
1

Automated Generation of Abstract Web Applications
using QVT Relations

Ali Fatolahi

afato092@site.uottawa.ca
Stéphane S. Somé

ssome@site.uottawa.ca
Timothy C. Lethbridge

tcl@site.uottawa.ca
School of Information Technology and Engineering (SITE) University of Ottawa

800 King Edward, P.O. Box 450, Stn. A Ottawa, Ontario, K1N 6N5, Canada

Abstract. Web applications development has become a very important track of software
engineering due to the rapid growth of the number of web sites. As for other types of
software development activities, web development requires effective methods in order to
improve the time and cost of the development. The quick rate of technology change is
even more challenging to web applications as these applications are accessible online to
more users with different interests. In this document, we introduce a model-driven
approach that aims at improving the experience of web development for information
systems. Our goal is to automate a part of the process. This is the part where platform-
independent models are transformed to platform-specific models. In order to minimize
the risk of platform change, we generate models that are dependent to an abstract
concept of web as an intermediate step toward models dependent to specific web
technologies. A developer may eventually transform the output of our method to a
specific platform using a platform-specific mapping. Our method generates the domain
classes, data access operations and structures, behavior model, presentation model and
the flow of the application automatically. The method is also capable of applying changes
in reverse order. QVT relations are used to express the transformation rules.

Keywords. MDA, Web Information Systems, QVT, Automated Transformation.

1. Introduction
Web applications are being widely used nowadays. This requires more effective
development methods in order to make the development process faster and less
expensive. Further, the quick rate of change in web development technologies highlights
the need for methods that generate reusable models, which are independent of target
platforms. In this document, a model-driven approach to automate a part of the
development process for web information systems is provided. A goal of the approach is
to reduce the development time and increase the level of model reusability by helping
avoid repeating similar tasks and by providing support for changes.

Our approach takes abstract models that provide a high-level understanding of the
behavior and the presentation of the application as input. The output is the design models
that describe the behavior, the domain objects, the presentations and the data access
mechanisms required for a typical web application. The output could be eventually
mapped to explicit platforms to generate an executable application. The input is
automatically transformed to the output. We use model-driven development and
architecture as a means to reach the goals of this method.

Model-driven development (MDD) is a recent approach that provides means for
generating software applications in terms of models and ways of automating parts of the

2

process. Several approaches to MDD exist; sample sources are (Stahl et al, 2006),
(Beydeda, 2005) and (Hruby, 2006). A model-driven development is often performed as
a transformation that takes a set of platform-independent models (PIM) and produces a
set of platform-specific models (PSM). We break this automated model-driven method in
two different steps. The first step takes the platform-independent models and transforms
those models to a set of models based on an abstract web model. The second step
transforms the abstract web application to a concrete one according to a specified
platform.

Model-driven development have been applied to a variety of applications in
recent years amongst which, web applications appear to have reached a great level of
interest among researchers and practitioners. This is partly due to the fast growing rate of
web-based applications. The fast pace of websites development requires great efforts.
Web developers are in need of tools and methods to facilitate their work and provide
them with more quality development approaches. Model-driven approaches have been
excessively used towards web-based development in recent years.

In this document, we describe a method to automatically generate the design
models required to specify an abstract web-based application from higher-level behavior
models and UI prototypes. This will be done in the context of model-driven architecture
(MDA) as defined by OMG (MDA, 2007). We abide by the MDA framework by
separating computation-dependent models into two different layers: Platform-
Independent Models (PIM) and Platform-Specific Models (PSM). The layer of
Computation-Independent Models (CIM) is not currently covered by this method but
could be an area of future extension. Figure 1 shows the MDA framework.

Figure 1 – The MDA Framework

A PIM represents the set of models that define a system regardless of any

platform on which the system may rely. In our case, the PIM is defined using domain
objects, behavior models represented by state machines and the UI prototypes, which
define the GUI layout attached to the presentation states within the state machine.

A PSM deals with the technological details of platforms. The models within the
PIM are mapped to certain platforms to conform to a detailed description of the system.
In our case two levels of PSMs are pertinent:

3

1− An abstract PSM (APSM), which is defined upon an abstract model for web-based
applications. This is the set of models delimiting universal necessities of web-based
applications regardless of the platform to run the application.
2− Specific PSMs (SPSMs): describe concrete web-based platforms such as J2EE or
.NET.

The development process aims at the generation of the PSM from the PIM. The
traditional approach is essentially a process of adding more details to abstract models in
order to reach low-level models that correspond to specific web platforms. Developers
starting from a PIM, add design-specific details according to some regulations imposed
by a selected implementation platform to generate a PSM. In other words, there is a gap
from PIM to PSM, which needs to be filled with platform-specific rules and elements.

The gap between PIM and PSM is to be spanned using a set of transformations.
The main objective of our work is to automate such transformations. We approach this
goal by decomposing the PIM-to-PSM transformation into sub-transformations from PIM
to APSM and from APSM to SPSMs. We will build the PIM-to-APSM transformation as
well as examples of APSM-to-SPSM transformations.

Figure 2 depicts a general overview of the proposed method. As this figure shows,
the input is provided as state machines representing the behaviors of the system’s use
cases. The method then maps the input to a default UI model, which may be refined by
the developer to build UI prototypes. The dashed line connecting the developer to this
step asserts that this step is semi automated.

Figure 2 – Overview of the Proposed Method

The state machines and derived UI prototypes are mapped to an abstract model of

web-based applications. Meanwhile, the method generates the domain objects

4

automatically. The developer refines the operations by adding platform-specific code to
information-related tasks. One may also opt to apply some changes to the domain model.
The method is capable of generating the abstract operations for information processing
i.e., creating, reading, updating and deleting data known as CRUD operations. Finally,
the abstract web application is mapped to a specific platform chosen by the developer.
We use an abstract model introduced by Botterweck (2007) for defining the UI prototype
and the abstract web-based application.

The rest of this document is organized as follows. In Section 2, we introduce basic
concepts of MDA. In Section 3, we introduce other related work and compare them to
our method. In Section 4, we introduce the abstract web model used in this document. In
Section 5, we discuss our method in terms of its core mappings. We also provide an
overall picture of the approach. Section 6 details the transformation rules and Section 7
contains a case study. Finally, in Section 8 concludes this document.

2. Model Driven Architecture (MDA)
MDA is an effort by the OMG to standardize model driven software development (Stahl
et al. 2006). It can be seen as a framework composed of four different layers of modeling.
The topmost layer is the layer of Computation-Independent Models (CIM). CIM
represents models that are valid in spite of the computational options. Then we have a
layer of Platform-Independent Models (PIM). PIMs represent systems and software
design and architecture; however, they do not contain any information about specific
platforms. The third layer, Platform-specific Models (PSM) deal with the technological
details of platforms. Here, logical design models are expressed in terms of specific
platforms. At the lowest level, there are Implementation-Specific Models. These are real
world objects and components, acting as a running version of the system.

2.1 PIM and PSM
A PIM includes the collection of models that abstract a software system from specific
platforms. Use cases and domain models are regular ways of expressing PIMs in the
literature. However, the type of model used for describing the behavior of use cases
varies. In this document, we accept the following as components of a PIM:

 Use cases are admitted as a part of the PIM but the textual description of use cases is
not covered.

 State machines describing the behavior of use cases.
 Domain model is also a part of the PIM. However, our method does not need the

domain model to be entered separately. Instead, the transformations build the domain
classes automatically. The result is provided to the developer for further refinements.

 User interface templates are considered as a part of the PIM. This is one of the
distinguishing features of our method. UI templates specify the desired user interface
plus the information elements related to them. The specification of the UI templates
must be manually provided by the developer.

In this document, the PSM is generated in accordance with an abstract web platform
introduced by Botterweck (2007). The abstract model used includes:

 State machines that are copied from the PIM but enriched with state and transition
events, operation calls and parameters that from the behavior of the application as
pertinent to the owning use case.

5

 UI model and components
 Data elements and components used for information storage and retrieval, and to

support the UI components
 Domain objects
 Operations used for information processing

2.2. Use Cases
According to OMG (2007), “a use case is the specification of a set of actions performed
by a system, which yields an observable result that is typically, of value for one or more
actors or other stakeholders of the system”. Use cases are means for the documentation of
what the system is supposed to do. A use case describes sequences of interactions
between actors and a subject system, in order to achieve a goal.

Code Sample 1 is a typical login use case description in natural language text. In
this use case, a User enters a username and a password. The system verifies the username
and password; if correct, it shows a home page. If the username and/or password are not
correct but the User has not reached the maximum unsuccessful login attempts, the
system returns to the login page with an error message. But if the maximum number of
unsuccessful attempts is reached the account will be locked and the user can select to
contact administrator for further assistance, which is a separate use case.

Code Sample 1 – A typical login Use Case
Name: login
Actor: User
Precondition: System is up
Steps:
 1- User enters username and password
 2- System verifies username and password
 3- System shows welcome homepage
Alternatives:
 2-a- username and/or password not correct
 2-a-1- System shows an error message
 2-a-2- goto 1
 2-b- login not approved and maximum unsuccessful login attempts reached
 2-b-1 System shows account locked message
 2-b-2- include contact administrator use case

A use case model is a collection of use cases, their relationships and the
relationships they might have with actors. Actors usually communicate with use cases in
order to perform a task. Use cases can include or extend each other. The include
relationship denotes that a larger use case includes the functionality of another use case.
The included use cases could have been fragmented from the larger use cases in order to
improve readability or because of the fact that it could be an individual use case by itself
that an actor deals with on certain occasions. The extend relationship stresses that an
extension use case augments the behavior of an original use case. The extension could
consist in adding more steps, specializing the way a certain step occurs or providing
different responses under alternative conditions.

A use case diagram is used to show the use cases, their relationships and the
actors participating in those use cases. Figure 3 shows an example use case diagram. As
this figure shows, Customer makes an order in communication with Seller. The View

6

Catalog use case extends the functionality of the Make Order use case by giving the
option to the Customer to view the catalog. Finally, the Make Order use case includes the
Make Payment use case.

Figure 3 – A Use Case Diagram

2.3. State Machines
We use UML state machines in this document. State machines are used to show the
dynamic behavior of things such as use cases, transactions and objects in terms of states
that are the conditions the objects can be in and the transitions that relate two states when
an event occurs. UML state machines are composed of several elements among which,
the followings are pertinent to our work:

 States to represent the status of the web application. A state is usually showing a
presentation unit or processing some information

 Choices that are used for building conditional flow of events especially for
representing alternative use case steps and use case extensions

 Transitions that cause the change of status because of an event. Transitions in our
method carry either events or conditions. The former is usually used to transfer a
presentation unit to a processing state and the former is often employed to show a
possible value to go out of a choice vertex

 Events that are assigned to either states or transitions.
 Start and end states that if named show a relationship to another use case (state

machine), which means that the other use case will run after the successful execution
of the current use case.

In our approach, states are generally used for representing different presentation
and processing steps. Transitions either represent an event or the result of an operation.
The latter is often used when modeling a decision making node using choices. At the PIM
level, we only consider states and transitions. Operations, events and parameters will be
automatically added at the PSM level. An example is provided in Figure 4, where the
state machine describing the behavior of the login use case (Code Sample 1) is presented.

