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Introduction

Trends

C Personalization
o Added-value through service composition

Next-generation Networks

o “Everything over IP”; IP Everywhere
o Enhanced Multimedia & Signaling Capabilities
Parlay/OSA

o 3GPP API for secure, open access to NG Networks
o Technology-agnostic

SERL

¥ Service Execution Rule Lang. & Framework
o No FI detection; Only application of resolutions
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i Parlay/OSA
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= Open Service Access standard adopted by 3GPP

= Access to core networks through secure framework
= Not just Call Control, but Mobility, IM, more

= Technology-agnostic
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Service Execution Rule
Language

3 Internet Drafts in 2001
(Ericsson)

FIM intercepts events,
matches & applies
rules to trigger
services

No FI detection or
avoidance capabilities

No known implementations
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i eSERL: Enhanced SERL

= Language Extensions
= Service Objects (named with I/0 params)
= Composition Constraints
= Configuration Rules

= Feature Grouping Criteria
= Distinguish between routing & screening
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i Composition Constraints

= SUSC context: 1 user, 1 app server
= Service interactions are known/detected a priori
= Use any detection techniques

= EXperts define service composition

and inter-working constraints
= Explicit vs. implicit constraints
= Mutex, Order, Data Inter-working
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i Configuration Rules

= End-user requirements for their
service behavior

= EXxpressed as condition-action rules
= Conditions relate to events
= Actions affect services, or events

= Backwards-compatible with SERL
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i Operational Context

= EXperts
= Define constraints for all services in a system

s End-users

= Write configurations to compose and personalize
services

= Deploy configurations

= System
= Validates* configuration (offline tool)

= Intercepts events, matches & applies rules
(runtime Feature Interaction Manager¥®)
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i Abstract Example

Participants: Julie (the driver) and her car

If (INCOMING_CALL or OUTGOING_CALL) {
Invoke CS(screening party: car)
If (response from car: Julie is AVAILABLE) {

Invoke ID(“warn that call may be d T Rp——
) } heavy traffic
If (Session.CallExists(Julie)) { \

If (INCOMING_CALL from car and car says Julie is BUSY) {
Invoke ACB // which terminates call, re-establishes later

}
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i Abstract Example

Is this user-defined configuration “valid”?
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i Validation

= Check configurations against
constraints

s Guaranteed behavior

= To the degree with which the expert is confident
with the completeness and consistency of
constraints
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i Acceptable Compositions

= ‘Acceptable’ = All compositions except those
In violation of constraints

= Completeness Assumption
= Approaches a “complete-set”

= Consistency
= Worst-case: no compositions allowed

= Approach depends on expert experience,
tools, maintenance of rule-base
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i Detect Constraint Violations

= Simple: 1 rule, several actions
= Order or mutex violation (composition)
= 1/0 params set (data inter-working)

= Complex: n rules, >0 actions for each

= Rules satisfied simultaneously by event? i.e. Do
conditions overlap?

= If overlap, then
compose the actions, and
check for violations as for simple case
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i Pair-wise Rule Comparison

For rulel, where rulel is a Configuration Rule
For rule2, where rule2 is a Configuration Rule and not rulel

If rulel.condition and rule2.condition overlap then

If rulel.action composed with rule2.action is
not In set of acceptable compositions then

Configuration Rule Module is invalid
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Rule Overlap

Calculating overlap

= Polynomial time solution, O(n¥), if values for variables are
discrete, finite, and ordered (D. Wang et al., IP firewall study)

= Parlay/OSA APl methods, events meet criteria

Example 1: Overlap: Yes
Cl := {"my location is home”}
C2 .= {*caller is bob@school.com”}

Example 2: Overlap: Maybe ... syntax vs. semantics
C1 := {"my location is school” AND “caller is alice@home.com™}
C2 := {"my location is office” AND “caller is sales@company.com”}
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i Rule-Action Composition

= Composing Actions, order is important
= Compare Processing Points
= Compare priorities of rule actions

= A single configuration may specify many
compositions.

= If one is invalid, the whole configuration is
rejected.
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Implementation
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Session & Proxy Objects
(+ Event Translation)
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i Julie Jones and the Family Car

Incoming/Outgoing calls to/from driver - Julie Jones
= Screening by car (CS)

= If screening passed, warning (ID)

Call in-session

= Julie becomes BUSY, save & disconnect (ACB)
ACB waliting

= Julie becomes AVAILABLE, retry (ACB, [CS, ID])
Location too far from home

= Instant message to Mom (ID)
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i Results

= Hand-written rules in terms of
Parlay/OSA events.

= Implemented tools to validate rules
against the system constraints.

= Implemented test architecture,
iIncluding FIM.
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i Contributions

Generic framework for service |
personalization and composition while
managing FI

= Guarantee, to a certain degree, on
composed service behavior provided there
are no constraint violations

= Design & implementation in Parlay/OSA
context
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i Future Work

Multiple users, Multiple Servers
Activation Rules

Non-monotonic extensions due to system
constraint changes

Framework for writing rules with 3" party
“theme-based” rule templates and wizards

Composition Constraints = 3'd party services



‘L Thank you.

= Questions ?
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