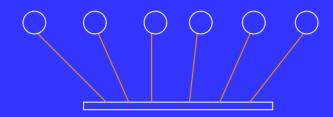


University of Glasgow

Generalising Feature Interactions in Email

Muffy Calder, Alice Miller Dept. of Computing Science University of Glasgow

Motivation


- property based approach to feature interaction analysis
- interaction analysis should
 - ➤ be automated

generalise to systems containing any number of components

based on Hall's email model from FIW'00

Email system

Client server architecture

basic email + features at client or server

- encrypt -- key of intended recipient
- decrypt key of actual recipient
- filter msgs from address
- forward -msgs to address
- autorespond -to first incoming msgs

Email system

client process

mailer process

Promela implementation

Clients and the Mailer are processes.

- communication is asynchronous
- channels associated with each client and the mailer
- delivery of mail takes precedence over sending
- busy waiting
- tension between
 - atomicity/number of variables/level of abstraction

Property based approach

Example Properties in linear temporal logic:

messages are delivered to intended recipients

[](p||q) where p = (last_del_to_i_to = i) q = (last_del_to_i_to = M)

messages are forwarded, client, has forwarding to client,

observation variables: last_del_to_i_to, last_del_to_i_body, last_sent_from_i_to

Property based approach

Feature interaction analysis based on:

 $f_0 \parallel System \parallel = \phi$ but $f_0 \parallel f_1 \parallel System \not \models \phi$

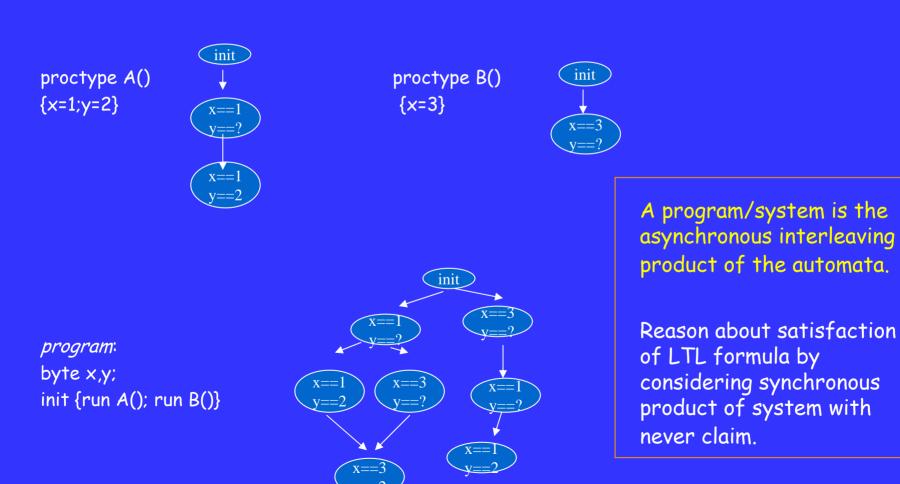
for example:

 $Client_0 \mid | Client_1 \mid | Client_2 \mid | Client_3 \mid | Mailer \mid = \phi$

but

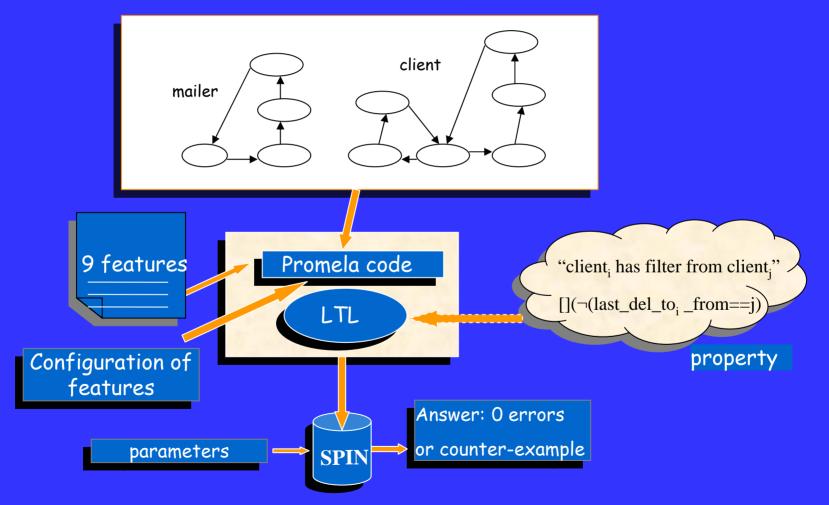
Client'₀ || Client₁ || Client₂ || Client₃ || Mailer $\not = \phi$