Make
Payment

CustomerCustomer

SellerSeller

Make
Order

<<extends>>

View Catalog <<includes>>

7

Figure 4 - login state machine

2.4. Mappings, Transformations and Relations
A key aspect of MDA is the capability of model transformation. As Pierantonio et al
(2007) put it; transformations are the chaining feature that makes the automation process
possible. OMG (2003) defines a mapping as a specification describing how to transform a
PIM to PSM, although the same definition could be used for other types of mappings.
This does essentially mean that a mapping is a platform-specific notion – according to
OMG (2003) - and the characteristics of a mapping are decided according to selected
platform(s). Correspondingly a transformation is defined as an execution of a mapping by
in MDA. We will use QVT relations as one MDA standard for formalizing
transformations. Code Sample 2 shows the syntax of a QVT Relation.

Code Sample 2 - QVT Relations Syntax (OMG, 2005)
Relation R
{
 Var <R_variable_set>

 [checkonly | enforce] Domain:<typed_model_1><domain_1_variable_set>
 {
 <domain_1_pattern> [<domain_1_condition>]
 }

 [checkonly | enforce] Domain:< typed_model_n>
 <domain_n_variable_set>
 {
 <domain_n_pattern> [<domain_n_condition>]
 }

 [when <when_variable_set> <when_condition>]

 [where <where_condition>]
}

Login
information
is entered

Login
Information
is verified

Homepage
Shown

not approved

EleManSys is up

Login Failed
Message Shown

Show login view

Confirm login

Number of attempts = 3

Number of attempts < 3

approved

Account Locked
Message Shown

1

4

2

3

5

8

Code Sample 2 defines the syntax of a relation R that transforms typed_model_1
to typed_model_2, referred to as a source and target domains respectively. This naming
convention, however, does not impose a direction to the transformation. The direction of
the transformation is decided based on the keywords checkonly and as below:

 if none is used the domain is considered enforce by default, which means that this
domain will indeed change as the transformation happens. In other words, an enforce
domain is always a target domain.

 if domain 1 is tagged as checkonly and domain 2 as enforce, then the transformation
is a unidirectional transformation from source to target. This is the most common way
to do transformations. In this case any change in the target model will only result in a
check message towards the source model

 If both domains are marked by enforce or left unmarked, the transformation is
bidirectional.

In Code Sample 2, the when clause indicates a pre-condition that must hold before
the matching of the source and target. Respectively, the where clause states a post-
condition. The patterns used for defining source and target domain are by themselves
some sort of preconditions. In order to have a transformation from a to b validated, the
pattern defining domain a must be found within the source domain.

A QVT relation could be a top relation; that is a relation that the transformation
starts with. Non-top relations could only be called within other relations as a part of their
when or where sections. Code Sample 3 shows an example of ClassToTable relation from
QVT official document.

Code Sample 3 - Class to Table QVT relation (OMG, 2005)
top relation ClassToTable // map each persistent class to a table
{
 cn, prefix: String;

 checkonly domain uml c:Class {namespace=p:Package {},
 kind='Persistent', name=cn};

 enforce domain rdbms t:Table {schema=s:Schema {}, name=cn,column=cl:Column
 {name=cn+'_tid', type='NUMBER'},
 key=k:Key {name=cn+'_pk', column=cl}};

 when {
 PackageToSchema(p, s);
 }

 where {
 prefix = '';
 AttributeToColumn(c, t, prefix);
 }
}

Code Sample 3 describes a relation mapping a class to a table. The transformation
happens from classes to tables and not the other way around. In order for the
transformation to be valid, it is necessary that the PackageToSchema relation hold.
PackageToSchema relation maps a package to a database schema; this means that the
table must belong to the schema generated as the result of mapping the owning package

9

of the source class. The object pattern defined for the domain c indicates that the
transformation looks for classes within the source model that are persistent and have a
name. The transformation will then map every single of such classes to database tables
with the same name as source classes and a default column as the primary key.
Afterwards, the transformation will call another relation to map the attributes of the class
to columns of the table.

3. Related Works
We study the published work informally describing how to develop a PSM for web
applications in a model driven sense, in order to assess what are the important aspects to
consider. Since we are using other tools for validation and implementation, methods
using existing tools are also considered as related. Models and methods that are formally
defined for model driven web-based development form another group of the related
work.

A group of researchers have provided their methods in terms of a set of guidelines
that steer developers throughout the process of achieving the PSM of web-based
applications from the PIM. Such approaches are not automated but show how it is
possible to reach the PSM of web-based applications from the PIM. For example, Li et al.
(2000) illustrate a UML-based approach to devise the architecture of web-based
applications. Meliá and Gómez (2005) provide an MDA-based approach supported by
QVT rules to derive an architecture-centric web-based application. Their method is based
on merging functional and architectural viewpoints to reach the PIM. It is based on the so
called MVC2 pattern (Meliá et al, 2005) for web applications.

We are especially interested in model-driven approaches to web-based
development. Model driven architecture and other model driven approaches have a rich
arsenal of models and formalisms required to build up the basics of automated methods
for development purposes. This ability has prompted many scholars and practitioners to
use model driven approaches to automate the process of developing web-based
applications.

Some of the existing model driven methods are supported by tools that come with
a user-friendly suite, documents and tutorials. For example, WebML (2008) was
introduced by Ceri, et al (2000) and is supported by WebRatio (WebRatio, 2008). The
method is now enhanced to adapt with model driven methods according to Brambilla et
al. (2007) and Ceri et al (2006). WebRatio is one of the platforms that we plan to use to
validate our approach when transforming the APSM to SPSMs. The tool may provide a
way to show that our method can generate appropriate APSM that could be transformed
to different platforms. Another example is a MVC-based approach to generate J2EE
applications using eclipse-based plug-ins proposed by Tai et al. (2004). Meliá et al (2007)
report the usage of WebTE, which is a tool supporting WebSA (Meliá and Gómez, 2006)
method for model-driven web development focused on configuration management and
software architecture. Muller et al. (2005) present an experiment with Netsilon (2008) to
generate abstract web application models and transform them to specific platforms. This
work is close to our work and will be discussed in more details.

A number of model driven methods are based on previously developed modeling
profiles. For example, UML-based Web Engineering (UWE) is a UML-based profile for
web-based applications (Kroiß and Koch, 2008). A method to use UWE is reported by

10

Koch et al. (2001). The whole method is based on a PhD thesis by Koch (2000) for which
José et al (2006) have eventually prescribed a method to gather requirements. A number
of model-driven approaches for the semi-automated generation of web-based applications
using UWE is introduced by Kraus et al (2007), Koch et al (2006) and Koch and Kraus
(2002). One more work reported based on UWE is done by Cáceres et al (2006). Another
example is described by Rossi and Schwabe (2006), which is an experiment with the
Object-Oriented Hypermedia Design Method (OOHDM) to develop model-based web
applications. OOHDM is an object-oriented framework to define web-based applications.
Another work based on OOHDM is published by Schmid and Donnerhak (2005). They
describe a PIM-to-PSM transformation to map an OOHDM-based model to a servlet-
based platform. The approach results in two different PSMs: conceptual and navigational.
However, the implemented method only covers the navigational aspects. Navigations are
separated as those to fixed and dynamic pages. A semi-formalized language is used to
generate the PSM. Ubiquitous Web Application (UWA) design framework is a user-
centered set of tools and techniques for designing web applications (UWA, 2002).
Distante et al (2007) use UWA along with MVC in the context of model-driven
development. They define a UML-based MVC pattern and map it Java Server Faces
(JSFs) to generate the GUI of web applications. Another similar method is described by
Wu et al (2007) to generate JSP pages for a web application from use cases by applying
robustness analysis.

From the viewpoint of our method the following points are important and have
not been visited properly by other works:
• Most of other approaches focus on the presentation, navigation and hypermedia

content of web-based applications, while our research focuses on building the
application itself with a stress on the objects required to connect different layers and
the operation required to run the application services.

• Even the papers addressing data-centric or information-based web applications - such
as (Ceri et al, 2006), (Nikolaidou and Anagnotopoulos, 2005) and (Baresi et al, 2006)
do not tend to cover the data access layer; rather they focus on the presentation and
navigation required to represent this data and information at the hypermedia level.
Again our research considers the data access layer and the database itself.

• Introducing the notion of APSM and SPSMs is another distinguishing aspect of our
approach. Transformations are usually defined towards a PSM. Exceptions such as
He et al’s approach (2005) and UWA (2002) end up with models that are very general
and too abstract. As a result, most of the research lead to approaches that are either
hard to map to specific platforms or hard to adapt with other platforms. Our approach
distinguishes APSM and SPSM so that the method could be flexible in terms of
adaptability with web platforms.

• The exact semantics of the transformations required to automate the process is rarely
given in the literature. Instead, there are general rules or guidelines describing how to
do the transformation automatically or how to build and configure the environment to
do so. In a few cases, a subset of transformation rules is described in more details but
not in a formal way, examples are (Kraus et al, 2007) and Muller et al (2005).

• The transformation provided in our method is defined using a bidirectional mapping.
Most other approaches fail to address this issue resulting in hard-to-maintain
environments. We deal with this problem using QVT relations without

11

checkonly/enforce prefix making it possible that any change in the target model can
be applied to the source model and vice versa. This method of transformation needs
careful attention because the applicability of every relation needs to be ascertained in
both directions.

• Finally, we see the UI prototype as a requirement that should be defined as an input
while some other approaches try to generate the UI as an output, e.g. (Wu et al,
2007). Our position is that the desired UI model should be seen as a requirement. This
also includes the usage of information elements used in the description of UI
prototype as well as the query marks used to elaborate the relationships between a UI
element and associated information elements that are used for the automated
generation of data-related operations.

Amongst the mentioned related work, there are approaches that have similarities
with ours but none has all the characteristics that we propose. For example, Wu et al's
method has a set of detailed transformation rules but it only covers the presentation layer.
UWE-based approaches result in an abstract web-specific model that could be mapped to
any platform but they do not provide detailed transformation rules and they are not bi-
directional. Instead they focus on the UWE meta-model and how to use it. This is also
true about the approaches using OOHDM. Automation is also a feature missing from
most of the related work.

Table 1 lists the features that are important from the viewpoint of our method and
compares it to the most related work, which are the work that provide model-driven
approaches to web-based development. One can see from Table 3 that our approach has
unique features such as the support for bidirectional mappings and generalization
mechanisms through abstract PSM and specific PSMs. When it comes to automation, it is
very hard to assess the existing work as they all claim to be automated. However, due to
the following facts those approaches appear to be providing tools and models required for
building automated methods rather than being automated by themselves:
• lack of details on the automation
• unclear separation of manual and automated parts
• implementation mechanism is not discussed for so called general approaches only

specific instances leading to concrete platforms are elaborated
 One last note regarding the data modeling and data access mechanisms in the
related work is that almost all the similar works reported in Table 3 cover the topic of
data modeling and navigation modeling. However, data modeling is different than data
access mechanism. The latter is missing from most of the related work. Modeling the data
access through the automated generation of classes and operations required to retrieve
and store data is another major concern of our method.

