
A Policy Architecture for
Enhancing and
Controlling Features

Stephan Reiff-Marganiec
Kenneth J Turner

University of Stirling

Context of Research

ACCENT Project
Advanced Call Control Enhancing Network
Technologies
2001-2004
EPSRC
Mitel

Goal:
define a comprehensive and practical policy
language for call control

Outline

Motivation & Background
Features & Policies

A Policy Architecture
Policy Conflict

Defining & Deploying Policies
Enforcing Policies

Conclusions

Motivation

Technology changes
merging of communications technologies

mobility, ad-hoc networks, multiple devices, …

User requirements
users are “always on”

but might not always want to be disturbed

Services must provide availibility control
Availibility depends on context
End users should specify the behaviour they wish

simple and intuitive design, suitable for lay users

End users must be central

Features and Policies

Features
from service providers
minimal end-user configurability

CFU example

Policies
“information modifying behaviour of system”

ODP, QoS, …

can be formulated by end-users
However

require appropriate languages, supporting
architectures and development processes

Enhanced Call Control Architecture

Policy Conflict: The Problem

The FI problem re-occurs
Two or more policies might contradict

Good news:
Policies can express user preferences
Rich protocols allow for negotiation

Bad news:
There will be many more policies than there have
been features
Hierarchies (e.g. enterprise and user policies)
Policies might be written by lay users

Handling FI and PC

Feature Interaction and Policy Conflict must
be detected
be resolved

requires
design time environments

that allow automatic detection,
and suggest concrete solutions

runtime environments
that allow automatic detection,
and automatic resolution

Design

Deployment

Execution

Decommissioning

Handling FI and PC – Offline

offline = design-time
static analysis detects problems

(FM, Testing, Design Principles)

resolution by redesign
good if details are known (intra-company, ...)
for policies automatic methods can be used at
upload time, user then can redefine policies

not suitable when design details are unavailable
(open market)

Handling FI and PC – Online

online = run-time
dynamic analysis for detection
automatic resolution

lookup tables (early approaches)
domain specific, general rules
mutually best (negotiation)

two main classes, but little work
FMs [Cain, Marples, Reiff-Marganiec]
Negotiation [Velthuijsen]

can handle black-box features/ policies

ACCENT Policy Language

policy_rule ::=
[triggers] [conditions] actions

triggers and actions are domain specific
policy ::=

“preference” “applicable to”
(policy_rule | policy_rule op policy_rule)

where op is sequential, parallel, choice
Language defined in XML
User has “wizard” to define policies

[Reiff-Marganiec, Turner: FORTE 2002]

Example Policies
<policy owner="srm@cs.stir.ac.uk" appliesTo="srm@cs.stir.ac.uk"

id="Mary_after_1900" enabled="true">
<policyrules><polrules><policyrule>

<triggers>
<trigger>incoming</trigger>

</triggers>
<conditions><and/><conds>

<condition>
<param>caller</param>
<compop>eq</compop>
<value>Mary</value>

</condition></conds><conds><condition>
<param>time</param>
<compop>gt</compop>
<value>1900</value>

</condition></conds></conditions>
<actions><acts>

<action>connectto(home)</action>
</acts></actions>

</policyrule></polrules></policyrules></policy>

Policy Wizard

Handling Policy Conflict (1)

Policy upload
check users policies for consistency
check users policies against known domain
policies
suggest solutions & describe problem
allow user to select solution or redefine policies

Policy Enforcement …
combining ideas of FI online approaches
agent architectures

Handling Policy Conflict (2)

static interactions: an example

enterprise.com has existing policy:
• all calls during working hour should be answered by a

person within 5 rings.
me@enterprise.com defines new policies:

• if I don’t answer calls within 3 rings forward them to
my voicemail if it is not my boss.

• when visitors arrive at reception notify my secretary

check policies defined by user
check user vs. domain policies

caller might get voicemail

dynamic interactions: an example

mary@enterprise.com has policy:
• I prefer to speak to John if Paul is busy.

paul@elsewhere.com has policy:
• I expect that my calls are redirected to Joanne when

I am busy.

•Mary rings Paul
•Paul is busy

Mary rings Paul; Paul is busy
conflict: forward to Joanne or John??
Joanne: using preference

? could also negotiate ...

Conclusions

Call control can be achieved with policies
High-level user goals
Both, online and offline methods required to
handle conflict

User is central
User must have control

any questions?

more details:
{srm,kjt}@cs.stir.ac.uk

http://www.cs.stir.ac.uk/{~srm,~kjt}
http://www.cs.stir.ac.uk/compass

	A Policy Architecture for Enhancing and Controlling Features
	Context of Research
	Outline
	Motivation
	Features and Policies
	Enhanced Call Control Architecture
	Policy Conflict: The Problem
	Handling FI and PC
	Handling FI and PC – Offline
	Handling FI and PC – Online
	ACCENT Policy Language
	Example Policies
	Policy Wizard
	Handling Policy Conflict (1)
	Handling Policy Conflict (2)
	static interactions: an example
	dynamic interactions: an example
	Conclusions
	any questions?

