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Abstract

A Use Case is a specification of interactions involving a system and external actors
of that system. The intuitive, user centered nature of textual use cases is one of the
reasons for the success of the use case approach. A certain level of formalization is
however needed to automate use case based system development, including tasks such
as model synthesis, verification and validation. In this paper, a formalization of textual
use cases is proposed. At the syntactic-level, an UML metamodel and a restricted-form
of natural language are defined for use case description. Use cases execution semantics
are proposed as a set of Mapping Rules from well-formed use cases to Basic Petri
nets. The semantics consider use cases sequencing constraints defined at the syntactic-
level. The proposed formalization serves as a basis for state-model synthesis from use
cases. UML activity diagrams are generated to capture use cases sequencing and UML
StateCharts to capture event flows within use cases.

Keywords: Use Cases, Petri nets, StateCharts, Activity diagrams, Synthesis.

1 Introduction

A use case is defined in the Unified Modeling Language (UML) specification as ”the specifica-
tion of a sequence of actions, including variants that a system (or a subsystem) can perform,
interacting with actors of the system” [21]. Since their introduction by Jacobson [11], use
cases are used to drive the development process from the early stages of business modeling
to acceptance testing [10]. The UML defines use cases as abstract specification of behav-
iors. The concrete behavior corresponding to a use case is specified using various behavior
description approaches such as interactions, activities, state machines, pre/post-conditions
or natural language text.

For practical reasons, and in order to allow for an easy communication with stakeholders,
natural language text is usually used for use cases at the early stages of development. While
behavior modeling techniques such as interactions, activities and state machines have been
subject to intensive formalization efforts, informal representations are essentially used for
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use cases in textual form. Various templates and guidelines [2, 3] can be considered as pro-
viding some degree of formalization to textual use cases. However, the emphasis is mainly
on the structure of use case documents in term of sections, and on directions on the form
of natural language. Very little work has been done on the formal definition of textual use
cases execution semantics. There are several potential benefits to a more formal definition
of textual use cases. As requirements artifacts, it is important to ensure use cases effectively
express properties that are agreed up on, that can be verified and that are consistent. For-
malization is also required for the automation of tasks such as test derivation or requirements
simulation.

The main contribution of this paper is a definition of formal semantics for a textual repre-
sentation of use cases. We assume the UML definition of use cases including << include >>

and << extend >> relations. We also take use case sequencing into consideration. Accord-
ing to the UML, use cases should be “useful on their own”. Each use case should specify
a unit of useful functionality that a system provides to its users [21]. The functionality
provided by a use case is initiated by an actor and must be completed for the use case to
complete. It is not always possible to structure use cases such that they are completely
independent one from the other. Complex applications often involve several tasks with a
high degree of independence, but that need to be synchronized in different ways. As an
example, we present an “Online Broker System” in Section 3. Intuitively, an order needs to
be submitted before suppliers can bid. Different policies can then be envisioned for handling
bids. For instance, the application requirements might ask for all bids to be received first
before one is selected, or a selection may be made as bids are received. It is not consid-
ered a good practice to use UML relationships to structure use cases in a way that these
types of sequencing constraints are obtained. The resulting use case models suffer from the
functional decomposition problem [7] that makes use cases difficult to maintain and pushes
implementation toward non-object-oriented paradigms.

We chose Basic Petri nets [22] to express use case execution semantics. This choice
is motivated by the possibility to use the same formalism for the execution semantics of
both single and sequentially related use cases. Petri nets allow modeling of state based
concurrent systems and are well suited to the specification of synchronization issues. They
are supported by a variety of analysis and simulation tools. The Petri nets semantics are
used as a basis for state model synthesis from use cases. One of our goals in doing so is to
validate the defined semantics. Another objective is to provide a translation from textual use
cases to an UML-based graphical representation. The generated state models capture single
use case behavior as UML StateCharts, and use cases sequential relations as UML Activity
Diagrams [21]. A state model obtained from related use cases integrates behaviors defined
separately in a single graphical model that can be simulated and analyzed for consistency
and completeness.

The remainder of this paper is organized as follow. We discuss some related works in
the next section. In section 3, we introduce use case models and present an abstract and
a concrete syntax for textual use cases. Use case syntax is based on our previous works in
[25, 27]. The Petri nets semantics of use cases are presented as a set of Mapping Rules in
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section 4. These semantics are used in section 5 for the synthesis of state models from use
cases. Finally we conclude the paper in section 6.

2 Related works

Different works related to use cases are based on a variety of use case notations with formal
semantics. In [23, 16, 24] use cases are defined in relation to formal pre/postconditions.
The formalization allows derivation of conceptual models in [16], and test generation in
[24]. Interaction models including UML Sequence Diagrams [21], Message Sequence Charts
(MSCs) [9] and Live Sequence Charts (LSCs) [4] are frequently used formalisms for use cases
description. Each use case is considered as a set of related scenarios, and these scenarios are
elaborated using interactions. There are well defined semantics for the common notations for
interactions such as UML Sequence Diagrams, MSCs and LSCs. The main problem tackled
by interaction-based approaches concerns scenarios relation within and between use cases.
Most of the scenario-based approaches use formal state models as a representation of the
integrated behavior defined by related scenarios. A recent survey listed 21 such approaches
[17]. Proposed solutions for relating scenarios include: annotation of scenarios with state
labels [14, 13, 28], the use of a high-level representation of sequencing relations between
scenarios [8, 15, 28, 33, 32], and operation predicates [26, 31].

In our work, we represent use cases using a restricted form of the natural language. Other
automated approaches based on restricted natural language include [18, 19]. In [18], use cases
adhering to defined language structures are parsed to automatically extract information for
UML class and interaction diagrams generation. Specific syntactic forms are also assumed
for use cases in [19]. A statistical parser is used to identify the different types of actions
making up use case steps, and an executable regular expression representation of the use
case is produced. There no explicit mention of operational semantics in [18, 19]. It can be
deduced from the synthesized models that control flow semantics are assumed. The basic
operational semantics considered for use cases in this paper is similar. Our goal in this paper
is to explicitly state these semantics. In addition, unlike [18, 19], we consider UML use case
inclusion and extension relationships as well as use case sequencing constraints.

This paper builds from previous works of ours where we defined an abstract syntax and
a concrete syntax for use cases [25], and proposed use cases sequencing constructs [27]. The
abstract syntax is presented as a meta-model and the concrete syntax is a restricted form
of natural language. These previous results are summarized in section 3 in part in order to
ensure this paper is self-contained, but also to account for updates to the use case syntax.
In [25], we presented an algorithm for StateChart generation from use cases. Differently to
this paper, StateChart generation in [25] is based on a formal description of operations using
added/withdrawn predicates. In the present work our focus is on control flows semantics of
use cases. State model synthesis is performed without the need for operations specification.

This paper discusses StateChart generation from Petri nets. A work related to this
matter is presented in [5], where a structure preserving algorithm that translates Petri nets
to StateCharts is introduced. We do not use this algorithm in part because it does not

3



consider compound StateChart transitions. However, we show that Petri nets obtained
from “consistent” use cases satisfy the required properties listed in [5] for the obtainment of
equivalent StateCharts.

3 Use Cases Modeling

There are two levels in use cases description according to the UML. The use case model level
concerns use cases abstracted from internal details, and shows use cases relations within the
system’s environment and each with the other. The second level concerns the description of
use cases internal interactions.

