
eSERL
Feature Interaction Management in Parlay/OSA Using
Composition Constraints and Configuration Rules

Alessandro (Alex) De Marco, Ferhat Khendek

Dept. of Electrical & Computer Engineering
Concordia University

Montreal, Canada

Outline

1. Introduction
2. eSERL Language Enhancements
3. Validation Algorithms
4. Implementation + Case Study
5. Conclusion

Section: Introduction (1/3)

Introduction
Trends

Personalization
Added-value through service composition

Next-generation Networks
“Everything over IP”; IP Everywhere
Enhanced Multimedia & Signaling Capabilities

Parlay/OSA
3GPP API for secure, open access to NG Networks
Technology-agnostic

SERL
Service Execution Rule Lang. & Framework
No FI detection; Only application of resolutions

Section: Introduction (2/3)

Parlay/OSA

Fram ew ork U ser L ocation C all C ontro l E tc.

A pplication S erver

Serv ice …

SIPIN A P TC A P…

G atew ays

Fram ew ork U ser L ocation C all C ontro l E tc.

A pplication S erver

…

SIPIN A P TC A P…

G atew ays

Open Service Access standard adopted by 3GPP
Access to core networks through secure framework
Not just Call Control, but Mobility, IM, more
Technology-agnostic

Section: Introduction (3/3)

SERL
Service Execution Rule

Language

3 Internet Drafts in 2001
(Ericsson)

FIM intercepts events,
matches & applies
rules to trigger
services

No FI detection or
avoidance capabilities

No known implementations

S1 S2

Terminating
SERL nodeEvent: INCOMING_CALL

Context:
From: Alice
To: Bob
…

Bob

1. invoke

S1 at
Processing-

Point 1
invoked first
downstream

S2 at
Processing-

Point 3
invoked last
downstream

2. <feature instruction>

4. <feature instruction>3. invoke

Section: eSERL (1/5)

eSERL: Enhanced SERL

Language Extensions
Service Objects (named with I/O params)
Composition Constraints
Configuration Rules

Feature Grouping Criteria
Distinguish between routing & screening

Section: eSERL (2/5)

Composition Constraints

SUSC context: 1 user, 1 app server
Service interactions are known/detected a priori
Use any detection techniques

Experts define service composition
and inter-working constraints

Explicit vs. implicit constraints
Mutex, Order, Data Inter-working

Section: eSERL (3/5)

Configuration Rules

End-user requirements for their
service behavior

Expressed as condition-action rules
Conditions relate to events
Actions affect services, or events

Backwards-compatible with SERL

Section: eSERL (4/5)

Operational Context

Experts
Define constraints for all services in a system

End-users
Write configurations to compose and personalize
services
Deploy configurations

System
Validates* configuration (offline tool)
Intercepts events, matches & applies rules
(runtime Feature Interaction Manager*)

Section: eSERL (5/5)

Abstract Example
Participants: Julie (the driver) and her car

If (INCOMING_CALL or OUTGOING_CALL) {
Invoke CS(screening party: car)
If (response from car: Julie is AVAILABLE) {

Invoke ID(“warn that call may be disconnected”)
}

}
If (Session.CallExists(Julie)) {

If (INCOMING_CALL from car and car says Julie is BUSY) {
Invoke ACB // which terminates call, re-establishes later

}
}

High-speed,
heavy traffic

Section: eSERL (5/5)

Abstract Example

Is this user-defined configuration “valid”?

Section: Validation (1/6)

Validation

Check configurations against
constraints
Guaranteed behavior

To the degree with which the expert is confident
with the completeness and consistency of
constraints

Section: Validation (2/6)

Acceptable Compositions

‘Acceptable’ = All compositions except those
in violation of constraints
Completeness Assumption

Approaches a “complete-set”

Consistency
Worst-case: no compositions allowed

Approach depends on expert experience,
tools, maintenance of rule-base

Section: Validation (3/6)

Detect Constraint Violations

Simple: 1 rule, several actions
Order or mutex violation (composition)
I/O params set (data inter-working)