Compared to other related works in Table 3, our approach has two main
limitations. One is that the coverage is only given to the PIM-to-APSM step, while most
of other related works support a larger scope. The second limitation is the fact that we
only approach web-based information systems while other works tend to be more
general. However, limiting the scope as we do in this document, has resulted in an
approach that is fully-automated and covers the automated generation of data access
mechanisms that are missing from other methods

12

Table 1 - comparative study of the most related work

13

4. Abstract Web Model
The specification of a mapping requires the specification of the source and target models.
Since the mapping discussed in this document happens in the area of web-based
information systems, the reference models used must capture:
− the abstract structure of a web-based application preferably in accordance with MVC
− the abstract UI model
− the abstract data model
We use the model introduced by Botterweck (2007). This model supports the data model,
UI model and state-machine-based behaviors for web-based applications. It adapts with
UML and a mapping to UML exists. The model will be used as the reference model for
both the source and target models with a few considerations. This model includes the
following packages:

 State Machine includes the elements required to build a state machine in
accordance with UML state machines.

 UI Structure encloses the elements required to build the general structure of the
UI model such as pages, units and navigation links.

 UI Components includes the modeling elements for the UI components used for
communications with end users.

 Data Model follows UML core model for specifying classes, objects, data types
and their attributes.

 Data Components is a part of the model that relates the data model to UI
components in order to transfer data in and out of the presentation layer.

 Web Services is a part of the model that is provided to give support to web service
applications. The package can be used for regular web applications as well. It
allows some functionality to be introduced as services. The developer can then
choose to deploy them as real web services or to implement as internal services.
In the later case, because the functionalities are tagged or stereotyped as services,
it is always possible to eventually change them to web services.

+title : String
+transformationTag : String

«component»
UIComponent

+temporalRelation : TemporalRelation
+triggerLabel : String
+markedAsPresentation : String

«composite»
UIComposite

+uiComposite

1

+uiComponents

*

+title : String
Application UserInterface

1

+userInterfaces

*

Presentation TypedUICompositeUIElement TypedUIElement

+undefined
+noFollowingSibling
+enabling
+suspendResume
+disabling
+concurrency
+orderIndependency
+choice

«enumeration»
TemporalRelation

Figure 5 - UI Structure Model (Botterweck, 2007)

14

In this section, we only review those parts of the model that are required to describe
mappings and transformations.

Figure 5 details the UI Structure package. According to this model, an application
can have several user interfaces. A user interface is in fact a special kind of UI composite,
and a UI composite is a collection of UI components. UI components are elements that
the user can see and directly communicate with. A UI composite may be a presentation,
which in association with a state makes a presentation state meaningful. This package
also contains the abstract elements used by concrete UI elements in a UI element model.

Figure 6 - Data-oriented elements of UI components (Botterweck, 2007)

Figure 7 - Menu items (Botterweck, 2007)

Figure 6 shows a subsection of the UI components model. These components
include: components connected to data elements, and composite elements such as input
fields, selection boxes and table views. Figure 7 shows the elements required to model

15

menu items. Figure 8 presents the model for plain hypertext, links and buttons. Triggers
occurring in a presentation could be of one of the following three types: hyperlinks,
operation triggers such as submit buttons that require an action in the controller and/or
service layer and navigation trigger that only cause a change in navigation path.

Figure 8 – Content and Control Oriented Component (Botterweck, 2007)

We added a new concept to the UI model to support the required data for UI

components. Our assumption is that a database already exists so the developer is required
to know what data is associated with each component. Alternatively the developer may
choose to manually add modeling elements required to support a component. This feature
is not supported in the original abstract model to the required extent. Some data features
can be associated with input fields such as select lists but not to other elements. We
require the possibility to associate data elements to operation triggers in order to be able
to automate the process of generating data-related operations and services.

We introduced the following format to associate UI components with data :
<UIComponent><DataOperation><DataSource>, where DataOperation is one of the
followings:

 ? means that the contents of the form will be matched against the data from the
DataSource as a selective query

 >> updates the DataSource with form values
 << loads all elements from the DataSource
 + adds the form values as a new entry to DataSource
 - removes an entry from DataSource

We customized the reference model with OperationTrigger associated to DataElement as
shown in Figure 9, in order to support these elements.

Figure 9 - OperationTrigger can access DataElement to build a queryData link

16

We also made navigation from an operation trigger to its owning presentation
possible. An operation trigger, which is a specific type of a UI Component, cannot access
its owning presentation, which is a specific type of the UI Composite. This is resolved in
Figure 10, where the navigation from UI Component to UI Composite is made possible
with an additional association.

Figure 10 – Navigation from UI Component to owning UI Composite made possible

Another change was required to denote the default event on a presentation unit.
Presentation units could contain several kinds of events that are not necessarily operation
triggers (i.e. submit button). For example, drop-down select components can cause a
selection event that affects the contents of other components. In order to enable the
description of such behaviors, we have added a new association between DataComposite
and UIComponent elements. This association is shown in Figure 11.

Following is a list of important associations that exist on other parts of the
abstract model that are required for better understanding of mappings and
transformations:

 A transition can be associated to several Operations. This capability is used to
model controller operations (Figure 12).

 Transitions can also be associated to several Events. This serves to model signal
events over the transitions. UI triggered events are a special type of events, which
can have operation triggers as triggers (Figure 12).

 Data Oriented elements are associated with Data Composites that are collections
of data elements. Data composites are connected with a special class called
OperationAdapater, which could be assigned one of the following roles
corresponding to CRUD operations (Figure 13):

 selectOperation
 insertOperation
 deleteOperation
 updateOperation

• A data element has an association to Classifier denoting its type (Figure 14).

Figure 11 - UIComponent as a default event carrier for UIComposite

17

Figure 12 - Transition in relation with events and operations (Botterweck, 2007)

Figure 13 - Data Composite related to
Operation Adapters (Botterweck, 2007)

Figure 14 - Type of a Data Element
(Botterweck, 2007)

5. Mapping from PIM to PSM
In this section, we will describe our proposed method in terms of the mappings and
transformations defined so far. A big picture of the whole mapping for better
understanding is provided in this section but the details of transformations are provided in
a separate section.

Figure 15 provides an overall view of our proposed method in terms of mappings
that transform PIM to APSM. The developer defines the state machine in terms of states
and transitions, and a UI model attached to every state including data sources related to
every component. The method is defined in terms of the transformations that
automatically map the PIM to the abstract-web specific models. The result of mapping
includes the following:

18

Figure 15 - A Big Picture of the Mappings

 different types of signal/call events that are required to steer the transitions through

different web pages
 the domain objects and the navigation model that describes the type of associations

existing amongst those objects
 other objects that act as a collection of objects required to manage information
 operations required to access data and control behavior
 copy of state machines and UI models

The transformation process described by Figure 15 is as follow:
• Data objects and navigations through data objects are created based on data

associations found within the UI model.
• The contents of the presentation states and transitions flows end up with the

content and structure of as the hypertext level in terms of UI components, links and
pages.

• Transitions and states from the input model, are also used to create events and
operations used for the generation of the behavior and controllers of the application.

• The generated behavior and controllers is used in turn to build the data access
services in combination with data associations from presentation states. It is also used
to map parameters to attributes within the data model.

A web-based application is composed of a set of web pages. Each web page may
contain one or more presentation units. Presentation units act as either input or output
units. Input units present forms and other means of entering data to the user and
eventually use those data for processing. In the case of information systems, such
processing usually involves database operations. Output units are used for providing
results or information to the user. It does not matter if a page is composed of several units
because the method is based on the presentations (units) and not the web pages.
 Figure 16 shows a simple state and the result of transforming this state. This
figure presents a big picture of our method and hides details regarding the creation of

19

parameters and associations. This figure shows that the input fields are mapped to signal
events and the data associated with the submit button is mapped to both a domain object
and an operation that performs the required action. Since the method generates an
abstract web application, it is not possible to generate operation codes. We only specify
the signature of operations. This is helpful enough to map operations to suitable data
access code according to selected implementation platforms. In Figure 16, the left column
contains the PIM and the right column shows the generated APSM. Table1 and Table2
are the data sources generated in the APSM as a result of transforming Data1 and Data2
respectively from the PIM. We use the notations within Table 2 for associating data
element to UI elements.

Figure 16 – Mapping a sample presentation state to presentation, behavior and data

Following is a typical process for our approach:
1. The developer models the requirements using state machines and UI prototypes
2. System generate the APSM in on automated step (which is the contribution of this

method)
3. The developer selects a specific platform
4. if the corresponding APSM-to-SPSM mapping is found among the default mappings

4.1. System generates the SPSM
5. else

5.1. the developer defines the APSM-to-SPSM mapping
5.2. goto 4.1

6. The developer transfers the SPSM to the corresponding tools

20

Table 2 – Graphical Symbols Used for Associating Data with UI Model

Symbol Description

A data source that could be equivalent to a single database table or a
composite object but shall not be confused with database tables, although it
would be mapped to entity object(s) eventually.

? Used to associate a data source to a UI component denoting that the
component will cause a filtered selection of instances of the data object. The
filter is determined based on the type of UI component.

+ Used to associate a data source to an operation trigger inferring that the
trigger will fire an insertion operation.

<< Used to associate a data source to a UI component denoting that the
component will cause the selection of all instances of the data object.

>> Used to associate a data source to an operation trigger inferring that the
trigger will fire an update operation.

- Used to associate a data source to an operation trigger inferring that the
trigger will fire a deletion operation.

* Attached to any UI Component, asserts that the component is the one that
fires the default event. Usually, the default event is kept on the operation
trigger. This is a mechanism to switch the event to other elements such as a
drop-down select box that fires a secletion event.

5.1. Signal Events
A signal event acknowledges the receipt of an asynchronous message. Signal events are
added to transitions. In a web based application a signal event represents a request by a
page for the execution of a process. The best examples of such events are events fired by
submit buttons. In order to generate signal events, every presentation state is examined to
verify if it has an operation trigger. The signal event will be created with the same name
as the operation trigger on the outgoing transition. Parameters to be submitted to the
signal event are created according to the set of input fields attached to the operation
trigger. In a regular web application, these input fields are the form fields of a submit
action. Following is the details of this mapping:

 name, the intact copy of the name of operation trigger
 transition, an outgoing transition going out of the presentation state holding the

operation trigger
 parameters, one parameter will be created per each input filed found within the

operation trigger. The type of parameter is selected according to a mapping function
that maps UI input fields to signal event parameters as follows:

 select input fields are mapped to Long data type because it is assumed that the
actual data the developer needs to supply a select component is the id of the data
elements. Multiple select inputs are mapped to an array or collection of Long
inputs.

 check/uncheck fields are mapped to boolean fields.
 table fields are mapped to a collection of the specified object
 other fields are mapped simply according to their type. For example, simple text

inputs are mapped to String data type. Date and time fields are mapped
accordingly to data and time data types.

21

An event does not always relate to an operation trigger. It often happens that a
change in the status of a component other than an operation trigger results in changes to
other components in the same page. Figure 18 shows an example of such situation. In this
example, the selection of a province in the first state results in the population of the list of
towns and villages. In such cases, the mapping will use the information from the default
event holder of the presentation as elaborated in Figure 18, to generate the signal event.
When no default event holder is defined, the submit button is taken for that purpose.

