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Abstract
In an application where sparse matching of feature points is used towards fast scene reconstruction, the choice
of the type of features to be matched has an important impact on the quality of the resulting model. In this work,
a method is presented for quickly and reliably selecting and matching points from three views of a scene. The
selected points are based on epipolar gradients, and consist in stable image features relevant to reconstruction.
Then, the selected points are matched using edge transfer, a measure of geometric consistency for point triplets and
the edges on which they lie. This matching scheme is invariant to image deformations due to changes in viewpoint.
Models drawn from matches obtained by the proposed technique are shown to demonstrate its usefulness.

1. Introduction

Several applications require scene reconstruction from a few
fixed cameras. To performed this task, the camera system
must first be calibrated, and then, some features must be
matched between the different views. One approach is to use
feature points, i.e. some interest points are selected in each
view, and matching is then restricted to these points only. In
applications such as telerobotics, this feature point selection
and matching process must also be rather efficient to allow
a 3D model to be continuously updated. Also, the reliability
of the matches is crucial, as the integrity of the task would
be compromised by wrong information that mismatches pro-
vide.

In the context of applications where a three dimensional
model of a changing environment must be continuously up-
dated, matches between points in images produced by at
least two cameras are needed. From these matches, the posi-
tion in space of the points in the scene can be estimated by
backprojection. In order to minimize the refreshment rate of
the model, only a limited number of points can be matched.
This would be done by first selecting special feature points in
the images, then attempting matching only those points us-
ing some similarity measure between their neighborhoods.

When it comes to fast sparse matching in general, the
most common approach is based on matching Harris fea-
ture points (see Section 3.1), using some correlation-based

measure11, 16, 20. We have previously presented a system for
fast calibrated matching based on this approach18. However,
although Harris feature points are relatively stable and fast to
compute, it was found that on arbitrary scenes, not chosen to
contain suitable textural content, the detected feature points
might not be well distributed or stable enough to allow accu-
rate reconstruction. Harris features have proven very useful
in tasks such as calibration. However, when distribution is
more important, they can be insufficient. Often, few match-
ing Harris corners will lie on the borders or on portions of
many significant scene elements.

This problem is addressed here. An alternative feature de-
tector is presented which is fast and often results in more and
better distributed matches in a calibrated system of cameras.
This detector relies on the concept of epipolar gradients, in-
troduced here. A simple way to match feature points is also
presented which works on a calibrated triplet of images and
is invariant to deformations due to viewpoint variations.

The next section quickly reviews some features of trinoc-
ular geometry. Then, Section 3 discusses the problem of fea-
ture points detection. Next, Section 4 describes how feature
points are matched. Section 5 describes a constraint which
weeds out the possible remaining false matches. Section 6
shows some experimental results of the proposed matching
scheme, and Section 7 presents models constructed from the
matched feature points. Section 8 is a conclusion.



Figure 1: Pinhole camera model.

Figure 2: Two-view geometry.

2. Trinocular Geometry

A simple pinhole modelcan be used to represent cameras5

(see Figure 1). A point in spaceX is projected onto the image
planeπ, to a pointx, which is at the intersection with the ray
joining X and the camera’s focal pointc.

When two cameras look at the same scene, the projec-
tion x, on one camera planeπ, of an unknown point in space
X, can tell us something about where the point will land on
the other camera plane (see Figure 2). More precisely, it is
known that a matching point in the second image, must be
on theepipolar line.

SinceX must be somewhere along the ray defined bycx,
its projection onπ′ must be on the projection of that ray.
This projection,l′ is the epipolar line ofx, and thus points in
one image are related to lines in the other through the image
pair’s epipolar geometry.

