Aspect-Oriented
Solutions to Feature
Interaction Concerns

Lynne Blair, Jianxiong Pang

Lancaster University, U.K.

In a nutshell ...

B A two-level architecture for feature driven
software development

® One level, the base layer;, for a feature’s core
behaviour

m Object-oriented, e.g. Java
® Another level, the meta-layer, for resolution

modules to provide solutions (resolutions) to feature
interaction problems

m Aspect-oriented, e.g. Aspect], AspectWerkz, etc.

Overview:
Aspect-Oriented Programming

m Range of techniques to facilitate enhanced separation
of concerns
m Historical links with reflective techniques

= Also links with subject oriented programming, composition
filters, hyperslices, superimpositions, etc.

B Recognises crosscutting concerns

m Security, logging, tracing, debugging, error handling, non-
functional concerns, etc.

m AOP elegantly captures concerns that cut across modules and
avoids “code-tangling”

A simple AOP tracing example

m Using Aspect] (Kiczales et al) — http://aspectj.org
= a mature and well-supported AOP language

aspect TraceAspect {
// set up pointcut to trace all methods in all (base-level) classes
pointcut allMethods(): execution(* *(..));

/[around - describe what happens around the allMethods pointcut

void around (): allMethods() {
System.out.printin(“Entering "+thisJoinPointStaticPart.getSignature());
proceed();
System.out.printin("Leaving "+thisJoinPointStaticPart.getSignature());

I

C:\myjava>ajc x*.java ... with aspects ‘

C:\myjava>java Driver USlng
trace: Entering void Driver.main(String[])
trace: Entering void ClublList.add(Club) ;l
trace: Leaving void ClublList.add(Club) ASPeCt

trace: Entering void ClublList.add(Club)

trace: Leaving void ClubList.add({Club)

trace: Entering void ClublList.add(Club) \myjava
trace: Leaving void ClubList.add{Club)
trace: Entering void ClubList.display() 3 327 Club.java
trace: Entering void ClubElement.display() EE 269 ClubElement .java
trace: Entering void Club.display() - 441 ClubList.java

The favourite night at Liquid is Friday g 339
trace: Leaving void Club.display()
trace: Leaving void ClubElement.display()

Driver. java
9 927 TraceAspect.java

trace: Entering void ClubElement.display()
trace: Entering void Club.display() .
The favourite night at The Carleton is Thursday Without aspects ...

trace: Leaving void Club.display()

trace: Leaving void ClubElement.display() a

trace: Entering void ClubElement.display()
trace: Entering void Club.display()

The favourite night at The Sugarhouse is lWednesday yid is Friday

trace: Leaving void Club.display() Carleton is Thursday

trace: Leaving void ClubElement.display() Sugarhouse is Wednesday
trace: Leaving void ClubList.display()

trace: Leaving void Driver .main(String[])

Applying AOP to Feature Driven
Development

m Requirement: features must be capable of working
with other features

m but, a feature designer cannot foresee future features that
will interact with his/her feature

m adding multiple instances of resolution code to existing code
compromises structure/ elegance

m this is a classic example of “code tangling”

® One solution: separate all resolution code from
core code using AOP techniques

B Result: a two-level architecture for FDD

A classic resolution example ...

m Consider standard telephony features
m Classic interaction example: CEFB vs VoiceMail

® Implement CFB and VoiceMail as separate features

m Simple resolution strategy:

If BUSY and caller in <special_user_list>
proceed with CFB

else
proceed with VoiceMail

m Can viewed as logically belonging alone, rather than
being embedded with CFB and/ or VoiceMail

Interactions and resolutions in an
email system

m Our study is based on the 10 email features (and
26 1dentified feature interactions) from:

m R. Hall, “Feature Interactions in Electronic Mail”,
Feature Interactions in Telecommunications and

Software Systems VI (Glasgow), pp 67-82, 2000

m HExamples of features:
® RemailMessage — provides pseudonym for sender
= AutoResponder — automatically replies to messages

H ctcC.

Feature Interaction:
Remailer vs AutoResponder

m Interaction identified in Hall’s paper between these 2
features - under 2 separate scenarios

® One interaction scenario:
® Bob has a Rewai/ account and AuntoResponder teature.
m Alice sends message to Bob’s Rewaz/ account (pseudonym).

m AutoResponder receives message via RemailMessage and replies
automatically and directly to Alice, using Bob’s real ID.

m Because AwntoResponder replies directly, Alice infers the Remail
account is Bob’s, thus defeating RemailMessage’s purpose.

