Representing New Voice Services and Their Features

Ken Turner University of Stirling www.cs.stir.ac.uk/~kjt/research/cress.html 11th June 2003

CRESS (Chisel Representation Employing Systematic Specification)

Introduction

- flexible notation for feature description:
 - IN (Intelligent Network)
 - SIP (Session Initiation Protocol)
 - IVR (Interactive Voice Response)
- use for SIP (Internet Telephony):
 - service architecture
 - feature composition and interaction detection
- use for IVR (voice-activated systems):
 - structuring mechanisms
 - feature addition and interaction

CRESS Approach

- diagram types:
 - root (core behaviour)
 - feature (additional spliced/template behaviour)
- diagram elements:
 - nodes contain signals or actions (in parallel)
 - diagrams have sequences, branches, loops, calls
 - guards are expressions or events
 - rule boxes define transformations and macros
- automatic translation to:
 - formal languages (LOTOS, SDL)
 - implementation languages (Perl, VoiceXML)

Feature Diagram

- adds behaviour:
 - spliced (cut and paste)
 - modular (instantiate and insert)
- feature may depend on:
 - root diagram
 - other feature diagrams
- complete behaviour is root plus features
- goals:
 - represent features graphically
 - support discovery of feature interactions

Application to SIP

SIP Model user↔protocol interface mapping:

CRESS for SIP

- root diagram:
 - basic SIP call or
 - User Agent, Proxy Server, Redirect Server
- feature diagrams similar to IN
- automated analysis and simulation:
 - LOTOS
 - SDL
- translation to SIP scripts:
 - CGI (Common Gateway Interface) Perl
 - CPL (Call Processing Language) partial

Spliced Feature (TCS)
also defined as a modular feature
pasted into Proxy Server diagram:

SIP Feature Study

- goals:
 - check integrity of feature descriptions
 - check features for mutual compatibility
 - smooth path to feature realisation (scripting)
- features validated individually:
 - generated specification simulated step-by-step
 - use-case scenarios
 - automated state exploration
- features validated in combination:
 - scenarios should still be valid
 - validation failure means feature interaction

SIP Feature Results

- focus on feature representation:
 - busy is *defined*
 - IN-like features (forwarding, screening, ...)
 - open to new kinds of SIP-specific features
- feature interaction detection separate:
 - interaction = behaviour change on combination
 - any LOTOS or SDL based technique can be used
 - conventional IN interactions can be shown
 - busy-based features may not interact
 - charge-based features may be irrelevant

Application to IVR

IVR Model

form fields completed using speech input

- prompts from TTS (Text To Speech) or pre-recorded voice
- speech input directed by grammars

CRESS for IVR

- root diagram:
 - defines core of IVR application
 - different for every application
- feature concept new:
 - features of general use
 - features for classes of applications
- automated analysis and simulation:
 - LOTOS
 - SDL
- implementation as IVR scripts:
 - VoiceXML (Voice Extended Markup Language)

IVR Feature Study

- goals:
 - check integrity of IVR applications
 - interpret meaning of features for IVR
 - check features for mutual compatibility
- features validated individually:
 - as for SIP
- features validated in combination:
 - as for SIP

IVR Feature Results

- focus on introducing features:
 - nothing similar in VoiceXML
 - useful role found for features
- feature interaction detection separate:
 as for SIP
- different kinds of interactions occur, e.g.:
 - overriding properties, handlers, grammars
 - inconsistent use of data
- checking overall application behaviour a useful side-effect

Conclusion

• CRESS:

- graphical but rigorous notation
- flexible and adaptable
- demonstrated in various application domains
- SIP:
 - service architecture defined
 - range of features described and analysed
- IVR:
 - new structuring mechanisms
 - addition of features
 - new kinds of feature interaction