For a pair of cameras, the relationship between points in
one view, and their epipolar line in the other, is called the
epipolar geometry. It can be represented by a3×3 matrixF ,
of rank 2: itsfundamental matrix. Pointsx in the first image,
are related to their epipolar linesl′ in the second image, by:

Fx = l′ (1)

where the pointx is represented with homogeneous co-
ordinates as(x,y,1)>, and the epipolar line is the set of
pointsx′, represented in homogeneous coordinates, such that
l′>x′ = 0. This matrix can be estimated from known pairs of

Figure 3: Three-view geometry.

points between images produced by the two cameras using
the fact that:

x′>Fx = 0 (2)

The 8-point algorithm4, which was used to estimate funda-
mental matrices is based on this equation, and on a normal-
ization of point coordinates. Alternatively, more accurate es-
timates can be obtained through the non-linear minimization
of more geometrically significant quantities such as repro-
jection error5.

If three cameras are used, and a match(x,x′) is already
known between the first two images, the position of the
matching pointx′′ in the third image can be determined ex-
actly. Indeed, the projection ofX on π′′ should be at the
intersection of the epipolar linesl1

′′ andl2
′′ of x andx′ re-

spectively (see Figure 3).

This relationship between points in three images is called
trinocular geometry12. In fact, it can be shown that the po-
sition of x′′ can be determined even if the linesl1

′′ andl2
′′

are the same and thus have no single point of intersection.
Trinocular geometry can be represented by thetrifocal ten-
sor, a3×3×3 tensorT for which:

x′′k = ∑
i, j∈{1,2,3}

xi l
′⊥
j Ti jk (3)

wherel′⊥ is the line going throughx′, and perpendicular to
l′, the epipolar line ofx, and wherei, j,k, andl are indices of
the vectors and tensor. This formula can be used to compute
the position ofx′′, but our experiments have shown that more
stable results can be obtained using:

x′′l = x′i
3

∑
k=1

xkTk jl −x′j
3

∑
k=1

xkTkil (4)

which defines 9 trilinearities fori, j ∈ {1,2,3}, 4 of which
are linearly independent. Image pointx′′ can then be esti-
mated by solving the over-constrained system of equations.

Trifocal geometry is a powerful tool for matching. Indeed,
for a pointx in a first image, the search for correspondence is
restricted to the linel′ in the second image. And once the cor-
respondence(x,x′) is known, the matching point in a third



image is directly determined by the trifocal tensor. In prac-
tice, a third image can therefore be used to validate matches
between the first two. Once a match is found, it is verified by
transferringit to the third image using equation 4, and evalu-
ating a similarity measure between the transferred point and
the first two11, 16, 18. The fact that a transferred image point is
visually very similar to the putatively matched points in the
other two images is indeed a good indication of the validity
of that match.

Trifocal tensors can also relate lines between images.
Thus, when the equation of an image line is known in two
views, it can betransferredto another one using:

l i = ∑
j,k∈{1,2,3}

l′j l
′′
k Ti jk (5)

This result will be used in Section 4 to compute the ex-
pected slope of the tangent to an edge in the third image.

3. Feature Point Selection

In many applications, it would be too costly to compare
points in the first image with all points along their epipo-
lar lines in the search for matches. Thus, matching is often
limited to selected feature points. Feature points in the first
image are only compared to feature points along their epipo-
lar line in the second image. Note, however, that there is no
need for selecting feature points in the third image, as the
trinocular geometry limits the search there to a single point
neighborhood.

Good feature points are those that are likely to be easily
distinguishable from each other, and which can be identified
robustly, with respect to changes in viewpoint. These points
should also, as much as possible, represent significant scene
features, such as points on the borders of scene objects, as
they will be the points used in the constructed model.

3.1. Harris Feature Points

The most commonly used feature points are Harris corners3.
These correspond to high curvature points on image edges.
This feature point detector finds points where the image in-
tensity gradient has a high magnitude in more than one di-
rection using the gradient’s autocorrelation matrix:

C(x,y) = S∗ (5I ·5IT) = S∗
[

I2
x IxIy

IxIy I2
y

]
(6)

whereS is a smoothing operator. At the point where it is
computed, this matrix’s greatest eigenvalue corresponds to
the image’s rate of change in the direction of highest varia-
tion, while its smallest eigenvalue corresponds to the rate of
change in the perpendicular direction. If the smallest eigen-
value has a high magnitude, it means that, at the considered
point, the image has a high rate of variation in at least two

directions, and thus, that the point is in a high curvature re-
gion.

