
Select-and-Protest-based Beaconless Georouting
with Guaranteed Delivery in WSNs

Hanna Kalosha, Amiya Nayak, Stefan Rührup, Ivan Stojmenović

School of Information Technology & Engineering
University of Ottawa, 800 King Edward Avenue

Ottawa, Ontario K1N 6N5, Canada

Abstract Recently proposed beaconless georouting algorithms are fully reactive, with
nodes forwarding packets without prior knowledge of their neighbors. However, existing ap-
proaches for recovery from local minima can either not guarantee delivery or they require the
exchange of complete neighborhood information.

We describe two general methods that enable completely reactive face routing with guaran-
teed delivery. The Beaconless Forwarder Planarization (BFP) scheme finds correct edges of a
local planar subgraph at the forwarder node without hearing from all neighbors. Face routing
then continues properly. Angular Relaying determines directly the next hop of a face traversal.
Both schemes are based on the Select and Protest principle. Neighbors respond according to
a delay function, but only if there is no other neighbor within their forbidden region. Protest
messages are used to correct occasionally wrong selections by neighbors that are not in the
planar subgraph.

We show that a correct beaconless planar subgraph construction is not possible without
protests. We also show the impact of the chosen planar subgraph construction on the message
complexity. This leads to the definition of the Circlunar Neighborhood Graph (CNG), a new
proximity graph, that enables BFP with a bounded number of messages in the worst case,
which is not possible when using the Gabriel graph (GG). The CNG is sparser than the GG,
but this does not lead to a performance degradation. Simulation results show similar message
complexities in the average case when using CNG and GG.

Angular Relaying uses a delay function that is based on the angular distance to the previous
hop. We develop a theoretical framework for delay functions and show both theoretically and
in simulations that with a function of angle and distance we can reduce the number of protests
by a factor of 2 in comparison to a simple angle-based delay function.
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1 Introduction
Wireless ad hoc and sensor networks consist of nodes which are equipped with very limited resources.
They usually have a wireless transceiver with limited transmission range, restricted memory and processing
capabilities, and, above all, limited energy resources. Many effort has been invested in developing topology
control strategies and routing protocols in order to increase the energy-efficiency. In this paper we focus on
beaconless geographic routing, a completely reactive approach for multi-hop communication in wireless
ad hoc and sensor networks, that relies on position information and reduces the overhead for the exchange
of topology and routing information to a minimum.

Beaconless georouting algorithms work completely reactive and reduce the overhead for exchanging
topology and routing information to a minimum. They follow the principle of geographic routing, where
a message is routed to the location of the destination instead of a network address. This is based on
the assumptions that each node can determine its own geographic position and that the source knows
the position of the destination. The use of position data enables routing without routing tables or prior
route discovery. Conventional geographic routing algorithms use two basic forwarding principles: greedy
forwarding and face routing. Greedy forwarding means to select a neighbor that minimizes the distance to
the target. This strategy fails in case of a local minimum, i.e. if no neighbor is closer to the destination.
Then, face routing can be used in order to recover from this situation. The message is routed along the
incident face of the communication graph using the right-hand rule until a position is found that is closer to
the destination than the local minimum. Face traversals work only on a planar subgraph, otherwise crossing
edges might cause a routing loop. Thus, a local planarization strategy is needed, which determines the
edges of a planar subgraph.

Beaconless Routing

Conventional geographic routing algorithms rely on the position information of their 1-hop-neighbors. This
information can be gathered by a periodic exchange of beacon messages. Beaconless routing algorithms try
to avoid this message exchange and provide a completely reactive routing. The basic principle of beacon-
less forwarding is the following: The forwarder, i.e. the node that currently holds the packet, broadcasts it
to its neighbors. The nodes within the forwarder’s transmission range receive the packet, but only the nodes
in the forwarding area are eligible for forwarding it further (see Fig. 1). These nodes are called candidates.
The most suitable candidate is determined by a contention mechanism: After receiving the packet, each
candidate starts a timer. The timer is determined by a delay function that favors the most promising node,
e.g., the node closest to the destination has the shortest timeout. This node forwards the packet again, when
its timer expires. The other candidates notice that the packet is re-transmitted and cancel their timers. This
strategy follows the greedy principle, because it uses always locally optimal decisions.

The Beaconless Recovery Problem

As greedy routing fails in case of a local minimum, a recovery strategy is needed to guarantee delivery. The
preferred recovery method for conventional geographic routing is the face traversal on a planar subgraph,
which is constructed from neighborhood information. But in beaconless routing the full knowledge of the
neighborhood is not a priori available. Instead, part of this knowledge has to be gained by exchanging mes-
sages, if it is not implicitly given by the location of the nodes. Therefore, we can describe the beaconless
recovery problem by two questions, whose answer is the key to guaranteed delivery:

1. How to construct a local planar subgraph on the fly?

2. How to determine the next edge of a planar subgraph traversal?

The beaconless recovery problem has to be solved reactively and with as few messages as possible. Existing
approaches use a reactive message exchange in which all neighbors are involved in the worst case. This
rises the question, whether we can reduce this message overhead and thus achieve a significant message
reduction in comparison to conventional protocols that rely on beaconing.
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Figure 1: Forwarder (F), candidate (C) and destination (D)

In this paper we answer this question and provide solutions for both variants of the beaconless recovery
problem: Beaconless Forwarder Planarization (BFP) first constructs an approximation of the planar sub-
graph and then sorts out nodes that are not neighbors in a planar subgraph. We use proximity graphs such
as Gabriel graph and relative neighborhood graph for the planar subgraph construction because edges in
these graphs can be determined locally. We propose the Circlunar Neighborhood Graph (CNG), a planar
proximity graph that can be constructed with less messages than the Gabriel graph and that has a better
connectivity than the relative neighborhood graph. The second solution of the beaconless recovery prob-
lem is Angular Relaying, which first tries to find the next neighbor of a right-hand face traversal and then
switches to another neighbor, if the selected neighbor is not adjacent in the planar Gabriel subgraph.