3.1 Use Cases model

A UML use case model consists of use cases, actors and relationships. We formally define
a use case model as a tuple [Act,Uc, Rel, InitialUc] with: Act a set of actors, Uc a set
of use cases, Rel = Relactuc ∪ Relinc ∪ Relext a set of relations and InitialUc ⊂ Uc a
set of initial use cases. Actors are entities in the domain model that interact with the
system. Use cases are descriptions of these interactions. Each use case is initiated by an
actor and is related to the achievement of a goal of interest to this actor or other actors
in the system. The set of relations Rel includes relationships between actors and use cases
(Relactuc) and relationships between use cases. The former are defined on domain Act and
range Uc. Relationships between use cases include <<include>> relationships (Relinc) and
<<extend>> relationships (Relext). An <<include>> relationship ucbase × ucinc denotes
the inclusion of use case ucinc as a sub-process of use case ucbase (the base use case). An
extend relationship ucext × econd× epoints×ucbase denotes an extension of a use case ucbase

as addition of “chunks” of behaviors defined in an extension use case ucext. These chunks
of behaviors are included at specific places in the base use case called extension points (
epoints). Each extension is realized under a specific condition (econd).

Figure 1 shows an example of use case diagram in the UML notation. The system under
consideration is an Online Broker System. The goal of the system is to allow customers to
find the best supplier for a given order. A customer fills up an online order form and after
submission, the system broadcast it to suppliers. We assume three suppliers in this example,
“SupplierA”, “SupplierB” and “SupplierC”. Each supplier after examining the order may
decide to decline or submit a bid. Submitted bids are sent back to the broker to be shown
to the customer, who eventually asks the system to proceed with a bid. The use case model
corresponds to a tuple [Act,Uc,Rel, InitialUc] with:

• Act = {“Customer”,“SupplierA”, “SupplierB”, “SupplierC”, “Payment System”}.

• Uc = {“Submit order”, “Process Bids”, “Register Customer”, “Handle Payment”,
“SupplierA bid for order”, “SupplierB bid for order”, “SupplierC bid for order”, “Can-
cel Transaction”}.
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Customer

Register Customer

Submit order

login page loaded: loc

Cancel Transaction

<<include>>

Process Bids

Handle Payment

Payment System

<<include>>

SupplierA bid for order

SupplierA

SupplierB bid for order
SupplierB

SupplierC bid for order
SupplierC

<<extend>>

Customer is not registered

Figure 1: Example of UML Use Case diagram for an Online Broker System.

• A set of relations Rel = Relactuc ∪ Relinc ∪ Relext.

Relationships between actors and use cases Relactuc = {”Customer” × “Submit order”,
”Customer” × “Process Bids”, ”SupplierA” × “SupplierA bid for order”, ”SupplierB”
× “SupplierB bid for order”, ”SupplierC” × “SupplierC bid for order”, ”Payment
System” × “Handle Payment”}.

The set of include relationships Relinc is {“Process Bids” × “Handle Payment”, “Sub-
mit order” × “Cancel Transaction”}.

The set of extend relationships Relext is {“Register Customer” × not(<Customer,
registered>) × {ep1} × “Submit order”}. not(<Customer, registered>) represents
the condition under which the extension takes place (we define conditions in section
3.2.3). ep1 is an extension point defined in reference to use case Submit order. We
define extension points in section 3.2.1.

• InitialUc = {“Submit order”}, assuming use case “Submit order” is enabled by default.

We define main use cases as the subset of use cases in a use case model that are not including
use cases nor extension use cases.

Definition 1 Given a use case model M = [ Act,Uc,Rel = Relactuc ∪ Relinc ∪ Relext,
InitialUc], UCmain the set of main use cases of M is such that
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UCmain = {uc ∈ Uc| 6 ∃ri = ucx×uc ∈ Relinc and 6 ∃rj = uc×econd×epoints×ucy ∈ Relext}.

All initial use cases must be main use cases for consistency.

Consistency Rule 1 Any use case model M = [ Act,Uc,Rel, InitialUc] with a set of main
use cases UCmain must be such that InitialUc ⊂ UCmain.

Use case diagrams are abstract high-level view of functionality. They do not describe
interactions. In the next section, we discuss use cases description. We defined an abstract
syntax for use case interactions inspired from Cockburn’s template [3]. We also developed a
restricted form of natural language for concrete representation of use cases.

3.2 Use cases description

Figure 2 shows a UML metamodel for use case description. This metamodel defines an ab-
stract syntax for use cases description as an extension to the UML framework. We specialized
class UseCase (defined in the UML Specification UseCase package [21]) into NormalUseCase
and ExtendUseCase to account for their differences in description. A normal use case defines
complete behaviors. Its execution results on either the fulfillment of a goal or an error situa-
tion. An extend use case specifies a set of behavior chunks intended to extend the behavior
defined by other use cases. The distinction between normal and extend use cases also allows
a more rigorous definition of the <<include>> relation by enforcing that UseCaseInclusion
can only refer to a NormalUseCase.

3.2.1 Normal use cases

According to our metamodel, a normal use case description is a tuple [UCTitle, UCPrec,
UCFoll, UCSt, UCAlt, UCPost ]1 with:

• UCTitle a label that uniquely identifies the use case, UCPrec a Constraint that must
be true before an instance of the use case can be executed (the term constraint is used
in the UML specification to refer to conditions),

• UCFoll a possibly null follow list specifying which use cases must precede the described
use case and how these use cases are synchronized [27],

• UCSt a sequence of use case steps (main steps sequence),

• UCAlt a set of global alternatives that apply to all the steps in the use case, and

• UCPost a condition that must be true at the end of the use case main scenario (success
postcondition).
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UseCase

ExtendUseCaseNormalUseCase

NormalUseCaseDescription
ExtendUseCaseDescription

UseCaseDescription

title : String
.................

FollowList

synchronous : bool

0..1

followList

UseCaseStep

0..*
steps

Part

parts 0..*

0..*

pSteps

ExtensionPoint

refers to

1..*1..*Constraint

precondition
postcondition

Alternative

0..*

globalAlternatives

0..*

altSteps

Delay

0..1

delay

altCondition
altPostcondition

RepeatBlock

SimpleStep

0..1

extPoint

stepCond

0..1

stepDelay

UseCaseInclusion

0..*

includedUseCase

Branching

target

OperationStep

Trigger Reaction

UseCaseEnabling

parallel : bool

1..*

0..1

0..*

0..*

Figure 2: UML metamodel for use cases description.

Figures 3 shows a description of use case “Submit order”. The remaining normal use cases
in the “Online Broker System” example are shown the Appendix.

A non null follow list lists one or more use cases that are “followed” by the described use
case. For instance, after a Customer has submitted an order, the Broker System broadcasts
it to the suppliers (SupplierA, SupplierB and SupplierA in this case). Therefore use cases
SupplierA Bid, SupplierB Bid and SupplierC Bid each follow use case Submit order. The
follow list of these use cases is used to capture these sequencing requirements. When multiple
use cases are listed in a follow list, these use cases are specified as an expression reflecting
how they should be synchronized in relation to the described use case. We use the two

1Note that other elements are included in the use case template. However, only the elements above are
relevant to this paper.
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Title: Submit order
System Under Design: Broker System
Precondition: The Broker System is online and the Broker System welcome page is being
displayed
Success Postcondition: An Order has been broadcasted
STEPS

1. The Customer loads the login page

2. The Broker System asks for the Customer’s login information

3. The Customer enters her login information

4. The Broker System checks the provided login information

5. IF The Customer login information is accurate THEN The Broker System displays
an order page

6. The Customer creates a new Order

7. Repeat while the Customer has more items to add to the Order

7.1. The Customer selects an item

7.2. The Broker System adds the selected item to the order

8. The Customer submits the Order

9. The Broker System broadcast the Order to the Suppliers

10. enable in parallel use cases SupplierA bid for order, SupplierB bid for order,
SupplierC bid for order

ALTERNATIVES

*1.