Reasoning

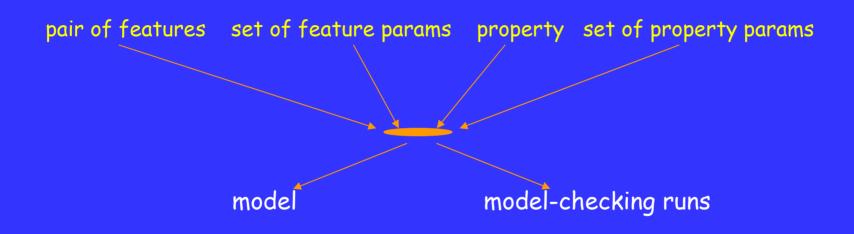

- Use model-checker (SPIN) for reasoning
- Results take the form

 $M(p_0 || p_1 || p_2 || p_3 || mailer) \models \phi(0,1,...,t)$

where


- $p_0 \dots p_3$ are instances of a *parameterised* process p
- $p_0 \dots p_3$ are not, in general, isomorphic
- M(....) is the model (Kripke structure) of the concurrent processes

model checking



overall approach

Mailer and client basic behaviour

automation

up to 5 client processes required for this feature set 111 feasible parameter sets, after symmetry reduction

via perl scripts

interactions

- the usual!
- both single user and multiple user
- multiple user agree with Hall results

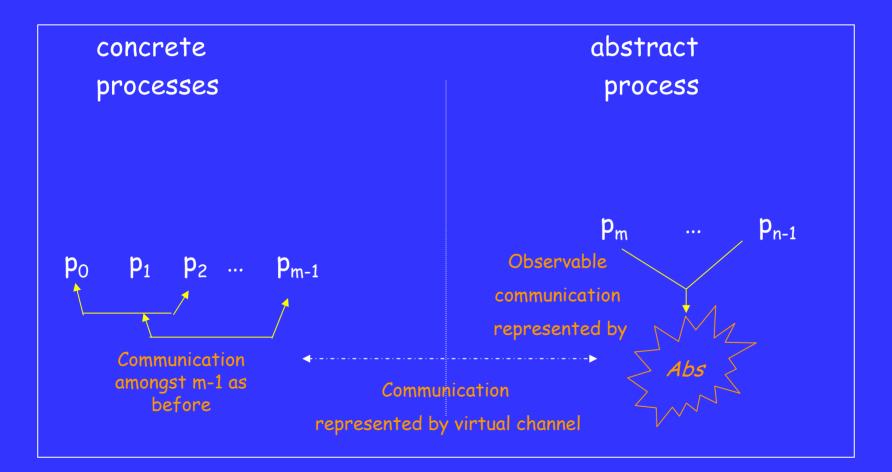
The interesting question is.. do results scale?

- do they hold for 7 processes, 8 processes, ... ?
- for every problem, we eventually run out of memory (or patience)
 - usually around 6 processes

Generalisation

• What we really want is to show is $\forall n. \ M(p_0 || p_1 || p_2 || ... || p_{n-1} || mailer) \models \phi(0,1,...,t)$

> Not possible with model checking Undecidable (Apt + Kozen, 1986)


- Induction is very hard
- Is abstraction possible?

Abstraction

- What do we mean by abstraction?
 - not an abstraction of one system, but of a family of systems
 - Choose appropriate constant m such that $t \le m-1$
 - p₀, p₁ .. p_{m-1} are concrete
 - p_m, p_{m+1} .. p_{n-1} are *abstract*
 - Represent the most general, observable behaviour of the abstract processes $p_m \mid\mid p_{m+1} \mid\mid ... \mid\mid p_{n-1}$ by a process Abs
 - Modify the interaction between concrete and abstract processes, i.e. modify the concrete processes.

All processes should be generated automatically from p.

Abstract approach

Abstract approach: email

- Only "read" behaviour from *Abs*. (Choice rather than actual read)
- mailer "writes" to Abs if not blocked. (Choice).
- Not strictly a conservative extension. *Abs* can send mail if there is mail to to be delivered. Does not affect functional behaviour.

Results

Checking done with perl scripts.

No new interactions (not surprising, given feature set).

Complexity lies between that of m and m+1 (concrete) clients.

m depends on feature parameters and property parameters (essentially union).

The p_m , p_{m+1} , ..., p_{n-1} need not be isomorphic, or even observationally equivalent, but we make some assumptions about both concrete and abstract processes:

- 1. All interaction is through communication channels.
- 2. All processes are *open symmetric* behave the same with respect to isomorphic processes no integer literals or constants in boolean conditions
 - g?x; x==9 => goto label NO
 - g?x; x==var_i => goto label
 YES

Theorem

 $\begin{aligned} \mathcal{M}(\text{client}_{0} \mid | \text{ client}_{1} \mid | ... \mid | \text{ client}_{m-1} \mid | \text{ mailer'} \mid | \textbf{Abs}) & \models \phi(0,1,...,t) \\ & \Rightarrow \\ \forall n. \ \mathcal{M}(\text{client}_{0} \mid | \text{ client}_{1} \mid | ... \mid | p_{n-1} \mid | \text{ mailer}) & \models \phi(0,1,...,t). \end{aligned}$

Proof

Show simulation. Depends on way we construct Abs and mailer': consider how to match

- concrete process reads from abstract channel
- concrete process write to abstract channel
- abstract process reads from concrete channel
- abstract process writes to abstract channel

Conclusions

- property based approach to interaction analysis
 - automated using perl scripts to tailor model and generate runs.
- abstraction to generalise results about infinite *families* of communicating processes
 - processes are not isomorphic.
- generation of abstract model is straightforward
 - implemented in perl scripts
 - lower bound for m
 - for this feature set abstraction approach is tractable.

further work - is the abstraction approach constructing an invariant?