Fraunhofer HUMBOLDT-UNIVERSITAT ZU BERLIN g “;n- E
Institute for Open

Communication Systems

Deployment

. and .
Configuration
of Distributed Systems

Andreas Hoffmonn a.hoffrnonn@ folkus. fraunhofer.de
Bertrom Neubauer neubauer @informnartik.hu-berlin.de

Deployment and Configuration SAM*04 Slide 1

Table of Contents

Introduction

Overview on major concepts
— |ITU eODL, UML 2.0, OMG DnC

Comparison of concepts

— Component and component-based application
— Realization of components

— Target environment description

— Distribution Modelling

— Run-time management

Summary on compared concepts
Conclusion

Introduction: Deployment & Configuration

Application / Component Level Target Environment

Properties, Node1
Capabilities,

Resources

]
1
1
1
I
|
v

Deployment & *§
Configuration S

|| £
S

Node3

f
I
]
]
I
1

\L A2 ‘L A4 ‘L

L Ab IS
/ 7. Deployment
A3 .
Requirements

Realization / Implementation Level

Overview on Deployment Modelling

Application /

Target

Specification Eon e D“instgblllj_tion ’ Environment
Level Modelling odelling 3 _ Modelling
SPEC L Target Environment
Application
Runtime Application Deployment Deployment
Level Representation Data Infrastructure

Overview on Deployment Modelling

Application /
Component

Target
Environment

Specification
Level

Distribution
Modelling

Modelling

Modelling

« Component definition
» Component Realisation

»Concepts for mapping

*Domain / Target environmt.

« Composition component topology onto -Computing nodes
* Initial Topology, target environment «Communication links
Configuration *Properties
Component-based \ p
N Target Environment
Application

\ [\

*Deployment-related
data in special formats
used at run-time

*Deployment interfaces for
processing deployment
data

*Installation, launching,

\._configuring an application

*Run-time representation
and management of a
deployed application

y Application
Representation

Runtime
Level

Deployment
Infrastructure

Deployment
Data

TR

_

Languages Investigated

Only languages

— suitable for modeling distributed systems at platform-
independent (PIM) level

— according to OMG’s Model Driven Architecture (MDA)
approach

have been considered

Platform-specific technologies such as CCM, EJB,
.NET have not been considered
— In general, mapping from PIM to different PSMs possible

Investigation of the following languages
— extended Object Definition Language (ITU eODL)
— Unified Modeling Language (UML 2.0)

— OMG Deployment and Configuration (OMG DnC)

All three languages have a MOF-based Metamodel

Overview on eODL

* Defined by ITU-T
« Language for platform-independent specifications

 Different viewpoints reflecting different aspects of a
distributed system
— Computational VP
* Modeling black-box components; no recursive composition
« 3 types of ports
— Implementation VP
- Component realisations
» Deployment requirements

— Target Environment VP: Modeling computing environment
— Deployment VP: Deployment mapping

* No support for run-time modelling

Overview on UML 2.0

Standardised by OMG

Language (family) for graphical modelling of arbitrary
systems

Recently adopted version UML 2.0 is major revision
adding advanced modelling concepts,
in particular for distributed systems

— Component modelling:

* Provided and used ports
» Black-box and white-box components

— Component realisation (implementation) by artifacts

— Deployment concepts for

« Target environment
» Deployment mapping

No support for run-time modelling, too

Overview on OMG DnC

In 2003 the OMG adopted the Deployment and Configuration of
Component-based Applications specification

Structured according the MDA approach

— Core: MOF-compliant platform-independent model (PIM) for DnC
Basically aligned with respective UML 2.0 concepts (some open issues)

— UML profile
For modelling components as well as the target environment
Is a concrete syntax for the abstract concepts defined by the PIM

— Platform-specific model for the CORBA Component Model (CCM)

Development phase out of scope of DnC
— Starting point: complete (implemented) specification

— DnC spec is applicable to wide range of different component-based
methodologies

Focus: Interoperable deployment machinery
— Deployment architecture with well-defined interfaces and interchange formats
— Both can be derived automatically from the PIM by proper mapping rules

Application / Component Modelling

Target
’ Environment
X Modelling

Application /
Component
Modelling

Specification
Level

Distribution
Modelling

«Component / Component-
based Application
«Component Realisation

Component-based

Application Target Environment

Level Representation Data Infrastructure

Component / Component-based Application
.. in eODL
» General relationship
between Container and
Contained from IDL

* COTypeDef ool | [0 ccorfens | Contained

om [0L) # firom L)
+ definedin

= represents a contains

component >

AN

— is a Container ;
potentially containing T T

ports (PortDef) InterfaceDef PortDef
- Ports may be used or gt

+interfaceDef

provided

has no internal Irequires
structure (black-box)

