
Feature Interaction Detection
in Building Control Systems

by Means of a Formal Product Model

Andreas Metzger, Christian Webel
Department of Computer Science

University of Kaiserslautern, Germany

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Contents 0

Motivation

The Product Model Approach

Feature Interaction Detection

Conclusion

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Motivation 0

Complexity of Building Control Systems

Temperature

Sound

Air Quality

Ventilation

Light

Humidity

Occupancy

Desired
Control

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Motivation 0

Complexity of Building Control Systems

 Integrated Building Control System

Desired
Control

Coupling
of Effects

 →

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Motivation 0

Complexity of Building Control Systems

Problems
• Extension

 Introduction of Undesirable Relationships

• Reuse

 Elimination of Required Interrelations

Solution: Automatic Detection of Interactions

300 Requirements

1000 Data Points (Objects)

8000 Requirements

26000 Data Points (Objects)

 →

 →

 →

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

— The Product Model Approach —

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

The Product Model Approach 0

Terms

Product Model
Meta-Model of Development Artefacts and Relations

Formal Product Model
Concise Semantics of Entities

Access to Entities (“Repository”)

“Tool Chain”

Report

Development
Documents

Document
Parsing

Interaction
Detection

Development
Documents

Formal
Product Model

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

The Product Model Approach 0

Artefact Types and Relations

Need Task

InstantiationRequirement

1..* 1

implements

1..*

0..*

realizedBy

1

1

realizedBy

1

0..*

aggregates

1..*

1

Functional
Strategy

Attribute

1..*

0..*

reads

1..*

0..*

produces
1..*

0..*

consumes

1..*

0..*

writes

ControlObjectType

SignalType

instantiates

Functional
Need

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

0

— Feature Interaction Detection —

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Scheme

Need Task

InstantiationRequirement

1..* 1

implements

1..*

0..*

realizedBy

1

1

realizedBy

1

0..*

aggregates

1..*

1

Functional
Strategy

Attribute

1..*

0..*

reads

1..*

0..*

produces
1..*

0..*

consumes

1..*

0..*

writes

ControlObjectType

SignalType

instantiates

Functional
Need

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Scheme

Need Task

InstantiationRequirement

1..* 1

implements

1..*

0..*

realizedBy

1

1

realizedBy

1

0..*

aggregates

1..*

1

Functional
Strategy

Attribute

1..*

0..*

reads

1..*

0..*

produces
1..*

0..*

consumes

1..*

0..*

writes

SignalType

instantiates

Functional
Need

Requirements
Level

Object Structure
Level

ControlObjectType

Strategy
Level

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Scheme

Need Task

InstantiationRequirement

1..* 1

implements

1..*

0..*

realizedBy

1

1

realizedBy

1

0..*

aggregates

1..*

1

Functional
Strategy

Attribute

1..*

0..*

reads

1..*

0..*

produces
1..*

0..*

consumes

1..*

0..*

writes

SignalType

instantiates

Functional
Need

Requirements
Level

Object Structure
Level

ControlObjectType Environment
Level

Strategy
Level

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Concept

N1 N2 N3

T2

T3

T5 T8

T7

T9

T4

N4

T1 T6

“provide required illumination
“use daylight to save energy” “avoid glare” “provide required temperature”

“control light sources”

“switch “measure

“move blind”

“determine motion”

if room is occupied”

“eliminate glare “control

“measure

illumination” temp.”light”

“move

radiator”using blinds”

valve”

realizedBy

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Realization

N1 N2 N3

T2

T3

T5

T4

T1 T6{ } { } T7

N4

{ }

{ }{ }{ }

{ }

{ }

{ } T8 T9

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Realization

N1 N2 N3

T2

T3

T5

T4

T1 T6{N1} { } T7

N4

{ }

{ }{ }{N1}

{N1}

{N1}

{N1} T8 T9

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Realization

N1 N2 N3

T2

T3

T5

T4

T1 T6{N1, N2} {N3} T7

N4

{N4}

{N4}{N4}{N1, N2, N3}

{N1, N2, N3}

{N1, N2, N3}

{N1, N2} T8 T9

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Realization

N1 N2 N3

T2

T3

T5

T4

T1 T6{N1, N2} {N3} T7

N4

{N4}

{N4}{N4}{N1, N2, N3}

{N1, N2, N3}

{N1, N2, N3}

{N1, N2} T8 T9

{N1, N2} @ {T1}

{N1, N2, N3} @ {T3, T4, T5}

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Object Structure Level: Concept

RoomCtrl

IllumCtrl GlareCtrl TempCtrl

BlindActIllumSens LightAct IllumSens TempSens RadiatorActMotionSens

1

1 1 1

1

1

1

1

1

1

1 11 1

N1 N2 N3

T5

T1 T6

implementedBy

{N1, N2, N3} @ {T3, T4, T5}

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Object Structure Level: Concept

RoomCtrl

IllumCtrl GlareCtrl TempCtrl

BlindActIllumSens LightAct IllumSens TempSens RadiatorActMotionSens

1

1 1 1

1

1

1

1

1

1

1 11 1

N1 N2 N3

T5

T1 T6

implementedBy

{N1, N2, N3} @ {T3, T4, T5}

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Strategy Level: Concept

Signals/Attributes Coupling of Strategies Coupling of Tasks

N1 N2 N3

T1 T6 T7

N4

{N1, N2, N3} @ {T3, T4, T5}

T4

 → →

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Strategy Level: Concept

Signals/Attributes Coupling of Strategies Coupling of Tasks

N1 N2 N3

T1 T6Signal

prod.

cons. T7

N4

cons.