These features have been shown to be relatively stable15.
However, it was found that in practice, it can be dependent
on the presence of appropriate textural content. When this
is not the case, few corresponding points might be detected
in both images. Furthermore, the corners are often not dis-
tributed well enough to permit a reasonable reconstruction of
the complete scene from matched points. Epipolar gradient
features overcome these problems.

3.2. Epipolar Gradient Feature Points

The idea behind epipolar gradient features is to select points
where the image’s intensity gradient is locally perpendic-
ular to epipolar lines. For most regular camera configura-
tions, these feature’s corresponding point in other views
would also lie on edges which are nearly perpendicular to
epipolar lines. Thus epipolar gradient features in one im-
age should have corresponding points in other images which
are also epipolar gradient features. This stability makes them
good candidates for matching. Additionally, being points on
epipolar lines which cross strong edges, these features can be
accurately localized and should be easily discernable from
other points on the same epipolar line, making matching less
ambiguous. Finally, since they lie on important image edges,
such points are often found on the border of significant scene
features and are thus important for scene reconstruction.

More formally, letI andI ′ be two images, withx a point
on I , andx′ its corresponding point onI ′. Then, it is clear
from Figure 2 thatx′ will lie on l′, the epipolar line ofx in
I ′. Similarly, x will lie on l, the epipolar line ofx′ in I . Now
l and l′ should also correspond so all points onl will have
their corresponding point lying onl′. Thus if X, the world
point projected ontox andx′, is centered on a locally planar
surface, the points onl that are immediately next tox should
correspond to points inI ′ that lie onl′ and are immediately
next tox′. Thus, the intensity gradient ofI , atx, in the direc-
tion of l, should be similar to the intensity gradient ofI ′, at
x′, in the direction ofl′.

The intensity gradient in the direction of the epipolar
line will be referred to as theepipolar gradient. It can be
computed by projecting5I(x) onto the epipolar linel =
(l1, l2, l3), giving the explicit formula:

5ep(x) =
5I(x) · (−l3

l1
, l3

l2
)

‖(−l3
l1

, l3
l2

)‖
(7)

wherel can be obtained fromx andF using an arbitrary line
k′ not going through the second image’s epipole as:

l = FTk′×Fx (8)

Thus, in a pair of images for which the epipolar geometry is
known, a point having a high epipolar gradient in one image
should have a high epipolar gradient in the other as well. Of



Figure 4: Detected Harris feature points.

course, the stability can be limited by the importance of the
changes in angles between epipolar lines and image edges
caused by changes in viewpoint. Nevertheless, a moderate
change in this angle will not significantly reduce epipolar
gradients. Imposing a threshold on the magnitude of these
epipolar gradients will lead to a set features that are rea-
sonably robust to change in viewpoint. Furthermore, these
points will be found on strong image edges with orientations
perpendicular to epipolar lines. This is a desirable property,
as there is an ambiguity in attempting to match other points,
such as those that are in low contrast areas, or on contours
which are oriented along epipolar lines.

Figure 5 shows the detected epipolar gradient fea-
ture points on one image of a test pair (obtained
from the model house image sequence available at
http://www.robots.ox.ac.uk/ vgg/data/). In one image, points
may be detected only on every few lines to limit their num-
ber. Figure 4 presents the detected Harris corners on that
same image.

It can be seen, when epipolar gradient feature points are
compared to the same number of Harris feature points, that
the former are more evenly distributed among the different
scene surfaces. Harris features are mostly concentrated on
the house’s front wall, while epipolar gradient features are
often found on the boundaries between different surfaces
which should allow them to quickly yield a more complete
reconstruction of scene objects.