Jsupparts

* An eODL component 3 T 3

° AssemnyDef COTypeDef ProvideP ortDef UsePortDef

— Assembly of
components

— Models an application
or parts of it

Component / Component-based Application

« UML Component
represented by the class
Component

* A Component
— may provide or require
Interfaces

— Ports and Connections
inherited from
EncapsulatedClassifier

— May be modelled as black-
box or may have internal
structure (white-box)

* A component-based
application is modelled by a
recursively decomposed
component

in UML 2.0

Interface
(from Interfaces)

Ipravided

EncapsulatedClassifier
(from Ports)

Class
(fraom Communications)

Component

frequired

]

Class
(from StructuredClasses)

Component
in OMG DnC

ComponentinterfaceDescription ComponentPortDescription

+specific Type: String

+port | name:sting
+sUpported Type:String i

+specificType: String
+supportedType: String

« DnC Component

— Is represented by the class ComponentinterfaceDescription
— May have ports (ComponentPortDescription)

* Interfaces and types are simply referenced by identifiers of type string instead
of associations

— Reason: DnC may be applicated to wide range of component models
- A DnC Component is a black-box

... but white-box view of components is also supported
by decomposition concept

Component-based Application

iIn OMG DnC

Application /
Component
Level

o{_co

Component C0

C1 %@? J 3
C2

|'@ Decomposition into a
Component Assembly

{xom"u:A

A3

Monolithic
Implementation
by Artifact(s) : . =
omponen
o—@ C4}H6—o cs@—@
I L\
[[\
‘1{ \] [\
Realization / A \' »Z \‘
Implementation |) Ad UAG
Level ’ A2 b
A0 AS
Win

Slide 14

Deployment and Configuration

SAM*04

Application / Component Modelling

Application /
Component
Modelling

Target
Environment
Modelling

Specification
Level

Distribution
Modelling

«Component / Component-
based Application
«Component Realisation

Component-based

Application Target Environment

Runtime Application

! Deployment [\ Deployment
Level Representation Data Infrastructure

Component Realisation
in eODL, UML 2.0 & OMG DnC

- Components have to be implemented before they can be deployed

» Model needs to reflect implementation-related information, such as
name(s) of implementation file(s), their depedencies and requirements

* In general, one or more components are implemented by a software
artifact or similar concept

« Unfortunately, different terminlology:
—eODL: Components are realised by SoftwareComponentDef
—UML 2.0: Components are manifested by an Artifact that represents an
arbitrary file

—DnC: Components are implemented by Componentimplementation-
Description which can be either a monolithic impementation of a component

assembly
Actual implementation files are modelled by ImplementationArtifact-

Description

Properties / Requirements / Resources
in eODL, UML 2.0 & OMG DnC

eODL UML 2.0
';‘;r’;‘rj;ij' Property » No dedicated concept available in
<}——— +value:String UM_ o O
iy g » General purpose annotation
T‘ definition_association mechanism may be used instead
%+ def
PropertyDef Typed * exanple:
(from IDL) .
— { 0s =windows,
executionenvironment = java }
DnC Requirement
+resource Type String Resource
+name:string v
RequirementSatisfier
+resourceType: Sequence (String)
* | +property +name: String
Any Property * $+property
@ ‘Sri
+value — SatisfierProperty

Target Environment Modelling

Target
Environment

Application /
Component

Specification Distribution

Level Modelling Modelling Modelling
*Description of the
Target Environment
SPEC L Target Environment
Application
Runtime Application Deployment /\ Deployment

Level Representation Data Infrastructure

Target Environment Modelling
in eODL

Node

JAN

Container .
(from IDL) +peer | 1.

— linked

* wlink

TargetEnvironment

NodeLink

« Simple model of target environment

* A TargetEnvironment is made up from Nodes and NodeLinks
connecting nodes

* Nodes and NodeLinks may have typed property values attached
— Achieved through inheritance

Target Environment Modelling

Class
(from StructuredClasses)

Device

in UML 2.0

Nod Association

oce (from Kemel)

T +nestedMode T
ExecutionEnvironment CommunicationP ath

No top-level element (e.g. target environment)
Nodes have processing capabilities and

— may be nested

— Further concepts for substructuring: Device and ExecutionEnvironment
Nodes are connected by CommunicationPaths

— Achieved by inheritance

No special mechanism for attaching properties to Nodes etc.
— Only untyped (!) name-value pairs may be attached using the general-purpose

annotation mechanism

Target Environment Modelling
in OMG DnC

+node
1 *

Node

+connect

Domain
. g
+sharedResource
///' ‘ -

*\V+hnerconnect

+node |
1.

