. Features as substitutions

. Features of access control systems

. The social factor in FI, or: who Mufly and me aren’t dinosaurs
after all!

Representing feature integration by substitution

Dimitar Guelev / Mark Dermot Ryan / Pierre Yves Schobbens

Example: Hardware Features

feature F' [
Yo Y

(now sub)system 9

Example: Hardware Features

feature F' [
Yo Y

(now sub)system 9

Feature-ready Specifications

We assume that systems consist of an immutable base and mutable
parts. Mutable parts of S are assumed to be described by

subformulas of [S]|. That is why we can write

NG 7

S,
where: Py, ... P, are the parts’ names
AZi1...%in,; .; describes part ¢
B describes the immutable base.

Mutability of parts can be further stratified:
1S]=S5,...5415;...51B

e Instantiation of this framework using a simple while-based

programming language, and the logic DC (duration calculus);

e Case study: Samborski stack model;

e Compositional reasoning: establish properties of a feature,
which will hold of any system which integrates it in a way
satisfying certain conditions.

Features of Access Control Systems

Mark Dermot Ryan / Nan Zhang /
Dimitar Guelev / Pierre Yves Schobbens

Access Control Systems

e File access control in OSs, firewalls, spam filters;

e On-line communities, e.g. Yahoo groups, OSS management,
auction sites, p2p;

e Databases, e.g. student information system, health care records

often need to be reconfigured, because the requirements of the
organisation changes when new people arrive or are deployed in
different ways, or when new services are added, or when new

regulations are introduced.

Superuser makes the changes:
e leads to a bottleneck

e security vulnerability

Permissions about permissions

Permissions are themselves data which are subject to access

permissions
e model delegated or devolved authority (subsidiarity)
e avoid superuser bottleneck

Indirect paths, or implicit permissions: an agent might not have a
certain permission, but may have sufficient permissions about
permissions to execute a sequence of actions which gives him the

desired permission.

Example: student information system

e Students can read only their own marks, and write none.

e Professors can read all marks, and write those about their

lecture courses.

Features brought about by new regulations

F1 A student may delegate readability of his/her marks to another

student.

F2 A professor may appoint student assistants, and delegate

writability of marks to them.

Features and feature interferences

F1 A student may delegate his permissions to another student.

F2 A professor may delegate writability of marks to a student.

Feature interferences

11

Prototype in Java

8] Show The Initial Value Matrix

Extended matrix

HZ

Model Checking

e From such an access control matrix, can obtain a transition
system: states are values of the matrix, and each state thus
determines which other states it can transition to.

e The prototype program outputs SMV code, and specifications
such as

— EF(s1Wm2 A s2Wm1)
— Elp U q], AG(p — EFg), etc

can be verified.

The logic of access control

e A logic which axiomatises read- and write- permissions;
e provides two kinds of models (abstract and concrete)

e we aim to show correspondences between the models and
completeness of the axioms (not all yet done)

Syntax

Logic. ¢ :=v|¢p=>¢ | L|Rad|Wad
where A € Y.
Concrete semantics.

States) s:V UP — Bool
Programs S ::= wvp:=e|if e then Sy else Sy | S1; S5 | skip | fail
Logic semantics

o C,slFRa¢p iff IS(VE([S]atd — ([S]at)(p) =t(#)) A [S]asl)

e C,slFWag iff Vb € BooldS for A [S]s(¢) =0

Conclusions

e Permissions about permissions, root bottleneck avoidance
e Model checking

e Logic with concrete and abstract semantics, and

correspondences.
Future work

e More on modelling existing systems:
— implemented ACSs
— models of ACS such as OASIS, RBAC

e Continue proofs of logic system!

FIW’03: “social factor”

Zave: features are purposes, not mechanisms.

Boxton: we should design cameras/cars/browsers/. . . not

computers.

Turner/Gray: busy is a person state, not a device state — and

the answer depends on who’s asking.
Bredereke: Many FlIs are abstractability failures.

.etc. ..

No dinosaurs

\S/ + \f/ + ¢

base system mechanism purpose

Feature interference occurs if the mechanism(s) don’t fulfil the

purpose(s).

