
AspectAspect--Oriented Oriented
Solutions to Feature Solutions to Feature
Interaction ConcernsInteraction Concerns

Lynne Blair, Lynne Blair, JianxiongJianxiong PangPang

Lancaster University, U.K.Lancaster University, U.K.

In a nutshell …In a nutshell …

A twoA two--level architecture for feature driven level architecture for feature driven
software developmentsoftware development

One level, the One level, the base layerbase layer, for a feature’s core , for a feature’s core
behaviourbehaviour

ObjectObject--oriented, e.g. Javaoriented, e.g. Java

Another level, the Another level, the metameta--layerlayer, for resolution , for resolution
modules to provide solutions (resolutions) to feature modules to provide solutions (resolutions) to feature
interaction problemsinteraction problems

AspectAspect--oriented, e.g. oriented, e.g. AspectJAspectJ, , AspectWerkzAspectWerkz, etc., etc.

Overview: Overview:
AspectAspect--Oriented ProgrammingOriented Programming

Range of techniques to facilitate Range of techniques to facilitate enhanced separation enhanced separation
of concernsof concerns

Historical links with reflective techniquesHistorical links with reflective techniques
Also links with subject oriented programming, composition Also links with subject oriented programming, composition
filters, filters, hypersliceshyperslices, superimpositions, etc., superimpositions, etc.

Recognises Recognises crosscutting concernscrosscutting concerns
Security, logging, tracing, debugging, error handling, nonSecurity, logging, tracing, debugging, error handling, non--
functional concerns, etc.functional concerns, etc.
AOP elegantly captures concerns that cut across modules and AOP elegantly captures concerns that cut across modules and
avoids “codeavoids “code--tangling”tangling”

A simple AOP tracing exampleA simple AOP tracing example

Using Using AspectJAspectJ ((KiczalesKiczales et al) et al) –– http://http://aspectj.orgaspectj.org
a mature and wella mature and well--supported AOP languagesupported AOP language

aspect TraceAspect {
// set up pointcut to trace all methods in all (base-level) classes
pointcut allMethods(): execution(* *(..));

// around - describe what happens around the allMethods pointcut
void around (): allMethods() {
System.out.println(“Entering "+thisJoinPointStaticPart.getSignature());
proceed();
System.out.println("Leaving "+thisJoinPointStaticPart.getSignature());

} }

Using Using
AspectJAspectJ

Without aspects …

… with aspects

Applying AOP to Feature Driven Applying AOP to Feature Driven
DevelopmentDevelopment

Requirement: features must be capable of working Requirement: features must be capable of working
with other featureswith other features

but, a feature designer cannot foresee future features that but, a feature designer cannot foresee future features that
will interact with his/her featurewill interact with his/her feature
adding multiple instances of resolution code to existing code adding multiple instances of resolution code to existing code
compromises structure/ elegancecompromises structure/ elegance
this is a classic example of “code tangling”this is a classic example of “code tangling”

One solution: separate all resolution code from One solution: separate all resolution code from
core code using AOP techniquescore code using AOP techniques
Result: a twoResult: a two--level architecture for FDDlevel architecture for FDD

A classic resolution example …A classic resolution example …

Consider standard telephony featuresConsider standard telephony features
Classic interaction example: CFB Classic interaction example: CFB vsvs VoiceMailVoiceMail
Implement CFB and Implement CFB and VoiceMailVoiceMail as separate featuresas separate features
Simple resolution strategy:Simple resolution strategy:

Can viewed as logically belonging alone, rather than Can viewed as logically belonging alone, rather than
being embedded with CFB and/ or being embedded with CFB and/ or VoiceMail

if BUSY and caller in <if BUSY and caller in <special_user_listspecial_user_list>>
proceed with CFBproceed with CFB

elseelse
proceed with proceed with VoiceMailVoiceMail

VoiceMail

Interactions and resolutions in an Interactions and resolutions in an
email systememail system

Our study is based on the 10 email features (and Our study is based on the 10 email features (and
26 identified feature interactions) from:26 identified feature interactions) from:

R. Hall, “Feature Interactions in Electronic Mail”, R. Hall, “Feature Interactions in Electronic Mail”,
Feature Interactions in Telecommunications and Feature Interactions in Telecommunications and
Software Systems VI (Glasgow), pp 67Software Systems VI (Glasgow), pp 67--82, 2000 82, 2000

Examples of features:Examples of features:
RemailMessageRemailMessage –– provides pseudonym for senderprovides pseudonym for sender
AutoResponderAutoResponder –– automatically replies to messagesautomatically replies to messages
etc.etc.

