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Background and MotivationBackground and Motivation

Relative Error Correction Cost in a Software Life Cycle

Specification must be tested!
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No Existing Formal Language is 
Suitable for Testing SDL Specifications

Background and MotivationBackground and Motivation

• TTCN
• MSC
• UML
• URN/UCM
• LOTOS
• SDL
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SDL SDL Task ForceForce

• The graphical representation, 
ensuring auto-layout is possible

• Test capabilities, such as SDL 
based test scripts

• ASN.1(1994) support, including 
encoding/ decoding of PDUs

• Associated methodology issues, 
such as maximum integration of 
tool chain

Background and MotivationBackground and Motivation
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Statement of Research ProblemStatement of Research Problem

To define and investigate the 
applicability of a simple, useful and 
efficient language for describing 
tests of SDL specifications

Background and MotivationBackground and Motivation

SIMPL-T 
-- SDL Intended for Management and 

Planning of Tests
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ApproachApproach

ApproachApproach

•Basic Testing Concepts 
•Key Requirements
•Suitability of SDL for Test Specification
•SIMPL-T – SDL with Extensions
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SDL & TTCN Overlap

ApproachApproach

SDL Overlap TTCN

TTCNSDL

Extensions to SDL
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Test Architecture (Test Architecture (ITUITU--T Z.500)T Z.500)

Basic Testing ConceptsBasic Testing Concepts
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Test Architecture (ISO 9646Test Architecture (ISO 9646))

Basic Testing ConceptsBasic Testing Concepts

IUT
L

U

Lower Tester Upper Tester

Underlying Service 
Provider

* Test Configuration
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Test ArchitectureTest Architecture

Basic Testing ConceptsBasic Testing Concepts

• Tester – Run test suite
• IUT
• Connection – PCOs
• Communication Channels
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Test Case and Test SuiteTest Case and Test Suite

Basic Testing ConceptsBasic Testing Concepts

• Test Suite
• Test Case

–Test Purpose
–Test Case Behaviour

•Sending a stimulus to the IUT
•Specifying expected response
•Store and Transfer data 
•Take alternative actions 
•Repeated test steps or actions 
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ObservationsObservations

Basic Testing ConceptsBasic Testing Concepts

• Check the responses
• Measure the timing of response
• Assign Verdict
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Key Requirements
ApproachApproach

• Test Architecture – Tester and SUT
• Connection between the Tester and the SUT
• Communication between the Tester and the SUT
• Organization and Management of Tests
• Sending Stimuli to the IUT
• Receiving Response from the IUT
• Storing and Transferring Data
• Flow Control
• Test Step Repetition
• Checking Responses and Matching Mechanism
• Measuring the Timing of Responses.
• Assigning and Handling of Verdict



SAM'04 15

Suitability of SDL for Test 
Specification

ApproachApproach

Key Requirements SDL Features 
Test Architecture – Tester, SUT & Test Context SDL Blocks 

Test Architecture - Connecting between Tester and SUT (PCOs & IAPs) Gate & Channel 

Test Architecture - Communication between Tester and SUT Signal Exchange 

Organization and Management of Tests Not Supported 

Test Case Behaviour - Sending Stimuli to SUT Output 

Test Case Behaviour – Receiving Responses from SUT Input 

Test Case Behaviour - Storing and Transferring data Variable & Data Type 

Test Case Behaviour – Flow Control Decision 

Test Case Behaviour - Test Step Repetition Procedure 

Observation - Checking Responses Partially Supported 

Observation - Measuring the Timing of Responses Timer 

Assigning and Handling of Verdicts Not Supported 
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ApproachApproach

•Organization and Management of Tests

•Checking Responses
-- “Input Via” and Matching mechanism

•Assigning and Handling of Verdicts

Extensions
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ApproachApproach

Testsuite_Definition ::= “TESTSUITE” TestsuiteName  “;”
[ Gate_Definition ]
[ Testsuite_Component ]
“ENDTESTSUITE;”

Gate_Definition ::= “GATE” GateName “;” 
[ In_Signal_List ] “;”
[ Out_Signal_List ]”;”

In_Signal_List ::= Signal_Identifier 
[ “,” In_Signal_List ]

Out_Signal_List ::= Signal_Identifier 
[ “,” Out_Signal_List ]

Testsuite_Component ::= ([Signal_Definition] 
[Signal_List_Definition] 
[Timer_Definition] 

……
[Test_Group_Definition] 
[Test_Case_Definition] )
[Testsuite_Component ] 

Test_Group_Definition ::= “TESTGROUP” TestGroupName “;”
Test_Case_Definition_List

……
……

Organization and Management of Tests
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ApproachApproach

New INPUT VIA Construct

STATE S1;
INPUT A VIA Gate1;

NEXTSTATE S2;
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ApproachApproach

Specifying Expected Values of Parameters inside INPUT

Start
Test case 5 

Password 

Pass Fail

*Display(“Please Come In”, “Invalid Password! Please try again”) 

S
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ApproachApproach

•Unmatched Signal Handling:

– Disregard by default

– Explicitly use “Save” construct when necessary 

Matching Mechanism
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ApproachApproach

• Overlapped Signal Handling:
(1) the same signal arriving from different 

gates/channels;

-- > They are not considered as overlap in SIMPL-T

(2) the parameters carried by the same signal have 
different values and the values have overlap

-- > They are not allowed in SIMPL-T

Matching Mechanism
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ApproachApproach

An Example of a SIMPL-T Test Case
Start 

Test_case 6 

B

Z(1:100) Via Gate1 Lower 

SS 

SET(NOW+5, Lower) 

V=True 

SS 

V=True

Upper Otherwise 

True False

pass 

DCL
V Boolean := False; 
 
TIMER 
Lower := 5; 
Upper := 9; 

SET(NOW+9, Upper) 

fail fail inconc 

Startup

pass 

pass

Preliminary Result 

Final Verdict 
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ApproachApproach

An Example of a SIMPL-T Test Case (Cont.)

StartProcedure Startup 

Reset 

ResetACK 

Pass Fail 

*

SET(NOW+4, ResetTimer) 

ResetTimer 

Inconc 

S
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AssessmentAssessment

The Strengths and Limitations of SIMPL-T 

Comparing to TTCN
+ Strength - Weakness =  Same          /  Not needed

Number Description SIMPL-T TTCN 

1 Easy to Learn for SDL Users + -
2 Simplicity of Test Suites + -
3 Support Reusability -- Efficiency and Reliability  + -
4 Tool Support + -
5 Handle Ordering Problem + -
6 Handle Race Condition = =
7 Handle Concurrency  = =
8 Scalability - +
9 Number of Available Features - +
10 Support testing non-SDL Specifications - +
11 Undefined-object (Exception) Handling / +
12 Structure Type Support & Access Components of Complex Types / + 
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AssessmentAssessment

Ordering Problem

•SIMPL-T
-- solve it using “save” construct

• Two or more signals can arrive in arbitrary order
• The order is irrelevant, 
• The test language does not have a mechanism 
to specify this situation 
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Contributions and Future WorkContributions and Future Work

ContributionsContributions

• Submitted to the SDL Task Force
• Defined a simple, easy to learn test 

language 
• Create a potential for lower cost tools
• Lead to more interest in SDL and 

testing 
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Contributions and Future WorkContributions and Future Work

Future WorkFuture Work

•Concurrency 
•Defaults 
•Extensions for larger applications
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