Overview

In Section 2 we review related work. Section 3 describes the Beaconless Forwarder Planarization method
which provides the general framework of creating planar subgraphs reactively for face routing. In Section 4
we determine the crucial properties of planar subgraph constructions for the efficiency of BFP. In Section 5
we introduce the Circlunar Neighborhood Graph, a new proximity graph which has advantageous properties
for local subgraph construction in beaconless protocols. It reduces the message overhead to a constant
number while providing better connectivity than the relative neighborhood graph. Section 6 describes the
Angular Relaying method, an alternative solution to the beaconless recovery problem. In Section 7 we
present simulation results for the aforementioned protocols.

2 Related Work
One building block of geographic routing strategies are greedy forwarding strategies. They are based
on position-based progress criterions such as MFR [TK84] or the greedy method [Fin87]. Progress in
terms of MFR means to decrease the distance of the projection on the straight line to the target, while
the greedy method simply refers to the Euclidean distance. The first beaconless routing algorithms, BLR
[HB03], CBF [FWMH03], and IGF [BHSS03], use these greedy criterions to define the delay functions,
which determine the candidate with the most progress by giving him the shortest timeout. There are further
protocols addressing specific problems of the initial approaches. Blind Geographic Routing (BGR) [WT05]
contains a strategy to avoid simultaneous transmissions. Geographic Random Forwarding (GeRaF) [Zor04]
divides the forwarding area into zones and select the next forwarder by contention among the nodes within
these zones. All these approaches work well in dense networks, where there is always a neighbor closer to
the destination. If this is not the case and the greedy algorithm faces a local minimum, delivery can only
be guaranteed, if a recovery from that situation is possible. Recovery strategies have been developed for
geographic routing algorithms (see [CV07] for a survey) and many of them are based on face traversals
using a planar subgraph. Prominent subgraph constructions are the Gabriel graph (GG) [GS69] and the
relative neighborhood graph (RNG) [JT92], but also localized variants of the Delaunay triangulation have
been proposed [GGH+01, LCW02, LSW04]. Face routing on a planar subgraph in combination with

3



Protocol Empty Forwarding Recovery Guaranteed
Area (from local minima) delivery

BLR use MFR area Beaconing + face routing yes
CBF use progress area (left open) ??
IGF – – no
BGR rotate fwd. area – no
GeRaF – * – no
PSGR – * Bypass ??
NB-FACE – ** Clockwise timeout and yes

Gabriel neighbor selection
GDBF – ** Distance-based timeout, yes

Gabriel neighbor selection
*) Forwarding area covers the complete progress area
**) Forwarding area covers the complete transmission area

Table 1: Beaconless routing protocols and their recovery methods

greedy forwarding is the idea behind the Greedy-Face-Greedy algorithm (GFG) [BMSU99], which became
a standard technique for geographic routing.

2.1 Beaconless Recovery
While the recovery problem is well studied for geographic routing algorithms, the beaconless approaches
leave room for improvement. In beaconless routing, the term “recovery” is often used in connection with
heuristics, that enlarge the set of possible candidates, if the forwarding area is empty, but do not guarantee
delivery. BLR, CBF and BGR use this kind of heuristic. PSGR [XLXM05] contains a more sophisticated
recovery mechanism, however the delivery is questionable, as no crossing-free subgraph is considered.

The following beaconless protocols contain a “real” recovery strategy and can thus give delivery guaran-
tees (cf. Table 1). However, all these strategies require position information of the complete neighborhood
to be exchanged in the worst case.

BLR Backup mode [HBBW04] (also called Request-response approach in [HB03]): The forwarder
broadcasts a request and all neighboring nodes respond. If a node is closer to the destination, it becomes
the next hop. Otherwise the forwarder constructs a local planar subgraph (GG) from the position informa-
tion of the neighbors and forwards the packet using the right-hand rule. The position when entering backup
mode is stored in the packet. Greedy forwarding is resumed when a node is closer to the destination.

Request-Response can be regarded as reactive beaconing, because all neighbors are involved in exchang-
ing position information. The following protocols use an approach, that we classify as Select and Protest:
they determine possible neighbors of a planar subgraph by a contention process and allow protests after-
wards to correct wrong decisions.

NB-FACE [NOH06] is a beaconless variant of the face routing algorithm. The delay function depends
on the angle between candidate, forwarder and previous hop such that the first candidate in (counter-
)clockwise order responds first. If this node is not a neighbor in the Gabriel graph, then other nodes
may protest. The NB-FACE algorithm is similar to a variant of our Angular Relaying scheme (Section 6).
However, we will see that NB-FACE yields not always optimal results.

GDBF [CGK+06a, CGK+06b] provides a beaconless Gabriel graph construction and serves as basis for
face routing algorithms such as GFG. The local Gabriel subgraph is constructed in two phases, using a
timer-based contention mechanism: First, the candidates answer with a delay proportional to their distance
to the forwarder, but only if no other neighbor located within their Gabriel circle has responded earlier. The
thus constructed subgraph contains directed (asymmetric) edges and is not necessarily planar. Therefore,
after the face routing algorithm has selected a candidate that violates the Gabriel graph condition, further
nodes may protest against the decision in a second phase. We will see that in the worst case all neighbors
have to respond when using the Gabriel graph. GDBF is a variant of our more general BFP scheme.

