
Reducing the Feature Interaction
Problem Using an Agent-Based

Architecture

Debbie Pinard
Aphrodite Telecom Research,

a Division of Pika Technologies
debbie.pinard@pikatech.com

Introduction

• What are the inherent problems in
current PBX architectures?

• Why is this architecture better?
– Agent-based
– Data driven
– Handling of features

The Problem Space

Many people,
one phone

Auto Attendant,
Voice Mail

Different
Carriers

Attendant Groups,
Help Desks,

ACD’s

One person,
many devices

FAX

Boss/Secretary

Wireless

New Device
Types

First Generation Architecture
Application

Server

LAN

Lines,
Trunks

PBX

HCI,
CallPath,
TSAPI,
TAPI,
SMDI

Problems:
•integration complicated
•guessing at state of devices
•glares
•lack of control over system

Problems:
•Device based architecture
•Large volume of spaghetti code
•New features “barnacled” on

Second Generation Architecture

PSTN

UNPBX
LAN

WAN

PBX,
“Engine”,

Call Control

LAN
Resources

JTAPI,
TAPI,

Custom App 1

App n

.

.

.

MAPI,
LDAP

Co-ordination

Communication: The Present

The Reality

Bob Donald

Alice
Boss

Bob Donald

Alice
Boss

Agents, Agencies and Organizational
Design

Introduction

• Mid 1990’s
• Step past Object Oriented design into Agent Oriented

design
• Agents are autonomous or semi-autonomous

software systems that perform tasks
• Autonomy means there is no centralized control
• An agency consists of a group of agents which take

specific roles within an organizational structure
• The group is more than the sum of the capabilities of

its members

Agent Oriented Approach to a
Communication System

• Completely Different Way of Thinking!
– not device based
– no individual applications

• Communication based on organizational
policies

• Each Resource is represented by an agent

Organizational Design

• What does an organization consist of?
– Job Descriptions
– Resources (People and Devices)
– Procedures
– Policies
– Information

What are the Resources?

CO

222
Internal #s

9-416-832-5634
External #s

PCs
Trunks

Unknown
Users

PBXs

Directory

Known
Users

Phones

DSPs

WAN

Database
Printers

PDAs

E-Mail

How Can Resources Be
Grouped?

• Nodes
– CO
– WAN
– Known Users
– Unknown Users
– Objects (Doors, Lights,

etc.)
• Devices

– DSPs
– Trunks
– PCs, Personal Printer
– Phones
– Sensors
– Switches
– PDAs

• LAN Resources
– E-Mail
– Corporate Directory
– Corporate Printer/Fax
– Database

• IDNumbers (Roles)
– External #s
– Internal #s

Are
Associated
With

Device
Agent

Phone,
Trunk,
etc.

Node
Agent

Mary,
CO,
WAN,
etc.

IDNumber
Agent

9-591-1555,
222,
etc.

LAN
Resource

Agent

E-Mail,
Directory,
Printer
etc.

Use

Are
Associated
With

Use

Communication Agency

Are
Associated
With

Use

Use

Agent Relationships

Policy ChainPolicy 2

Policy 1

Policy n

.

.

.

Policy 2

Policy 1

Policy n

.

.

.

Policy Chain

Device
Agent

Phone,
Trunk,
etc.

Node
Agent

Mary,
CO,
WAN,
etc.

IDNumber
Agent

9-591-1555,
222,
etc.

Many-to-Many
Relationship

Many-to-Many
Relationship

Example of a Policy Chain

Day of Week
Policy
Mon

Tue

Wed

Thu

Fri

Sat

Sun

Time of Day
Policy

6:00 – 18:00

18:00 – 6:00

Time of Day
Policy

6:00 – 18:00

Group Policy

Abe Andrews

Mike Moon

Group Policy

Fred Finn

Todd Turner

Betty Burns

Sam Stone

Feature Design

Feature Types

Two types:
– Standard (e.g. camp on, call

forwarding, transfer, etc.)
– Feedback (e.g. IVR, auto

attendant, voice mail, etc.)

Standard Features

• Temporarily takes over from the basic call
flow

• Can be invoked by events (‘off hook’) or
access codes (*56)

• Separate from basic call control, managed by
a feature manager

• Uses a state/event trigger table, pointing to a
policy chain, terminating on a feature object

• Common features are broken into ‘mini’
features (e.g. transfer)

Feedback Features

• Provides options or information to a person instead of
giving them a tone

• Uses a tone/reason trigger table, pointing to a policy
chain, terminating on an initial Feedback Feature
object

• Feedback Feature is made up of a tree of linked
objects

• Objects can use DSP resources (like play, record,
text-to-speech, etc.), can collect digits, can retrieve
data, can invoke a feature, etc.

• Once an object is implemented, it is available to any
Feedback Feature

Trigger Tables

Device
Agent

Phone,
Trunk,
etc.

Node
Agent

Mary,
CO,
WAN,
etc.

IDNumber
Agent

9-591-1555,
222,
etc.

Standard Features

Standard Features

Standard and Feedback Features

Data Driven Design

How is it Done?

