
May 2003 1

University
of

Glasgow

Generalising Feature Interactions
in

Email

Muffy Calder, Alice Miller
Dept. of Computing Science

University of Glasgow

May 2003 2

Motivation

• property based approach to feature interaction analysis

• interaction analysis should

be automated
generalise to systems containing any number of

components

• based on Hall’s email model from FIW’00

May 2003 3

Email system

Client server architecture

basic email + features at client or server

• encrypt -- key of intended recipient

• decrypt – key of actual recipient

• filter – msgs from address

• forward –msgs to address

• autorespond –to first incoming msgs

May 2003 4

Email system

initial send
mail

specify
recipient

specify
msg

specify
sender

deliver
mail

process
msg

initial process msg

client process

specify
recipient

specify
msg

send msg

mailer process

May 2003 5

Promela implementation

Clients and the Mailer are processes.

• communication is asynchronous

• channels associated with each client and the mailer

• delivery of mail takes precedence over sending

• busy waiting

• tension between
• atomicity/number of variables/level of abstraction

May 2003 6

Property based approach

Example Properties in linear temporal logic:

• messages are delivered to intended recipients

[](p||q) where p = (last_del_toi_to = i)

q = (last_del_toi_to = M)

• messages are forwarded, clienti has forwarding to clientj

∃<>(¬(p||q) where p = (last_del_toj_to = M)

q = (last_del_toj_to = j)

(i.e. clientj can receive mail not addressed to j)

observation variables: last_del_toi_to, last_del_toi_body, last_sent_fromi_to

May 2003 7

Property based approach

Feature interaction analysis based on:

f0 || System |= φ but f0 || f1 || System |= φ

for example:

Client0 || Client1 || Client2 || Client3 || Mailer |= φ

but

Client’0 || Client1 || Client2 || Client3 || Mailer |= φ

May 2003 8

Reasoning

• Use model-checker (SPIN) for reasoning

• Results take the form
M(p0 || p1 || p2 || p3 || mailer) |= φ(0,1,…,t)

where

– p0 … p3 are instances of a parameterised process p
- p0 … p3 are not, in general, isomorphic
− φ is temporal logic formula containing free variables

indexed by 0,1,…,t 0<t<3
- M(….) is the model (Kripke structure) of the concurrent processes

May 2003 9

model checking

proctype A() proctype B()
{x=1;y=2} {x=3}

program:
byte x,y;
init {run A(); run B()}

init

x==3
y==?

x==1
y==2

init

x==1
y==?

init

x==1
y==?

x==3
y==?

x==1
y==2

x==3
y==?

x==1
y==?

x==1
y==2x==3

y==2

A program/system is the
asynchronous interleaving
product of the automata.

Reason about satisfaction
of LTL formula by
considering synchronous
product of system with
never claim.

May 2003 10

overall approach

Mailer and client basic behaviour

property

Promela codePromela code

LTL

“clienti has filter from clientj”

[](¬(last_del_toi _from==j)

Answer: 0 errors

or counter-example

Answer: 0 errors

or counter-exampleSPIN

9 features

parametersparameters

Configuration of
features

Configuration of
features

mailer
client

May 2003 11

automation

pair of features set of feature params property set of property params

model model-checking runs

up to 5 client processes required for this feature set
111 feasible parameter sets, after symmetry reduction

via perl scripts

May 2003 12

interactions

• the usual!

• both single user and multiple user

• multiple user agree with Hall results

The interesting question is.. do results scale?
• do they hold for 7 processes, 8 processes, … ?

• for every problem, we eventually run out of memory

(or patience)
– usually around 6 processes

May 2003 13

Generalisation

• What we really want is to show is

∀n. M(p0 || p1 || p2 || … || pn-1 || mailer) |= φ(0,1,…,t)

Not possible with model checking
Undecidable (Apt + Kozen, 1986)

• Induction is very hard

• Is abstraction possible?

May 2003 14

Abstraction
• What do we mean by abstraction?

- not an abstraction of one system, but of a family of systems

– Choose appropriate constant m such that t<m-1
• p0, p1 .. pm-1 are concrete

• pm, pm+1 .. pn-1 are abstract

– Represent the most general, observable behaviour of the abstract processes
pm || pm+1 ||… || pn-1 by a process Abs

- Modify the interaction between concrete and abstract processes, i.e. modify
the concrete processes.

All processes should be generated automatically from p.

May 2003 15

Abstract approach

concrete abstract
processes process

pm … pn-1

p0 p1 p2 … pm-1 Observable

communication

represented by
Communication
amongst m-1 as

before
Communication

represented by virtual channel

Abs

May 2003 16

Abstract approach: email
concrete abstract
clients client

clientm … clientn-1

client0 client1 … clientm-1

mailer Abs

• Only “read” behaviour from Abs. (Choice rather than actual read)

• mailer “writes” to Abs if not blocked. (Choice).

• Not strictly a conservative extension. Abs can send mail if there is
mail to to be delivered. Does not affect functional behaviour.

May 2003 17

Results

Checking done with perl scripts.

No new interactions (not surprising, given feature set).

Complexity lies between that of m and m+1 (concrete) clients.

m depends on feature parameters and property parameters
(essentially union).

May 2003 18

Soundness
The pm, pm+1, … ,pn-1 need not be isomorphic, or even
observationally equivalent, but we make some assumptions about
both concrete and abstract processes:

1. All interaction is through communication channels.

2. All processes are open symmetric – behave the same with
respect to isomorphic processes - no integer literals or
constants in boolean conditions

• g?x; x==9 => goto label NO

• g?x; x==vari => goto label YES

May 2003 19

Theorem

M(client0 || client1 || … || clientm-1 || mailer’ || Abs) |= φ(0,1,…,t)
=>

∀n. M(client0 || client1 || … || pn-1 || mailer) |= φ(0,1,…,t).

Proof
Show simulation. Depends on way we construct Abs and mailer’: consider how to match

- concrete process reads from abstract channel
- concrete process write to abstract channel

…
- abstract process reads from concrete channel
- abstract process writes to abstract channel

May 2003 20

Conclusions

• property based approach to interaction analysis
• automated using perl scripts – to tailor model and generate runs.

• abstraction to generalise results about infinite families of communicating
processes

• processes are not isomorphic.

• generation of abstract model is straightforward
• implemented in perl scripts
• lower bound for m
• for this feature set abstraction approach is tractable.

further work – is the abstraction approach constructing an invariant?

	Generalising Feature Interactions inEmail
	Motivation
	Email system
	Email system
	Promela implementation
	Property based approach
	Property based approach
	Reasoning
	model checking
	overall approach
	automation
	interactions
	Generalisation
	Abstraction
	Abstract approach
	Abstract approach: email
	Results
	Soundness
	Theorem
	Conclusions