4



w2

w6

w4

w3

v
w1

w5

Figure 2: BFP: Nodes respond in the order w1,w2,w3,w6 ac-
cording to their distance to the forwarder v; w4 and w5 are hid-
den. w4 protests against w6.

3 Beaconless Forwarder Planarization
The basic problem of beaconless protocols is that they cannot rely on 1-hop-knowledge. But this knowl-
edge is necessary to build a planar subgraph. Thus, in a recovery situation, the forwarder has to gather
information and this is connected with the exchange of messages. In contrast to the Request-Response
approach of BLR [HB03], where all neighbors announce their positions upon request, we follow the idea
of GDBF [CGK+06b] to reduce the message overhead.

Beaconless Forwarder Planarization (BFP) is a general scheme, that can be used to construct different
proximity graphs, such as Gabriel graph and RNG. The BFP algorithm is described in the following.
It’s message complexity depends on the chosen subgraph. We will later discuss appropriate subgraph
constructions and analyze the message complexity.

3.1 The BFP Algorithm
The BFP algorithm consists of two phases, the selection and the protest phase. N(u,v) denotes the proxim-
ity region of the chosen subgraph, e.g. the Gabriel circle or the RNG lune over (u,v) (cf. Fig. 8).

1. Selection Phase The forwarder v broadcasts an RTS (including its own position) and sets its timer to
tmax. Each candidate w sets its contention timer, using the following delay function:

t(d) =
d
r
· tmax (1)

(d = distance to forwarder = |vw|, r = transmission radius, tmax = maximum timeout). When the contention
timer expires, a candidate answers with a CTS. If a candidate w receives the CTS of another node w′ that
lies in the proximity region N(u,w), then w cancels its timer and remains quiet. We call this mechanism
suppression and the candidate being suppressed a hidden node. Hidden nodes listen to other nodes after
their timer expired. If a hidden node w receives the CTS of another node w′ with w ∈ N(u,w′), then w′

violates the proximity condition and w adds w′ to the set of violating nodes S. We call (u,w′) a violating
edge. See also Fig. 2.

2. Protest phase In the second phase, the hidden nodes protest against violating edges. If the set of
violating nodes S is not empty, the hidden node w starts its timer, using the same delay function as in the
first phase (closest candidates protest first). If w overhears a protest from another hidden node w′, then the
set of violating nodes has to be checked: A node x can be removed from S, if w′ ∈ N(u,x). When the timer
expires and S is not empty, w sends the protest message. The forwarder removes violating edges when it
receives protests and finally obtains a planar subgraph.
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Task of the forwarder v

1. send the RTS

2. set timer T = tmax
while T is not expired

upon reception of a CTS from node w:
add w to the set of neighbors Γ(v)

3. set timer T = tmax
while T is not expired

upon reception of a Protest from node w:
for each node x ∈ Γ(v) do

if x∈N(v,w) then remove x from Γ(v)

Task of a candidate w
(after receiving an RTS from forwarder v)

1. hidden = false

2. set timers T1 = t(|uw|), T2 = tmax
while T2 is not expired

while T1 is not expired
upon reception of a CTS from node x
if x ∈ N(v,w) then hidden = true

if (hidden = false) then send CTS and halt
upon reception of a CTS from node x

if w ∈ N(v,x) then
add x to the set of violating nodes S

3. if S 6= /0 then set timer T = t(|uw|)
while T is not expired

upon reception of a protest from node x
for each node y ∈ S do

if x ∈ N(v,y) then remove y from S

4. if S 6= /0 then send a protest (incl. the own posi-
tion)

Figure 3: Beaconless Forwarder Planarization

4 Proximity Graphs and Beaconless Subgraph Construction
The BFP algorithm can be based on different proximity graph constructions, in order to obtain a planar
communication graph (here, it means that the graph is a planar embedding). Most prominent subgraph
constructions are Gabriel graph and RNG (cf. [Cim92]):

Definition 1 The Gabriel graph (GG) of a node set V contains an edge (u,v), iff |uv|2 ≤ |uw|2 + |vw|2 for
all w ∈V,w 6= u,v.

Definition 2 The relative neighborhood graph (RNG) of a node set V contains an edge (u,v), iff |uv| ≤
max{|uw|, |vw|} for all w ∈V,w 6= u,v.

The definition implies that two nodes u and v are adjacent, if the so-called proximity region over (u,v)
is empty (proximity condition). We denote the proximity region with N(u,v). In case of the Gabriel graph,
the NGG(u,v) is a circle having uv as diameter, in case of the RNG, NRNG(u,v) is a lune over uv (cf. Fig. 8).
In this paper we assume that all distances are different in order to avoid degenerated cases. However, equal
distances can be handled by using |uv| = (||u− v||2,key(u),key(v)) as distance measure [LSW04], where
key(·) is based on the node ID or on a lexicographic order of the geographic coordinates. In a similar
way, a modified RNG with a constant maximum node degree can be obtained that is still connected on
degenerated node sets [Li03].

The choice of the subgraph determines the message efficiency of the BFP algorithm. In the following
we will identify the crucial properties to construct a planar and connected subgraph with as few messages
as possible.

4.1 Basic Requirements
We consider only undirected, planar, and connected proximity graphs. The proximity region of these graphs
is symmetric, it contains at least the Gabriel circle, and it is not larger than the RNG lune.

Lemma 1 The RNG lune is the maximum proximity region to preserve connectivity.
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Figure 4: Suppression region for GG (left) and RNG (right): A node w in the shaded area is not a valid
neighbor of u, because v would be inside the Gabriel circle or the RNG lune.