Figure 18 – Signal Event created based on the selection event of a drop-down list

The details of the generated signal event are as follows:

 name, a copy of the name of the component, data association and its type. For
example, a select component associated with the data object, Province will result in
the creation of a signal event named selectProvince.

 transition, an outgoing transition going out of the presentation state holding the
component.

 parameters, one parameter will be created according to a mapping function that
maps UI input fields to signal event parameters as described already. For example, in
case of Figure 18 the signal event will carry a parameter, province of type Long.

5.2. Call Events
Call Events are added to states or transitions. Call Events confirm a call to an operation.
We refer calls from call events to use case controllers. A call event is created on a state if
an incoming transition to that state carries a signal event. The event calls a controller
operation, which has the exact same parameters as the signal event. The details of the
mapping are as follows:

 Operation parameters are copied from the signal event.
 The type of operation to be called from a data service depends on the type of data

association of the corresponding operation trigger with a data source. The data source
is used to generate the data object, which is in turn used to define the type of
returning or input parameters of the operation. Details are as follows:

 ?: a query operation that compares a collection of data objects with the parameters
entered in a corresponding operation trigger. An example is a login operation that

22

looks up a username/password pair in a users database. This operation would
return a boolean value.

 +: insert operation to add a new instance of an object.
 <<: a query operations that returns all instances of a data object.
 >>: an update operation that updates an instance object using the input

parameters.
 -: remove operation that deletes an object instance.

5.3. Controllers and Services
In the MVC architecture, a controller class is usually a class introduced to control an
application based on the behavior defined by a use case or a similar unit of behavior. In
addition to controller classes, one or more service classes are used to perform the
operations required to access data services. Different platforms may use different
implementation strategies for the controller and data access service classes. We provide
the minimum that is required for decision making when mapping to specific platforms. In
order to do this, we use the notion of OperationAdapter from our reference model.
Operation Adapters are used for building the required operation based on the data
association type used in the UI model. There are four types of operation adapters listed as
selectOperation, insertOperation, updateOperation and deleteOperation representing the
four main categories of database related operations.

Every presentation corresponds to a controller. Each controller has a
corresponding operation adapter for each data element that it needs access to. An
operation adapter may implement a number of operations according to the type of action
imposed by the corresponding call event. Operation adapters represent the service
operations that controller operations call. However, the mechanism to generate the
controller operations is different.

We also create an operation for each transition ending to a choice. A natural
language description is produced as pseudocode for that operation. This pseudocode
description is created according to the name of the operation trigger, the type of the data
association used with the operation trigger and the name of transitions going out of the
target choice.

For example consider Figure 16 and suppose there is a choice after the state, Code
Sample 3 shows the pseudocode for the corresponding controller operation.

Code Sample 3 – Example pseudocode added to controller operation
− if (name, sallution) was added successfully to Data1 return true else return false

− call insertData1(name, sallution) service for this purpose

The return type is defined based on the state preceding the transition. If the
transition comes out of a presentation state with an operation trigger attached to a data
source the return type is Boolean. The returned value indicates if the data operation was
successful. For other cases, the returned type is Integer in order to be able to handle more
than two possible outcomes. In such cases the calling line corresponding to the last line in
Code Sample 3 is absent.

Controllers operations are also generated to supply data to data-oriented
components within the presentation. The name of such controller operations depend on

23

the type of the component and the associated data. For drop down select boxes, the
controller operation is named according to pattern populate + <componentName>. For
example, Code Sample 4 describes the controller operation used for populating the list of
provinces in Figure 18.

Code Sample 4 – Pseudocode added to a controller operation for populating a drop-down component
PopulateProvince() controller operation

− Call selectProvinces():Provinces

− Remarks: Provinces is an array or collection of Province

5.4. Domain Objects and Navigation Model
Domain objects are mainly discovered from the queryData role introduced in Figure 10
and from other existing data element associations supported by the abstract model in
relation to UI components. In order to determine the type of the domain objects, it is
important to understand the type of the element holding an association with it. We use the
term holder to refer to this element. The respective data elements are mapped to classes.
The attributes of these classes are determined according to the following:

 If the holder is an operation trigger, the UI components referred to in the operation
trigger are used as the source of a mapping targeting the attributes. Attribute types are
defined using another mapping function that generates an attribute type based on each
UI component.

 If the holder is a table, the columns of this table are used as attributes. In practice,
most of the tables found on web pages are in fact the result of composing more than
one object but the composite object itself is not a member of the database. We do not
necessarily deal with concrete database objects but with data objects. These data
objects may be composite or single. The developer shall use a composite data element
symbol in the case that composite objects are used. Otherwise the method would only
build the basic operations required to handle the basic data elements and not the
composite ones. This does not result in a failure but require more subsequent
refinement by the developer.

 For other types of UI components the mapping results in a class with no attributes.
Notice that since the mapping considers all possible situations, it is possible to
eventually map attributes found using another component such as an operation trigger
to an object created as the result of a mapping from a component without attributes.

Figure 19 - The Mapping of Composite Data Element

Figure 19 shows a composite data symbol as a result of a combination over two
single data objects. In such cases we map both the composite and the single objects to

24

classes in the target model with navigation links required to build such a model. The
corresponding controller operation acts on the composite object but services needed to
access the single objects constituents are also created.

Another type of navigation is formed when mapping class attributes whose types
do not belong to the set of primitive data types such as Long and String. In this case, the
type is mapped to a class and an association is generated to support the navigation from
the main class to that type class. This is illustrated in Figure 20.

Figure 20 - The Mapping of Non-Primitive Attribute Types

Another type of navigation created with respect to composite objects, occurs
when processing tables. Consider a questionnaire, where the User is provided with a list
of questions and a set of answers for each. The results are to be saved in a separate table.
This is shown in Figure 21. In such cases, the object associated with the operation trigger
is created as an aggregation of the objects representing table columns. The resultant data
model is depicted in Figure 22.

Figure 21 - Composite Objects and Tables

Figure 22 - Data Model created for

Figure 21

5.5. Mapping to Specific Platforms: An Example
In this section we will briefly describe a mapping to a sample platform in order to show
the feasibility of the method. We use a platform from AndroMDA (2007) resources for
implementation and validation purposes. This platform is defined as Java (Programming
Language), AndroMDA (Code Generation Framework), MySQL(DBM), DAO (Data
Access Mechanism) and Hibernate (2008), ArgoUML (Modeling Tool) and Struts (UI
Framework) – better know as BPM4Struts Cartridge by the AndroMDA community
(AndroMDABPM, 2008), where:

 Hibernate is used as the data access framework. This is required for establishing
data transmission amongst different layers. It is based on DAO standards.

 ArgoUML is the modeling tool used for refining the resulting PSM.
 Struts is the UI code framework. Target UI stereotypes and code skeletons are
selected from this framework.

Here are some of the definitions regarding this platform:

25

 A State Machine Context is a controller class that is responsible for handling and
forwarding operations corresponding to events within a state machine.

 An action event is an event that is called when submitting a form in a web page.
Action events usually include parameters which are the input fields of the forms.

 A deferrable event is an event that invokes a controller operation. Deferrable
events are used to assign states with operations.

 A page parameter is any output that is either shown or used for output fields on
the web page.

 A value object is an object that carries information between domain objects and
the presentation or data access layer.

 FrontEndView is a state stereotype implying that the stereotyped state represents a
web page.

 A signal event is an event that is usually carried by an incoming transition to a
front-end state. A signal event carries output fields to be shown.

 A call event is an event on a transition outgoing from a front-end state. A call
event carries input fields to be submitted along with a controller operation to be
called for performing a required action.

The following rules apply to all models:

1- There must be one controller class per use case

2- There must be a service class per data object

3- Controller classes must be dependent on their objects’ service classes

Other specific mapping rules for an APSM model to an AndroMDA-specific PSM are
as follows:
4- Every presentation state becomes a state stereotyped as FrontEndView
5- For each operation trigger

a. a signal event is created on the outgoing transition
b. a deferrable event is created on the next state. If the next state is a choice

then the deferrable event is created on the transition ending to the choice.
c. A controller operation would be generated to be called by the generated

deferrable event
d. The set of input parameters for the signal/deferrable events as well as the

controller operation are created based on the UI components belonging to
the operation trigger.

e. For every domain object referred to by a component of an operation
trigger an entity domain object and a value object are created. If the
domain object requires one of the update, delete, or insert operations then
the tag Manageable is added to the target object, to force AndroMDA to
generate the corresponding operations

i. There would be a dependency from every entity domain object to
the relevant value object

ii. An operation would be added to the service class to perform the
corresponding CRUD operation

iii. A call would be added to the controller operation to call the service

26

iv. A dependency would be made from the service class to the domain
object so that the service class can access the instances of the
domain object

6- Every UI component not owned by a trigger becomes a parameter in the set of
parameters on a signal event belonging to the incoming transition.

7- Every choice in the state machine results in the creation of a controller operation that
returns a value, based on which the state machine decides which transition to take.

6 - QVT Transformations
The following are general assumptions and conventions upon which the transformations
are based:

 The transformations are defined from a Web-based PIM (WPIM) to an Abstract PSM
(APSM) but both models are based on the abstract model introduced in Section 4.
Below is the description of the contents of two models:

 WPIM is a subset of the abstract model encompassing the following packages:
■ State Machine
■ UI Structure
■ UI Components

 APSM has the same set of packages as WPIM plus the followings:
■ Data Model
■ Data Components

 Objects from source are always named with a '1' at the end and those from the target
domain are always named with a '2' postfix. This will always remain true even when a
relation lacks either a source or target objects.

 States and transitions must be all named.
Code Sample 5 shows the transformation at the topmost level. The

transformation is defined by a top relation that transforms an abstract application at the
WPIM level to an application belonging to the APSM level.

Code Sample 5 - WPIM to APSM transformation and the top level relation
transformation WPIM2APSM (wPIM :WPIM, aPSM : APSM) {
 top relation ApplicationToApplication {
 applicationName:String;

 domain wPIM application1:WPIM::Application {
 title=applicationName,
 stateMachines=stateMachine1:UPIM::StateMachine{}
 }
 domain aPSM application2:APSM::Application {
 title=applicationName,
 stateMachines=stateMachine2:APSM::StateMachine{}
 }
 where {
 StateMachineToStateMachine(stateMachine1, stateMachine2);
 }
 }
}

AWPIM state machine is copied to its counterpart from APSM in Code Sample 6.

27

Code Sample 6 - WPIM State Machine to APSM State Machine QVT Relation
 relation StateMachineToStateMachine {
 stateMachineName:String;

 domain wPIM stateMachine1:WPIM::StateMachine {
 name=stateMachineName,
 regions=region1:WPIM::Region {
 vertices=vertex1:WPIM::Vertex {}
 }
 }
 domain aPSM stateMachine2:APSM::StateMachine {
 name=stateMachineName,
 regions=region2:APSM::Region {
 vertices=vertex2:WPIM::Vertex {}
 }
 }
 where {
 VertexToVertex(vertex1, vertex2);
 }
 }

Code Sample 7 shows a relation that copies vertexes from a WPIM to an APSM
and then calls another relation to copy those vertexes that are presentation states. We use
in-line relations to map outgoing and incoming transitions. The term in-line relation
refers to implicit mappings that exist between two elements of the same type as subsets of
source and target pattern. We usually avoid using in-line relations in order to keep the
complexity of our relations low. However, in this case we need to assign the current state
as the source and target of the outgoing and incoming transitions respectively. This would
have been hard to achieve out of the context of this relation.

