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Complexity of Building Control Systems
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Complexity of Building Control Systems

 Integrated Building Control System

Desired
Control

Coupling
of Effects
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Complexity of Building Control Systems

Problems
• Extension 

 Introduction of Undesirable Relationships

• Reuse 

 Elimination of Required Interrelations

Solution: Automatic Detection of Interactions

300 Requirements

1000 Data Points (Objects)

8000 Requirements

26000 Data Points (Objects)

  →

  →

  →
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Artefact Types and Relations
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Scheme
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Detection at Requirements Level: Concept
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Detection at Requirements Level: Realization
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Detection at Requirements Level: Realization
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Detection at Requirements Level: Realization
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Detection at Requirements Level: Realization
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Detection at Object Structure Level: Concept
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Detection at Object Structure Level: Concept
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Detection at Strategy Level: Concept
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Detection at Strategy Level: Concept
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Detection at Strategy Level: Concept
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Detection at Environment Level: Concept
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Detection at Environment Level: Realization
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Detection at Environment Level: Realization
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Detection at Environment Level: Realization
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General Applicability

Efficiency

Feature Interaction Detection Tool: ~1900 Lines of Code (Java)

Level of 
Information

Domain Dependency 
of Approach

Method Dependency
of Approach

Require-
ments

none weak
(traceability relation)

Object 
Structure

strong
(strict aggregation, static structure)

weak
(aggregation rel., traceability rel.)

Strategies
weak

(reactive systems: signals)
strong

(traceability relation)

Environment
strong

(reactive system)
strong

(environment simulator)
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• Efficient Approach for FI Detection in Building Control Systems

– Systematic Mapping of Concepts to Code

– Abstraction from Development Documents (Product Model)

• Application During System Development

– Detection of Interactions after Extension/Reuse Activity

– Metric (“Complexity of System”) Quality Control

Perspectives

• Extension of Application Domain

– Reactive Systems with Static Structure; e.g., Automotive Control

• Refinement of Detection Concepts

– Static Analysis of Behavior (Refinement of Product Model)

  →
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Case Studies

Complexity Floor32 Floor32X

Requirements
(Needs, Tasks)

285
(52, 233)

316
(64, 252)

31
(12, 19)

Control Object Types 37 40 3

Feature Interactions
@ Points of Interaction

Floor32 Floor32X

at Object Structure Level 32 @ 47 38 @ 53 6 @ 6

at Environment Level 38 @ 63 44 @ 69 6 @ 6

6 @ 6 6 @ 16

∆

∆

∆
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Detection at Requirements Level: Implementation

class Main {

detectInteraction() {

forall(need Needs) {
need.mark(need);

}

forall(task Tasks) {

if(|task.needSet| > 1 AND
|task.realizedRequirement| > 1)

/* True Point of Interaction
identified! */

}

}

}

}

  ∈

  ∈
Need Task

Requirement

1..*

0..*

realizedBy

realizedRequirement

realizingTask

class Requirement {

Set needSet;

mark(Need need) {
needSet = needSet need;

forall(task realizingTasks) {
task.mark(need);

}

}

}

  ∪

  ∈
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Detection at Requirements Level: Implementation

public class Main {

void detectInteraction() {
Iterator allNeeds = /* ... */;
Need need;
while(allNeeds.hasNext()) {
need = (Need)allNeeds.next();
need.mark(need);

}

 Iterator allTasks = /* ... */;
 Task task;
 while(allTasks.hasNext()) {
 task = (Task)allTasks.next();
 if(task.getNeedSet().size() > 1 &&  
 task.getRealizedRequirement().
 size()) > 1) {
 /* True Point of Interaction
 identified! */

}
}

}
}

Need Task

Requirement

1..*

0..*

realizedBy

realizedRequirement

realizingTask

public class Requirement {
Set needSet;

void mark(Need need) {
needSet.add(need);
Iterator it = getRealizingTask();
Task task;
while(it.hasNext()) {
task = (Task)it.next();
task.mark(name);

}
}

}
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Extended Artefact Types and Relations (Part 1)
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Extended Artefact Types and Relations (Part 2)
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