Proof: Let u,v,w be nodes of an undirected proximity graph, and let L(u,v) denote the RNG lune over
(u,v), i.e. the intersection of two circles with radius |uv| centered at u and v. Suppose the proximity region
of (u,v) is larger than L(u,v). Then there is a point w outside L(u,v) (i.e. |uw| > |uv| or |vw| > |uv|) that
belongs to the proximity region and thus invalidates the edge (u,v). If |uw| < |vw| then u ∈ L(v,w), which
disconnects v. Otherwise, v ∈ L(u,w), which disconnects u.

Lemma 2 The Gabriel circle is the minimum proximity region to obtain planarity.

Proof: Let C(u,v) denote the Gabriel circle over (u,v), i.e. the circle having uv as diameter with its
interior. Let m be the midpoint of (u,v). Suppose the proximity region is smaller than C(u,v). Then
there is a node w inside C(u,v) with |mw| < |mu|, while (u,v) is a valid edge. As G is undirected, the
proximity region is symmetric; and this implies that there is another point w′ which can be constructed by
rotating w by 180◦ around the midpoint m. Then the circle C(w,w′) is inside C(u,v) and empty (because
of |mw| = |mw| < |mu| = |mv|). Therefore, (w,w′) is a valid edge, and it intersects (u,v) in the midpoint,
which is a contradiction.

The graph is planar, if the proximity region contains C(u,v): If C(u,v) is empty, then the empty circle
rule of the Delaunay Triangulation is also fulfilled for any three nodes. Thus, G is a subgraph of the
Delaunay Triangulation, which is planar.

4.2 Hidden Nodes and Suppression
The construction of Gabriel graph or RNG is based on the proximity region, which is an empty circle or
an empty lune. BFP makes use of this fact to reduce messages: Candidate nodes are suppressed, i.e. they
remain quiet, if they would violate this condition.

Definition 3 The suppression region of a node v with respect to u contains all points w with v ∈ N(u,w),
where N(u,v) denotes the proximity region of an edge (u,v).

Fig. 4 shows the suppression region for Gabriel graph and RNG. In case of the Gabriel graph, w is sup-
pressed, if ∠uvw < 90◦, and this implies that the border of the suppression region is orthogonal on (u,v).
In case of the RNG, |vw| < |uw|, and this means that the perpendicular bisector of (u,v) marks the border
of the suppression region.

4.3 Ordered Neighborhoods and Protest Messages
In beaconless protocols, the location of the neighbors are not known in advance, but they are revealed one
by one when they reply to the forwarder’s request. From a graph theoretic point of view, the candidate nodes
are inserted into the set of neighbors, and the insertion order is given by the delay function. This determines
the resulting neighborhood, because after one node responds, others may be suppressed and remain quiet.
In order to formalize this mechanism, we introduce the definition of an ordered neighborhood.

Let G denote a graph and Γ(u) the set of neighbors of a node u in G. For a node u, define a total order
πu so that πu(v) is the rank of v ∈ Γ(u).
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Definition 4 A node v ∈ Γ(u) is hidden, if it is suppressed by a non-hidden node w with smaller rank, i.e.
w ∈ Γ(u) with πu(w) < πu(v) and w ∈ N(u,v).

Definition 5 The π-ordered neighborhood Γπ(u) contains all nodes v for which there is no non-hidden
node w with w ∈ N(u,v).

An ordered neighborhood can be constructed by inserting nodes one by one, if they fulfill the proximity
condition (e.g. empty Gabriel circle). In contrast to the original proximity graph, this condition is only
checked for the nodes which have been already added to the neighborhood. Note that in contrast to ordered
θ -graphs [BGM04], π defines a local order for each node.

In BFP a distance-based delay function is used (equation 1) which defines the insertion order and deter-
mines the neighborhood. The result of Phase 1 of the BFP algorithm is a distance-ordered neighborhood,
which contains at least the edges of the desired subgraph.

Theorem 1 In a proximity graph, the ordered neighborhood of a node v is a superset of the original
neighborhood, i.e. Γπ(v) ⊇ Γ(v).

Proof: Let v be a neighbor of v, i.e. u ∈ Γ(v). Then, the proximity region N(v,u) is empty and remains
empty, regardless of the rank of u. Thus, u ∈ Γπ(v).

When constructing the ordered neighborhood, we can be sure, that the nodes of the desired subgraph are
included, but there may be violating edges depending on the insertion order. Therefore, Phase 2 of the
BFP algorithm is required, where the hidden nodes send protest messages to indicate edges violating the
proximity condition. In the worst case, there is one protest message required for each violating edge.

4.4 Distance-ordered neighborhoods
The worst case number of violating edges depends on the order (i.e. the delay function) and also on the
chosen subgraph construction. In case of the Gabriel graph, this number is unbounded, whereas it is
constant in case of the RNG.

Theorem 2 A distance-ordered Gabriel neighborhood contains an unbounded number of violating edges.

Proof: The construction in Figure 5 shows that a node can have Θ(n) neighbors in its distance-ordered
Gabriel neighborhood while it has only one valid Gabriel neighbor. Nodes w1, ...,w5 are placed around v
with increasing distance and partially overlapping Gabriel circles as shown in the figure. In the Gabriel
neighborhood w1 inhibits an edge (v,w2), w2 inhibits an edge (v,w3) etc., so that v has only one valid edge.
In the distance-ordered neighborhood w1 is inserted first and w2 is hidden, because node w1 is in its Gabriel
circle. Node w3 becomes a neighbor, because w2 is hidden and not part of the neighbor set. Every second
node in the chain will become a neighbor of v, i.e. Γπ(v) has a size of d(n−1)/2e.

Corollary 1 The beaconless Gabriel graph construction with a distance-based delay function requires an
unbounded number of protests in the worst case.

