
2 Simplicity of Test Suites + -
3 Support Reusability -- Efficiency and Reliability + -
4 Tool Support + -
5 Handle Ordering Problem + -
6 Handle Race Condition = =
7 Handle Concurrency = =
8 Scalability - +
9 Number of Available Features - +
10 Support testing non-SDL Specifications - +
11 Undefined-object (Exception) Handling / +
12 Structure Type Support & Access Components of Complex Types / +

SAM'04 25

AssessmentAssessment

Ordering Problem

•SIMPL-T
-- solve it using “save” construct

• Two or more signals can arrive in arbitrary order
• The order is irrelevant,
• The test language does not have a mechanism
to specify this situation

SAM'04 26

Contributions and Future WorkContributions and Future Work

ContributionsContributions

• Submitted to the SDL Task Force
• Defined a simple, easy to learn test

language
• Create a potential for lower cost tools
• Lead to more interest in SDL and

testing

SAM'04 27

Contributions and Future WorkContributions and Future Work

Future WorkFuture Work

•Concurrency
•Defaults
•Extensions for larger applications

	Outline
	Relative Error Correction Cost in a Software Life Cycle
	No Existing Formal Language is Suitable for Testing SDL Specifications
	SDL Task Force
	Statement of Research Problem
	Approach
	SDL & TTCN Overlap
	Test Architecture (ITU-T Z.500)
	Test Architecture (ISO 9646)
	Test Architecture
	Test Case and Test Suite
	Observations
	Key Requirements
	Suitability of SDL for Test Specification
	New INPUT VIA Construct
	Specifying Expected Values of Parameters inside INPUT
	The Strengths and Limitations of SIMPL-T Comparing to TTCN
	Ordering Problem

