
1

Detecting Script-to-Script Interactions in
Call Processing Language

Masahide Nakamura, Ken-ichi Matsumoto,
Grad. School of Information Science, Nara Institute of Science and Technology

Ken-ichi Matsumoto, Tohru Kikuno
Graduate School of Information Science and Technology, Osaka University

2

Internet Telephony

Widely studied at protocol level (SIP, H323)
Advanced telecom services integrated with data services
Decentralized service/feature management

7040
PSTN/IN network

PSTN
PSTN

SwitchSwitch

VoIP Gateway

LAN

IP network End systems

Signaling
server

Service Service LAN

End systems Signaling
server

Signaling
server

VoIP Gateway

SCP

IN features/services

Phones

Phones

Concerns are shifting to service level.

3

Two Approaches for Service Provision

7040
PSTN/IN network

PSTN
PSTN

SwitchSwitch

VoIP Gateway

LAN

IP network End systems

Signaling
server

LAN

End systems Signaling
server

Signaling
server

VoIP Gateway

SCP

IN features/services

Phones

Phones

(a) Network Convergence
Activate IN features/services through API (e.g., JAIN).

(b) Programmable Services
End-users define and deploy own features/services.

4

Call Processing Language (CPL)

An XML-based language for programmable service in the
Internet Telephony.

RFC 2824 of IETF (proposed standard)

DTD-based syntax definition (also, XML-schemas)
Mainly for switching / network services (for SIP, H.323)
Some security considerations

Prohibits loops, recursive calls, activations of external programs.

Commercial and open-source implementations (e.g., VOCAL)

Each user describes own customized service in a CPL script.
Then, install the script in the local signaling server.

Powerful and flexible service creation.

5

Drawbacks of Programmable Service

(a) Service description by naive users
The DTD-based syntax definition cannot guarantee the semantic
correctness of a CPL script.

There are many ways to make CPL scripts
semantically wrong
Cause ambiguity, redundancy, inconsistency

(b) Services in the Signaling servers distributed on the
Internet can be added, deleted or modified at anytime

It is impossible to enumerate all possible services

FI detection and resolution by off-line analysis
cannot be performed

6

Goal of research

(a) Establish a guideline to guarantee semantic
correctness for each single CPL script

Characterize semantic warnings in CPL script

(b) Propose algorithm to detect FIs among all scripts
involved in a call at run time

Characterize FIs as the
semantic warnings over multiple CPL scripts

7

CPL Script

Switches represent conditional branches
<address switch>, <string switch>, <time
switch>, and <priority switch>

Location Modifiers add/remove locations
<explicit location>, <location lookup>,
<location removal>

Signaling operations cause signaling events
<proxy>, <redirect> and <reject>

Full specification is found in RFC2824
http://www.ietf.org/rfc/rfc2824.txt
http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-06.txt

8

Describing Services with CPL(1)

Example requirement
Alice alice@example.com wants to receive incoming calls only from

domain example.com.
Alice wants to reject all calls from crackers.org.
Alice wants to redirect any other calls to her voice mail

alice@voicemail.example.com.

proxyexample.com alice@example.com

noname@crackers.org

nakamura@example.com

other@instance.com

reject

alice@voicemail.example.com
redirect

9

Describing Services with CPL(2)

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL
1.0//EN" "cpl.dtd">

<cpl>
<subaction id="voicemail">

<location url=
"sip:alice@voicemail.example.com">

<redirect />
</location>

</subaction>

<incoming>
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:alice@example.com">

<proxy />
</location>

</address>
<address subdomain-of="crackers.org">

<reject status="reject" />
</address>
<otherwise>

<sub ref="voicemail" />
</otherwise>

</address-switch>
</incoming>

</cpl>

DTD = (Data Type Definition)
Begins with <tag>, ends with <tag/>
Subaction = Subroutine

proxyexample.com

alice@
example.com

noname@crackers.org

nakamura@
example.com

other@instance.com

reject

alice@voicemail.
example.com

redirect

10

Semantic warnings

1. Multiple forwarding addresses
2. Unused subactions
3. Call rejection in all paths
4. Address set after address switch
5. Overlapped conditions in single switch
6. Identical switches with the same parameters
7. Overlapped conditions in nested switches
8. Incompatible conditions in nested switches

11

Address set after address switch (ASAS)

Definition: When <address> and <otherwise> tags are specified
as outputs of <address-switch>, the same address evaluated in
the <address> is set in the <otherwise> block.

