
1

Methods for Designing SIP
Services in SDL with Fewer
Feature Interactions

Presented by: Ken Y. Chan
School of Information Technology and

Engineering, University of Ottawa
Feature Interactions Workshop 2003

Date: Wed, June 11, 2003

2

Outline
Motivations
Overview of SIP & FI
SDL Model of SIP and its services
Simulation, Verification & Validation
Extended FI taxonomy
Detecting & Preventing SIP FI’s using Tau
New FIs in SIP
Conclusion & Future Works

3

Motivations

No Formal Service Specification of SIP
(IETF RFC 2543 & 3261) -> To improve
existing RFC and drafts.
Feasibility of SDL/MSC (Tau) tools to
model IETF signaling protocols.
Leverage POTS FIs to prevent FIs in SIP
New Feature Interactions in SIP

4

Overview of SIP
User Agent A

Client

Server

User Agent B

Client

Server

Proxy Y

Client

Server

Proxy X

Client

Server

Response (r1,r2,r3)

Request (q1, q2, q3)
Ack (a1, a2, a3)

q1,a1

r1r3 r2

q2,a2 q3,a3

[back-to-back/regular] User Agent (Client &
Server) & Stateful/Stateless Proxy
Message Type: Request, Response,
Acknowledge, others.

5

Sample SIP Message Headers
Significant header
fields:

Request-URI,
Method, Response
Code,From, To,
Contact(s), Via(s),
Record-
Route(s),Call-Id,
CSeq, Content-
type

SDP body may
contain feature
commands and
parameters

INVITE sip:ken@ee.uottawa.ca SIP/2.0

Via: SIP/2.0/UDP
gtwy1.uottawa.ca;branch=8348

;maddr=137.128.16.254;ttl=16

Via: SIP/2.0/UDP gtwy.ee.uottawa.ca

Record-Route: gtwy.ee.uottawa.ca

From: Bill Gate <sip:bill@Microsoft.com>

To: Ken Chan <sip:ken@uottawa.ca>

Contact: Ken Chan <sip:ken@site.uottawa.ca>

Call-ID: 56258002189@site.uottawa.ca

CSeq: 1 INVITE

Subject: SIP will be discussed, too

Content-Type: application/sdp

Content-Length: 187

v=0

o=bill 53655765 2353687637 IN IP4 224.116.3.4

s=RTP Audio

i=Discussion of .Net

c=IN IP4 224.2.0.1/127

t=0 0

m=audio 3456 RTP/AVP 0

OK 200 SIP/2.0

Via:SIP/2.0/UDP
gtwy1.uottawa.ca;branch=8348

;maddr=137.128.16.254;ttl=16

Record-Route: gtwy.ee.uottawa.ca

From: Bill Gate <sip:bill@Microsoft.com>

To: Ken Chan <sip:ken@uottawa.ca>

Contact: Ken Chan
<sip:ken@site.uottawa.ca>

Call-ID: 56258002189@site.uottawa.ca

CSeq: 1 INVITE

Content-Type: application/sdp

Content-Length: 187

6

Design Approach
The process is highly
iterative.
Modeling starts with
SIP basic service
(establishing,
terminating,
suspending two-party
call, and ringing,
alert, dial tone)
Add advanced call
features (CFB, TCS,
OCS..etc) later.

Manual or synthesis

Requirement
Analysis

Requirements (e.g. MSCs,
Temporal Logics)

Successive System
Model(s) (e.g. final
SDL spec.)

Actor(s)

Validate + verify

Manual or synthesis

Code (e.g. C/C++)

Testing+verifyTranslation Functional
requirements

Use cases

Validate interacting scenarios and verify properties

Refinement

SIP MSCs

Validate each feature against its own MSC

Feature Interaction properties

Standard Model Refined Model (final
specification)

First version (not-
verified Models)

Becomes Becomes

7

Use Cases - CFB and OCS

Originator

Make a call

Participant

Deny call

Originator

Make a call

Participant

Forward call
on busy

ForwarderIndicate busy

<<extend>>

<<extend>>

<<extend>>

Each actor has
a role.
Each use case
represents one
or more
scenarios.

8

env_0 SipSystem2_1_1

system
SipSystem2

Simulation trace
generated by
SDL Simulator 4.4

MSC SipCallFwdBusyWithProxy4

ConnectVoice

((. ’u1’, ’msn.com’ .), (. ’u3’, ’aol.com’ .), ’line 1’)

ConnectVoice

((. ’u1’, ’msn.com’ .), (. ’u3’, ’aol.com’ .), ’line 1’)

OffHook

Alerting

(’line 1’)

Dial

((. ’u2’, ’aol.com’ .))