SharedResource

1.7

* \ +sharedResource

Interconnect

+connect

— connected via

Domain consists of nodes

Interconnects & Bridges

~—_+brigge

+connection

+resource

+resource

'

b

;‘/\f>

Resource

1.7

+resource

Bridge

+connection

« Interconnects provide shared communication path between nodes
« Bridges connect interconnects and model routers and switches

* Node, Interconnect and Bridge have resources (with special types)
— Nodes: e.g. processors, hardware devices, memory, operating system

— Interconnect: bandwidth, protocol

« Resources may be shared among Nodes
* Nodes are target for execution, Interconnects & Bridges are target for

connections

Deployment and Configuration

SAM*04

Slide 21

Distribution Modelling

Target

Application /

Specification Distribution

Component _ Environment
Level Modelling Modelling Modelling
*Description of the
Deployment
SPEC L Target Environment
Application
Runtime Application Deployment /\ Deployment

Level Representation Data Infrastructure

Distribution Modelling
in eODL

SoftwareComponentDef| .

installedSoftware

+target

Node

1.*

com ponents

InstantiationMap

0.1

+component

componentTaN ode
P ComponentAssignment

DeploymentPlan

* DeploymentPlan

instantiation

“nstallationMaps

0.1

installations

InstallationMap +farget

TargetEnvironment

+installation

1.*

— Mapping of an application onto a particular target environment
— Consists of InstallationMap and InstantiationMap

* InstallationMap specifies what components are to be installed

at what node

* InstantiationMap specifies what’how many instances of components
are to be instantiated at what node

Distribution Modelling
in UML 2.0

DeploymentTarget, Deployment . DeployedArtifact
+ deployment +deployedArtifact
e

+lacation

Node

Artifact

Property InstanceSpecification

+nestediode/]

* No general concept of a deployment plan; quite simple model

« Just assignment of Artifacts to DeploymentTargets, i.e. mainly nodes

— A DeploymentTarget owns a set of Deployments reflecting the installation of
Artifacts or instances of Artifacts (InstanceSpecification)

— Again: no powerful matching mechanism between node properties and artifact
requirements
» Deployment-related information such as ConfigValues may be specified using
the DeploymentSpecification class not shown here

Distribution Modelling

iIn OMG DnC

—

Component definition

ComponentinterfaceDescription

+specific Type: String
+sUpported Type:String

ArtifactDeploymentDescription| .

+artifact

+artifact | 1.*

MonolithicDeploymentDescription

ImplementationDependency

I st

implemertation

+dependson | *
+realizes

DeploymentPlan

+externalProperty

PlanPropertyMapping

+ caonnection

* | +instance

PlanConnectionDescription

InstanceDeploym entDescription

+implementation

I_ Specifies deployment of a
particular component

L

DeploymentPlan:

* Maps component
implementations to
nodes and
connections
between
component
instances to
bridges and
interconnects

* Records matching
properties against
resources

Specifies
Interconnected
instances

Run-time Management

S ificati Application / e Target
peciiication Component | | DI\'nStgblll'_t'on Environment
Level Modelling . Modelling Modelling
SPEC L Target Environment
Application

\ \

*Run-time Management
Level Representation Data Infrastructure

Run-Time Manhagement
in OMG DnC

ApplicationManager
Application . DeploymentPlan

"l
[
+runningApp

+startLaunch():void
+destrayApplication():vaoid

* Only the DnC spec provides a model for executing a deployment
specification
— It defines a set of interfaces and data formats to be exchanged at those
interface

— Defines an vendor-independent interoperable deployment machinery
« One major concept is the ApplictionManager
* Further concepts are e.g. Target-, Node-, ExecutionManager

Summary on Compared Concepts

eODL UML 2.0 OMG DnC
Application / | COTypeDef Comyponent ComponentInterfaceDescription
Component | PortDef Port ComponentPortDescription
Modelling I xccermolyDef (nested) Component | AssemblyDescription
SoftwareComponentDef Artifact ComponentimplementationDescription,
MonolithiclmplementationDescription,
ComponentAssemblyDescription
Property (name-type-value) (name-value annotation) | typed Requirement
Target TargetEnvironment - Domain
Environment | Node Node Node
Modelling [NodeLink ComrmunicationPath Interconnect, Bridge
Property (name-value annotation) | typed Resource and SharedResource
Distribution | DeploymentPlan - DeploymentPlan
Modelling InstallationMap, Deployment ArtifactDeploymentDescription
ComponentAssignment
InstantiationMap InstanceSpecification InstanceDeploymentDescription
<Properties of SoftwareConp. | - <typed Resources meet typed
meet TargetEnv. Properties> Requirements>
Run-time - - ApplicationVianager, Application

Management

(Target-,Node-, ExecutionMianager)

Conclusion

Three languages suitable for deployment
specifications have been investigated

They use different modelling elements and have
different main focus

However, there Is a set of common concepts
that could be the basis for an alignment

All languages investigated have a MOF-based
metamodel

On this basis mappings between all three
languages as well as to other platform-
dependent languages can be defined