The crucial property to bound the number of protests is that a circular sector has to be part of the proximity
region (see Figure 6).

Theorem 3 A distance-ordered neighborhood has at most b4π/θc− 1 violating edges, if the proximity
region contains a circular sector of angle θ .

Proof: Let ^θ (u,v) be a sector of the circle C(u, |uv|) with angle θ and uv as bisecting line (see Fig. 6),
and assume that it is contained in the proximity region. A node w is only included in the neighbor set of
u, if ∠vuw > θ/2, because of the following reason: If |uw| < |uv|, w must be outside ^θ (u,v); otherwise,
v must be outside ^θ (u,w). Therefore, we can insert valid neighbors in Γπ(u) only at an angular distance
of more than θ/2 to an existing neighbor. Then the maximum node degree of v is b4π/θc. This is the
limit for the number of violating edges and this limit can be reached in the worst case: The example in the
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taining a sector bounds the number
of violating edges (Theorem 3)

figure shows that for a pair of nodes with overlapping proximity regions there can always be a hidden node
x, with higher rank than v and v ∈ N(u,x) and x ∈ N(u,w), that renders (u,w) a violating edge.

This theorem shows that we can limit the number of violating edges by choosing an appropriate proximity
region. The relative neighborhood graph fulfills this criterion.

Theorem 4 A distance-ordered relative neighborhood contains at most 4 violating edges.

Proof: The RNG lune contains a circular sector of θ < 120◦. From this fact and Theorem 3 follows the
result.

Corollary 2 The beaconless RNG construction with a distance-based delay function requires a constant
number of protests in the worst case.

However, the proximity region of the RNG is quite large, such that more edges are forbidden than in the
Gabriel graph. The RNG has (length/power) stretch factor Θ(n), the Gabriel Graph only Θ(

√
n) (both are

not hop-spanners) [BDEK06].

4.5 Relevance of Protest Messages
We have seen that in the presence of hidden nodes edges can be created that violate the proximity condition.
Therefore it is necessary to allow hidden nodes to protest against the selection of a neighbor. One might ask
if there is any delay function or any practical subgraph construction that favors only the valid neighbors.
Unfortunately this is not the case.

Theorem 5 No undirected, planar and connected proximity graph can be constructed without protests.

Proof: Consider the scenario in Figure 7 as a counterexample: Node w is located in the suppression region
of v, v is suppressed by u, but w is not suppressed by u. When considering the suppression region for
arbitrary proximity graphs (that are undirected, planar and connected), the region is at least the suppression
region of the Gabriel graph and at most the suppression region of the RNG. This follows from Lemmata 1
and 2. Therefore, region A is part of the suppression region of v and region B is not a suppression region
of u for all considered proximity graphs. Now we build the ordered-neighborhood of x for all permutations
of u,v,w.

insertion order π neighborhood immediate protest of
hidden nodes in () Γπ(x) protest hidden nodes

u (v) w {u,w} v
u w (v) {u,w} v
v u (w) {u} u
v (w) u {u} u
w u (v) {u,w} v
w v u {u} v, u
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We can see from the table, that regardless of the insertion order, there is always a protest, either because
the inserted node immediately knows that it violates the proximity graph condition, or because of a hidden
node that protests later.

5 The Circlunar Neighborhood Graph
For the beaconless subgraph construction we want to preserve as much edges as possible, bound the number
of protests and obtain a planar graph. The planarity can be achieved by including the Gabriel circle in the
proximity region. Protests can be bounded by including a circular sector. The larger the angle of the
sector, the smaller the maximum node degree, but this also cancels more edges. Therefore, we propose the
Circlunar Neighborhood Graph (CNG) as an alternative to Gabriel graph and RNG. It is a planar graph with
constant degree; it’s proximity region is only a small enhancement of the Gabriel circle and the proximity
condition can be tested with 1-hop-knowledge and simple arithmetics.

Definition 6 The circlunar neighborhood NCNG(u,v) of two nodes u and v is given by the intersection of
four disks of radius |uv| centered at the corners of a square of which (u,v) is the diagonal (cf. Fig. 8).

The cirlunar neighborhood graph contains an edge (u,v) if and only if NCNG(u,v) is empty:

Definition 7 The circlunar neighborhood graph of a node set V contains an edge (u,v) iff ∀w∈V,w 6= u,v :
|uv| < max{|uw|, |vw|, |p1,w|, |p2,w|} .

5.1 Properties of the Circlunar Neighborhood Graph
The CNG has a strong relation to Gabriel graph and relative neighborhood graph and inherits planarity and
connectivity.

Theorem 6 The circlunar neighborhood graph of a node set V is planar and connected, if the unit disk
graph of V is connected.

Proof: Follows from the shape of the proximity region and Lemmata 1 and 2.

The CNG inherits also a disadvantage from the RNG, namely the unbounded spanning ratio of Θ(n) (max-
imum ratio of shortest path in CNG over shortest path in the original graph). One can construct the same
lower bound example (“RNG tower” [BDEK06]) for the CNG. In other words, when using the CNG pla-
narization, the maximum detour is unbounded in the worst-case.

In the average case, the CNG has an expected node degree of 3.6 and is thus sparser then the Gabriel
graph and denser than the RNG, as the following theorem shows. Table 2 summarizes these results (cf.
[Dev88]).
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Graph Exp. degree Max. degree Spanning ratio
[Dev88] [BDEK06]

RNG 2.558 5 Θ(n)
CNG 3.598 14 Θ(n)
GG 4.000 n−1 Θ(

√
n)

Table 2: Properties of RNG, CNG and GG
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Figure 9: Illustrations for Theorem 7

Theorem 7 The circlunar neighborhood graph has an expected node degree of approx. 3.6.