SelectLine

(’line 1’)
DialTone

DialTone

OffHook

Ready

Ready

Ready

Ready

Whoami
(((. ’p1’, ’aol.com’ .)))

Whoami

((. ’u3’, ’aol.com’ .))

Whoami

((. ’u2’, ’aol.com’ .))

Whoami

((. ’u1’, ’msn.com’ .))

This is Call Forward Busy (CFB).
Call Flow Diagrams do not
represent service scenarios in
the sense of use cases.
So we define service usage
scenarios at the interface
between the user and the
system.
Env_0 represents all
users/actors.
Interactions between the users
and the SIP system describe
use case scenarios of SIP
services.
Abstract User interfaces = {
Whoami, OffHook, SelectLine,
Dial, OnHook, Alerting,
DialTone}.

Use Case Scenarios as MSC

9

Call Forward Busy “service
and protocol scenario” .
Test Scenario is the
combination of the use
case scenario with the
corresponding scenario of
exchanged SIP messages.
It is a MSC for validating
the SDL specification.

Test Scenarios as MSC

10

/* Author: Ken Y. Chan */
/* Email: kchan_uo@yahoo.ca */
/* Copyright @2002 */

USE SipMessages;
USE SipEntities;

system SipSystem2 1(1)

Proxy: SipProxyBlockType

OUA : SipUserAgentBlockType

TUA : SipUserAgentBlockType

EnvP

(MPhoneSendSignals)
Envgate

ChPtoO
(SipS2CMsgs)

P2Cgate

CtoSgate

Env1 (MPhoneReceiveSignals)

(MPhoneSendSignals)

Envgate

NullCh

(SipS2CMsgs)

(SipC2SMsgs)

StoCgate

CtoSgate

chTtoP
(SipS2CMsgs)

StoCgate

S2Pgate

Env2

(MPhoneReceiveSignals)
(MPhoneSendSignals)

Envgate

ChOtoP

(SipC2SMsgs)

CtoSgate

C2Pgate

chPtoT

(SipC2SMsgs)

P2Sgate

StoCgate

The “Envgate” gate manages
the sending and receiving of
“Abstract User” signals
between the user agent (UA)
and the environment.
It has:

an originating UA block,
a proxy block,
a terminating UA block.

Only the originating user
agent and proxy instances can
send SIP requests.
Initialize each user agent and
proxy instance using ‘whoami’
and ‘id’ signals.

Structural Definition

11

/* Author: Ken Y. Chan */
/* Group: University of Ottawa */
/* Copyright @2002 */

block type SipProxyBlockType ProxyProcessInteractions(2)

SipProxy (1,10): SipProxyType

P2Sgate
C2Pgate Ch1

(SipC2SMsgs)
C2Pgate

ch2

(SipC2SMsgs)
P2Sgate

ch4

(SipS2CMsgs)
P2Cgate

P2Cgate
S2Pgatech3

(SipS2CMsgs)

S2Pgate

Envgate

chP

(MPhoneSendSignals)

Envgate

SipProxyBlockType
All blocks are initialized with
one process instance.
During the simulation, a
‘NewInstance’ “Abstract
User” signal can be sent to a
process instance to create a
new process instance.

12

/* Author: Ken Y. Chan */
/* Group: University of Ottawa SITE */
/* Copyright @2002 */

process type SipProxyType WaitForResp(16)

/* User Agent Server Behaviour Section − Wait_For_Resp */

Wait_For_Resp

Response(tCode, tFromUid, tFromDomain,
tToUid, tToDomain, tCt1Uid, tCt1Domain, tCt2Uid, tCt2Domain,
tVia1, tVia2, tVia3, tCid, tCSeqNum, tCSeqMethod,
tSdp1Key, tSdp1Value)

(tFromUid = Uid1) And
(tFromDomain = Domain1)

(tFromUid = Uid2) And
(tFromDomain = Domain2)

tNextHop := Pid2;

Response(tCode, tFromUid, tFromDomain,
tToUid, tToDomain, tCt1Uid, tCt1Domain, tCt2Uid, tCt2Domain,
tVia1, tVia2, tVia3, tCid, tCSeqNum, tCSeqMethod,
tSdp1Key, tSdp1Value) to tNextHop via P2Cgate

reset(RespTimer);

call checkResponse(tRc, ’’, ’OK’,
tCid, Cid, tCSeqNum, tCSeqMethod,

CSeq1Num,CSeq1Method, CSeq2Num, CSeq2Method,
CSeq3Num, CSeq3Method);

tRc

set(now+AckTimeout,AckTimer)

Wait_For_Ack

tNextHop := Pid1;

(False)

(False)

(True)

(False)

(True)

(True)

SipProxyType
trigger events are expressed as:

incoming signals;
pre-condition, post-conditions,
constraints are expressed as:

enabling conditions or decision.