Code Sample 7 - WPIM Vertex To APSM Vertex QVT Relation
 relation VertexToVertex {
 vertexName:String;
 outgoingName:String;
 incomingName:String;

 domain wPIM vertex1:WPIM::Vertex {
 name=vertexName,
 outgoing=outgoingTransition1:WPIM::Transition {
 name=outgoingName,
 source=vertex1,
 target=targetVertex1:WPIM::Vertex{}
 },
 incoming=incomingTransition1:WPIM::Transition {
 name=incomingName,
 target=vertex1,
 source=sourceVertex1:WPIM::Vertex{}
 }
 }
 domain aPSM vertex2:APSM::Vertex {
 name=vertexName,
 outgoing=outgoingTransition1:APSM::Transition {
 name=outgoingName,
 source=vertex2,

28

 target=targetVertex2:APSM::Vertex{}
 },
 incoming=incomingTransition1:APSM::Transition {
 name=incomingName,
 target=vertex2,
 source=sourceVertex2:APSM::Vertex{}
 }
 }
 where {
 PresentationStateToPresentationState(vertex1, vertex2);
 }
}

The relation in Code Sample 8 recognizes vertexes that are in fact states and have
a presentation and copies them to APSM. The existence of a presentation is automatically
checked because it is mentioned as a part of the source and target patterns. In other
words, the relation does not start unless the source has a presentation.

Code Sample 8 - WPIM Presentation State To APSM Presentation State QVT Relation
 relation PresentationStateToPresentationState {
 domain wPIM vertex1:UPIM::State {
 presentation=presentation1:UPIM::Presentation {}
 }
 domain aPSM vertex2:APSM::State {
 presentation=presentation2:APSM::Presentation {}
 }
 where {
 PresentationToPresentation(presentation1, presentation2);
 }
 }

The relation in Code Sample 9 copies presentations from WPIM to APSM and
calls another relation to deal with presentations that contain operation triggers.

Code Sample 9 - WPIM Presentation To APSM Presentation QVT Relation
 relation PresentationToPresentation {
 presentationName:String;

 domain wPIM presentation1:WPIM::Presentation {
 name=presentationName,
 uiComponents=uiComponent1:UPIM::UIComponent{}
 }
 domain aPSM presentation2:APSM::Presentation {
 name=presentationName,
 uiComponents=uiComponent2:APSM::UIComponent{}
 }
 Where {
 OperationTriggerredPresentationToOperationTrigerredPresentation
 (presentation1, presentation2)
 }
 }

The relation in Code Sample 10 finds the operation trigger in the current
presentation and copies it.

29

Code Sample 10 - WPIM Operation Trigger to APSM Operation Trigger QVT Relation
 relation OperationTriggerredPresentationToOperationTriggerredPresentation {
 domain wPIM presentation1:WPIM::Presentation {
 uiComponents=operationTrigger1:WPIM:OperationTrigger {}
 }
 domain aPSM presentation2:APSM::Presentation {
 uiComponents=operationTrigger2:APSM:OperationTrigger {}
 }
 where {
 OperationTriggerToOperationTrigger(operationTrigger1, operationTrigger2);
 }
 }

The relation in Code Sample 11 uses the owningComposite role that we added to
the abstract model, to access the owning presentation of the operation trigger on the
target side. The access in needed so that after copying the operation trigger, navigate
through the state machine is possible to reach the outgoing transition and the next state
for adding further events and parameters. Three calls are embedded in the where section:
1. A call to another relation that maps the components of the current operation trigger to

required data elements and operations
2. A call to access the owning presentation, through which navigation to the state and

access its outgoing transition occurs.
3. A last call to map drop down select components

Code Sample 11 - WPIM Operation Trigger to APSM Operation Trigger QVT Relation
 relation OperationTriggerToOperationTrigger {
 operationTriggerName:String;
 uiComponentName:String;

 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 name=operationTriggerName,
 uiComponents=uiComponent1:WPIM::UIComponent {name=uiComponentName}
 }
 domain aPSM operationTrigger2:APSM::OperationTrigger {
 name=operationTriggerName,
 uiComponents=uiComponent2:APSM::UIComponent {name=uiComponentName}
 presentation=owningPresentation2:APSM::Presentation{},
 }
 where {
 OperationTriggerQueryToOperationTriggerQuery(operationTrigger1,
 operationTrigger2);
 OperationTriggerToOwningPresentation(operationTrigger1, owningPresentation2);
 SelectToSelect(uiComponent1. UiComponent2);
 }
}

The relation in Code Sample 12 defines required data elements and operations for
accessing them. Currently, this transformation is limited to performing a filtered select
query based on the entries found on the input form. Other possible operations could be
eventually added in future. The relation calls two other relations:
1. to create the required domain objects

30

2. to generate the required parameters that filter the select operation

Code Sample 12 – WPIM Operation Trigger with Query Data to APSM Operation Trigger with Query
Data QVT Relation:
 relation OperationTriggerQueryToOperationTriggerQuery {
 dataName:String;

 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 queryData=queryData1:WPIM::DataElement{name=dataName},
 uiComponents=uiComponent1:WPIM::UIComponent{}
 }
 domain aPSM operationTrigger2:APSM::OperationTrigger {
 queryData=queryData2:APSM::DataElement{
 name=dataName,
 type=class2:APSM::Class {
 name=dataName
 }
 selectOperation=select2:APSM::OperationAdapter {
 name='select'+dataName
 }
 }
 }
 where {
 UIComponentToClass(uiComponent1, class2);
 UIComponentToOperationParameters(uiComponents, selectOperation);
 }
 }

The relation in Code Sample 13 maps a UI component to a class representing a
domain object and calls another relation to map attributes.

Code Sample 13 - WPIM UI Component to APSM Class QVT Relation:
 relation UIComponentToClass {
 domain wPIM uiComponent1:WPIM::UIComponent {
 }
 domain aPSM class2:APSM::DataElemet {
 ownedAttribute=ownedAttribute2:APSM::Property{}
 }
 where {
 uiComponentToClassAttribute(uiComponent1, ownedAttribute2);
 }
 }

The relation in Code Sample 14 defines attributes to be assigned to a generated
domain object on a target. The Where section is to be filled with a set of relations that are
required to assign a specific attribute type for every UI component. This is a good
illustration of decisions made to guarantee bidirectional mappings. A simple function
call such as the one in Code Sample 15 could have been used with the consequence of not
being reversible.

Code Sample 14 – WPIM UI Component to APSM Property QVT Relation:
 relation UIComponentToClassAttribute{
 attributeName:String;

31

 domain wPIM uiComponent1:WPIM::UIComponent {
 name=attributeName
 }
 domain aPSM ownedAttribute2:APSM::Property {
 name=attributeName
 }
 where {
 SelectToLong(uiComponent1, ownedAttribute2);
 ...
 }
 }

Code Sample 15 – unidirectional WPIM UI Component to APSM Property QVT Relation:
 relation UIComponentToClassAttribute{
 attributeName:String;

 domain wPIM uiComponent1:WPIM::UIComponent {
 name=attributeName
 }
 domain aPSM ownedAttribute2:APSM::Property {
 name=attributeName,
 type=getTypeFor(uiComponent1)
 }
 }
The relation in Code Sample 15 is not reversible because the target domain is firmly
dependent to the source domain. Running it from target to source is impossible.

Now, lets go back to Code Sample 11 and follow the path taken by the second
relation call in the where section. This relation is shown in Code Sample 16. The relation
only takes the transformation one step closer to the goals of copying the components of
an operation trigger to an outgoing transition, by finding the owning presentation of the
current operation trigger and calling another relation to find the state that owns this
presentation.

Code Sample 16 - WPIM Operation Trigger to APSM Presentation Owning Operation Trigger QVT
Relation
 relation OperationTriggerToOwningPresentation {
 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 }
 domain aPSM owningPresentation:APSM::Presentation {
 state=owningState2:APSM::State{}
 }
 where {
 OperationTriggerToOwningState(operationTrigger1, owningState2);
 }
 }

The relation in Code Sample 17 finds the state owning a presentation and
forwards the source operation trigger to the outgoing transition for event assigning
purposes.

Code Sample 17 - WPIM Operation Trigger to APSM State Owning Presentation
 relation OperationTriggerToOwningState {

32

 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 }
 domain aPSM owningState2:APSM::State {
 outgoing=outgoingTransition2:APSM::Transition{}
 }
 where {
 OperationTriggerToOutgoingTransition(operationTrigger1, outgoingTransition2);
 }
}

Finally, the relation in Code Sample 18 finds an appropriate transition on which to
create an event. The whole path taken is another example of disposition needed to make
the transformation bidirectional. Alternatively, one could rewrite Code Sample 11 as
Code Sample 19. The relation in Code Sample 19 is however, not reversible as it loses
track of owning elements when trying to create the event on the outgoing transition.

Code Sample 18 - WPIM Operation Trigger To APSM Outgoing Transition
 relation OperationTriggerToOutgoingTransition {
 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 }
 domain aPSM outgoingTransition2:APSM::Transition {
 events=event2:APSM::Event{}
 }
 where {
 OperationTriggerToTransitionEvent(operationTrigger1, event2);
 }
 }

Code Sample 19 – Unidirectional WPIM Operation Trigger to APSM Operation Trigger QVT Relation
 relation OperationTriggerToOperationTrigger {
 operationTriggerName:String;

 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 name=operationTriggerName
 }
 domain aPSM operationTrigger2:APSM::OperationTrigger {
 name=operationTriggerName
 }
 where {
 OperationTriggerQueryToOperationTriggerQuery(operationTrigger1,
 operationTrigger2);
 outgoingTransition=operationTrigger2.owningPresentation.owningState.outgoing;
 OperationTriggerToOutgoingTransition(operationTrigger1, outgoingTransition);
 }
}

The relation in Code Sample 20 takes care of the creation of an event required on
an outgoing transition. The event name is copied form the operation trigger. Another
relation is called to assign the parameters to the event according to the set of UI
components as discussed in Section 4.