4. Matching based on Edge Transfer

Now that feature points suitable for matching have been se-
lected, these points must be matched. A common way of
comparing potentially matching points is variance normal-
ized correlation. Such a correlation based approach can give
good results when the difference between viewpoints is lim-

Figure 5: Detected epipolar gradient feature points, and the
image pair’s epipolar geometry.

ited, but will not be an accurate measure of similarity in
the case of more widely separated views. Then, a measure
which is invariant to the reprojection deformation of the area
around feature points is needed.

Many such measures, invariant to rotation or affine
transformations of point neighborhoods have been
proposed1, 10, 13, 14, 17. These are usually computation-
ally expensive and inappropriate for calibrated matching as
they do not exploit the camera system’s geometry. Since
here, matching is guided by the system’s trifocal geometry,
points only have a few candidate matches, so a more
general, but less discriminating comparison measure can be
used.

The similarity measure presented here is based on con-
sistency of edge orientations between the views. Several au-
thors have proposed to impose a bound on edge orientations
between views to constrain matching2, 7. However, such a
constraint is only satisfied in cases of small changes in view-
point. Horaud and Monga6 have also presented an orienta-
tion constraint which measures the consistency of the change
in angle with the change in viewpoint, but requires the cam-
era projection matrices.

Two simple descriptors are used, together with a similarity
measure defined between them. The most important descrip-
tor is based on the transfer of lines perpendicular to intensity
gradients from the first two images to the third one. Similar-
ity measures which use gradient directions have been used



Figure 6: Matches from Harris features and correlation,
with disparities between images 1-2 (top), and 2-3 (middle).

by many authors8, 9. These methods will usually align gradi-
ents before further comparing feature point neighborhoods,
thus making the process invariant to rotation. Using trifocal
geometry together with the intensity gradients, a higher de-
gree of invariance can be achieved.

The edge transfer similarity measure is based on the fact
that, using the edge orientation computed at corresponding
points in two images, the orientation of the edge at the corre-
sponding point in a third image can be computed using equa-
tion (5). This is because the lines going through the points
and tangent to the edges going through these points (the

Figure 7: Matches from proposed method, with disparities
between images 1-2 (top), and 2-3 (middle).

lines perpendicular to the intensity gradients at the points)
should correspond. Thus, a measure of similarity between
three points would be the difference between the orientation
of the tangent to the edge of one of the points, and the orien-
tation of the line obtained by transferring the tangent to the
edges of the two other points.

The other descriptor is based on the image intensity val-
ues in the area around the point. The average intensities on
each side of the tangent to the edge going through the point
are considered. These values should be preserved in differ-
ent views of the same point taken simultaneously. First, it



Figure 8: Matches from Harris features and correlation,
with disparities between images 1-2 (top), and 2-3 (middle).

is determined which side of the edge corresponds to which
in the other image. Then, the measure of similarity is taken
as the difference between the two average intensities of the
most different corresponding sides.

Let ∆I(x,x′,x′′) be the maximum difference between the
intensities ofx,x′ or x′′, and∆θ(x,x′,x′′) be the difference
between the gradient orientation atx′′ measured inI ′′ and
computed from the gradients atx andx′. Then the chosen
similarity measure betweenx, x′ andx′′ will be:

s(x,x′,x′′) = max(
∆I(x,x′,x′′)

σ∆θ
,

∆θ(x,x′,x′′)
σ∆I

) (9)

Figure 9: Matches from proposed method, with disparities
between images 1-2 (top), and 2-3 (middle).

whereσ∆I andσ∆θ, the standard deviations of the descrip-
tors, are used to normalize the descriptors to a similar range.
This measure will have a low value when the points corre-
spond.

5. Disparity Consistency Constraint

Sometimes, the similarity measure presented in the previ-
ous section might not be discriminating enough. Conse-
quently, even when the search for matches is guided by
the trinocular geometry, mismatches can be expected. How-
ever, mismatches are very undesirable when the goal is re-



construction. Fortunately, when many matches are identi-
fied throughout the images, and mismatches are relatively
few, they can generally be eliminated by enforcing that close
matches have similar disparities.