*1a. The Customer selects cancel operation

*1b. The Broker System displays the welcome page

2a. after 60 seconds

2a1. The Broker System displays a login timeout page

4a. The Customer login information is not accurate

4a1. GOTO Step 2.

8a. The Order is empty

8a1. The Broker System displays an error page

EXTENSION POINTS

STEP 1. login page loaded

Figure 3: Description of use case “Submit order” in the Online Broker System.
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operators AND and OR with the following meaning. Operator AND expresses synchronization
(synchronized follow list) while OR captures asynchronism (unsynchronized follow list). More
formally, given use cases uc0, uc1, uc2, · · ·, ucn, the following interpretation is given.

• If the follow list of uc0 is specified as “uc1 AND uc2 AND · · ·ucn”, all of uc1, uc2,
· · ·, ucn must reach a point from which use case uc0 is enabled before use case uc0

(synchronism).

• If the follow list of uc0 is specified as “uc1 OR uc2 OR · · ·ucn”, use case uc0 may be
executed as soon as any of use cases uc1, · · ·, ucn reaches a point from which use case
uc0 is enabled (asynchronism).

As an example, the follow list of use case “Process Bids” described in Figure 22 is unsyn-
chronized. A Customer may proceed with a bid as soon as a supplier has replied without
waiting for other replies.

3.2.2 Extension use cases

An extension use case includes one or more parts. These parts are inserted at specific
extension points in a base use case as realization of an extend relationship. An extension use
case is formally a tuple [UCTitle, Parts ] with: UCTitle as previously defined and Parts a set
of parts. Each part is a tuple [ExtPoint, Steps ]. ExtPoint is a reference to an extension point
and Steps a sequence of steps (a part steps sequence). As an example, Figure 4 shows an
extension use case titled Register Customer with one part. The use case diagram in Figure

Title: Register Customer
EXTENSION USE CASE PARTS
PART 1. At Extension Point login page loaded

1.1. Customer selects registration operation

1.2. Broker System asks for Customer name, date of birth and address

1.3. Customer enters registration information

1.4. Broker System validates Customer information

1.5. Broker System generate login information for Customer
ALTERNATIVES

1.4.a. Customer registration information is not valid

1.4.a.1. Broker System displays registration failure page

Figure 4: Extension use case “Register Customer”.

1 defines an extend relationship between Register Customer and the base use case Submit
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order. The meaning of the relationship is that use case Register Customer extends use case
Submit order when condition “Customer is not registered” holds.

3.2.3 Conditions

Each condition is formally a predicate, the negation of a predicate, conjunction of predicates
or disjunction of predicates. A predicate is a pair <E,V > where E is an entity and V a value.
Entities refer to concepts (actors or the system under consideration) or attributes of concepts.
For instance use case Submit order precondition is formally the conjunction of predicates
<”Broker System”,”online”> and <”Broker System”.”welcome page”, “displayed”>. In our
concrete syntax [25], predicates are represented in the form
“name of entity” “verb” “possible value of entity” with “verb” a conjugated form of a limited
number of verbs including to be and to have. A domain model that enumerates all the entities
in the application and their possible values is needed for parsing. A substantial part of this
model is obtained by pre-processing use cases [20].

3.2.4 Use case steps

Use case steps include simple steps and repeat blocks. A repeat block denotes an iterative
execution of a sequence of use case steps (repeat steps sequence) according to a condition
and/or a time delay. Repeat blocks are introduced with keywords repeat, while and until. For
instance, step 7 of use case Submit order is a repeat block with two steps that are iterated
according to a condition. More formally, we define a repeat block as a tuple [RGuard,
RDelay, RSteps ] with RGuard a possibly null guard condition, RDelay a possibly null delay
and RSteps a sequence of steps.

We distinguish the following types of simple steps: operation steps, branching statements,
use case inclusion directives and use case enabling directives. A simple step may be con-
strained by explicit and implicit guards and/or a delay. A guard is a condition that must
hold for the step to be possible. We introduce explicit guards using keywords if .. then. As
an example, step 5 in use case Submit order is constrained by an explicit guard. In addition
to explicitly specified guards, a step sti is also constrained by implicit guards that include
the negation of the conjunction of all the conditions of the step sti−1 alternatives (if any).
Step sti−1 being a step immediately preceding sti in the same steps sequence. For instance,
although step 9 in use case “Submit order” does not include an explicit guard, it includes
condition “the order is NOT empty” as implicit guard (the negation of alternative 8a con-
dition). A delay specifies a minimum time amount that must pass before a step is possible.
Delays are counted from the completion moment of the previous step or from when the use
case became enabled when applied to the first step of a use case. We introduce delays using
keyword after.

An operation step denotes the execution of an operation by an actor in the environment
of the system (a trigger) or the system itself (a reaction). Steps 1 and 3, 6, 7.1, and 8 in
use case Submit order correspond to triggers while steps 2, 4 and 5, 7.2 and 9 correspond
to reactions. Triggers and reactions are distinguished based on information in the domain
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model. Our concrete syntax [25], also assume that operations are declared in the domain
model according to the format “action verb [action object ]”. Where the action verb is a verb
in infinitive and the action object refers to a concept or an attribute of a concept affected by
the action. As an example, “load login page” is an operation name where the action verb
is “load” and the action object is “login page”. Given this naming convention, an operation
step has the following form:

“name of concept” “action specification” [“preposition” “action participant”]2

The “action specification” has the form

“conjugated action verb” [“action object”]

The “conjugated action verb” is the “action verb” used in the concept operation declaration
in the present tense.

An operation step may be associated with an extension point ; a label that references
a particular point in a use case where interactions defined in extension use cases may be
inserted. An extension point corresponds to the point of execution reached after a successful
completion of the operation. Step 1 of use case “Submit order” is associated with an exten-
sion point labelled “login page loaded”. An operation step may also be associated with one
or more alternatives. An alternative specifies a possible continuation of a use case after a
step. Alternatives are used to describe exceptions, error situations or less common courses of
events. Formally an alternative is a tuple [Acond, Adelay, Asteps, Apost ] with Acond a con-
straint that must be true for the alternative to be possible, Aftd a delay, Asteps a sequence
of use case steps (alternative steps sequence) and Apost an alternative postcondition. Our
use case notation allows global alternatives. For instance, use case “Submit order” includes
a global alternative labelled ”*1”. A global alternative galt is equivalent to the inclusion of
galt to each operation step where galt is possible. In use case “Submit order”, alternative
*1 effectively only applies to steps corresponding to triggers, because its condition (Acond)
and delay (Adelay) are both null.

A branching statement includes a reference to a step sti such that the flow of use case
events continues from sti whenever the branching statement is interpreted. We refer to sti
as the branching statement target. Step 4a1 in use case “Submit order” branches to step 2.
Execution of that step would result in the flow of events continuation from step 2.

A use case inclusion directive is a realization of an include relationship between the use
case and an included use case referred in the directive. As an example, step 3 in use case
“Process Bids” is an inclusion directive referring to use case “Handle Payment” shown in
Figure 23.

A use case enabling directives allows to explicitly state control flow between use cases.
The directive can refer to one or more use cases. In the latter case, the directive may
specify whether the enabled use cases execute concurrently (with keyword in parallel or
alternatively. For instance, step 10 in use case “Submit order” is an enabling directive for
use cases “SupplierA bid”, “SupplierB bid” and “SupplierC bid”. These three use cases may

2Elements between “[]” are optional.
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execute concurrently. Only one use case may execute in the non-parallel variant of the use
case enabling directive. As soon as a use case start executing, all other use cases referred
to in the directive are considered disabled. For consistency we assume the first events of
the enabled use cases are distinct enough that an unambiguous choice can be made among
the use cases. More formally, suppose firstEvent is a function such that given a use case uc
firstEvent(uc) is the first event of uc, the following Consistency Rule must be satisfied.