• A record in a table represents each agent
• Linked policy records represent the

relationship between agents, as well as the
path between a feature trigger and a feature

• Features are triggered based on data in a
trigger table record

• Feedback Features are made up of a tree of
linked records

• The running system is built from the
database, each record is represented by an
object, some of which are linked together

Why is it Important?

• Call flow is determined by a system administrator
• Users can also be given the ability to change

data
• Each running system is unique, and tailored to

an organizations preferences and policies
• Feedback to users can be programmed to give

more information rather than just a tone
• It is much more open to adding some form of AI

in to change data based on different criteria

The ‘Feature Interaction’ Problem:
How the Architecture Helps

Conflicting Goals

Different features triggered by same state/event
• Trigger table allows for ordering of features
• Example: conference and swap
• Can also be handled by introducing a feedback

feature and letting the caller choose
• Example: call wait and voice mail
• Implementation eliminates interaction
• Example: call forward busy and call wait

Type of Call

Feature invoked based on type of call
• Example: call forwarding vs. hunt group call
• Eliminates this form of feature interaction,

since the type of call is inherent in the path it
is following

Competition for Resources

Specific set of resources available
• Co-ordination needed to partition resources

among applications
• Needs to take into account enterprise and

group policies
• Example: 911 trunk access
• New hunt policy which takes over a trunk or

line if the group is busy, based on the call
path

Changing Assumptions on
Services

What was true in the past can change with the
advent of new technology and services

• Example: What does ‘Busy’ mean?
• A Device agent can specify what busy means

for different devices
• A Node agent representing a person can

specify what busy means for that person,
regardless of the device used

Policy Replacing Many Features

Implementing one data-driven policy replaces
many features

• Example: call restriction, toll control,
interconnect rights, call screening

• Create a list of people, numbers, devices
• At each agent level, a policy can be invoked

which restricts a call based on a list
• Can let the call through or block it
• Note: Tom’s availability

Policy Available to All Call Types

Call type had a feature that was only available
to it

• Example: toll control on trunks
• Chaining of a day of week policy followed by

a time of day policy between IDNumber and
Node agents and Node agents and Device
agents provides ultimate flexibility to all types
of calls with no extra code

Reverting to Basic Call ASAP

To avoid some feature interactions, features
terminate as quickly as possible and revert
back to a basic call state

• Example: call hold, queuing
• Held or queued person reverts back to the

Waiting for Termination basic call state, not a
‘special’ state

• All features triggered off of events in the
waiting for termination state are still available

Adding New Device Types

• Just needs a new device agent which
manages the device interface, but talks to the
node agent in exactly the same way as any
other device

• Example: I/O port device
• Opening a door can make a phone call, or

making a phone call can turn on a light
• Uses the same trigger table as all other

devices
• Can be part of a group

Implementation Details

Hardware/Middleware

Pika Boards

Windows Server

Pika Drivers

Pika Monte Carlo API

Pika Monte Carlo Grand Prix API

PC Host Resources

PSTN

Database

Aphrodite Application

IP
H/W

LAN, WAN

Software
• Written in VB using the Pika APIs
• ~ 60 Standard Features, ~20 Feedback

Features
• Only 32,400 lines of code
• Ratios:

– Forms 44%
– Basic Call 32% (includes hunting)
– Standard Features 12%
– Feedback Features 12%

• Supports analog and digital trunks, POTs and
I/O ports

Single Threading

• Cuts down on feature interactions and glare
situations

• Only one feature can be active at a time, and
runs to completion

• Very few features need more than one event
• Those that do only involve one device
• Multi-threading is done where it makes

sense, in the drivers and middleware
• All timing is done in the middleware

Summary

Device
Agent

Phone,
Trunk,
etc.

Node
Agent

Mary,
CO,
WAN,
etc.

IDNumber
Agent

9-591-1555,
222,
etc.

Many-to-Many, Policy Based

Many-to-Many, Policy Based

Policies,Features

Policies, Features

Policies, Features

LAN
Resource

Agent

E-Mail,
Directory,
Printer
etc.

Conclusion

The Aphrodite platform proves that a data driven,
Agent-based architecture is a superior approach
to developing communication systems, and can
reduce or even eliminate some forms of feature
interactions.

Questions?

	Reducing the Feature Interaction Problem Using an Agent-Based Architecture
	Introduction
	The Problem Space
	First Generation Architecture
	Second Generation Architecture
	Communication: The Present
	The Reality
	Agents, Agencies and Organizational Design
	Introduction
	Agent Oriented Approach to a Communication System
	Organizational Design
	What are the Resources?
	How Can Resources Be Grouped?
	Communication Agency
	Agent Relationships
	Example of a Policy Chain
	Feature Design
	Feature Types
	Standard Features
	Feedback Features
	Trigger Tables
	Data Driven Design
	How is it Done?
	Why is it Important?
	The ‘Feature Interaction’ Problem:How the Architecture Helps
	Conflicting Goals
	Type of Call
	Competition for Resources
	Changing Assumptions on Services
	Policy Replacing Many Features
	Policy Available to All Call Types
	Reverting to Basic Call ASAP
	Adding New Device Types
	Implementation Details
	Hardware/Middleware
	Software
	Single Threading
	Summary
	Conclusion
	Questions?