A state transition occurs when:
an “Abstract User” signal is received
from the environment,
a request or response message is
received, or
a continuous signal is enabled.

To add additional features to a
process type:

Subtype a “basic” process type. The
derived type has the same interfaces
and also additional state transitions

SDL timers and a combination of ‘*’
and ‘-‘ state symbols for error
handling and response timer
expirations.

13

Simulation, Verification and
Validation in Tau

Tau offers bit-state, exhaustive, random walk bit state
exploration and verification of MSC.
Use “Verify MSC” option to check whether the model would be
able to realize specific interaction scenarios (MSC).
Tau may report three types of results:

verification of MSC,
violation of MSC, and
deadlock.

An MSC is verified if there exists an execution path in the SDL
model such that the scenario described by the MSC can be
satisfied.
If “Verify MSC” crashes, we can simulate the model to produce
a matching MSC.

14

Extended FI Taxonomy
Feature Interaction Tree
(FIT, on left) has three
hierarchies: by nature, by
cause, by effect.
FIT is a visualization of the
extended taxonomy.
By Effect category:

Incoherent
Deadlock
Livelock
Race Condition
Unexpected Non-
determinism

Preventive measures are
associated to each effect.

SUSC SUM
C

MUS
C

MUMC CUSY

RSC RSL VFA TRC

DLCK LLCK NDET UFRICOH

RSC

MUMC

DLCK

CFB+ CW

TRC

15

Detecting FIs
Specify incoherencies as MSC:

In case of CFB and OCS, How can we express in an MSC that user A cannot call user
C?
If m is a scenario that should never happen, Tau can check whether this MSC m can
be satisfied.
If the result is that m cannot be satisfied by the model, this verifies the property.
However, not possible to verify OCS with current versions of Tau because Tau needs
the MSC to be a complete trace.

Specify incoherencies as Observer Process Assertions:
The observer processes remain idle until all the observed processes have made their
transitions.
Then, each observer process would make one transition and conditions (assertions)
would be checked.
A violation of an assertions would stop the process -> generate a report!
Liveness and faireness property may be checked using counters.

Observer Process is the more viable for FI detection with current Tau.

16

Results of FI test cases
“-“ means no tests for that
feature pair.
“No” indicates that one of the
FI tests (livelocking,
deadlocking, or incoherent) ->
found no FIs for that feature
pair.
“ICH” denotes incoherent
interaction
“LCK” denotes livelocking
interactions.
Intuitively no need for all
possible FI tests for all feature
pairs
We wrote test scenarios:

MSCs for CFB and OCS.
Observer Process Assertions for
OCS and TCS, and AR and ACB.

CW OCS TCS CFB ACB AR

CW - No No No No No

OCS No - No ICH No No

TCS No No - No No No

CFB No ICH No - No No

ACB No No No No - LCK

AR No No No No LCK -

17

Preventing (Resolving) FIs
We have made progress since the submission of our FI paper.
J. Rosenberg has proposed an IETF draft which describes a caller preference
extension to SIP.
An example of a feature predicate for caller preference:

(& (audio=TRUE)
(video=TRUE)
(msgserver=TRUE)
(automata=TRUE)
(attendant=TRUE)
(mobility=fixed)
(| (methods=INVITE) (methods=BYE) (methods=OPTIONS) (methods=ACK)

(methods=CANCEL))
(uri-user="user")
(uri-domain=host.example.com))

Our feature negotiation framework for resolving feature interactions at run-time:
Griffeth’s Negotiating agent approach,
Gorse’s logic-based formalism,
Glyne’s feature set RFC 2533,
IETF draft SIP caller preferences.

18

Feature Negotiation
Framework
Many researchers such as Gorse and Kamoun have
described a feature as a predicate

feature-name
([Preconditions],[TriggerEvents],[Results]).

Instead, we add the feature participants (user agents and
proxies bound to the feature) to this predicate form,
which is then used as the signature of a feature.

feature-name
([Participants],[Preconditions],[TriggerEvents],
[Results]).