Consistency Rule 2 The set UCedir = {uc1, · · ·, ucn} of use cases referred to in a non-
parallel enabling directive edir must be such that ∀uci ∈ UCedir, 6 ∃ ucj (i 6= j) ∈ UCedir

such that firstEvent(uci) = firstEvent(ucj).

A use case may enable itself and there is no restriction to where the directive may appear.
Notice that follow lists and use case enabling directives depend each on the other. The
following rule must be satisfied for consistency.

Consistency Rule 3 When a use case uci refers to a use case ucj in its follow list, use
case ucj must include an enabling directive referring to use case uci. Conversely, for each
use case referred to in an enabling directive, the enabled use case must include the enabling
use case in its follow list.

A use case enabling directive may be followed by subsequent steps. These steps are assumed
to execute concurrently with the enabled use cases.

3.2.5 Steps Sequences

A steps sequence is a succession of steps in a use case. A normal use case [UCTitle, UCPrec,
UCFoll, UCSt, UCAlt, UCPost ] includes a main steps sequence UCSt. The sequence of steps
Asteps in an alternative [Acond, Adelay, Asteps ] is an alternative steps sequence. We also
distinguish repeat steps sequences (RSteps in a repeat block [RGuard, RDelay, RSteps ]) and
part steps sequences (Steps in an extension use case part [ExtPoint, Steps ]).

A main use case must be initiated by an actor [21]. Consequently the following consistency
rule needs to be satisfied.

Consistency Rule 4 The first step in a main steps sequence must be a trigger.

For consistency, a branching statement must not connect unrelated steps sequences. We
define a subordinate relation sub between steps sequences as follow.

Definition 2 A steps sequence sep′ is subordinate of a steps sequence seq (sep′sub seq) if:

• seq includes a step st such that sep′ is a steps sequence of an alternative of st,

• seq includes a repeat block rb such that sep′ is rb’s repeat steps sequence

• there is a steps sequence sep” such that (sep′sub sep”) and (sep”sub sep).
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Consistency Rule 5 For any branching statement stepo such that stepd is stepo target,
let seqo be a steps sequence such that stepo ∈ seqo and seqd be a steps sequence such that
stepd ∈ seqd, seqo and seqd must be such that seqd = seqo or seqdsub seqo.

A branching statement must also be last in a steps sequence as subsequent steps are un-
reachable.

Consistency Rule 6 For any steps sequence seq = step0 · · · stepn, if ∃i such that stepi is
a branching statement, then i must be equal to n.

A normal use case may include a precondition and a set of postconditions (a success
postcondition and alternative postconditions). Preconditions and postconditions are implicit
specifications of use case sequencing constraints. A use case precondition is a condition that
needs to hold before the use case, while a use case postcondition is a condition that is guaran-
teed to hold at the end of the use case. Assuming functions pre and post such that: pre(uc)
is the precondition of a use case uc and given seq a main or alternative steps sequence in uc,
post(seq, uc) is the postcondition associated with seq, use case uc1 enables use case uc2 (and
uc2 follows uc1) if there is a steps sequence seqi in uc1 such that post(seqi, uc1) ⇒ pre(uc2).
For instance, by analyzing the pre and postconditions of use cases in Figure 3 - 21, we can
infer that use case “Submit order” could be followed by use cases “SupplierA Bid”, “Suppli-
erB Bid” and “SupplierC Bid”. Preconditions and postconditions allows to specify which use
case must precede a given use case and which use cases are enabled after a use case. However,
they do not offer a possibility to specify how use cases are synchronized or whether several
enabled use cases execute concurrently or alternatively [27]. Additionally, since postcondi-
tions are only checked at the end of a steps sequence, situations where enabling directives
are not the last elements of steps sequences do not have an equivalent. Nevertheless, explicit
constraints specified by use case sequencing constructs and implicit constraints derived from
pre/postconditions must comply with the following consistency rules. We assume functions
pre and post as above.

Consistency Rule 7 Given use cases uci and ucj, if uci is included in the follow list of ucj,
there must exist a steps sequences seqk in uci such that post(seqk, uci) ⇒ pre(ucj) (notice
that in accordance with rule 3, seqk must include an enabling directive referring to use case
ucj).

Consistency Rule 8 Given use cases uci and ucj, if there is a steps sequence seqk in uci

such that post(seqk, uci) ⇒ pre(ucj), use case uci must be included in the follow list of ucj

and there must be a use case enabling directive referring to ucj in the steps sequence sci.

4 Formal interpretation of use cases

A use case captures a set of event sequences. We represent these event sequences using the
Basic Petri nets formalism.
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4.1 Basic Petri nets

A Basic Petri net is formally defined as follow.

Definition 3 A Basic Petri net (P/T net) is a triple [P, T, F] with:

• P a finite set of places,

• T a finite set of transitions,

• F ⊆ (P × T ) ∪ (T × P ) a flow relation such that for each transition t ∈ T , the input
places of t (denoted •t) are all places pin such that pin × t ∈ F , and the output places
of t (denoted t•) are all places pout such that t × pout ∈ F .

The set of use cases in a use case model M corresponds to a P/T net Pn = [P, T, F], and
each main use case in M corresponds to a subnet of Pn defined as follow.

Definition 4 A subnet of a P/T net Pn = [P, T, F] is a P/T net Pn′ = [P ′, T ′, F ′] such
that P ′ ⊂ P, T ′ ⊂ T, F ′ ⊂ F and ∀t ∈ T ′, •t ⊂ P ′, t• ⊂ P ′.

We use the terminology use case P/T net to refer to a subnet corresponding to a use case.
The initial place of a use case P/T net as an input place to the first transition corresponding
to the first step of the use case. Transitions correspond to events depicted by use cases
and places represent states reached between these events. A step in a use case is typically
mapped to a sequence of transitions. Figure 5 is a P/T net representation of the set of
event sequences corresponding to use case “Submit order” extended with use case “Register
Customer”. We use the corresponding step numbers as labels for transitions. c1 is condi-
tion <Customer,registered>, c2 is condition <Customer.registration,valid>, c3 is condition
<Customer.’login information’,accurate>, c4 is condition <Customer,’more items to add’>
and c5 is condition <Order,empty>.

The token game semantics governs P/T nets animation. Places may contain tokens and
a transition t is said to be enabled if all •t contain tokens. An enabled transition t may fire
by removing a token from each of its input place and adding a token to each of its output
place. A marking M is the distribution of tokens over places in a P/T net. Each marking
represents a state of the described system. The initial marking of a P/T net corresponding
to a use case model M = [Act,Uc,Rel, InitialUc] is such that there is a token in all the
initial places of the use cases in InitialUc and every other place is empty. More formally,
Mi a marking of a use case model P/T net [P, T, F] is a function Mi : P → N such that
∀p ∈ PMi(p) is the number of tokens in place p. M0 the initial marking of a use case model
P/T net is defined as follow. We suppose initialp is a function such that initialp(uc) is the
initial place of use case uc P/T net.

M0(p) =

{

1 if (∃uc ∈ InitialUc|initialp(uc) = p)
0 otherwise
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Figure 5: Petri net representation of use case “Submit order” set of possible event sequences.

Each subsequent marking Mi (i > 0) is derived from its preceding marking Mi−1 after the
firing of an enabled transition t as follow:

Mi(p) =







Mi−1(p) − 1 if (p ∈ •t and p 6∈ t•)
Mi−1(p) + 1 if (p ∈ t • and p 6∈ •t)
Mi−1(p) otherwise

Each marking (Mi) is a possible state of the system. An execution trace is a sequence
of events obtained from the sequence of transitions firing starting with a P/T net initial
marking.

