
6/15/2004 SAM 2004 1

Early Validation of
Deployment and Scheduling Constraints

for MSC Specifications

Ferhat Khendek, Christophe Lohr, Li Xin Wang,
Xiao Jun Zhang, Tong Zheng

Concordia University

6/15/2004 SAM 2004 2

Motivation
Development Process

MSC
Logical and time constraints
Functional requirements
Consistency validation

SDL
Design
Validation

Implementation
Add deployment constraints
Test cases (MSC)

Early validation of
Deployment Constraints

Validation

Validation

Validation

Design
Specification

SDL

Functional
Requirements

MSC

Implementation

Deployment
Constraints

6/15/2004 SAM 2004 3

Functional Requirements Validation
Stepwise Validation of MSCs

Consistency
Intrinsic requirements consistency
(time & logical)
Lposets semantics & validation

Channel Delays
Are message channels fast
enough to meet requirements?

Processes Distribution
Are processes schedulable (can
they meet their constraints) if they
share a processor?

Scheduling Policy
Are scheduled processes able to
follow a given scheduling policy
and meet functional
requirements?

Scheduling Policy

Schedulability

Channel Delays

Consistency

Functional
Requirements

MSC

Deployment
Constraints

6/15/2004 SAM 2004 4

Example
Functional Requirements &
Deployment Constraints

i an j assigned to CPU1
k assigned to CPU2
Maximum channel delay
between CPU1 and CPU2: 3
Maximum channel delay inside
CPU1&2: 1

a

f

t

z

m
y

x

c

p

k

h

g[4,6]

l

j

o

n

h[4,7]

e

d[2,5]

b

[1,11]

[0,3]
[2,4]

i

Not deployable
Action boxes c & d in sequence
Needs more than 4 units of time
Violates the constraint [0,3]

6/15/2004 SAM 2004 5

Presentation Overview

1. MSC Consistency

2. Channel Delay

3. Processes Distribution

4. Scheduling policy

5. Conclusion

6/15/2004 SAM 2004 6

1. Consistency of Timed MSCs
- Previous work as a basis of current work -

Timed MSCs semantics based on lposets
Consistency = all time and causal order are respected
Validation to avoid semantic errors (timing & order conflicts)
Validation technique:

[1,2]
b
@[6,8]

@[5,10]

j i

m
a a b

a T

b F

10

-1
2

-5 -6
8

0 e

ba
a@[5,7] b@[6,8]

MSC
Event

Order Table Distance Graph Floyd-Warshall
Algorithm

7

-1
2

-5 -6
8

0 e

ba

Reduced
absolute time

constraints

6/15/2004 SAM 2004 7

2. Communication Channel Delay
Ensure that physical communication channels are fast
enough to meet the functional timing requirements
E.g. channels inside CPU or between CPUs

D = 1
Channel delay

[D:1] [1,2]
b
@[6,8]

@[5,10]

j i

m
a

Algorithm:
Read computed distance graph

Compare (send-receive) relative time
constraints to channel delay capability

If greater, then abort:

“system not deployable”Require delivering m within [1,2]
Channel capability: 1

Deployable

6/15/2004 SAM 2004 8

3. Processes Distribution
Ensure that processes distributed on a same CPU
can share it and still meet their functional time
requirements

Serializing events impacts the functional requirements…

Try all possible serializations / schedules of events on each CPU

Revalidate consistency for each one

If one is consistent, processes are schedulable / deployable on this CPU

Main issue: Serialization

Totally orders events in CPUs

Add new orders compatible with existing ones

6/15/2004 SAM 2004 9

3. Processes Distribution
Serialization Algorithm

i k

a

c
b@[3,5]

d@[2,10]y

z

x

f@[12,14]

l
CPU1 CPU2

@[1,2]

@[2,3]

e
@[12,14]

j

a b c d e f

a T T T T T

b F ? ? ? ?

c F ? T T T

d F ? F F T

e F ? F T T

f F ? F F F

Algorithm:
Replace ‘?’ by ‘T’ or ‘F’

Compute transitive closure

Run F-W algo. if totally ordered, else continue

Output: list of consistent serializations
A serialization = new reduced absolute time

constraints

Example (after 4 iterations, 2 serializations):
a@[1,2] c@[2,3] b@[3,5] d@[4,10] e@[12,14]
a@[1,2] c@[2,3] d@[3,4] b@[4,5] e@[12,14]

E
ve

nt
 O

rd
er

 T
ab

le

6/15/2004 SAM 2004 10

4. Scheduling Policy
Ensure that processes distributed on a same CPU
can follow a predefined scheduling policy and still
meet functional requirements
A scheduling policy implies order on events…

Check if MSC is compatible with it

Main issue: Mapping

scheduler states ⇔ MSC instances

S0 t:=0 t mod 6 = 4

t mod 6 = 0

t mod 6 = 2

S3

S2

S1

i k
a

c
b@[3,5]

d@[2,10] y

z

x

f@[12,14]

l
CPU1 CPU2

@[1,2]

@[2,3]
e

@[12,14]

j

c@[2,3]

b@[3,5]

d@[4,10] e@[12,13]

S3

S2

S1

i

j

k

a@[1,2]
10 2 3 4 5 6 7 8 9 10

6/15/2004 SAM 2004 11

4. Scheduling Policy
Mapping Algorithm

Algorithm:
Lists time slots & scheduler
states available for each event
(compares date)

Intersects lists along each
instance (it gives possible
mappings for the instance)

Computes possible mappings
for the MSC

Check precedence order
(compare time slots & dates)

e@[12,13]

d@[4,10]

k j

 Time slots:
 ts1, ts2

 Scheduler:
 S1, S2

b@[3,5]

{S1 } {S2, S3} {S2}

c@[2,3]

a@[1,2]

i

 Time slot:
 ts2

 Scheduler:
 S2

 Time slots:
 ts2, ts3

 Scheduler:
 S2, S3

 Time slots:
 ts3, ts4, ts5

 Scheduler:
 S3, S1, S2

 Time slot:
 ts7

 Scheduler:
 S1

Output: list of mappings
Example: { (i,S2), (j,S3), (k,S1) }

6/15/2004 SAM 2004 12

Conclusion

Handle certain deployment constraints at the
specification stage

Are functional requirements still met and valid when deployment
constraints are taken into account ? (channel delay, process
distribution, scheduling policy)
Avoid backtracking from late stages of implementation and test

Future works:
Consider further constraints and resources
Extend validation issues of process distribution and scheduling
policy to HMSCs

	Early Validation of Deployment and Scheduling Constraints for MSC Specifications
	MotivationDevelopment Process
	Functional Requirements ValidationStepwise Validation of MSCs
	ExampleFunctional Requirements & Deployment Constraints
	Presentation Overview
	1. Consistency of Timed MSCs
	2. Communication Channel Delay
	3. Processes Distribution
	3. Processes Distribution
	4. Scheduling Policy
	4. Scheduling Policy
	Conclusion