Bob’s ' Bob’s

| —
Alice Remailer AutoResponder

_/

Resolution for
Remailer vs AutoResponder

m Resolution can be achieved by (at least) two
different mechanisms:
L. In AwutoResponder, check if answering a message

from the Remailer. If so, reply using the Remailing
rule:

Bob’s ' Bob’s
Remailer AutoResponder
— —

b) Remailer re-routes reply a) Send reply to Remailer with

Alice >

having anonymised sender intended recipient as 15 line

2. OR, modify the Remailer to ensure that all replies
pass back through it (allocate sender a pseudonym)

Resolution (1) in Aspect]

aspect SoftenAutoResponderForRemailer {

before(Message msg):execution(void AutoResponder.send(Message)) && args(msg) {
//if msg is from Remailer, then respond to Remailer using the remailing rule
if (isFromRemail(msg)) {
writeContentFirstLine(msg.getReceiver());
msg.setReceiver(getRemailAddress(msg));

%

boolean isFromRemail(Message msg) {
//check if msg is from Remailer ...

;

void writeContentFirstLine(String str) {
/ /write intended recipient’s address in the 1st line of message content ...

)
String getRemail Address(Message msg) {

//get Remail Server’s address from msg ...

i)

Summary so far

m We have separated interaction resolution
modules from a feature’s core behaviour:

m Can mtroduce new methods and/or new attributes
into feature’s behaviour as required

m Relatively easy to maintain separation w/out aspects

m Can weave new behaviour (advice) around, before or
after existing feature behaviour
m Difficult to maintain separation w/out aspects
= Pointcuts can be defined over any execution points
in any feature box

m i.c. aspects need not be specific to one feature box

Evaluation

m To evaluate:
m Extended system to all 10 features of R. Hall’s paper

® To create running system, refactored some of GUI
modules from ICEMail (email client, Java Mail API)

m Hvaluation categories:
m Cleanness of separation
m Re-use
m Maithfulness of implementation to specification
® Adaptability to requirement change

= Support for interaction avoidance, detection, and
resolution

Cleanness of separation

m Object-orientation provides a widely accepted and
largely effective level of separation

m Yet feature-oriented systems that require resolution
modules for inter-working suffer “code-tangling”

m Two-level architecture provides elegant separation

m [ncreasingly important as number of features |
m R. Hall’s paper - 10 features, 26 identified interactions
m Fach interaction requires a resolution
m Possible interaction resolution patterns
m [CEMail system — “core” functionality: 800 lines — 70

Re-use

m The cleanness of the “core” functionality, gives
good opportunities for re-use (e.g. ICEMail)

m Many resolution modules are very specific,
hence only offer limited scope for re-use

m Re: patterns ...

m All of the 26 interactions arise from the need for
some level of boundary checking

® Approx. halt could be classed as ‘generic’ (could be
implemented as a pattern and applied elsewhere)

= Still requires more work !

Faithfulness of implementation
to specification

m We claim that our two level architecture:
® Improves readability and simplicity of code

= Allows a feature’s specification to map more directly
to its implementation

m This, in turn, opens the door to generative
programming techniques (for code or code templates)

Adaptability to
requirement change

m New features can be added to system without
consideration (or re-writing) of other features

m Also no need to consider interactions when
writing a feature — can focus on these separately
m Similarly remowval of features is straightforward

® Avoids redundant code being left embedded with
features

Support for interaction avoidance,
detection and resolution

m This category in fact raised further questions ...

m Obvious problem:

® Resolution modules (aspects) can themselves interact
m Many reflective architectures are multi-level

m Should we relax 2-level architecture?

m Meta-meta level is for solving resolution interactions?
m [anguage choice — Aspect]?

® Aspects of aspects not permitted

= Composition 1s implicit - in other languages it’s explicit

Support for aspect interactions?

m Avoidance — by ‘design by contract’ approach or
explicit (restrictive) composition operators

m [ntroduce meta-meta layer

m Formal techniques (cf. FIW) e.g. model-checking
properties of aspects (but which properties?)

B Aspect community’s work:

m A framework for the detection & resolution of aspect
interactions, Douence, Fradet & Sudholt, GPCE’02

® Superimpositions and aspect-oriented programming,
Sthman, Katz, BCS Computer Journal 2003.

Performance?

m Coming soon!

m See FAQ on http:/ /aspectj.org

Final comment

m Aspect-oriented approaches provide powerful
language-level support for resolution modules

B Can be used to enhance traditional software
development practices

m This is not domain specific — examples from:
® Telephony and email
® Middleware’s system/ technical services
® Tracking systems

® Building Control Systems (coming next) ...

	Aspect-Oriented Solutions to Feature Interaction Concerns
	In a nutshell …
	Overview: Aspect-Oriented Programming
	A simple AOP tracing example
	Using AspectJ
	Applying AOP to Feature Driven Development
	A classic resolution example …
	Interactions and resolutions in an email system
	Feature Interaction: Remailer vs AutoResponder
	Resolution for Remailer vs AutoResponder
	Resolution (1) in AspectJ
	Summary so far
	Evaluation
	Cleanness of separation
	Re-use
	Faithfulness of implementationto specification
	Adaptability torequirement change
	Support for interaction avoidance, detection and resolution
	Support for aspect interactions?
	Performance?
	Final comment