To this end, a disparity gradient constraint is applied19.
The disparity gradient is a measure of the compatibility of
two matches. It is essentially the norm of the difference
of the disparities, normalized by the distance between the
matches. For two pairs(x,x′) and(y,y′), having disparities
d(x,x′) andd(y,y′) respectively, the cyclopean separation,
dcs(x,x′;y,y′) is the distance between the midpoint of the
disparity vectors, and their disparity gradient is defined as:

∆d(x,x′;y,y′) =
|d(x,x′)−d(y,y′)|
|dcs(x,x′;y,y′)| (10)

A pair is considered a mismatch when its disparity gra-
dients with many of its closest neighbors are too high (It
was usually required that a correspondence have a low dis-
parity gradient with two out of its three nearest neighbors).
Since there are three images, the disparities between two
pairs of images are actually compared. This procedure elim-
inates false matches as long as they are not surrounded only
by similar false matches, an unlikely situation.

6. Experimental Results

Figure 7 shows the result of applying the proposed matching
scheme to an image triplet. The disparities between the first
and second images are shown (drawn on the first image), as
well as the disparities between the second and third (drawn
on the second image). Thus, the lines in the first image join
the coordinates of feature points there, to their corresponding
coordinates in the second image, and similarly for the lines
in the second image with respect to the third one.

Figure 6 shows the disparities obtained when a Harris de-
tector and correlation are used instead. The same number
of feature points were used in both experiments, and the
thresholds relevant to the matching process were chosen em-
pirically to maximize the resulting number of matches. It
can be seen that the method based on epipolar gradients ob-
tained more matches (601 versus 423), and provides scene
features which are more relevant to scene reconstruction.
The matches obtained through the Harris detector are mostly
located on the front wall of the house, while the matches
obtained using the epipolar gradient features are distributed
more evenly among the different surfaces, and often lie on
the borders between them.

Figures 9 and 8 also show matches found using the pro-
posed approach and the Harris/correlation approach respec-
tively for simple images of a few objects. Disparities be-
tween the images are also shown. Here, 273 matches were
found using the proposed method. With the same number
of feature points, the Harris detector with correlation only
found 64, and it was not possible to modify the thresholds to

Figure 10: A model constructed from the matches shown in
Figure 6, found using Harris features.

Figure 11: A model constructed from the matches shown in
Figure 7, found using epipolar gradient features.

accept more matches without introducing a significant num-
ber of mismatches. The success of the proposed method, in
contrast to the Harris/correlation approach can be attributed
to the fact that the scene objects contain few clear corners,
and little textural information, but still enough significant
edges to permit their detection as epipolar gradient features.

7. Reconstruction

To demonstrate the usefulness of the proposed matching ap-
proach in fast model building, the correspondences shown in
Figures 6 and 7 were used, together with the known camera
calibrations, to construct models of the scene. The position
of scene points in space were computed as the intersection of
backprojected rays from the image points. Then, points from
common planar surfaces were used to estimate the position
of these points in space, and the section of these planes de-
fined by the points were drawn in Figure 10 and 11. These
figures also show, as black dots, the point positions com-
puted from the matches.

It can be seen that the model generated from the proposed



matching method is far more representative of the scene,
mainly as the points it is generated from contain more rel-
evant information. These are distributed more evenly among
scene objects, thus allowing for instance the drawing of
some parts of the chimneys. They also define more precisely
the border of objects, as we can see, for example, that the
areas of the front wall and roof do not cover their entire true
area in the other model.

8. Conclusion

In summary, two new techniques were introduced for fast
and reliable calibrated sparse matching. A new feature was
used based on epipolar gradients, and a new correspondence
measure was introduced which relies on transferring edges.

These new techniques are improvements over other ap-
proaches. The features based on epipolar gradients are more
stable, constitute features which are more relevant to the
structure of scenes, and are usually well distributed over im-
ages. Matching based on edge direction is fast, and view-
point independent. Beyond calibrated sparse matching, we
believe that epipolar gradients and edge transfer are interest-
ing concepts susceptible of finding other applications.
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