<cpl>
<outgoing>

<address-switch field="destination">
<address is="sip:bob@example.com">
<reject status="reject"

reason="I don't call Bob" />
</address>
<otherwise>
<location url="sip:bob@example.com">

<proxy/>
</location>

</otherwise>
</address-switch>

</outgoing >
</cpl>

address-switch

otherwise

Alice’s outgoing CPL

address =
bob@example.com

Location setting

reject

Inconsistent destination

bob@example.com

Alice

12

Overlapped Conditions in Single Switches (OCSS)

Definition: The condition is overlapped among the multiple
output tags of a switch.

pattara@home.
example.com

pattara@mobile.example.com

contains
= bob

Pattara’s CPL

Unreachable terminal

is =
bobby

bobby@
somewhere

bob@
instance.net

example.com
<cpl>
<incoming>

<address-switch field="originator" >
<address contains="bob">
<location url=

"sip:pattara@home.example.com">
<proxy />

</location>
</address>
<address is="bobby">
<location url=

"sip:pattara@mobile.example.com">
<proxy />

</location>
</address>

</address-switch>
</incoming>

</cpl>

13

Feature Interaction in CPL script

Even if each individual script is free from semantic
warnings (semantically safe), FIs can occur when
multiple scripts are executed simultaneously at run
time.

SU-type interactions (e.g., CW&TWC) do not occur.
Each user can have a single CPL script at a time.

Interactions occur between different scripts owned
by different users.

14

Example of FI in multiple CPL scripts

bob@
example.com

alice@
example.com

Alice’s
outgoing
script

Chris’s
incoming
script

chris@
instance.com

bob@
example.com

Semantically safe

bob@example.com
redirect

reject

Semantically safe

Address Set after Address Switch (ASAS)

Alice’s
outgoing
script

bob@example.com reject chris@instance.com

bob@example.comredirect

alice@
example.com

Chris’s
incoming
script

FI occurs

Define the FIs as
semantic warnings over multiple scripts

15

FI detection Problem

FI definition:
CPL script s and t interact with respect to a call scenario c

s and t are semantically safe, but s t is NOT semantically safe
(is combine operator)

FI detection Problem:
Detect FIs among multiple CPL scripts involved in a call with a call
scenario c.

Input and Output:
Input: CPL script s of the call originator, and a call scenario c
Output: FI occurs or not

c
c

Detect FIs as the
semantic warnings over multiple CPL scripts

16

Combine Operator

cCombined script r = s t

c

To get a combined behavior of two (successively proxied) scripts,
we present the combine operator

Definition: Substituting the <proxy> nodes in s that is executed in
the call scenario c, with incoming actions of t

script s
<cpl>
<outgoing>
<location url="sip:t@exam.com">
</proxy>

</location>
</outgoing >

</cpl>

script t
<cpl>
<incoming>
<location url="sip:u@exam.com">
</redirect>
</location>

</incoming >
</cpl>

script r
<cpl>
<outgoing>
<location url="sip:u@exam.com">
</redirect>

</location>
</outgoing >

</cpl>

17

FI Involved in More than 2 Scripts
A call could involved more than two scripts.

A feature interaction occurs w.r.t. s0 and c ⇔
There exists some k s.t. s0 s1 … sk is not safe. c c c

Generalized FI Definition

Proposed Algorithm Succ(s0, c)

a b

c d

proxy
redirect

(2) a bc (4) a c d c c(1) a (3) a cc

We check semantic warnings for these four combination

a b

c d

18

Example of FI Detection

<cpl>
<outgoing>

<address-switch field="destination">
<address is="sip:bob@example.com">
<reject status="reject"/>

</address>
<otherwise>
</proxy>

</otherwise>
</address-switch>

</outgoing >
</cpl>

Alice’s Script (S1)

<cpl>
<incoming>

<location url="sip: bob@example.com ">
<redirect />

</location>
</incoming>

</cpl>

Chris’s Script (S2)

Originator: Alice
Call Scenario: Alice calls Chris

<cpl>
<outgoing>

<address-switch field="destination">
<address is="sip:bob@example.com">
<reject status="reject"/>

</address>
<otherwise>

</proxy>

</otherwise>
</address-switch>

</outgoing >
</cpl>

S1 S2c

Input{

semantically safe

<location url="sip:bob@example.com ">
<redirect />

</location>

FI occurs

ASAS

S2S1

(1) S1 (2) S1 S2c

19

Tool Support

(a) CPL Checker (b) FI Simulator

http://www-kiku.ics.es.osaka-u.ac.jp/~pattara/CPL/

20

Conclusion and Future Work

New eight semantic warnings.
Definition of FI in CPL programmable environment.
Algorithm Succ to detect FIs involved in a call.