Proof: Following the considerations in [Dev88], we can derive the expected degree of the CNG from the
ratio of the circle C(u, |uv|) and the area A of the proximity region NCNG(u,v). A can be composed of 4
segments (shaded area in Fig. 9a) and the remaining square. The area of one segment is Aseg = 1

2 r2(θ −
sinθ). The angle θ := 2δ is calculated as follows: s =

√
2(r/2)2. cosϕ = s/2

r = 1
4

√
2. δ = ϕ−45◦≈ 24.3.

The area of the square is A� = (2r sinδ )2. Plugging in θ = 2(arccos( 1
4

√
2)− π

4 ) and adding the area of the
square and four segments gives the total area: A = A� + 4 Aseg ≈ 0.873r2. This gives an expected degree
of E[d] = C(u, |uv|)/A ≈ 3.598.

Besides the theoretical considerations, we performed simulations on 200 random unit disk graphs with 100
nodes for network densities (avg. number of neighbors) between 4 and 12. Measurements of the spanning
ratio show that the CNG is closer to the Gabriel graph than to the RNG: The hop spanning ratio of the CNG
is only 5%-7% larger than in the Gabriel graph, while the RNG’s spanning ratio is 36%-61% larger (see
Fig. 10).

5.2 Beaconless construction
The CNG enables a beaconless planar subgraph construction with a constant number of protests as the
following theorem shows.

Corollary 3 A distance-ordered neighborhood in the CNG has at most 13 violating edges.

Proof: This follows from Theorem 3. One can show that the circlunar neighborhood contains a circular
sector of ≈ 48,6◦. Plugging this into Theorem 3 gives the result.

5.3 Face Routing on the Circlunar Neighborhood Graph
The circlunar neighborhood graph has the structural graph properties that are necessary to guarantee re-
covery. The following graph property holds for the Gabriel graph (Lemma 1 in [FS06]) and can be shown
analogously for the CNG.

Lemma 3 For any edge (u,v) crossing the s-t-line connecting source s and destination t in the circlunar
neighborhood graph, at least one of the end points u or v is closer to the target than s.
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Proof: As the circlunar neighborhood contains the Gabriel circle, the Gabriel circle over (u,v) neither
contains s nor t. It follows that ∠usv and ∠utv are less than π/2. Since the sum of the angles of the
quadrangle usvt is 2π , at least one of the angles ∠sut or ∠svt is greater than π/2. This implies that at least
one of the nodes u or v is closer to t than s.

For guaranteed delivery, face routing on the planar subgraph has to provide progress towards the destina-
tion. This is shown by the following theorem (cf. Corollary 2 of [FS06]).

Theorem 8 Let s and t be nodes in a circlunar neighborhood graph. When starting at s, face routing will
always find a node v that satisfies |vt| < |st|.

Proof: The CNG is planar and from Lemma 5 in [FS06] follows that face routing will always find an
edge intersecting the s-t-line. With Lemma 3 we can conclude, that one of the edge’s end points satisfies
|vt| < |st|.

6 Angular Relaying
Angular Relaying is a beaconless face routing strategy, which can be used as a method for recovery from
local minima. While BFP works independent of the routing protocol, Angular Relaying needs the informa-
tion of the previous hop and the recovery direction (right-hand or left-hand). It is based on an angle-based
delay function to determine a candidate for the next hop which is used in combination with the select-
and-protest method for avoiding crossing edges. Here, we use the Gabriel graph condition as planarization
criterion.

By using an angle-based delay function the first neighbor in counter-clockwise order is selected. Other
approaches, such as NB-FACE, the clockwise relaying approach in an earlier version of BLR [HB03], or
the Bypass method of PSGR are also based on an angle-based function, but they either cannot guarantee
delivery or the complete neighborhood is involved in the message exchange. An simple angle-based delay
function has the following form:

t(θ) =
θ

360◦
· tmax (2)

The angle θ can be considered in clockwise or counter-clockwise order, depending on the traversal direc-
tion (left-hand or right-hand). Selecting a candidate by this function is not sufficient to guarantee delivery,

12



w
w

w1

2
3

w4

A

B

u
v

w5

C
w6

Figure 11: Angular Relaying: w1 and w2 are invalid, w3 is
selected, w4 and w5 protest. Finally, w5 is the next hop.

because it is not necessarily a neighbor of the forwarder in the Gabriel subgraph. Therefore, we use protest
messages to prevent crossing links. This is similar to the protest phase used in the BFP algorithm.
The Angular Relaying algorithm consists of two phases:

1. Selection phase After receiving a packet from the previous hop u, the forwarder v sends an RTS
(including previous hop u and own position) and sets its timer to tmax. Every candidate w sets its timer
t(θ) using the angular distance θ = ∠uvw to the previous hop. Candidates answer with a CTS in counter-
clockwise order, according to the delay function. We allow candidates to respond, if they have the previous
hop in the Gabriel circle (i.e. nodes in region B in Fig. 11). These nodes answer with an “invalid CTS”,
because they violate the Gabriel graph condition, but other nodes should be aware of their existence. Oth-
erwise they would be hidden and need a chance to protest later. After the first candidate w answers with
a valid CTS, the forwarder immediately sends a SELECT message announcing that w is the first selected
node. All candidates with pending CTS answers cancel their timers.