4.2 Events

Transitions in a use case P/T net correspond to the occurrence of events. We distinguish
trigger events (corresponding to trigger transitions), reaction events (corresponding to re-
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action transitions), decision events (corresponding to decision transitions), timeout events
(corresponding to timeout transitions) and a null event (corresponding to null transitions).
The set of events depicted by a use case is partially ordered. Events derived from a same
steps sequence are totally ordered.

A trigger event denotes the execution of an operation by an actor in the environment,
while a reaction event denotes the execution of an operation by the system under con-
sideration. Although execution of an operation takes certain duration, we consider that
an operation event is discrete and correspond to the moment of completion of the opera-
tion. A decision event occurs whenever one of different associated conditions evaluates to
true. For instance, in Figure 5, decision events for conditions <Customer, registered> and
not(<Customer, registered>) are possible after operation event loads login page. Suppose
predicate <Customer, registered> evaluates to true, the corresponding decision event would
be produced and the behavior would progress along the transition labelled by that event. We
assume that each place is associated with a timer that is started whenever a transition enters
that place and stopped whenever a transition leaves the place. A timeout event timeout(d)
is produced when a delay d elapses after a timer has started and hasn’t been stopped.

We suppose reactive semantics similar to [6] for use case P/T nets. There is no control
over when actors operations (triggers) are performed. System operations (reactions), the
null event as well as decision events however, happen as soon as possible. Timeout events
are delayed by a delay value such that other events may occur before they are fired. As
a consequence, triggers and timeouts are ignored from places when there is at least one
outgoing transition corresponding to a reaction, decision or null event. More formally, let
systTrans, trigTrans, timeTrans, decTrans and nullTrans be functions such that given a P/T
net [P, T, F] and a place p ∈ P , systTrans(p) is the set of transitions tr such that p× tr ∈ F

with tr a reaction transition, trigTrans(p) is the set of transitions tt such that p× tt ∈ F with
tt a trigger transition, decTrans(p) is the set of transitions tc such that p × tc ∈ F with tc
a decision, and, nullTrans(p) is the set of transitions tn such that p × tn ∈ F with tn a null
transition.

Definition 5 Given a P/T net [P, T, F], an event ev is ignored if ev corresponds to a
transition t from a place p with t ∈ trigTrans(p) or t ∈ timeTrans(p), and ∃t′ such that t′ ∈
decTrans(p) or t′ ∈ nullTrans(p).

Additionally, a timeout event with delay d is ignored from a place in presence of another
timeout event with a delay less than d.

Definition 6 Given a P/T net [P, T, F], a timeout event ev is ignored if ev corresponds
to a transition tev ∈ timeTrans(p) with delay d, and ∃t′ev ∈ timeTrans(p) with delay d′ such
that d′ < d.

Another consequence of the reactive semantics is that behavior depicted in a use case P/T
net is non-deterministic when (1) more than one reaction or null transition start from a
place, (2) the set of transitions starting from a place includes decision transitions mix with
reaction/null transitions, (3) more than one transition corresponding to a same trigger starts
from a place, or (4) more than one timeout transition starts from a place. More formally,
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Definition 7 The behavior depicted by a P/T net [P, T, F] is non-deterministic if ∃p ∈ P :

(1) |systTrans(p) ∪ nullTrans(p)| > 1, or,

(2) |decTrans(p)| > 0 and (|systTrans(p) ∪ nullTrans(p)| > 0), or,

(3) ∃tt ∈ trigTrans(p), ∃t′t ∈ trigTrans(p)(tt 6= t′t) such that tt and t′t correspond to the same
operation, or,

(4) ∃tt ∈ timeTrans(p), ∃t′t ∈ timeTrans(p)(tt 6= t′t) such that tt and t′t correspond to timeout
events with the same delay.

Notice that a P/T net such that none of (1) - (4) is satisfied may still exhibit non-deterministic
behavior. For instance when decisions events corresponding to different transitions can hold
at the same time in a place. The Mapping Rules presented in the next section produce P/T
nets devoid of non-determinism as defined in Def. 7, when Consistency Rule 9 is satisfied
(a proof to that is discussed in Section 4.4).
Let function alternatives be such that given a step stepi, alternatives(stepi) is stepi set of
alternatives. Let guard and delay be two functions such that guard(stepi) is the conjunction
of stepi explicit and implicit guards (Cf. Def. 9), and delay(stepi) is stepi delay. We
assume possible triggers and applicable delays are two functions defined as follow. Given
a step stepi, possible triggers(stepi) includes all actor operations astepj0 such that altj =
[Acondj = null, Adelayj = null, Astepsj = astepj0, · · · , astepjm] ∈ alternatives(stepi) and
stepi+1 ∈ possible triggers(stepi) if delay(stepi+1) = guard(stepi+1) = null and stepi+1 is an
actor operation. Given a step stepi, applicable delays(stepi) includes all delays Adelayj such
that altj = [Acondj = null, Adelayj 6= null, Astepsj ] ∈ alternatives(stepi) and stepi+1 ∈
applicable delays(stepi) if delay(stepi+1) 6= null and guard(stepi+1) = null.

Consistency Rule 9 For each step stepi:

a) there must be no alt = [Acond, Adelay, Asteps = astep0, · · · , astepm] ∈ alternatives(stepi)
with Acond = null, Adelay = null and astep0 a system operation,

b) ∀trigj ∈ possible triggers(stepi), 6 ∃trigk ∈ possible triggers(stepi) with trigj = trigk,

c) |applicable delays(stepi)| ≤ 1.

Part c of Consistency Rule 9 also ensures absence of ignored timeouts events according to
Def. 6.
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4.3 Mapping of use cases to P/T nets

The event sequences defined by a set of normal use cases in a use case model M = [Act,Uc,
Rel, InitialUc] can be depicted as a P/T net Pn = [P, T, F ] according to a set of mapping
rules. It is assumed that all use cases in Uc satisfy the Consistency Rules stated through
this paper. In the remainder of this Section, P, T and F refer to the elements of the use
case model M P/T net.
Rule 1 specifies that each use case P/T net includes an initial place.

Mapping Rule 1 ∀Pnuc = [Puc, Tuc, Fuc] such that Pnuc is a use case Uc P/T net, ∃!p0 ∈
Puc with initialp(Uc) = p0.

Each step in Uc corresponds to a sequence of transitions in Pn. We define a step starting
place as a place from which the behavior defined by a step is considered in a use case P/T
net. A step final place is the output place of the last transition corresponding to the step.
We assume functions startp and finalp such that startp(stepi) is step stepi starting place and
finalp(stepi) is stepi final place.

Definition 8 Given a sequence of steps seq = step0, · · · stepn from use case Uc, if seq is
a main steps sequence, startp(step0) = initialp(Uc). For each stepi (i > 0), startp(stepi) =
finalp(stepi−1).

The starting place of the first step of alternative steps sequences, repeat steps sequences and
part steps sequences are determined in Mapping Rules 4, 8 and 10 respectively. Steps final
places are determined in Mapping Rules 3, 6, 7 and 8.

4.3.1 Mapping of simple steps

Recall from Section 3.2.1 that a simple step may be constrained by implicit and/or ex-
plicit guards. Given a steps sequence seq = step0, · · · stepn, the set of implicit guards of
stepi (0 < i ≤ n) is determined as follow. We assume ext point is a function such that
ext point(stepi) returns the extension point associated with stepi if any or null. Given an
extension point ep and a use case model M = [Act,Uc, Rel = Relactuc ∪ Relinc ∪ Relext, Ini-
tialUc], matchingExtends(ep, M) returns the set of all <<extend>> relations that refer to ep
in M. More formally, matchingExtends(ep, M) = {rext|rext = ucext×econd×epoints×ucbase ∈
Relext ∧ ep ∈ epoints}. Function ext conds is such that ext conds(extrels) returns the set of
all extend conditions referred to in a set of <<extend>> relations extrels. More formally,
ext conds(extrels) = {econd|∃ucext × econd × epoints × ucbase ∈ extrels}.

