
Applying Reduction Techniques
to Software Functional

Requirement Specifications
(Use Case Maps Slicing)

Jameleddine Hassine
Rachida Dssouli
Juergen Rilling

Concordia University, Montreal, Canada

Fourth SDL And MSC Workshop

2June 15, 2004

Outline
Part I: Traditional Program Slicing

Introduction
Program Slicing
Slicing Example
Generalized Slicing

Part II: Use Case Maps
What is Use Case Maps
Design Pyramid
UCM Definition
Example

Part III: UCM Slicing Approach
Need for Requirement Slicing
Slicing Criteria
UCM Slicing
Limitations
Conclusion & Future work

Part I
Traditional Program

Slicing

4June 15, 2004

Introduction
Originally Introduced by Weiser in 1984
Program Reduction Technique (Simplification Technique)
Studied primarily in the context of conventional programming
languages (C, ADA,..etc.)
Application of program slicing:

Debugging
Differencing
Program Testing
Program Maintenance (Comprehension, Analysis, …etc.)
Reverse Engineering
Formal Verification

5June 15, 2004

Program Slicing ?

Given:
Program (in a conventional programming language such as C)
Variable V at some point P in the program (Called a slicing Criterion)

Goal:
Find the part of the program that is responsible for the computation
of variable v at point P

Output : Slice (Weiser’s Definition 1984)
A Slice S is a Reduced, executable program obtained from program
PG by removing statements such as S replicates parts of the
behavior of PG.

6June 15, 2004

Slicing Example

begin
1 read(n)
2 i:=1;
3 sum:=0;
4 prod := 1
5 While (i<=n)

do
6 sum:=sum+i;
7 prod:=prod*i;
8 i:=i+1;

end;
9 write(prod);
10 write(sum);

end;

Slice w.r.t criterion <10, sum>:1

2
3

4

5

6 7 8

910

Data Dependency:
Represents data flow
(definition-use chain).

Control Dependency:
The execution of a node
depends on the outcome
of a predicate node.

Data Dependency
Control Dependency

Program Dependency Graph

7June 15, 2004

Generalized Slicing

Slicing has been generalized to other software artifacts
including :

Requirement models: Requirement State Machine
Lamguage (RSML), Extended Finite State Machine
(EFSM)
Software Architecture (Language WRIGHT (ADL)).
Specification Languages (Z, VHDL)
Grammar
..etc.

Part II
Use Case Maps

9June 15, 2004

What is Use Case Maps (UCMs) ?

A graphical scenario notation (map-like diagram)

Describes system functional requirements

Reason about the system at a high-abstraction level
(without reference to message exchanges)

Facilitate moving towards design

UCM part of URN (User Requirement Notation, Being
standardized by ITU-T in Z.15x)

10June 15, 2004

The Design Pyramid

Requirements
NFR

Use Cases
Problem Modeling

Use Case MapsHigh-level Design

Detailed Design

Implementation

Sequence/collaboration diagrams, statechart
diagrams, class/object diagrams,

Component/deployment diagrams(UML)
Message sequence charts, SDL (ITU-T)

Code

11June 15, 2004

Strengths of UCM
Bridge the modeling gap between requirements (use
cases) and detailed design

May be transformed (e.g. into MSC/sequence diagrams,
performance models, test cases)

Model dynamic (run-time) refinement for variations of
behaviour and structure

Visually integrate behaviour and structural components
in a single view.

12June 15, 2004

UCM Definition
A UCM requirement specification is defined as a seventuple
(D, C, V, λ, Bc, S, Bs)

Where:
D is the UCM domain, composed of sets of typed constructs.

D = R ∪ SP ∪ EP ∪ AF ∪ AJ ∪ OF ∪ OJ ∪ AF ∪ ST ∪ Tm ∪ ST ∪…etc
Where R: Responsibilities, SP: Start Points, EP: End points, AF: AND-fork,
AJ: AND-join, OF:OR-fork, OJ : OR-Join, AF: AND-fork, ST: Stubs…etc.

C is the set of components (C = Ø for unbound UCM)
V is the set of global variables,
G is the set of guard expressions over V,
λ is a transition relation (path connection) defined as: λ = D×D×G
Bc is a component binding relation and is defined as Bc =D×C.
S is a Stub binding relation defined as S = ST×RS×G.
Bs is a Plug-in binding relation defined as :
Bs =RS×{IN/OUT}×SP/EP.

