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Motivation

• property based approach to feature interaction analysis

• interaction analysis should

be automated
generalise to systems containing any number of 

components

• based on Hall’s email model from FIW’00
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Email system

Client server architecture

basic email + features at client or server

• encrypt -- key of intended recipient 

• decrypt – key of actual recipient

• filter – msgs from address

• forward –msgs to address

• autorespond –to first incoming msgs
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Email system
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Promela implementation

Clients and the Mailer are processes.  

• communication is asynchronous

• channels associated with each client and the mailer

• delivery of mail takes precedence over sending

• busy waiting 

• tension between 
• atomicity/number of variables/level of abstraction 
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Property based approach

Example Properties in linear temporal logic:

• messages are delivered to intended recipients

[](p||q)       where p = (last_del_toi_to = i)

q = (last_del_toi_to = M) 

• messages are forwarded, clienti has forwarding to clientj

∃<>(¬(p||q)    where p = (last_del_toj_to = M)

q = (last_del_toj_to = j) 

(i.e. clientj can receive mail not addressed to j)

observation variables: last_del_toi_to, last_del_toi_body, last_sent_fromi_to
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Property based approach

Feature interaction analysis based on:

f0 || System  |= φ but f0 || f1 || System  |= φ

for example:

Client0 || Client1 || Client2 || Client3 || Mailer  |= φ

but

Client’0 || Client1 || Client2 || Client3 || Mailer  |= φ
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Reasoning 

• Use model-checker (SPIN) for reasoning 

• Results take the form
M(p0 || p1 || p2 || p3 || mailer) |= φ(0,1,…,t)

where

– p0 … p3 are instances of a parameterised process p
- p0 … p3 are not, in general, isomorphic
− φ is temporal logic formula containing free variables 

indexed by 0,1,…,t  0<t<3
- M(….) is the model (Kripke structure) of the concurrent processes
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model checking  

proctype A()                                            proctype B()
{x=1;y=2}                                                   {x=3}

program:
byte x,y;
init {run A(); run B()}

init

x==3
y==?

x==1
y==2

init

x==1
y==?

init

x==1
y==?

x==3
y==?

x==1
y==2

x==3
y==?

x==1
y==?

x==1
y==2x==3

y==2

A program/system is the 
asynchronous interleaving 
product of the automata.

Reason about satisfaction 
of LTL formula by 
considering synchronous 
product of system with 
never claim.
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overall approach

Mailer and client basic behaviour

property

Promela codePromela code

LTL

“clienti has filter from clientj”

[](¬(last_del_toi _from==j)

Answer: 0 errors 

or counter-example

Answer: 0 errors 

or counter-exampleSPIN

9 features

parametersparameters

Configuration of 
features

Configuration of 
features

mailer
client
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automation

pair of features    set of feature params property   set of property params

model                          model-checking runs

up to 5 client processes required for this feature set
111 feasible parameter sets, after symmetry reduction

via  perl scripts
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interactions

• the usual!

• both single user and multiple user

• multiple user agree with Hall results  

The interesting question is.. do results scale?
• do they hold for 7 processes, 8 processes, … ?

• for every problem, we eventually run out of memory 

(or patience) 
– usually around 6 processes
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Generalisation

• What we really want is to show is

∀n. M(p0 || p1 || p2 || … || pn-1 || mailer) |= φ(0,1,…,t)

Not possible with model checking 
Undecidable (Apt + Kozen, 1986) 

• Induction is very hard

• Is abstraction possible?
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Abstraction
• What do we mean by abstraction?

- not an abstraction of one system, but of a family of systems

– Choose appropriate constant m such that t<m-1
• p0, p1 .. pm-1 are concrete

• pm, pm+1 .. pn-1 are abstract

– Represent the most general, observable behaviour of the abstract processes 
pm || pm+1 ||… || pn-1 by a process Abs

- Modify the interaction between concrete and abstract processes, i.e. modify 
the concrete processes.

All processes should be generated automatically from p.
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Abstract approach

concrete                                                abstract
processes                                                process

pm …       pn-1

p0 p1 p2  …    pm-1 Observable 

communication 

represented by
Communication 
amongst m-1 as 

before
Communication 

represented by virtual channel

Abs



May 2003 16

Abstract approach: email
concrete                                                   abstract
clients                                                   client

clientm …       clientn-1

client0 client1 …    clientm-1

mailer Abs

• Only “read” behaviour from Abs.   (Choice rather than actual read)

• mailer “writes” to Abs if not blocked. (Choice). 

• Not strictly a conservative extension. Abs can send mail if there is 
mail to to be delivered.  Does not affect functional behaviour.
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Results

Checking done with perl scripts.

No new interactions (not surprising, given feature set).

Complexity lies between that of m and m+1 (concrete) clients.

m depends on feature parameters and property parameters 
(essentially union). 
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Soundness
The pm, pm+1, … ,pn-1 need not be isomorphic, or even 
observationally equivalent, but we make some assumptions about 
both concrete and abstract processes:

1. All interaction is through communication channels.

2. All processes are open symmetric – behave the same with 
respect to isomorphic processes - no integer literals or 
constants in boolean conditions

• g?x; x==9 => goto label             NO

• g?x; x==vari => goto label         YES
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Theorem 

M(client0 || client1 || … || clientm-1 || mailer’ || Abs) |= φ(0,1,…,t)
=>         

∀n. M(client0 || client1 || … || pn-1 || mailer) |= φ(0,1,…,t). 

Proof
Show simulation.  Depends on way we construct Abs and mailer’: consider how to match

- concrete process  reads from abstract channel 
- concrete process write to abstract channel

…
- abstract process  reads from concrete channel
- abstract process writes to abstract channel



May 2003 20

Conclusions

• property based approach to interaction analysis
• automated using perl scripts – to tailor model and generate runs.

• abstraction to generalise results about infinite families of communicating 
processes

• processes are not isomorphic.

• generation of  abstract model is straightforward
• implemented in perl scripts
• lower bound for m
• for this feature set abstraction approach is tractable.

further work – is the abstraction approach constructing an invariant?
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