Future work
Run-time FI detection mechanism.
Evaluation of how many FIs can be covered
FI between programmable services and ready-made services.

21

Intra-Server Call

LAN

End systems

Signaling
server

SA

End systems

SB

Compute Succ

LAN

Signaling
server

Signaling
server

Relatively easy to detect FI.
FI detector in VOCAL front-end.

22

Global FI Detecting Server

LAN

End systems

Signaling
server

SA SC LAN

End systems

Signaling
server

Signaling
server

SB

FI detecting server

Upload CPL scripts

Compute Succ

For public Internet
Quite difficult to realize due to privacy/authentication.
Resolution - ABSOLUTELY NO WARRANTY policy?

For dedicated service
Possibility to use dedicated servers and channels.

23

Multiple forwarding addresses (MF)

Definition: After multiple addresses are set by <location>
tags, <proxy> or <redirect> comes.

pattara@mobile.example.com

pattara@voicemail.example.com

CPL

<cpl>
<incoming>

<location url=
"sip:pattara@mobile.example.com">

<location url=
"sip:pattara@voicemail.example.com">

<proxy />
</location>

</incoming>
</cpl>

Proxy

Proxy

Immediately answer

Unreachable Terminal

24

Identical switches with the same parameters (IS)

Definition: After a switch tag with a parameter, the same
switch with the same parameter comes.

<cpl>
<incoming>

<address-switch field="origin" subfield="host">
<address subdomain-of="home.org">

<location url="sip:pattara@home.org">
<proxy />

</location>
</address>
<otherwise>

<address-switch field="origin" subfield="host">
<address subdomain-of="home.org">

<location url="sip:pattara@mobile.net">
<proxy />

</location>
</address>

</address-switch>
</otherwise>

</address-switch>
</incoming>

</cpl>

address-switch

is=“home.org”

address-switch
sip:pattara@home.org

is = “home.org”

sip:pattara@mobile.net

CPL

example@
home.org

Unreachable

Unreachable and redundant script

25

Call rejection in all paths (CR)

Definition: All execution paths terminate at <reject>.

<cpl>
<incoming>

<address-switch field="origin">
<address is=“sip:alice@example.com">
<reject status="reject"

reason="I don’t accept call from alice" />
</address>
<address is="sip:pattara@example.com">
<reject status="reject"

reason="I don’t accept call from Pattara" />
</address>
<otherwise>
<reject status="reject"

reason="I don’t accept call from anyone" />
</otherwise>

</address-switch>
</incoming>

</cpl>

alice@example.com

pattara@example.com

others

CPL

reject

reject

reject

No call processing

26

Unused Subactions (US)

Definition: Subaction <subaction id= "foo" > exists, but
<subaction ref= "foo" > does not.

<cpl>
<subaction id="mobile">

<location url="sip:jones@mobile.example.com" >
<proxy />

</location>
</subaction>

<incoming>
<location url="sip:jones@example.com">

<proxy />
</location>

</incoming>
</cpl>

Redundant script

27

Successive Algorithm

A call scenario could involve more than two scripts,
because of successive redirect and proxy

Compute a set of scripts to be combined
by proposed algorithm Successive

Input and output
Input: call originator, call scenario
Output: a set of scripts to be combined

Identify processing type and next address in scripts
Processing type: how is the call processed
(proxy, redirect, reject, or connected to end system)
Next address: where the call is directed next

Create a set of script, according to processing type

	Detecting Script-to-Script Interactions in Call Processing Language
	Internet Telephony
	Two Approaches for Service Provision
	Call Processing Language (CPL)
	Drawbacks of Programmable Service
	Goal of research
	CPL Script
	Describing Services with CPL(1)
	Describing Services with CPL(2)
	Semantic warnings
	Address set after address switch (ASAS)
	Overlapped Conditions in Single Switches (OCSS)
	Feature Interaction in CPL script
	Example of FI in multiple CPL scripts
	FI detection Problem
	Combine Operator
	FI Involved in More than 2 Scripts
	Example of FI Detection
	Tool Support
	Conclusion and Future Work
	Intra-Server Call
	Global FI Detecting Server
	Multiple forwarding addresses (MF)
	Identical switches with the same parameters (IS)
	Call rejection in all paths (CR)
	Unused Subactions (US)
	Successive Algorithm