2. Protest phase After the selection of the first candidate, the protest phase begins. The forwarder starts
its protest timer that covers only the time when protests can occur, which is tpr = t(π

2 ) = 1
4 tmax for the

Gabriel graph. Now, no further CTS answers are allowed. Instead, each candidate x sets a new timer t(θ)
that determines the order of protests (θ = ∠uvx−∠uvw). First, only nodes in NGG(v,w) are allowed to
protest. If a node x protests, then it automatically becomes the next hop. After that, only nodes in NGG(v,x)
are allowed to protest. Finally, if the forwarder’s timer expires (i.e. there are no more protests), the data
packet is sent to the currently selected (first valid or last protesting) candidate.

Angular Relaying using a simple angle-based delay function (equation 2) is similar to NB-FACE. In
NB-FACE the forwarder waits for a time span τ after the first candidate responded, in order to leave room
for protests (‘NAck’). After that, it sends a message (‘Fin’) to stop the contention period and select the
final candidate. If τ is a constant angle, then the case of cascading protests is not covered; otherwise, if
τ spans the whole rotation, then all neighbors respond, even if they are not protesting, and the advantage
over the Request-Response approach vanishes. Also the details about how nodes are treated that have the
previous hop in their Gabriel circle (region B in Fig. 11) are left open.

6.1 Angular Relaying using a Sweep Curve
The contention process using the angular delay function can be regarded as a rotating sweep line, i.e. a
ray from v through u (Fig. 11) that rotates in counter-clockwise order until it hits the first node w. This
node will be the next hop, if it is a valid neighbor so far and there are no protests afterwards. Protests are
issued by nodes that lie in the Gabriel circle over (v,w) and beyond the sweep line (region C in Fig. 11).
Therefore, it makes no sense to use CNG or RNG with Angular Relaying, because the area of possible
protesting nodes would be even larger. We also observe, that the protest area grows with the distance of a
candidate to the forwarder.
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Task of the forwarder v
(after receiving a message from u)

1. next_hop = u
send the RTS

2. set timer T1 = tmax
while T1 is not expired

upon reception of a valid CTS from node w:
send SELECT(w)
next_hop = w
cancel timer: T1 = 0; proceed with step 4

3. on expiration of T1:
forward data packet to next_hop

4. set timer T2 = tmax/4 (protest timer)
while T2 is not expired

upon reception of a Protest from node x:
next_hop = x

reset timer T2 = tmax/4

5. on expiration of T2:
forward data packet to next_hop

Task of a candidate w
(after receiving an RTS from forwarder v, prev. hop: u)

1. valid = u 6∈ N(v,w)

2. set timer T1 = t(|vw|,∠uvw)
while T1 is not expired

upon reception of a CTS from node x:
if x ∈ N(v,w) or w ∈ N(v,x) then

valid = false
upon reception of SELECT(x) from the
forwarder:

next_hop = x, proceed with step 4

3. on expiration of T1:
if (valid=true) then send valid CTS
else send invalid CTS

4. if w ∈ N(v,next_hop) then
set timer T2 = min{tmax/4,T1}
while T2 is not expired

upon reception of a protest from another
node y:

next_hop = y, resume step 4
else halt

5. on expiration of T2:
send a Protest (incl. the own position)

Figure 12: Angular Relaying

This leads to the question whether another shape of the sweep line could be applied such that closer
nodes may respond earlier and the area of possible protesting nodes is reduced. To ensure that the most
suitable nodes respond first, the sweep curve must have the following property:

Sweep curve property: For a node w on the sweep curve must hold: If there is another node x ahead of
the sweep curve in counter-clockwise order, then either ∠uvw < ∠uvx or x is not a Gabriel neighbor of v.

In other words: If w responds first, then there are no other Gabriel neighbors with smaller angular distance
to the previous hop (θ ), that could respond later and contradict w being the first neighbor in counterclock-
wise order (cf. Fig. 15). In order to determine a valid sweep curve (for the Gabriel graph construction), we
consider the suppression region for a node w and calculate the positions for which all nodes with smaller θ

are suppressed (see Fig. 13). Fulfilling the sweep curve property requires that x + z ≤ z. For the height of
a rectangular triangle holds y2 = xz and it follows that x+ y2

x ≤ r, i.e. all nodes on the sweep curve should
lie between the straight line and the semi-circle in Fig. 13.

6.2 Correctness of the Angular Relaying Algorithm
Theorem 9 The Angular Relaying algorithm selects the first edge of the Gabriel subgraph in counter-
clockwise order.

Proof: Let N+
GG(v,w) be the left part of the Gabriel circle of (v,w), which is ahead of the sweep line/curve

(region C in Fig. 11). Analogously, let N−
GG(v,w) be the remaining part of the Gabriel circle. For the first

selected candidate w holds, that N−
GG(v,w) is empty, because of the following reasons: First, all nodes

are allowed to respond, also the invalid ones. That ensures that there are no hidden nodes invalidating
w. Thus, w has the smallest angle ∠uvw among the Gabriel neighbors (otherwise another valid neighbor
would have responded before). There is only one region that we did not consider yet, namely the part
of N−

GG(v,w) beyond uv (region A in Fig. 11). But this region is empty, because it is always covered by
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Figure 14: The general sweep curve needs a
5π/2 turn to cover all nodes.

NGG(u,v); otherwise, (u,v) would not be an edge of the Gabriel graph. For similar reasons, N−
GG(v,w) is

empty for nodes that protest in the second phase. Protesting nodes are automatically selected as tentative
next hop. For the currently selected node w holds (invariant of the algorithm): If N+

GG(v,w) is empty, then
w is the Gabriel neighbor of v with the smallest angle ∠uvw. This follows from the sweep curve property
(no node with smaller angle responds later) and the considerations above. The algorithm terminates if the
forwarder’s timer expires. Then N+

GG(v,w) is empty, because there are no further protests. If a part of the
Gabriel circle intersects with the radial line from v through u, then this part lies within the Gabriel circle
over (u,v) and therefore, this region is also empty.