Definition 9 The set of implicit guards of stepi (implicit guards(stepi)) is such that:

• If stepi−1 is a repeat block rb=[ RGuard, RDelay, RSteps], implicit guards(stepi) =
{¬RGuard}.

• If stepi−1 is a simple step, let the set AltCondsi−1 =
{Acond|∃Alt = [Acond, Adelay, Asteps, Apost] ∈ alternatives(stepi−1)}. If AltCondsi−1 6=
∅, let ccalt =

∧

cond∈(AltCondsi−1) ¬cond, ccalt ∈ implicit guards(stepi).
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If extrels = matchingExtends(ext point(stepi−1), M) 6= ∅,
let ccext =

∧

cond∈ext conds(extrels)
¬cond, ccext ∈ implicit guards(stepi).

Mapping Rule 2 Given a step stepi from a use case Uc, suppose pi = startp(stepi), td
is a timeout transition with delay delay(stepi (if non null) and cg is a decision transition
corresponding to guard(stepi) (if non null).

• If delay(stepi) is non null and guard(stepi) is non null, P ⊃ {pj , pk}, T ⊃ {td, cg},
F ⊃ {pi × cg × pj , pj × td × pk}.

• If delay(stepi) is non null and guard(stepi) is null, P ⊃ {pk}, T ⊃ {td}, F ⊃ {pi × td×
pk}.

• If delay(stepi) is null and guard(stepi) is non null, P ⊃ {pk}, T ⊃ {cg}, F ⊃ {pi ×
cg, cg × pk}.

• If delay(stepi) is null and guard(stepi) is null, pk = pi.

Transitions corresponding to the remainder of stepi are added from place pk in Mapping
Rules 3, 5 and 6.

Each operation step and branching statement correspond a transition.

Mapping Rule 3 For each operation step stepi, P ⊃ {pl}, T ⊃ {op} and F ⊃ {pk ×
op, op× pl}. With op a transition corresponding to the execution of the operation referred in
stepi. Place pl is the final place of stepi (finalp(stepi) = pl).

An operation step may be associated with alternatives. Each alternative specifies how the
execution may proceed after the step. As discussed in Section 4.2, trigger and timeout events
are ignored when they conflict with decision events. Consequently some of a step alternatives
may be ignored.

Definition 10 An alternative alti = [Acondi, Adelayi, Astepsi = astepi0, · · ·astepik, Aposti] ∈
alternatives(stepi) is ignored from stepi if:

(1) Acondi = null, Adelayi = null, astepi0 is a trigger, and there is at least one alterna-
tive altj = [Acondj 6= null, Adelayj, Astepsj , Apostj] ∈ alternatives(stepi) or stepi is
associated with an extension point epi such that matchingExtends(epi, M) 6= ∅.

(2) Acondi = null, Adelayi 6= null, and there is at least one alternative altj = [Acondj 6=
null, Adelayj, Astepsj , Apostj] ∈ alternatives(stepi).

For instance, alternative *1 in use case “Submit order” is ignored from steps 4 and 8 in
accordance with Def. 10-(1).
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Mapping Rule 4 For each altj = [Acond, Adelay, Asteps = stepalt
0 · · · stepalt

m , Apost] ∈
alternatives(stepi) such that altj is not ignored from stepi, let palt

i be finalp(stepi):

• If Adelay is non null and Acond is non null, F ⊃ {palt
i × cg × palt

j , palt
j × td × palt

k }.

• If Adelay is non null and Acond is null, F ⊃ {palt
i × td × palt

k }.

• If Adelay is null and Acond is non null, F ⊃ {palt
i × cg, cg × palt

k }.

• If Adelay is null and Acond is null, palt
k = palt

i .

startp(stepalt
0 ) = palt

k .

Mapping Rule 5 For each branching statement stepi with target stepj, F ⊃ {pk×tn, tn×
pj}, with tn a null transition and pj = initialp(stepj).

As an example, use case “Submit order” branching statement 4a1 corresponds to flows
p27 × null, null × p4 in Figure 5.

Use case inclusion directives are interpreted as follow. Let ucbase be a use case with an in-
clude directive inclUC and ucinc a use case referred by inclUC. Suppose uc included is a func-
tion such that uc included(inclUC ) returns ucinc. Interpretation of directive inclUC resumes
to rewriting of use case ucbase replacing inclUC with all the steps in uc included(inclUC ).
We assume copy(Pn) is a copy of a P/T net Pn and copy(p, Pn′) is the copy of a place p in
Pn′. More formally,

Definition 11 Given Pn = [ P, T, F], copy(Pn) is a P/T net Pn′ = [P ′, T ′, F ′] such that:

• ∀p ∈ P, ∃p′ ∈ P ′, with p′ a copy of p in Pn′ (p′ = copy(p,Pn′))

• ∀t ∈ P, ∃t′ ∈ T ′ with t′ a transition that corresponds to an occurrence of the same event
as t, t′ is a copy of t in Pn′ (t′ = copy( t,Pn′))

• ∀p × t ∈ F, ∃p′ × t′ ∈ F ′ with p′ = copy(p,Pn′) and t′ = copy( t,Pn′)

• ∀t × p ∈ F, ∃t′ × p′ ∈ F ′ with p′ = copy(p,Pn′) and t′ = copy( t,Pn′)

A use case inclusion directive corresponds to the inclusion of places and transitions in the
P/T net of the including use case according to the following.

Mapping Rule 6 For each inclusion directive stepi referring to an included use case ucinc,
let Pninc = [Pinc, Tinc, Finc] be use case uc included(stepi) P/T net and Pn′

inc = copy(Pninc)
= [P ′

inc, T
′

inc, F
′

inc].

• P ⊃ P ′

inc, T ⊃ T ′

inc, F ⊃ F ′

inc

• Let pinc
0 be initialp(ucinc), T ⊃ {tn}, F ⊃ {pk × tn, tn × copy(pinc

0 , Pn′

inc)} with tn a
null transition.
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• Let maininc = stepinc
0 · · · stepinc

n be use case ucinc main steps sequence; finalp(stepi) =
copy(finalp(stepinc

n ),Pn′

inc).

A use case enabling directive corresponds to the forking of concurrent execution sequences.
One sequence corresponds to the steps that follow the directive if any, while the other
sequences correspond to the enabled use cases (Cf. Mapping Rules 12 - 14).

Mapping Rule 7 For each use case enabling directive stepi, P ⊃ {pf , pe}, tn ∈ T , F ⊃
{startp(stepi)×tn, tn×pf , tn×pe} with tn a null transition. finalp(stepi) = pf . We consider
a relation enable place such that stepi × pe ∈ enable place.

For instance, step 10 in use case “Submit order” is mapped to flows p50 × null, null × p51,
null × p52 in Figure 5.

4.3.2 Mapping of repeat blocks

A repeat block [RGuard, RDelay, RSteps ] specifies a sequence of iterative steps RSteps. Each
iteration depends on a guard condition RGuard and/or a time delay RDelay.

Mapping Rule 8 Given a repeat block rblock = [ RGuard, RDelay, RSteps = stepr
0 · · · step

r
m],

let pi be startp( rblock), cg a transition corresponding to condition RGuard, and td a tran-
sition corresponding to a timeout event with delay RDelay.

• If RDelay is non null and RGuard is non null, P ⊃ {pr
j , p

r
k}, T ⊃ {cg, td}, F ⊃

{pi × cg × pr
j , p

r
j × td × pr

k}, finalp( rblock) = pi.

