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What are Micro Protocols?

B component as structuring unit (code-oriented)

M single (distributed) protocol functionality using
a specific mechanism

B required collaboration
B well-defined interfaces (operators)
B self-contained and ready-to-use

B not decomposable




Micro Protocols

B can be composed yielding macro protocols

B examples:

 protocol phases
B connection setup, data transfer, neighbour sensing

 protocol functionalities

B flow control, loss control, error control, addressing,
en/decoding, authentication, message forwarding,
reservation, multiplexing, message sequencing,
segmentation and reassembly, ...




Why do we use micro protocols?
B structuring is essential
dfunctionality, phases, entities, layers

B reuse plays a key role
dcomponents, subsystems, frameworks

B reduce development effort

B improvement quality and reliability

— develop customized protocols




Micro Protocol Library

B each micro protocol is described as separate entity
L summary of functionality and behaviour
 structural description
O interface definitions
[ subsets of collaborations (behaviour)
[ used data types
 different realisations of composition
O different languages (SDL, C++)
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Framework

B skeleton of a system that has to adapted by a system
developer

O example: layered communication architectures
adaptation by adding specific protocols

B A generic micro protocol framework is a set of general
principles and rules for the composition of micro
protocols
[ generic composition: concurrent, in sequence, hierarchical
O problem specific composition: exceptions, notifications, calls




Operators

>> passing the thread of control to another
micro protocol

[> taking the thread of control (interruption)

@> signalling the occurrence of an event or
exception

- data flow (with direction indicated)




Development Process

B functionality analysis
allows selection of
micro protocols from
the micro protocol
library.

B micro protocols are
composed using a
conceptual design.




Conceptual Design
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Development Process

B one SDL solution is
used for the
concrete design

B several possibilities
to realize the
operators using SDL

 signals
dvariables
dinheritance
U procedures




SDI.-Solution — distributed signal exchange

M signals used for
synchronisation

B knowledge about
micro protocols to

synchronize with
— gates
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SDI.-Solution — services with shared context variables

B shared variables
used for
synchronisation

B knowledge of the
shared variables

B only possible within
one process
— use services
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SDI.-Solution — process inheritance with shared states

B states used for
synchronization

B knowledge of the
shared states
necessary
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SDI.-Solution — procedures and inheritance

each micro protocol is
encapsulated in one
procedure.

passing thread of control
IS realized by termination
of a procedure call

disruption (connection
release) is possible by
using inheritance
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Summary & Outlook

B several difficulties providing generic and self contained
solutions — tool support

B compositional testing and validation
J each component tested
[ resulting system tested for composition faults

B identify more micro protocols
O routing, quality of service

B SDL 2000 offers new mechanisms for composition
] exceptions, composite states




Thank you
for your attention!

Questions?