13June 15, 2004

Plug-in 1 Plug-in 2

Example

D = {S} ∪ {E1, E2} ∪ {a, c, d} ∪ {OF1} ∪ {Stub1}
C = {C1, C2}
V = {x, y}
G = {x, !x, y, !y,…etc.}
λ = {(S, a, true), (a, OF1, true),(OF1, c , x), (OF1, d, !x), (d, Stub1,
true),(Stub1, E2, true)}
Bc = {(S,C1),(a, C1),(OF1, C1),(c, C2),(E1,C2)}
S = {(Stub1, Plug-in1, y), (Stub1, Plug-in2, !y)}
Bs= {(Plug-in1,IN1, S1), (Plug-in1,OUT1, E3), (Plug-in2, IN1, S2),
(Plug-in2, OUT1, E4)}

Part II
UCM Slicing
Approach

15June 15, 2004

Need For Requirement Specification Slicing
Requirement Modeling and analysis represent a critical phase of
complex system development

Requirements are evolving Complex and error-prone

Extract only just enough information to perform the task at hand
(focus on some parts and ignore others)

Come up with Techniques and Tools to support requirement:
Analysis
Comprehension
Testing
Maintenance

16June 15, 2004

Slicing Criteria & Reduced UCM
UCM Slicing Criterion:

A responsibility or start/end point (A component may
be part of the slicing criterion)

Reduced UCM: RS’= (D’, C’, V’, λ’, Bc’, S’, Bs’)
D’ is a reduced set of D
C’ is a reduced set of C (a component with reduced
functionalities)
V’ is a reduced set of V
λ’ is a reduced transition relation
Bc’ is a reduced component binding relation
S’ is a reduced Stub binding relation
Bs’ is a reduced Plug-in binding relation

17June 15, 2004

UCM Slicing
Input:

A UCM
Slicing criteria (SC)

Output:
Reduced UCM (Backward Slice)
Reachability expression: A logical expression
combining guards (first-order logic predicates)

Note: In order to reach SC, the reachability expression
should be satisfiable (i.e. evaluated to : True)

18June 15, 2004

Solving the Reachability expression

Is there some assignment of “true” and “false” values to
the variables that will make the entire expression “true”?

Satisfiability Problem (SAT) NP-complete problem

UCM Boolean variables Boolean Satisfiability Problem

Many approaches for solving instances of SAT in
practice: Davis-Putnam, WALKSAT, GSAT...etc.

19June 15, 2004

Slicing UCM Constructs

UCM construct Reduced UCM
construct

UCM construct Reduced UCM
construct

20June 15, 2004

Case Study: A Simple Telephony System

Global Variables:
subCND,
subOCS,
OnOCSList,
Busy,

OCS Plug-in

CND Plug-in

Root Map

21June 15, 2004

Example: SC = ‘display’ in the CND stub

OCS reduced plug-in

CND reduced plug-in

Reduced Root Map

Reachability Expression:

((subCND = True) AND (Busy =False) AND (subOCS = False))
OR

((subCND = True) AND (Busy =False) AND (subOCS = True) AND (OnOCSList = False))

22June 15, 2004

Variable Assignment
Case1: the new definition of variable C
should be considered in the reachability
expression : {(C ← not(C)), (C= true)}
After Unification:
True = not(C)

C ← not (C)

Rule1: v ← f(x1,..,xn) ; g(y1,..,yn,v) g(y1,..,yn,f(x1,..,xn))

C ← not (C)

Case2: The update happened after a
path has been taken. The reachability
expression should not be affected and
should remain: C = true

Rule2: g(y1,..,yn,v) ; v ← f(x1,..,xn) g(y1,..,yn,v)

23June 15, 2004

Limitations

Loops Non-determinism

Loops: The number of times a loop is visited is known only at run
time. Such information is needed in order to compute the slice and
to solve the reachability expression.

Non-determinism: SC is reached only when R2 is executed after R1.
One possible option is to investigate both alternatives. Each
alternative will be evaluated separately and taken as a slice if it is a
consistent one.

24June 15, 2004

Conclusion & Future work
Benefits

Requirement understanding and analysis (Complexity reduction
(search into a hierarchy of levels of abstraction (Stubs)), Feature
extraction…etc.)
No state explosion, since UCM original semantics are preserved
(Concurrency, non determinism)
Testing (Regression testing, development testing)
Maintenance (Corrective, perfective, Impact analysis…etc.)

Future Work
Derive test suites based on slicing (Selective testing, Regression
testing)
Dynamic Slicing (Reduces the size of a slice and simplifies the
reachability expression)
Impact Analysis (Combine backward and forward slicing)

	Applying Reduction Techniques to Software Functional Requirement Specifications (Use Case Maps Slicing)
	Outline
	Part ITraditional Program Slicing
	Introduction
	Program Slicing ?
	Slicing Example
	Generalized Slicing
	Part II Use Case Maps
	What is Use Case Maps (UCMs) ?
	The Design Pyramid
	Strengths of UCM
	UCM Definition
	Example
	Part II UCM Slicing Approach
	Need For Requirement Specification Slicing
	Slicing Criteria & Reduced UCM
	UCM Slicing
	Solving the Reachability expression
	Slicing UCM Constructs
	Case Study: A Simple Telephony System
	Example: SC = ‘display’ in the CND stub
	Variable Assignment
	Limitations
	Conclusion & Future work