Code Sample 20 - WPIM Operation Trigger To APSM Transition Event
 relation OperationTriggerToTransitionEvent {
 eventName:String;

33

 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 name=eventName,
 uiComponents=uiComponents1:WPIM::UIComponent{}
 }
 domain aPSM event2:APSM::Event {
 name=eventName,
 parameters=parameter2:APSM::Parameter{}
 }
 where {
 UIComponentToParameter(uiComponents1, parameter2);
 }
 }

The relation in Code Sample 21 maps source UI components to event parameters
using the same mechanism as in Code Sample 10.
Code Sample 21 - WPIM UI Component To APSM Event Parameter
 relation UIComponentToParameter {
 parameterName:String;

 domain wPIM uiComponent1:WPIM::UIComponent {
 name=parametyerName
 }
 domain aPSM parameter2:APSM::Parameter {
 name=parameterName
 }
 where {
 SelectToLong(uiComponent1, parameter2);
 ...
 }
 }

The relation in Code Sample 22 maps a select component to another select
component. The relation calls two more relations to:

 create the domain object required to model the information associated with the
select components

 create the operation required to load all the instance objects

Code Sample 22 - UPIM UI Select Component To APSM UI Select Component
 relation SelectToSelect {
 selectName:String;

 domain wPIM select1:WPIM::Select {
 name=selectName,
 dataSource=dataSource1:WPIM::DataComposite{}
 }
 domain aPSM select2:APSM::Select {
 name=selectName,
 dataSource=dataSource2:APSM:DataComposite{}
 }
 where {
 DataSourceToDataSource(dataSource1, dataSource2);
 SelectOperationToSelectOperation(dataSource1, dataSource2);
 }

34

}

The relation in Code Sample 23 maps the data composite element that supplies
the select component.

Code Sample 23 - WPIM Data Source To APSM Data Source
relation DataSourceToDataSource {
 dataSourceName:String;

 domain wPIM dataSource1:WPIM::DataComposite {
 name=dataSourceName,
 type=type1:WPIM::Class{}
 }
 domain aPSM dataSource2:APSM:: DataComposite {
 name=dataSourceName,
 type=type2:APSM:Class{}
 }
}

The relation in Code Sample 24 creates a select operation required to supply a
select component. Unlike the select operation in Code Sample 11, this operation does not
require any parameter as it loads all the instance objects.

Code Sample 24 - WPIM Select Operation To APSM Select Operation
 relation SelectOperationToSelectOperation {
 domain wPIM dataSource1:WPIM::DataSource {
 }
 domain aPSM dateSource2:APSM::DataSource {
 selectOperation=selectOperation2:APSM::OperationAdapter{}
 }
 where {
 SelectOperationToOperationAdapter(dataSource1, selectOperation2);
 }
}

Section 7- A Case Study
Different case studies are being considered in order to validate our approach. In this
section, we will discuss one of these case studies; an Election Management System
(EMS) introduced by Lethbridge and Laganière (2001). The intent of this system is to
manage the information regarding elections and polls. The system provides facilities for
data-related activities and management of the voting process. It also provides some
information to journalists.

Figure 23 presents the use case diagram of EMS. A full implementation of EMS
would encompass more use cases. For example, we have not included the use cases
required for deleting or updating information elements. We have also simplified the
definition by making some assumptions such as assigning only one poll to each polling
station.

Our implementation concerns a subset of the EMS consisting in use cases:
1- Login
2- Define Election

35

3- Define Seat
4- Define Poll
5- Open Poll
6- Vote
7- Close Poll

Figure 23 – EMS Use-Case Diagram

Figure 24 – log-in state machine

7.1. Administrator Login Use Case
Figure 24 shows the state machine describing the behavior of use case Login. The
administrator attempts to login. The machine verifies the login information and shows a

Login

Election
Administrator
Election
Administrator

Register
Candidate

Define Poll Define Seat

Register Voter

VoterVoter

Define Election

CandidateCandidate

Open Poll

JournalistJournalist

Monitor

Close Poll

<<includes>>

Register Voter
At Station

<<includes>>

<<extends>>

Define Candidate

Print/Display
Ballot

Login
information
is entered

Login
Information
is verified

Homepage
Shown

not approved

EleManSys is up

Login Failed
Message Shown

Show login view

Confirm login

Number of attempts = 3

Number of attempts < 3

approved

Account Locked
Message Shown

1

4

2

3

5

36

homepage when the login information is valid. If the information is invalid and the
administrator has not reached a maximum of three attempts, he/she is be given another
chance to login. Otherwise, the account will be locked.

Figure 25 presents the UI model of the login state machine in four different
sections for states 1, 3, 4, and 5. The proper mechanism of login/logout use cases is
different than just a simple query checking mechanism and depends on the target
platform and selected security technology. We abide here by an abstract mechanism.

25a – login presentation state 1
25b – login presentation state 3

25c – login presentation state 4

Figure 25 – UI Model of login use case

25d – login presentation state 5

We now traverse the QVT relations over the login state machine to see the results. The
transformation happens as follows:

 The relations in Codes 5 to 11 simply generate the application, state machine, states,
transitions, presentations and UI components as they appear in the source model.

 The relation in Code Sample 12 results in the generation of a class named User and a
select operation called selectUser.

 The relations in Code Sample 13 and 14 add two attributes to the class, User:
 username:String
 password:String

 The relations in Codes 16 to 18 traverse the model to reach the outgoing transitions of
every presentation state.

 The relations in Codes 20-21 results in the generation of the following events:
 outgoing state 1 event, login(username:String, password:String)
 outgoing state 3 event, login(username:String, password:String)
 outgoing state 4 event, contactAdministrator
 outgoing state 5 events, addElection, addPoll, openPoll, vote,

 Relations to generate the controller operation has not been formally defined but the
mapping rules result in the generation of two controller operations:

 isLoginApproved:boolean created on transition out of state 2
■ Added Remarks

 call selectUser(username, password) service

37

 return true if (username, password) was found in User
 isAttemptsLimitReached
■ Added Remarks

 return true if isAttemptsLimitReached

7.2. Define Election Use Case
We move on to the next use case in our outlined scenario, which is when the
administrator defines and adds a new election. The behavior of this use case is described
as the state machine in Figure 26.

Figure 26 - Add Election state machine

As Figure 26 shows, the User views the Add Election page. The User can choose to
cancel, which ends the use case. After election information is entered and confirmed, the
EMS verifies it; another trial is initiated if the same election is found in the database.
When the addition of an election is successful, a message is shown and the use case
returns to the homepage.

Figure 27 contains the presentation attached to states 1 and 3 in Figure 26.

Figure 27a – Add Election presentation state 1 Figure 27b – Add Election presentation state 3

Figure 27 – Add Election presentation states

We now apply the QVT relations to the Add Election state machine:

 The relations in Codes 5 to 11 simply generate the application, state machine, states,
transitions, presentations and UI components as they appear in the source model.

Add Election
Verified

Cancel add election

Add Election Success
Message Shown

Election Added

Election is already existing

Election Manager
is logged in

Add Election
View is shown

Add Election Failed
Message Shown

Confirm add election

1

4

3

2

38

 The relation in Code Sample 12 results in the generation of a class named Election
and an insert operation called insertElection.

 The relations in Codes 13 and 14 add two attributes to the class, Election:
 name:String
 description:String

 The relations in Codes 16 to 18 traverse the model to reach the outgoing transitions of
every presentation state.

 The relations in Codes 20-21 result in the generation of the following events:
 outgoing state 1 event, addElection(name:String, description:String)
 outgoing state 3 event, addElection(name:String, description:String)

 Relations to generate the controller operation has not been formally defined but the
mapping rules result in the generation of two controller operations:

 isElectionInserted:boolean created on transition out of state 2
■ Added Remarks

 call insertElection(name, description) service
 return false if (name, description) was found in Election; return true if the

insertion was successful

7.3. Add Seat Use Case
Figure 28 shows the state machine describing the behavior of Use Case Add Seat, which
defines a position to be competed upon in an election. Figure 29 contains the presentation
regarding states 1 and 3. This use case is adds a seat to an existing election. The User
must select an election and specify information including the maximum number of
incumbents for the seat. This use case illustrates the usage of a select box.

Figure 28 - Add Seat state machine

We now apply the QVT relations to the Add Seat state machine:
 The relations in Codes 5 to 11 simply generate the application, state machine, states,

transitions, presentations and UI components as they appear in the source model.
 The relation in Code Sample 12 result in the generation of a class named Seat and an

insert operation called insertSeat.
 The relations in Codes 13 and 14 add two attributes to the class Seat:

 name:String
 description:String
 election:Long
 incumbents:Integer

Verify
Add Seat

Cancel add seat Add Seat Success
Message Shown

Seat is already existing

Add Seat View
is shown

Add Seat Failed
Message Shown

Seat is added

1

4

3

2

39

 The relations in Codes 16 to 18 traverse the model to reach the outgoing transitions of
every presentation state.

 The relations in Codes 20-21 result in the generation of the following events:
 outgoing state 1 event, addSeat(election:Long, name:String, description:String,

incumbents:Integer)
 outgoing state 3 event, addSeat(election:Long, name:String, description:String,

incumbents:Integer)
• The relations in Codes 22-24 result in the generation of a select operation called

selectElections that loads all the instances from the Election objects.
 Relations to generate the controller operation has not been formally defined but the

mapping rules result in the generation of one controller operation:
 isSeatInserted:boolean created on transition out of state 2
■ Added Remarks

 call insertSeat(election, name, description, incumbents) service
 return false if (election, name, description, incumbents) was found in Seat;

return true if the insertion was successful
 An event is added to the incoming transition that calls the controller operation to load

all the elections using the selectElections service.

29a – Add Seat presentation state 1

 29b – Add Seat presentation state 3

Figure 29 – Add Seat presentation states

40

7.4. Add Poll Use Case
Once an election is defined, the User needs to assign a Poll to that election to make the
voting process possible. The behavior of the Add Poll use case is shown in Figure 30.
Figure 31 shows the presentation of the state 1 of the Add Poll state machine. A poll is
added by selecting an election to assign the poll to. The poll has a location, date and time.

Figure 30 - Add Poll state machine

Figure 31 - The Add Poll Presentation

We now apply the QVT relations to the Add Poll state machine:

 The relations in Codes 5 to 11 simply generate the application, state machine, states,
transitions, presentations and UI components as they appear in the source model.

 The relation in Code Sample 12 result in the generation of a class named Poll and an
insert operation called insertPoll.

 The relations in Codes 13 and 14 add two attributes to the class, Poll:
 name:String
 location:String
 election:Long
 date:Date
 time:Time

 The relations in Codes 16 to 18 traverse the model to reach the outgoing transitions of
every presentation state.

 The relations in Codes 20-21 result in the generation of the following events:

Verify
Add Poll

Cancel add poll Add Poll Success
Message Shown

Poll is already existing

Add Poll View
is shown

Add Poll Failed
Message Shown

poll is added

1

4

3

2

41

 outgoing state 1 event, addPoll(election:Long, name:String, location:String,
incumbents:Integer)

 outgoing state 3 event, addSeat(election:Long, name:String, description:String,
incumbents:Integer)

 The relations in Codes 22-24 result in the generation of a select operation called
selectElections that loads all the instances from the Election objects.

 Relations to generate the controller operation has not been formally defined but the
mapping rules result in the generation of one controller operations:

 isPollInserted:boolean created on transition out of state 2
■ Added Remarks

 call insertPoll(election, name, location, incumbents) service
 return false if (election, name, location, incumbents) was found in Poll;

return true if the insertion was successful
 An event will be added to the incoming transition that calls the controller

operation to load all the elections using the selectElections service. This in turn
results in the creation of an object representing a collection of Election objects.