{N1, N2, N3} @ {T3, T4, T5}

T4

 → →

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Strategy Level: Concept

Signals/Attributes Coupling of Strategies Coupling of Tasks

N1 N2 N3

T1 T6Signal

prod.

cons. T7

N4

cons.
Signal

{N3, N4} @ {T6}

{N1, N2, N3} @ {T3, T4, T5}

prod. cons.

T4

 → →

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Environment Level: Concept

N1 N2

T1 T7

Environment (Bld.)

N4

T9T3

N3

T6

TempSensBlindAct
implementedBy implementedBy

{N1, N2, N3, N4} @ Env

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Environment Level: Realization

N1 N2

T1 T7

N4

T9T3

N3

T6

TempSensBlindAct TbTa

Tc

implementedBy implementedBy

Building Simulator

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Environment Level: Realization

N1 N2

T1 T7

N4

T9T3

N3

T6

TbTa

Tc

{N1, N2, N3, N4} @ {Tc}

Building Simulator

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Environment Level: Realization

N1 N2

T1 T7

N4

T9T3

N3

T6

TbTa

Tc

Building Simulator

{N1, N2, N3, N4} @ {T3, T9}

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

— Conclusion —

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Conclusion 0

General Applicability

Efficiency

Feature Interaction Detection Tool: ~1900 Lines of Code (Java)

Level of
Information

Domain Dependency
of Approach

Method Dependency
of Approach

Require-
ments

none weak
(traceability relation)

Object
Structure

strong
(strict aggregation, static structure)

weak
(aggregation rel., traceability rel.)

Strategies
weak

(reactive systems: signals)
strong

(traceability relation)

Environment
strong

(reactive system)
strong

(environment simulator)

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Conclusion 0

• Efficient Approach for FI Detection in Building Control Systems

– Systematic Mapping of Concepts to Code

– Abstraction from Development Documents (Product Model)

• Application During System Development

– Detection of Interactions after Extension/Reuse Activity

– Metric (“Complexity of System”) Quality Control

Perspectives

• Extension of Application Domain

– Reactive Systems with Static Structure; e.g., Automotive Control

• Refinement of Detection Concepts

– Static Analysis of Behavior (Refinement of Product Model)

 →

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

— Additional Slides —

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Results 0

Case Studies

Complexity Floor32 Floor32X

Requirements
(Needs, Tasks)

285
(52, 233)

316
(64, 252)

31
(12, 19)

Control Object Types 37 40 3

Feature Interactions
@ Points of Interaction

Floor32 Floor32X

at Object Structure Level 32 @ 47 38 @ 53 6 @ 6

at Environment Level 38 @ 63 44 @ 69 6 @ 6

6 @ 6 6 @ 16

∆

∆

∆

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Implementation

class Main {

detectInteraction() {

forall(need Needs) {
need.mark(need);

}

forall(task Tasks) {

if(|task.needSet| > 1 AND
|task.realizedRequirement| > 1)

/* True Point of Interaction
identified! */

}

}

}

}

 ∈

 ∈
Need Task

Requirement

1..*

0..*

realizedBy

realizedRequirement

realizingTask

class Requirement {

Set needSet;

mark(Need need) {
needSet = needSet need;

forall(task realizingTasks) {
task.mark(need);

}

}

}

 ∪

 ∈

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

Feature Interaction Detection 0

Detection at Requirements Level: Implementation

public class Main {

void detectInteraction() {
Iterator allNeeds = /* ... */;
Need need;
while(allNeeds.hasNext()) {
need = (Need)allNeeds.next();
need.mark(need);

}

 Iterator allTasks = /* ... */;
 Task task;
 while(allTasks.hasNext()) {
 task = (Task)allTasks.next();
 if(task.getNeedSet().size() > 1 &&
 task.getRealizedRequirement().
 size()) > 1) {
 /* True Point of Interaction
 identified! */

}
}

}
}

Need Task

Requirement

1..*

0..*

realizedBy

realizedRequirement

realizingTask

public class Requirement {
Set needSet;

void mark(Need need) {
needSet.add(need);
Iterator it = getRealizingTask();
Task task;
while(it.hasNext()) {
task = (Task)it.next();
task.mark(name);

}
}

}

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

The Product Model Approach 0

Extended Artefact Types and Relations (Part 1)

Need Task
ControlObjectType

FunctionalStrategy

Instantiation

Requirement

TestCase

value:String

Attribute

SignalType Parameter

definition:String

DataType

StrategyProblemSummary

Timer

1..* 1implements

1..*

0..*

realizedBy

1

1

realizedBy

1

0..*

aggregates

1..*

1
instantiates

1..*

0..*

testedBy

1..*

0..*reads

1..*

0..*
produces

1..*

0..*consumes

1..*

0..*

testedBy

{ordered}
1

0..*

has

1..*

1
isOf

1..* 1

isOf

1..*

0..*writes

0..*

0..1

summarizedBy

1..* 0..*modifies

1..* 0..*receives

Andreas Metzger – Feature Interaction Workshop – Ottawa, Canada – June, 2003

The Product Model Approach 0

Extended Artefact Types and Relations (Part 2)

FunctionalStrategy

Signal

State

Transition

Condition

Action

SignalType

ActualParameter

Timer

CallAction SendActionTimerAction

Event

ReceiveEvent TimerEvent

StateSet InverseStateSet

Instantiation

AbstractStateSet

TimerSetAction TimerResetAction

Procedure

1 1..*

realizedBy

1..*

0..1

originatesAt

1..*

1

terminatesAt

1

1creates

1

1

constrains

{ordered}

1

0..*

effects

1

1

produces

1..* 1

isOf

{ordered}

1
0..*

has

1

1..*

creates
1..*

1 sets

0..1

1..*

triggeredBy

0..*

1..*

includes

1..*
1 resets

1..*

0..*sentTo

0..*

1..* excludes

1 0..*

calls