Feature Interaction: Feature Interaction:
RemailerRemailer vsvs AutoResponderAutoResponder

Interaction identified in Hall’s paper between these 2 Interaction identified in Hall’s paper between these 2
features features -- under 2 separate scenariosunder 2 separate scenarios
One interaction scenario:One interaction scenario:

Bob has a Bob has a RemailRemail account and account and AutoResponderAutoResponder feature. feature.
Alice sends message to Bob’s Alice sends message to Bob’s RemailRemail account (pseudonym). account (pseudonym).
AutoResponderAutoResponder receives message via receives message via RemailMessageRemailMessage and replies and replies
automatically and directly to Alice, using Bob’s real ID. automatically and directly to Alice, using Bob’s real ID.
Because Because AutoResponderAutoResponder replies directly, Alice infers the replies directly, Alice infers the RemailRemail
account is Bob’s, thus defeating account is Bob’s, thus defeating RemailMessage’sRemailMessage’s purpose. purpose.

Alice Bob’s
Remailer

Bob’s
AutoResponder

Resolution forResolution for
RemailerRemailer vsvs AutoResponderAutoResponder

Resolution can be achieved by (at least) two Resolution can be achieved by (at least) two
different mechanisms:different mechanisms:

1.1. In In AutoResponderAutoResponder, check if answering a message , check if answering a message
from the from the RemailerRemailer. If so, reply using the . If so, reply using the RemailingRemailing
rule: rule:

2.2. OR, modify the OR, modify the RemailerRemailer to ensure that all replies to ensure that all replies
pass back through it (allocate sender a pseudonym)pass back through it (allocate sender a pseudonym)

Alice Bob’s
Remailer

Bob’s
AutoResponder

a) Send reply to Remailer with
intended recipient as 1st line

b) Remailer re-routes reply
having anonymised sender

Resolution (1) in Resolution (1) in AspectJAspectJ

aspect SoftenAutoResponderForRemailer {

before(Message msg):execution(void AutoResponder.send(Message)) && args(msg) {
//if msg is from Remailer, then respond to Remailer using the remailing rule
if (isFromRemail(msg)) {
writeContentFirstLine(msg.getReceiver());
msg.setReceiver(getRemailAddress(msg));

}}

boolean isFromRemail(Message msg) {
//check if msg is from Remailer ...

}
void writeContentFirstLine(String str) {
//write intended recipient’s address in the 1st line of message content ...

}
String getRemailAddress(Message msg) {
//get Remail Server’s address from msg ...

}}

Summary so farSummary so far
We have separated interaction resolution We have separated interaction resolution
modules from a feature’s core behaviour:modules from a feature’s core behaviour:

Can Can introduceintroduce new methods and/or new attributes new methods and/or new attributes
into feature’s behaviour as requiredinto feature’s behaviour as required

Relatively easy to maintain separation w/out aspectsRelatively easy to maintain separation w/out aspects

Can weave new behaviour (advice) Can weave new behaviour (advice) aroundaround, , beforebefore or or
afterafter existing feature behaviourexisting feature behaviour

Difficult to maintain separation w/out aspectsDifficult to maintain separation w/out aspects

PointcutsPointcuts can be defined over any execution points can be defined over any execution points
in any feature boxin any feature box

i.e. aspects need not be specific to one feature boxi.e. aspects need not be specific to one feature box

EvaluationEvaluation

To evaluate:To evaluate:
Extended system to all 10 features of R. Hall’s paperExtended system to all 10 features of R. Hall’s paper
To create running system, To create running system, refactoredrefactored some of GUI some of GUI
modules from modules from ICEMailICEMail (email client, Java Mail API)(email client, Java Mail API)

Evaluation categories:Evaluation categories:
Cleanness of separationCleanness of separation
ReRe--useuse
Faithfulness of implementation to specificationFaithfulness of implementation to specification
Adaptability to requirement changeAdaptability to requirement change
Support for interaction avoidance, detection, and Support for interaction avoidance, detection, and
resolutionresolution

Cleanness of separationCleanness of separation

ObjectObject--orientation provides a widely accepted and orientation provides a widely accepted and
largely effective level of separationlargely effective level of separation
Yet featureYet feature--oriented systems that require resolution oriented systems that require resolution
modules for intermodules for inter--working suffer “codeworking suffer “code--tangling”tangling”
TwoTwo--level architecture provides elegant separationlevel architecture provides elegant separation
Increasingly important as number of features ↑Increasingly important as number of features ↑

R. Hall’s paper R. Hall’s paper -- 10 features, 26 identified interactions10 features, 26 identified interactions
Each interaction requires a resolutionEach interaction requires a resolution
Possible interaction resolution Possible interaction resolution patternspatterns
ICEMailICEMail system system –– “core” functionality: 800 lines → 70“core” functionality: 800 lines → 70