7.5. Open Poll Use Case
Prior to voting, one needs to open a poll. This use case opens the poll so that the voting
terminals become dedicated to that poll voting process.

Figure 32 presents that the User must first select an election in order to populate
the list of polls. The presentation of the state, Open Poll View is shown is depicted in
Figure 33. Compared to previous use cases, this is a new situation where the controller is
called before the termination of the use case. Therefore, we will need more than one
controller operations. The use case performs three controller operations: two that are used
to load elements from the election and poll data sources; and a third one to update the
Poll object in order to change its status to Open. The star placed on the Election select
component denotes the default event holder of the presentation. The same presentation
model is used for the Populate Polls List state without the star, which means that the
Open Poll submit button is used as the default trigger event in that case.

Figure 32 - The Open Poll State Machine

Figure 33 - Presentation of Open Poll State
Machine

We now apply the QVT relations to the Add Poll state machine:
 The relations in Codes 5 to 11 simply generate the application, state machine, states,

transitions, presentations and UI components as they appear in the source model.

Cancel open poll

Open poll view
is shown

Show open poll

Select Elections

Open poll

Open
poll

Populate
Polls List

poll.status=‘open’

*

42

 The relations in Code Sample 12 result in the generation of the operation updatePoll.
 The relations in Codes 16 to 18 traverse the model to reach the outgoing transitions of

every presentation state.
 The relations in Codes 20-21 result in the generation of the following events:

 outgoing state 1 event, loadPoll(election:Long)
 outgoing state 3 event, updatePoll(poll:Long)

 The relations in Codes 22-24 result in the generation of two select operations called
selectElections that loads all the instances from the Election objects and selectPolls,
which loads the corresponding poll objects.

 Relations to generate the controller operation has not been formally defined but the
mapping rules result in the generation of one controller operations:

 isPollUpdated:boolean created on transition out of state 3
■ Added Remarks

 call updatePoll(election) service
 return false if Poll was not updated

 An event is added to the incoming transition of state 1 that calls the controller
operation to load all the polls using the selectElections service.

 An event is added to the incoming transition of state 2 that calls the controller
operation to load all the polls using the selectPolls service. The latter results in the
generation of a collection of Poll objects.

7.6. Vote Use Case
There could be several different scenarios for voting depending on the size and level of
an election. In this case, we assume that voters login to a terminal; the system provides a
default ballot, in which the voter can see the positions and the names of candidates. The
voter fills the ballot out and confirms his/her vote. It is assumed that only one poll at a
time can be opened in a location. A voter can only login once while a poll is open.
 The state machine in Figure 34 shows the voting use case. The state machine has
a few presentation states. Since we already covered a login use case, we focus on the
state, Ballot Shown. In this state, a presentation containing a list of possible seats and
candidates are shown. Figure 35 shows this presentation. The ballot is presented using a
two-columns table. The first column lists the possible seats. The second column shows
the list of candidates available per seat.

 The relation in Code Sample 12 results in the generation of the operation addBallot.
 The relations in Codes 20-21 result in the generation of the following event:

 outgoing state 1 event, addBallot(seat:Long, candidates:Long[])
 The relations in Code Sample 22-24 result in the generation of two select operations

called selectSeats that loads all the instances from the Seat objects that belong to the
currently open poll and selectCandidates, which loads the corresponding Candidate
objects that compete for that specific seat. This mechanism has not been formally
defined in the mappings.

 The voting use case also includes a special case of composite objects shown in a
table. In this case, a domain object, Ballot is generated with two attributes/associations:

 seat:Seat
 candidates:Candidate[]

43

7.7. Close Poll Use Case
The last use case in this case study calculates and reports the final results of a poll. This
is shown in Figure 36 with the corresponding presentation in Figure 37.

 The table in Figure 37 is composed of a view created based on entries from Ballot
objects. The application should read all the ballots and calculates the most assigned vote
to every candidate.

Figure 34 - Voting State Machine

Figure 35 - Presentation of a Ballot for Voting purpose

Figure 36 - Close Poll state machine

Printing and
Closing
the PollConfirm Results

Results View
Shown

Voter
Information
is verified

Ballot
Shown

Confirmed

Voter
information
is entered

approved

Ballot
Printed

Cancelled

Register
Voter

(Extension Point)

not approved

44

Figure 37 - Close Poll Presentation

7.8. The Generated Application
In this section, we describe the generated abstract web application by summarizing the
models generated so far. The structure of the application is understood in terms of the
presentation states and the way they call or encompass each other. The call structure of
the created EMS for a successful scenario is shown in Figure 38.

Figure 38 - The structure of EMS in a happy scenario

 Figure 39 shows a simplified version of the class model of EMS. Classes that are
not generated as the result of applying the mappings to the use cases covered in this
section are shadowed. One should note that although the domain model should belong to
the PIM, our method extracts domain classes automatically. There are also other objects
and associations the mappings create in order to manage collections of Polls and
Elections, which are not covered Figure 39.
 Finally, Table 3 shows the controller operations created per use case and the
usage of data services projected in these controllers. The state machines and presentation
models are copies of the PIM with data associations removed. Therefore, we have not
inserted them in this section.

7.9. Backward Change
As stressed earlier, one of our goals is the ability to support backward changes from the
APSM to the PIM. In this section, we review an example illustrating such changes.
Consider the Open Poll use case. Suppose a scenario, in which the developer finds out
that the system should proceed with monitoring the poll process after the poll opens. This
functionality was not considered in Section 7.5. Suppose the developer adds an event on
the transition going out of state Open Poll in the APSM version of Figure 35 with an
event called monitor(poll:Long) in order to support the new functionality.

First we need to read the relevant relations in reverse order. Code Sample 28
contains the relevant relation read in reveres direction.

45

Figure 39 - The class model of EMS according to use cases covered in this section

Code Sample 28 - APSM Transition Event To WPIM Operation Trigger QVT Relation (Reverse of Code
Sample 20)
 relation OperationTriggerToTransitionEvent {
 eventName:String;

 domain aPSM event2:APSM::Event {

46

 name=eventName,
 parameters=parameter2:APSM::Parameter{}
 }
 domain wPIM operationTrigger1:WPIM::OperationTrigger {
 name=eventName,
 uiComponents=uiComponents1:WPIM::UIComponent{}
 }
 where {
 UIComponentToParameter(uiComponents1, parameter2);
 }
 }

The relation in Code Sample 28, results in the generation of an operation trigger
named monitor in the PIM, and the invocation of another relation to map UI components
of the operation trigger to event parameters. This relation should be read in reverse as
shown in Code Sample 29.

Code Sample 29 - APSM Event Parameter To WPIM UI Component QVT Relation (Reverse of Code
Sample 21)
 relation UIComponentToParameter {
 parameterName:String;

 domain aPSM parameter2:APSM::Parameter {
 name=parameterName
 }
 domain wPIM uiComponent1:WPIM::UIComponent {
 name=parametyerName
 }
 where {
 SelectToLong(uiComponent1, parameter2);
 ...
 }
 }

The relation in Code Sample 29 creates a UI component named poll in the APSM
version of Figure 35. The type of this component will then be defined by calling the
relations in Where section, which in this case maps parameter poll to a drop-down select
box. The administrator could then select a poll from the list to monitor. Note that even if
there is only one election in process, there could be more than one poll in progress in
different sites.

7.10. Mapping to AndroMDA-specific Platform
We have developed the EMS application using the AndroMDA-specific rules in Section
5.5. In this section, we verify the application of the AndroMDA-specific rules to a few
use cases to describe the results of the mappings.
 Before going through the example, we will review the mechanism to create
controller and service operations. According to the mapping rule 1, there must be one
controller per each use case. All the controller operations will be assigned to this class.
Controller operations are generated for two different reasons:

47

1- Performing a CRUD operation: in this case a call to the corresponding data access
service operation will be also inserted within the operation. For each CRUD
operation, there would be only one controller operation.

2- Determining the outgoing transition of a choice: the state machine will simply call the
controller operation to decide which path to continue on.

 The following are the elements created in the AndroMDA-specific model with
respect to the Login use case:

 The service class, userService with operation (Mapping Rule 2)
 selectUser(username, password):User (Mapping Rule 5.e.ii)

 The controller class, loginController (Mapping Rule 1) with operations
 is LoginApproved(username, password):boolean (Mapping Rule 5.c and 7)
■ calls the selectUser service (Mapping Rule 5.e.iii)

 isAttemptsLimitReacged():boolean (Mapping Rule 7)
 A dependency from loginController to userService (Mapping Rule 3)
 A domain object, ‘user’ with the attributes, username and password both typed as

String. The object will be stereotyped as Entity. (Mapping Rule 5.e)
 A value object, UserVO that carries the same information amongst different layers

of application. (Mapping Rule 5.e)
 A login signal event on the transition going out of state 1 in Figure 27 (Mapping

Rule 5.a) carrying the same parameters as the attributes of User (Mapping Rule
5.b).

 username:String
 password:String
■ Password parameter will be tagged by AndroMDA-specific tags to denote

that this is presented as a password input box, which is differentiated from
regular input boxes.

 A dependency from User to UserVO (Mapping Rule 5.e.i)

Figure 40 – Open Poll state machine in AndroMDA-specific platform

Calls
openPoll(poll:Long)

Calls
populatePollsList(election:Long)

Populate
Elections List

Show Elections
List

Open Poll View
Populate Polls

List

Poll is Open

Calls
populateElectionsList()

48

The Open Poll use case is a case in which it is not possible to create the exact UI
model and state machine in the AndroMDA-specific side. The reason is that in the
current version of AndroMDA, one cannot automatically build the select events as
required by the model of Figure 33 (See AndroMDA_Forum, 2008). As a result one has
to break the UI model into two different sections: one that selects the election and the
other that selects the poll to open. Figure 40 shows the resultant state machine in
AndroMDA side for a simplified Open Poll use case.

The following list shows the elements generated in corresponding to the Open
Poll use case starting from Populate Polls List state:

 The service class, pollService with operation (Mapping Rule 2)
 updatePoll(poll:Long):boolean (Mapping Rule 5.e.ii)
 selectPolls(election:Long):Poll[](Mapping Rule 5.e.ii)

 The controller class, openPollController (Mapping Rule 1) with operations
 populatePollsList()(Mapping Rule 5.c and 7)
■ calls the selectPolls service (Mapping Rule 5.e.iii)

 isAttemptsLimitReacged():booleanopenPoll()(Mapping Rule 5.c and 7)
■ calls the updatePoll service (Mapping Rule 5.e.iii)

 A dependency from openPollController to pollService (Mapping Rule 3)
 The domain object, ‘poll’ will be stereotyped as Manageable. (Mapping Rule 5.e)
 A value object, PollVO that carries the same information amongst different layers

of application. (Mapping Rule 5.e)
 Another value object PollVO[] to carry the collection of polls returned by

selectPolls service. (Mapping Rule 5.e)
 A populatePollsLost signal event on the transition going out of the first state of

Figure 34 (Mapping Rule 5.a) carrying the ID of the selected election as its
parameter (Mapping Rule 5.b).

 An openPoll signal event on the transition going out of State Open Poll in Figure
34 (Mapping Rule 5.a) carrying the same parameters as the attributes of Poll.