• If RDelay is non null and RGuard is null, P ⊃ {pr
k}, T ⊃ {td}, F ⊃ {pi × td × pr

k}.

• If RDelay is null and RGuard is non null, P ⊃ {pr
k}, T ⊃ {cg}, F ⊃ {pi×cg, cg×pr

k},
finalp( rblock) = pi.

• If RDelay is null and RGuard is null, pr
k = pi.

startp(stepr
0) = pr

k.

Notice that the final and initial places of a repeat block are identical when a non-null guard
condition is used. The final place is undetermined when the guard condition is null. In such
a case, the repeat block models an endless iterative behavior that can only be terminated
with an embedded branching statement.

4.3.3 Use case extension

Use case extension is a mechanism for the expansion a base use case with behaviors defined
in extension use cases. An extension use case ExUc is a tuple [UCTitle, Parts ]. Each part
in Parts in turn is a tuple [ExtPoint, Steps ]
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Mapping Rule 9 An extension use case Part pt = [ ExtPoint, Steps] corresponds to a part
P/T net [Pp, Tp, Fp].

Mapping Rule 10 ∀pt = [ExtPoint, Steps = step
p
0, · · · step

p
m] a part such that pt P/T net

= [Pp, Tp, Fp], ∃p
p
0 ∈ Pp with initialp(pt) = p

p
0 and startp(stepp

0) = p
p
0.

An <<extend>> relation specifies a condition under which a use case extension is realized
as well as the specific points (extension points) in the base use case where the behavior
specified in parts are plugged in. Let functions copy, matchingExtends and ext conds be as
previously defined.

Mapping Rule 11 For each stepi such that epi = ext point(stepi) 6= null and Extrels =
matchingExtends(epi, M) 6= ∅, let Extrels2 be the set of Extrels subsets without the empty
set, NCP be the set ext conds(Extrels) and let pi be equal to finalp(stepi).
For each Erels ∈ Extrels2,

• Let CP be the set ext conds(Erels), pi × cond ∈ F , cond ∈ T with cond a transition
corresponding to condition

∧

(C∈CP ) C
∧

(NC∈NCP−CP ) ¬NC

• For each rel = ucext × econd × epoints × ucbase ∈ Erels, with ucext = [ UCTitle,
Parts] and partr = [epi, Stepsr = stepr

0 · · · step
r
m] ∈ Parts. Let Pnr be a P/T net

corresponding to partr and Pn′

r = [P ′

r, T
′

r, F
′

r] = copy(Pnr).

– P ⊃ P ′

r, T ⊃ T ′

r, F ⊃ F ′

r

– F ⊃ {cond × copy(initialp(partr))}

– If ∃stepi+1, tn ∈ T , F ⊃ {finalp(stepr
m) × tn, tn × startp(stepi+1)} with tn a null

transition.

As an example, use case “Submit order” (Figure 3) is extended by the extension use case
“Register Customer” (Figure 4) according to the <<extend>> relation “Register Customer”
× not(<Customer, registered>) × {ep1} × “Submit order”. The corresponding P/T net
in Figure 5 shows the inclusion of behaviors defined in “Register Customer” from place p1

(the final place of step 1 ). Transition c1 corresponds to an implicit guard obtained from
the <<extend>> condition negation (see Section 4.3). The extension behavior corresponds
to places p5 − p19. Place p19, the final place of step 1.5 in “Register Customer”, is linked
back to place p4 the initial place of step 2 in “Submit order”. Figure 6 shows an example
where more than one of extension use case contribute at an extension point. The base
use case uc1 includes an extension point ep1 that is referred to in two extension use cases
(ucex1 and ucex2 ). Suppose the <<extend>> relations ucex1 × c1 × {ep1} × uc1 and
ucex2× c2×{ep1}×uc1. Figure 7 shows a P/T net corresponding to use case uc1 with the
extensions. Each combination of extension conditions is considered. In the situation where
both c1 and c2 hold, the extensions in ucex1 and ucex2 occur concurrently.
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Title: uc1
STEPS
1 ..
2 ..
3 ..
EXT POINTS

STEP 2. ep1

Title: ucex1
PART1. At Ext
ep1
1.1 ..
1.2 ..

Title: ucex2
PART1. At Ext
ep1
2.1 ..
2.2 ..

(a) base use case (b) extension use
case ucex1

(c) extension use
case ucex2

Figure 6: Example for illustrate mapping of use case extension.
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Figure 7: Petri net corresponding to use cases in Figure 6.
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4.3.4 Use cases sequencing

The specification of use case sequencing is based on two complementary constructs: en-
abling directives and follow lists. An enabling directive specifies explicitly use cases which
execution might start from the point of the directive. A parallel enabling directive variant
allows specifying concurrent execution of the enabled use cases. In the non-parallel enabling
directive variant, a deferred choice [29] is assumed among the enabled use cases and only
one may execute. In accordance with Consistency Rule 2, the choice is determined from the
next event.

Let isParallel be a function such that given a use case enabling directive edir, isPar-
allel(edir) returns true if edir is a parallel enabling directive and false otherwise, let en-
abled uc be a function such that enabled uc(edir) is the set of use cases referred to in
edir, let places ucases be a relation such that pi being a place and uco, ucd being use cases
uco × pi × ucd ∈ places ucases if pi is a place corresponding to the enabling of use case ucd

by use case uco, and let edir × pe ∈ enable place (Cf. Mapping Rule 7).

Mapping Rule 12 Given a use case enabling directive edir from use case uco,

• if isParallel( edir), pe × tn ∈ F , tn ∈ T and for each uci ∈ enabled uc( edir), puci ∈
P, tn × puci ∈ F, uco × puci × uci ∈ places ucases with tn a null transition,

• otherwise, for each uci ∈ enabled uc( edir), tni ∈ T, puci ∈ P, pe × tni ∈ F , tni × puci ∈
F, uco × puci × uci ∈ places ucases with each tni a null transition.

A use case may include more than one enabling directive referring to the same use case. From
the point of view of the enabled use case, any of the enabling directives may lead to execution.
We define a relation unique places ucases to link enabling use cases, enabled use cases and
a unique place from which a transition to the enabled use case start. Let enablePlaces
be a function such that (uci, ucj) being a pair of main use cases, enablePlaces(uci, ucj) =
{rel|rel = uci × puci × ucj ∈ places ucases}.

Mapping Rule 13 For each pair of main use cases (uci, ucj), let EnP be = enablePlaces(uci,
ucj), if |EnP| ≥ 1, pu ∈ P , for each uci × puci ×ucj ∈ EnP , tij ∈ T, F ⊃ {puci × tij , tij × pu}
with tij a null transition; uci × pu × ucj ∈ unique places ucases.

Follow lists specifies how enabled use cases may execute in reference to enabling use cases.
In a synchronized follow list, all enabling use cases must have enabled the enabled use case.
An unsynchronized follow list describes a situation where only one enabling use case is
needed. Let isSynchronized and followed ucases be functions such that given a use case Uc =
[UCTitle, UCPrec, UCFoll, UCSt, UCAlt, UCPost ], isSynchronized(UCFoll) is true if UCFoll
is a synchronized follow list and false otherwise, and followed ucases(UCFoll) returns the list
of use cases referred to in UCFoll.

Mapping Rule 14 Given a main use case Uc = [ UCTitle, UCPrec, UCFoll, UCSt, UCAlt,
UCPost], let FolUC be followed ucases(UCFoll),
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• If isSynchronized(UCFoll), let tn be a null transition, tn ∈ T , tn × initialp(Uc) ∈ F ,
for each puci such that ∃uci ∈ FolUC with uci × puci × uc ∈ unique places ucases,
puci × tn ∈ F .