19

Example of proposal and re-
proposal

UserAgent A UserAgent BProxy X Proxy Y

A,B,contact:A:proposal
invite

A,B,X,contact:A;proposal
invite

A,B,X,Y,contact:A;propos
al

invite

RINGING,A,B,X,Y,accept-
contact:A:proposal

response

RINGING,A,B,X,accept-
contact:A:proposal

response

RINGING,A,B,accept-
contact:A:proposal

response

A,B,contact:A:proposal2
invite

A,B,X,contact:A;proposa2
invite

A,B,X,Y,contact:A;proposal2
invite

The caller detects feature interaction(s) and re-proposes

20

New FIs in SIP
Cooperative Interactions:

Request Forking (RF) and Auto-Answer
(voicemail)

Adversarial Interactions:
Timed ACD and Timed Terminating Call
Screening
Call Screening and Register
Dynamic Addressing and User Mobility and
Anonymity

21

Conclusion 1
We believe SIP or any IETF application protocols should be
specified from a user-centric perspective (e.g. Abstract User
Interface).
Feature Interaction Tree is currently a catalog of FIs. Useful for
giving us the intuition on the new FIs.
Our Feature Negotiation Framework can resolve many known
feature interactions (e.g. MUMC).
It also allows distributing the resolution decision making around.
Our Feature Negotiation extension to SIP is compatible to caller
preferences, and SIP 1.x/2.x.
Should be compatible to all sorts of call features (e.g. mid-call,
multi-user call), and web services.

22

Conclusion 2
Enhance SDL and Tau:

MSCs have limitations in terms of expressing quantification of instances
and their behaviors LSC??
Observer Process Assertions is the only viable approach for detecting FI.
To model SIP messages as SDL signals, we cannot easily insert, remove,
search, and modify values from the optional and/or variable size header
fields.

The SDL language could be extended with additional built-in ADTs,
e.g. linked list and hash table like Java and C++.
String processing facilities like the int indexOf(String substring)

To incorporate model checking of the SDL system using temporal logic
formula -> easier to specify distributed properties like liveness.
Too many crashes in Tau Validation Engine -> complex data type or
model size??

23

Future Works and References

Submit an IETF draft on our Feature
Negotiation extension to SIP.
Explore properties of FIT.
Investigate LSC for specifying FI (test
scenarios).
Perhaps modify the model to support
RFC 3261.

24

Acknowledgements and
References

Thanks Dr. G. v. Bochmann for his supervision, and Dr D. Amyot and
L. Logrippo for their insights in FI and Telephony Service
Specifications.
More info can be found on:

My research web site is: http://www.geocities.com/kchan_uo
Or my university web site: http://www.site.uottawa.ca/~kchan

Publications:
My thesis: K. Chan, “Ken Chan University of Ottawa Thesis Page”,
http://beethoven.site.uottawa.ca/DSRG/PublicDocuments/REPORTS-THESES/Thesis-
Chan/, accessed on April 30, 2003.

[1] K. Chan, "Methods for Designing Internet Telephony Services with Fewer Feature Interactions",
Master Thesis, University of Ottawa, Ottawa, ON, Canada, May 2003.
[2] K. Chan, and G. v. Bochmann, "Methods for Designing IP Telephony Services with Fewer Feature
Interactions", Feature Interactions in Telecommunications and Software Systems VII, IOS Press, June
2003.
[3] K. Chan, and G. v. Bochmann, "Modeling IETF Session Initiation Protocol and its services in SDL",
In Proceeding of Eleventh SDL Forum, LNCS, Springer-Verlag Heidelberg, Stuttgart, Germany, July 1-
4, 2003.

http://www.geocities.com/kchan_uo
http://www.site.uottawa.ca/~kchan
http://beethoven.site.uottawa.ca/DSRG/PublicDocuments/REPORTS-THESES/Thesis-Chan/
http://beethoven.site.uottawa.ca/DSRG/PublicDocuments/REPORTS-THESES/Thesis-Chan/
http://beethoven.site.uottawa.ca/DSRG/PublicDocuments/REPORTS-THESES/Thesis-Chan/

	Methods for Designing SIP Services in SDL with Fewer Feature Interactions
	Outline
	Motivations
	Overview of SIP
	Sample SIP Message Headers
	Design Approach
	Use Cases - CFB and OCS
	Use Case Scenarios as MSC
	Test Scenarios as MSC
	Structural Definition
	SipProxyBlockType
	SipProxyType
	Simulation, Verification and Validation in Tau
	Detecting FIs
	Results of FI test cases
	Preventing (Resolving) FIs
	Feature Negotiation Framework
	Example of proposal and re-proposal
	New FIs in SIP
	Conclusion 1
	Conclusion 2
	Future Works and References
	Acknowledgements and References