 Dependencies from Poll to PollVO (Mapping Rule 5.b)
The Open Poll use case has an interesting feature, which is the transmission of the

selected election parameter to the operations required to populate the polls list. This is
necessary because, one needs to select an election prior to selecting a poll. This is simply
done by using the same parameter name for both the selection trigger fired from the
elections list and the controller operation used for populating the polls list.

In case of the voting use case, the rules must result in an object that will be used
for supplying data to the table. This is basically a composite data object, which is
supplied by all the candidates running for a seat. In this case an intermediate object which
is composed of both Seat and Candidate objects will be generated. This has not been
formally defined in the AndroMDA-specific mappings yet but has been automatically
done for the current implementation.

We return to our technique to assign a controller to each use case and a service to
each entity. Therefore, a controller class could be dependent on more than one service.
For example, in case of voting use case different entities are required; these are
Candidate, Seat, Poll and Ballot. Thus the following dependencies will be generated:
1- Controller to Poll; in order to access the information regarding a specific poll.

49

2- Controller to Seat: in order to load all the seats candidates compete for in a certain
poll

3- Controller to Candidate: used for retrieving the list of candidates competing for a
specific seat

4- Controller to Ballot: in order to generate a ballot composed of the information
regarding the seats and candidates.

Further, the pseudo-code automatically generated during the PIM-to-APSM
transformation could be automatically transformed to the actual code used for building
controller and service operations. For example, one can see that in several occasions, we
need to populate a drop-down list of data items. Code sample 30 shows the typical code
fragment used for controlling such elements, in which the term Element will be replaced
by the exact data element in each case, e.g. Election in Figure 34.

Code Sample 30 – Automatically-generated code for populating select boxes
 ElementVO[] elements = getElementService().selectAllElements();
 List elementList = new ArrayList(Arrays.asList(elements));

 form.setElementBackingList(elementList, "id", "elementName");

Code Sample 30 invokes a service operation, for which Code Sample 31 provides
a template:

Code Sample 31 – Automatically generated code for selectAllElements service

Collection elementVOs = getElementDao().loadAll(ElementDao.TRANSFORM_ELEMENTVO);
 return (ElementVO[])elementVOs.toArray(new ElementVO[0]);

Code Samples 30-31 could be seen as the results of transforming Code Sample 4.

Table 3 - Use Cases, Controller Operations and Data Services of the EMS

50

8. Conclusion
We described our proposal for an automated method for the generation of an abstract
PSM from a PIM in the context of web-based information systems. The PIM is defined in
terms of use cases and their presentation models. The behavior of use cases is provided as
state machines. The method automatically generates domain objects and the APSM. The
APSM could be later mapped to specific PSMs that are appropriate for certain web
development and hosting platforms. We use QVT relations to model bi-directional
mappings. Therefore, our approach supports the generation of an APSM from a PIM as
well as reflecting required changes from an APSM to a PIM.

A number of customizations were required to adapt the abstract model to our
approach. Refinements made include the addition of several navigation links to enable
the access to owning objects, and to associate data elements and data sources with
operation triggers for the automated generation of data services. The following list shows
how our model covers different aspects of a web application:

• The hypertext content is supported by the data-centric UI components.
• The navigation is modeled using triggers that could be operation or hyperlink

triggers.
• The behavior is supported by the usage of state machines related to the UI model.
• The presentation is modeled by the UI structure and components.
• The data access is supplied by operation adapters.

Future work is mainly devoted to more experiment with the method in terms of
realistic examples and specific web platforms to improve the mappings. We will also
work on building a user-friendly tool. So far, we have implemented the EMS application
using AndroMDA. A part of the future work is to implement the EMS in other platform
and expand the existing ones.

References
AndroMDA, www.andromda.org, 15-02-2007

AndroMDA Bpm4Struts Docs, http://galaxy.andromda.org/docs-3.2/andromda-bpm4struts-
cartridge/index.html, 20-08-2008

AndroMDA_Forum, http://galaxy.andromda.org/forum/viewtopic.php?t=5884, 12-08-2008

Baresi, L. Colazzo, S. Mainetti, L. and S. Morasca. W2000: A Modeling Notation for Complex Web
Applications. In E. Mendes and N. Mosley (eds.) Web Engineering: Theory and Practice of Metrics and
Measurement for Web Development. Springer, ISBN: 3-540-28196-7, 2006.

Beydeda, S. Book, M. Gruhn, V. (eds.).Model-driven software development, Berlin ; New York : Springer,
2005.

Botterweck, G. A Model-Driven Approach to the Engineering of Multiple User Interfaces, In: Models in
Software Engineering, , Springer Berlin / Heidelberg, Volume 4364/2007, pp. 106-115

Brambilla, M. Comai, S. Fraternali, P. and Matera, M.: Designing Web Applications with WebML and
WebRatio. In book: "Web Engineering: Modelling and Implementing Web Applications." Gustavo Rossi,
Oscar Pastor, Daniel Schwabe and Luis Olsina. 2007

51

Cáceres, P. de Castro, V. Vara, J. M. and Marcos, E. “Model Transformation for Hypertext Modeling on
Web Information Systems”, Proc. ACM Symp. Applied Computing (SAC’06), 2006. pp: 1232-1239.

Ceri, S. Fraternali, P. and Bongio, A.: Web Modeling Language (WebML): a modeling language for
designing Web sites. Computer Networks 33 (1-6): 137-157 (2000)

Ceri, S. Fraternali, P. Bongio, A. Brambilla, M. Comai, S. Matera, M.. Designing Data-Intensive Web
Applications. Morgan Kaufmann. 2006

Distante, D. Pedone, P., Rossi, G. and Canfora, G. Model-Driven Development of Web Applications with
UWA, MVC and Java Server Faces. In: Web Engineering. Volume 4607/2007. Springer Berlin /
Heidelberg. Pages 457-472

He, C. Tu, W. and He, K. Role Based Platform Independent Web Application Modeling Proceedings of
the Sixth International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT’05). Pp: 411-415.

Hibernate, www.hibernate.org, March 27, 2008

Hruby, P. Model-Driven Design using Business Patterns; with contributions by Jesper Kiehn and
Christian Vibe Scheller. Berlin ; New York : Springer-Verlag, c2006.
José, M. Cuaresma, E. and Koch, N.: Metamodeling the Requirements of Web Systems. WEBIST (1)
2006: 310-317

Kraus, A. Knapp, A. and Koch, N. Model-Driven Generation of Web Applications in UWE. In Proc.
MDWE 2007 - 3rd International Workshop on Model-Driven Web Engineering, CEUR-WS, Vol 261,
July 2007

Koch, N. Zhang, G. and Escalona, M. J.: Model Transformations from Requirements to Web System
Design Proceedings of the 6th international conference on Web engineering Pages: 281 – 288, 2006.

Koch, N, and Kraus, A.: The expressive Power of UML-based Web Engineering. Proc. Of IWWOST´02,
CYTED, pp. 105–119, 2002.

Koch, N. Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling
Techniques and Development Process PhD. Thesis, FAST Reihe Software technik, UNI-DRUCK Verlag,
December 2000.

Koch, N. Kraus, A. and Hennicker, R. The Authoring Process of the UML-based Web Engineering
Approach. In Proceedings of the 1st International Workshop on Web-Oriented Software Technology, 05
2001.

Kroiß, C. and Koch, N. UWE Metamodel and Profile User Guide and Reference, Technical Report,
February 2008. Available from (www.pst.ifi.lmu.de/projekte/uwe)

Li, J. Chen, J. Chen, P.: Modeling Web Application Architecture with UML , Proceedings of the 36th
International Conference on Technology of Object-Oriented Languages and Systems, 2000. TOOLS -
Asia 2000. 265-274

MDA, http://www.omg.org/mda/, October, 1, 2005

Meliá, S. Gómez, J.: Applying Transformations to Model Driven Development of Web Applications. ER
(Workshops) 2005: 63-73

Meliá, S. Gómez, J. and Koch, N. Improving Web Design Methods with Architecture Modeling. In 6th
International Conference on Electronic Commerce and Web Technologies (EC-Web 2005), Copenhagen,

52

Denmark, Kurt Bauknecht, Birgit Pröll, Hannes Werthner (Eds.). LNCS 3590, ©Springer Verlag, 53-64,
August 2005.

Meliá, S., Gomez, J.: The WebSA Approach: Applying Model Driven Engineering to Web Applications.
Journal of Web Engineering, © 5(2), Rinton Press, 121–149 (2006)

Meliá, S. Gómez, J. and Serrano, J. L.: WebTE: MDA Transformation Engine for Web Applications. In:
Web Engineering, Volume 4607/2007, Springer Berlin / Heidelberg. Pages 491-495

Muller, P. A. Studer, P. Fondement, F. and Bézivin, J.: Platform Independent Web Application Modeling
and Development with Netsilon. Software and System Modeling 4(4): 424-442 (2005)

Netsilon Overview, http://fondement.free.fr/objx/netsilon/, August 5th, 2008

Nikolaidou, M. and Anagnostopoulos, D. A Systematic Approach for Configuring Web-Based
Information Systems. In the Journal of Distributed and Parallel Databases, Springer Netherlands, Volume
17, Number 3 / May, 2005 .Pages 267-290

OMG, MDA Guide Version 1.0.1, 12th June 2003

OMG, MOF QVT Final Adopted Specification, November 2005

OMG, Unified Modeling Language: Superstructure, February 2007

Pierantonio, A. Vallecillo, A. Selic, B. and Gray, J.: Special Issue on Model Transformation. Sci. Comput.
Program. 68(3): 111-113 (2007)

Rossi, G. Schwabe, D.: Model-Based Web Application Development. In E. Mendes and N. Mosley (eds.)
Web Engineering: Theory and Practice of Metrics and Measurement for Web Development. Springer,
ISBN: 3-540-28196-7, 2006.

Schmid, H. A. and Donnerhak, O.: The PIM to Servlet-Based PSM Transformation with OOHDMDA,
Workshop on Model-driven Web Engineering (MDWE 2005) July 26, 2005

Stahl, T. and Volter, M, Bettin, J. Haase, A. and Helsen, S.: Modeldriven Software Development :
Technology, Engineering, Management /translated by Bettina von Stock�eth. John Wiley, Chichester,
England ; Hoboken, NJ (2006) OMG, MDA Guide Version 1.0.1, 12th June 2003

Tai, H. Mitsui, K. Nerome, T. Abe, M. Ono, K. and Hori, M.: Model-driven development of large-scale
web applications, IBM Journal of Research and Development, Volume 48 , Issue 5/6
(September/November 2004) Pages: 797 - 809

UWA Consortium, Ubiquitous Web Applications. In: Proceedings of the eBusiness and eWork
Conference 2002, (e2002: October 16-18 2002, Prague, Czech Republic) (2002)

WebML, www.webml.org, May 5, 2008

WebRatio, www.webratio.com, May 6, 2008

Wu, J. H. Shin, S. S. Chien, J. L. Chao, W. S. and Hsieh, M. C.: An Extended MDA Method for User
Interface Modeling and Transformation. In: The 15th European Conference on Information Systems. pp
1632-1641 (2007)