6.3 Sweep Curve Functions
In general, a sweep curve function f , which describes a point on the sweep curve by angle θ and distance
f (θ), has to be monotonic and fulfill the following conditions:

(1) f (0) = 1
(2) f (π/2) = 0
(3) 0 ≤ f (θ) ≤ cos(θ) for θ ∈ [0..π/2]

The delay function is derived from the inverse of f and has the following general form:

t(d,θ) =
θ − f−1(d/r)+π/2

5π/2
· tmax (3)

In order to calculate the expected protest area, we consider a fixed angle θ and calculate the area enclosed
by the sweep curve and the Gabriel semi-circle (shaded lune in Fig. 15).

AP(θ) =
1
2

π

(
f (θ)

2

)2

−
∫ π

2

θ

∫ f (θ)

0
r dr dϕ (4)

=
π

8
f (θ)2 − 1

2

∫ π
2

θ

f (ϕ)2dϕ (5)

The probability of a node in distance r is 2πr
π

= 2r in the unit circle. Thus, the expected protest area is
given by

Exp[AP] =
∫ 1

0
AP( f−1(r)) ·2r dr (6)

The optimal curve that minimizes the protest area is a logarithmic spiral, which has the form a · ebθ .
However, these spirals are not valid sweep curves, because eθ > 0 violates condition 2 (cf. Fig. 15a). Valid
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Sweep curve function f (θ) f−1(r) Expected
protest area

sweep line — π/2 0.1963
semi-circle cos(θ) arccos(r) 0.0982
Archimedean spiral, 1−

( 2
π

θ
)c π

2 (1−d)1/c 0.0897
c = 1.259

logarithmic spiral∗ e−
2
π

θ π

2 ln(d) (0.0531)
*) not a valid sweep curve

Table 3: Sweep curve variants

x

rv

w

(a) When using an arbitrary spiral, there can be a
valid Gabriel neighbor x beyond the sweep curve
with smaller angle θ and larger delay

r

w

v

(b) The optimum Archimedean spiral that
fulfills the sweep curve property. The dotted
line indicates the semi-circle.

Figure 15: Angular Relaying with different sweep curves

sweep curves are the semi-circle ( f (θ) = cos(θ)) or some Archimedean spirals. An Archimedean spiral
has the general form a + bθ c. We use the form f (θ) = 1−

( 2
π

θ
)c

, which fulfills conditions 1 and 2.
The exponent c determines the shape of the curve and whether condition 3 can be fulfilled. Condition 3
requires 1−

( 2
π

θ
)c ≤ cos(θ) follows that c ≤ log(1−cos(t))

log( 2
π

θ)
, i.e. c ≤ 1.56 for θ ∈ [0..π/2]. Using equation 6,

the expected protest area is minimized, if c≈ 1.259 (numeric evaluation). With this function, we can reduce
the expected protest area by more than a factor of 2 compared to the sweep line. Table 3 summarizes the
results for different functions.

7 Simulations
We performed simulations of BFP and Angular Relaying on 500 random graphs with 100 nodes for network
densities (i.e. avg. number of neighbors) ranging from 4 to 12. Messages are sent from the leftmost to the
rightmost node using GFG routing. The greedy part is performed by a beaconless greedy scheme using
RTS/CTS, the face routing part is performed by BFP on different subgraphs or by Angular Relaying using
sweep line and sweep curve. We use a simplified MAC layer model assuming uniform transmission radii
and no collisions. We measure the number of messages used for each route. In order to obtain a fair and
consistent measure for different routing paths and subgraphs, the values are normalized, i.e. divided by the
length of the shortest path (number of hops) in the original unit disk graph.

Beaconless Forwarder Planarization

The results for the number of protests (Fig. 17) and for the overall message complexity (Fig. 16) show
a gap between Gabriel graph and RNG. The inferior performance of RNG is due to the long detours
caused by this planarization method. The CNG reaches the good performance of the Gabriel graph, while
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Figure 16: Message complexity of BFP and Angular Relaying (average with 95% confidence error for
500 random graphs, 100 nodes)
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Figure 17: Protests of BFP and Angular Relaying (average with 95% confidence error for 500 random
graphs, 100 nodes)

guaranteeing a worst-case bound for the number of protests, which is not possible when using the Gabriel
graph planarization.

Angular Relaying

When using sweep curve instead of sweep line, we observe a reduction of the number of protests by more
than a factor of 2 on average. This corresponds to our theoretical results showing a reduction of the expected
protest area by the same factor. The reduction of protests leads to an overall message reduction of 11% on
average. Note, that greedy routing is used for large parts of the routing path.

We can also observe, that BFP uses less protest messages than Angular Relaying. But that does not
imply that BFP is more efficient, because some nodes that send a protest in Angular Relaying would send
a CTS when using BFP. This is reflected in the overall message complexity, where Angular Relaying uses
less messages. However, BFP constructs a complete local subgraph, Angular Relaying determines only the
next hop.

8 Conclusion
We have presented two solutions for the beaconless recovery problem and introduced a theoretical frame-
work to analyze the message complexity of beaconless face routing algorithms. Both solutios follow the
Select-and-Protest principle, which is a message-efficient approach for beaconless face routing and enables
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a completely reactive georouting with guaranteed delivery. We could improve the message complexity by
introducing a new planar subgraph construction and new delay functions. Further improvements could be
achieved by storing and using overheard transmissions in an RTS cache. Also, BFP as proposed works
independent of the routing algorithm and can be improved by a closer interaction, where routing decisions
are made before the protest phase. Future research includes extensions to handle discrete timeouts and
collisions when using a realistic MAC layer.
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