ReRe--useuse

The cleanness of the “core” functionality, gives The cleanness of the “core” functionality, gives
good opportunities for regood opportunities for re--use (e.g. use (e.g. ICEMailICEMail))
Many resolution modules are very specific, Many resolution modules are very specific,
hence only offer limited scope for rehence only offer limited scope for re--useuse
Re: patterns …Re: patterns …

All of the 26 interactions arise from the need for All of the 26 interactions arise from the need for
some level of boundary checkingsome level of boundary checking
Approx. half could be classed as ‘generic’ (could be Approx. half could be classed as ‘generic’ (could be
implemented as a pattern and applied elsewhere)implemented as a pattern and applied elsewhere)
Still requires more work !Still requires more work !

Faithfulness of implementationFaithfulness of implementation
to specificationto specification

We claim that our two level architecture:We claim that our two level architecture:
Improves readability and simplicity of codeImproves readability and simplicity of code
Allows a feature’s specification to map more directly Allows a feature’s specification to map more directly
to its implementationto its implementation
This, in turn, opens the door to generative This, in turn, opens the door to generative
programming techniques (for code or code templates)programming techniques (for code or code templates)

Adaptability toAdaptability to
requirement changerequirement change

New features can be added to system without New features can be added to system without
consideration (or reconsideration (or re--writing) of other featureswriting) of other features
Also no need to consider interactions when Also no need to consider interactions when
writing a feature writing a feature –– can focus on these separatelycan focus on these separately
Similarly removal of features is straightforwardSimilarly removal of features is straightforward

Avoids redundant code being left embedded with Avoids redundant code being left embedded with
featuresfeatures

Support for interaction avoidance, Support for interaction avoidance,
detection and resolution detection and resolution

This category in fact raised further questions …This category in fact raised further questions …
Obvious problem:Obvious problem:

Resolution modules (aspects) can themselves interact Resolution modules (aspects) can themselves interact

Many reflective architectures are multiMany reflective architectures are multi--levellevel
Should we relax 2Should we relax 2--level architecture?level architecture?
MetaMeta--meta level is for solving resolution interactions?meta level is for solving resolution interactions?

Language choice Language choice –– AspectJAspectJ??
Aspects of aspects not permittedAspects of aspects not permitted
Composition is implicit Composition is implicit -- in other languages it’s explicitin other languages it’s explicit

Support for aspect interactions?Support for aspect interactions?

Avoidance Avoidance –– by ‘design by contract’ approach or by ‘design by contract’ approach or
explicit (restrictive) composition operatorsexplicit (restrictive) composition operators
Introduce metaIntroduce meta--meta layermeta layer
Formal techniques (cf. FIW) e.g. modelFormal techniques (cf. FIW) e.g. model--checking checking
properties of aspects (but which properties?)properties of aspects (but which properties?)
Aspect community’s work:Aspect community’s work:

A framework for the detection & resolution of aspect A framework for the detection & resolution of aspect
interactions, interactions, DouenceDouence, , FradetFradet & S& Süüdholtdholt, GPCE’02, GPCE’02
Superimpositions and aspectSuperimpositions and aspect--oriented programming, oriented programming,
SihmanSihman, Katz, BCS Computer Journal 2003., Katz, BCS Computer Journal 2003.

Performance?Performance?

Coming soon!Coming soon!
See FAQ on http://See FAQ on http://aspectj.orgaspectj.org

Final commentFinal comment

AspectAspect--oriented approaches provide powerful oriented approaches provide powerful
languagelanguage--level support for resolution moduleslevel support for resolution modules
Can be used to enhance traditional software Can be used to enhance traditional software
development practicesdevelopment practices
This is This is notnot domain specific domain specific –– examples from:examples from:

Telephony and emailTelephony and email
Middleware’s system/ technical servicesMiddleware’s system/ technical services
Tracking systemsTracking systems
Building Control Systems (coming next) …Building Control Systems (coming next) …

	Aspect-Oriented Solutions to Feature Interaction Concerns
	In a nutshell …
	Overview: Aspect-Oriented Programming
	A simple AOP tracing example
	Using AspectJ
	Applying AOP to Feature Driven Development
	A classic resolution example …
	Interactions and resolutions in an email system
	Feature Interaction: Remailer vs AutoResponder
	Resolution for Remailer vs AutoResponder
	Resolution (1) in AspectJ
	Summary so far
	Evaluation
	Cleanness of separation
	Re-use
	Faithfulness of implementationto specification
	Adaptability torequirement change
	Support for interaction avoidance, detection and resolution
	Support for aspect interactions?
	Performance?
	Final comment