Complex: n rules, >0 actions for each
Rules satisfied simultaneously by event? i.e. Do
conditions overlap?
If overlap, then

compose the actions, and
check for violations as for simple case

Section: Validation (4/6)

Pair-wise Rule Comparison

For rule1, where rule1 is a Configuration Rule

For rule2, where rule2 is a Configuration Rule and not rule1

If rule1.condition and rule2.condition overlap then

If rule1.action composed with rule2.action is
not in set of acceptable compositions then

Configuration Rule Module is invalid

Section: Validation (5/6)

Rule Overlap
Calculating overlap

Polynomial time solution, O(nk), if values for variables are
discrete, finite, and ordered (D. Wang et al., IP firewall study)
Parlay/OSA API methods, events meet criteria

Example 1: Overlap: Yes
C1 := {“my location is home”}
C2 := {“caller is bob@school.com”}

Example 2: Overlap: Maybe … syntax vs. semantics
C1 := {“my location is school” AND “caller is alice@home.com”}
C2 := {“my location is office” AND “caller is sales@company.com”}

Section: Validation (6/6)

Rule-Action Composition

Composing Actions, order is important
Compare Processing Points
Compare priorities of rule actions

A single configuration may specify many
compositions.

If one is invalid, the whole configuration is
rejected.

Section: Implementation, Case Study (1/4)

Implementation

S1 S2 S3

Parlay API (client)
CORBA idl

CORBA idl

Parlay API (server)
SIP Glue

Parlay Interface

Application
Server

Services

SIMRules

FIM data
Provisioning
Interface

FIM
Interface

FIM data
Provisioning
Interface

FIM
Interface

Interface

Parlay

Interface

Service
Capability
Server

FIM rule
engine

Positioning of a FIM in the architecture

Section: Implementation, Case Study (2/4)

Session & Proxy Objects
(+ Event Translation)

SCS

Application Server

Service1

IpCallLeg
IpMultiPartyCall

IpMultiPartyCallControlManager

IpCallLeg

IpAppMultiPartyCallControlManager

IpAppMultiPartyCall

IpAppCallLeg IpAppCallLeg

Service2

IpAppMultiPartyCall

IpAppCallLeg IpAppCallLeg

FIM Call Session

IpAppCallLegProxy

IpCallLegProxy

IpAppCallLegProxy

IpCallLegProxy

IpAppMultiPartyCallProxy

IpMultiPartyCallProxy

Section: Implementation, Case Study (3/4)

Julie Jones and the Family Car
Incoming/Outgoing calls to/from driver - Julie Jones

Screening by car (CS)
If screening passed, warning (ID)

Call in-session
Julie becomes BUSY, save & disconnect (ACB)

ACB waiting
Julie becomes AVAILABLE, retry (ACB, [CS, ID])

Location too far from home
Instant message to Mom (ID)

Section: Implementation, Case Study (4/4)

Results

Hand-written rules in terms of
Parlay/OSA events.
Implemented tools to validate rules
against the system constraints.
Implemented test architecture,
including FIM.

Section: Conclusion (1/2)

Contributions
Generic framework for service
personalization and composition while
managing FI

Guarantee, to a certain degree, on
composed service behavior provided there
are no constraint violations

Design & implementation in Parlay/OSA
context

Section: Conclusion (2/2)

Future Work

Multiple users, Multiple Servers
Activation Rules
Non-monotonic extensions due to system
constraint changes
Framework for writing rules with 3rd party
“theme-based” rule templates and wizards
Composition Constraints = 3rd party services

Thank you.

Questions ?

	eSERLFeature Interaction Management in Parlay/OSA Using Composition Constraints and Configuration Rules
	Outline
	Introduction
	Parlay/OSA
	SERL
	eSERL: Enhanced SERL
	Composition Constraints
	Configuration Rules
	Operational Context
	Abstract Example
	Abstract Example
	Validation
	Acceptable Compositions
	Detect Constraint Violations
	Pair-wise Rule Comparison
	Rule Overlap
	Rule-Action Composition
	Implementation
	Julie Jones and the Family Car
	Results
	Contributions
	Future Work
	Thank you.

