A Flexible Micro Protocol
Framework

Ingmar Fliege
L Computer Science Department — Networked Systems
b 4
' = University of Kaiserslautern

What are Micro Protocols?

B component as structuring unit (code-oriented)

M single (distributed) protocol functionality using
a specific mechanism

B required collaboration
B well-defined interfaces (operators)
B self-contained and ready-to-use

B not decomposable

Micro Protocols

B can be composed yielding macro protocols

B examples:

 protocol phases
B connection setup, data transfer, neighbour sensing

 protocol functionalities

B flow control, loss control, error control, addressing,
en/decoding, authentication, message forwarding,
reservation, multiplexing, message sequencing,
segmentation and reassembly, ...

Why do we use micro protocols?
B structuring is essential
dfunctionality, phases, entities, layers

B reuse plays a key role
dcomponents, subsystems, frameworks

B reduce development effort

B improvement quality and reliability

— develop customized protocols

Micro Protocol Library

B each micro protocol is described as separate entity
L summary of functionality and behaviour
 structural description
O interface definitions
[subsets of collaborations (behaviour)
[used data types
 different realisations of composition
O different languages (SDL, C++)

Packages
B micro protocols are oocprentl

encapsulated in SDL-

package ConnectionSetup 1(1)
paCkag eS - This package contains one
; process type and its used
L e signals to establish a
tion.
. e - g - S I g n a IS fo r (I\:/ﬁgpoegrlgtr:)col for connection
. . iented link.
communication , ‘ e

between micro S SemTConen
. onneclionoe igna ind:
protocols are defined R I v

. Signal ICONconf,
in separate packages

Signal CR; [\

Framework

B skeleton of a system that has to adapted by a system
developer

O example: layered communication architectures
adaptation by adding specific protocols

B A generic micro protocol framework is a set of general
principles and rules for the composition of micro
protocols
[generic composition: concurrent, in sequence, hierarchical
O problem specific composition: exceptions, notifications, calls

Operators

>> passing the thread of control to another
micro protocol

[> taking the thread of control (interruption)

@> signalling the occurrence of an event or
exception

- data flow (with direction indicated)

Development Process

B functionality analysis
allows selection of
micro protocols from
the micro protocol
library.

B micro protocols are
composed using a
conceptual design.

Conceptual Design

InRes service - - - - - - - O ? |
.
connec‘:ionSeTup do‘ro*ronsfer M
B example: InRes- - P - ;
Communlcatlon : \?__ L | connectionRelease ? : vL
system T L (177 -

I | I

. I I I
B service of the base @ | | .
. 1 leakyBucket I | leakyBucket
teCh nology IS flow control - - - _] | (g_ I

| A

extended by loss | i i .
and fIOW Control de/encoding - - - : coDec ASN.1 : : |_coDec ASN.1 .

| | I

I | I
M operators are joss control -——-| SR | | [k
describing the ,
composition of micro | . Gobee PR [eabee PFF_
protocols '

base technology

Development Process

B one SDL solution is
used for the
concrete design

B several possibilities
to realize the
operators using SDL

 signals
dvariables
dinheritance
U procedures

SDI.-Solution — distributed signal exchange

M signals used for
synchronisation

B knowledge about
micro protocols to

synchronize with
— gates

|Gate

process type ProtocolPhasesInRes

N
[N
1
_

[IDATrqu

ae

Transfer:_

DataTransfer

gl

[IDATl nd
ICONCconf,
7 ICONind || 4

ICONreq,
ICONresp

ate
° Setup:
g3 g3 " o
En ab,eDT} ConnectionSetup®
DisableDT o

[lDlSind}

5

NSDisconnest

{IDISreq}

ae

o Close:_
ConnectionRelease

g1

|Gate

K—
ICONreq,
IConresp,
IDISreq,
IDATreq

ICONconf,
ICONind,
IDISind,
IDATind

g1

CRDR, DT}

[CR,DR, DT

g1

SDI.-Solution — services with shared context variables

B shared variables
used for
synchronisation

B knowledge of the
shared variables

B only possible within
one process
— use services

IGate
process type ProtocolPhasesInRes 1(1)
linherits ProtocolPhases; ", PCONponff [IDAdeJ IGate
! ‘ ICONind
| ? [IDISind} >
1 ICONreq,
2 IConresp,
. IDISreq,
ICONreq, IDATreq
ICON IDISreq -
{CO resp { J [IDATreq} |CONcon,
ICONind,
IDISind,
IGate IGate IDATind
Setup:_ Release: Transfer:_
ConnectionSetup ConnectionRelease DataTransfer g1
g1 [CRDR CR,DR}
DT DT
DT -
[CR} [DR} [J
3 4
DRJ
[CRJ [DTJ

g1

SDI.-Solution — process inheritance with shared states

B states used for
synchronization

B knowledge of the
shared states
necessary

process type ConnectionSetup 1(1)

!Initiator requests
!a connection

D
! Connection is initiated
'by other side.

Ithe Medium

CR

ICONconf >

Waiting for CR from

,,,,,,,,,,,,,,,,,

ICONind

wait4ICONresp

N
iWaiting for Response
I

ICONresp

CRvia g1

-

TICONreq,ICONresp}
[ICONind,ICONooan

SDI.-Solution — procedures and inheritance

each micro protocol is
encapsulated in one
procedure.

passing thread of control
IS realized by termination
of a procedure call

disruption (connection
release) is possible by
using inheritance

process type ProtocolPhases 1(1)

T

,,,,,,,,,,,,

ConnectionSetup

DataTransfer

ConnectionRelease

IGate

>
ICONreq,
IDATreq,
ICONresp,
IDISreq

ICONCconf,
IDISind,
ICONind,
IDATind

g1

CR, DR,DT“'CR, DR,DTJ

process type ProtocolPhasesIinRes

,,,,,,,,,,,,,,,,,,,,,,

ConnectionSetup

DataTransfer

]

1(1)

Summary & Outlook

B several difficulties providing generic and self contained
solutions — tool support

B compositional testing and validation
J each component tested
[resulting system tested for composition faults

B identify more micro protocols
O routing, quality of service

B SDL 2000 offers new mechanisms for composition
] exceptions, composite states

Thank you
for your attention!

Questions?