• If ¬ isSynchronized(UCFoll), for each puci such that ∃uci ∈ FolUC with uci×puci×uc ∈
unique places ucases, F ⊃ {puci × tni, tni × initialp(Uc}, tni ∈ T with each tni a null
transition.

As an example, Figure 8 shows three sequentially related use cases: uc1, uc2 and uc3, and
Figure 9 shows a corresponding P/T net. Place p2 corresponds to the enabling directive

Title: uc1
Follows: uc2 AND uc3
STEPS
1 ..
2 enable in parallel uc2, uc3
ALTERNATIVES
1.a c1
1.a.1 ..
1.a.2 enable uc2

Title: uc2
Follows: uc1
STEPS
1 ..
2 enable uc1, uc3
3 ..
4 ..

Title: uc3
Follows: uc1 OR uc2
STEPS
1 ..
2 ..
3 ..
ALTERNATIVES
2.a c2
2.a.1 ..
2.a.2 enable uc1

Figure 8: Example illustrating mapping of use cases sequencing.

at step 2 of use case uc1. Since it is a parallel directive, it is mapped to flows p8 × null,
null × p9, null × p10 denoting a forked transition. The P/T net includes p11 as a unique
place corresponding to use case uc2 enabling by use case uc1. Use case uc2 enables uc1
and uc3 in a non-parallel way. Moreover, the enabling directive is followed by further steps.
This translates to place p24 from which two transition sequences are forked to account for
the parallel execution of steps 3, 4 in uc2 with the enabled use cases. Two alternative flows
from p28 reflect the non-parallel nature of the directive. Use case uc1 synchronized follow
list corresponds to a join transition to p0 from enabling use cases uc2, uc3. In contrast, use
case uc3 non-synchronized follow list corresponds to having each enabling use case connect
directly to p12.

4.4 Properties of P/T nets

In this Section, we establish some properties of P/T nets obtained from our Mapping Rules.
These properties are needed for state model derivation as discussed in the next Section.
We consider use case behavior as non-reentrant. That is each execution of a use case is an
instantiation of behavior completely independent from other instantiations. Notice that this
assumption does not prevent several simultaneous executions of a same use case. However,
each invocation starts a new activity with its own state information. We also consider all
steps following an enabling directive as constituting a separate use case. As per Mapping
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p14p15 p16 p17
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p20p19

1

not(c1) c1

1.a.1

uc1

uc2

uc3

1

34
1

2

c2 not(c2) 3
2.a.1

Figure 9: Petri net corresponding to use cases in Figure 8. The dotted lines delimits use
case P/T nets.
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Rule 7, steps after an enabling directive are concurrent with the enabled use cases. In
order to adequately model such situations, a use case [UCTitle, UCPrec, UCFoll, UCSt
= step0, · · · , stepk, · · · , stepn, UCAlt, UCPost ] with stepk an enabled directive and n > k,
would be considered as two use cases [UCTitle, UCPrec, UCFoll, UCSt = step0, · · · , stepk−1,
UCAlt, UCPost′] and [UCTitle′, UCPrec′, UCFoll′, UCSt′ = stepk+1, · · · , stepn, UCAlt,
UCPost ]. The following theorem follows from these assumptions.

Lemma 1 A use case P/T net obtained according to Mapping Rules 1 to 11 is balanced.

Proof: A P/T net is balanced when all places/transitions sequences leaving a forked tran-
sition are subsequently joined. Only Mapping Rules 7 and 11 introduce forked transitions.
One of the two forked transitions in rule 7 is not part of the use case P/T net as per the
above assumptions. In the case of rule 11, balance is ensured as all the places/transitions se-
quences forked are disjointed and then merged before a transition links to a common output
place. This situation is illustrated in Figure 7. �

Lemma 2 A use case P/T net obtained according to Mapping Rules 1 to 11 is such that no
parallel places/transitions sequences are connected.

Proof: This property is a consequence of Consistency Rule 5, which mandates that there
is no branching from unrelated steps sequences. Parallel places/transitions sequences re-
sult from only Mapping Rule 11. The only possibility for connection between parallel
places/transitions sequences would necessitate a branching statement in one part steps se-
quence with a target in another part steps sequence. Consistency Rule 5 prevents this. �

Theorem 1 A use case P/T net obtained according to Mapping Rules 1 to 11 is 1-safe.

Proof: A P/T net Pn is considered 1-safe if for all reachable marking M, each place in Pn
contains at most one token. A use case P/T is a subnet restricted to a use case. According
to Mapping Rule 1, there is one and only one initial place for a use case P/T net. Therefore,
because of the non-reentrant assumption, only initialp(uc) is marked with a single token at
the start of a use case execution (instantiation of a new use case P/T net). In order for a
place pk to contain more than one token, the use case P/T net needs to include a sequence
of places/transitions p1 − t1 · · · − pk such that (1) p1 is an output place of more than one
transitions and (2) each of these transitions is at the end of a sequence of places/transitions
starting with a fork. This situation is impossible as use case P/T nets are balanced (Cf.
Lemma 1) and parallel sequences are unconnected (Cf. Lemma 2). �

Lemma 3 A use case P/T net [P, T, F] obtained according to Mapping Rules 1 to 11 is
such that ∀p ∈ P if ∃p × tn ∈ F with tn a null transition, 6 ∃t(tn 6= t) such that p × t ∈ F .

Proof: Lemma 3 is equivalent to (|nullTrans| = 1) ⇒ (|systTrans(p)∪trigTrans(p)∪timeTrans(p)∪
decTrans(p)| = 0). This assertion is supported by the fact that transitions corresponding to
the null event appear in a P/T net according to Mapping Rules 5, 6, 7 and 11. Because there
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is no alternative or extension point associated to branching statements, inclusion directives
and enabling directives, in each of these cases, a single transition corresponding to the null
event is created from the departing place and this transition is the only one from that place.
�

Lemma 4 A use case P/T net [P, T, F] obtained according to Mapping Rules 1 to 11 does
not include ignored events.

Proof: Trigger and timeout events are ignored when in conflict with reaction, decision or
null events. We already established that transitions corresponding to the null event do no
conflict with any other transitions (Cf. Lemma 3). Because of Consistency Rule 9 and
because Mapping Rule 4 only considers alternatives that are not ignored (Def. 10) from
the step under consideration, the following can be asserted ∀p ∈ P , (|timeTrans(p)| ≤ 1)∧
(|trigTrans(p) ∪ timeTrans(p)| ≥ 1) ⇒ (|systTrans(p) ∪ decTrans(p)| = 0). �

Theorem 2 Given a use case Uc that satisfies Consistency Rule 9, the P/T net [Puc, Tuc,
Fuc] corresponding to Uc according to our Mapping Rules is not non-deterministic in the
sense of Def. 7.

Proof: None of the four criteria for non-determinism listed in Def. 7 is satisfied by P/T nets
obtained according to the Mapping Rules.

• There is no place p ∈ Puc such that |systTrans(p)∪nullTrans(p)| > 1 because |systTrans(p)| ≤
1, and either |nullTrans| = 0 or (|nullTrans| = 1 and |systTrans(p) ∪ trigTrans(p) ∪
timeTrans(p) ∪ decTrans(p)| = 0).

|systTrans(p)| ≤ 1 follows from the fact that a transition tr ∈ systTrans(p) if and
only if step stepi in Mapping Rule 3 is an operation step and p is place pk. Other
transitions from place pk would correspond to step stepi−1 alternatives and extensions.
All <<extend>> relations include a condition, and because of Consistency Rule 9,
all alternatives which first step is a system operation have a non-null guard or delay.
Therefore no other transition from pk may correspond to a system operation.

|nullTrans| = 0 or (|nullTrans| = 1 and |systTrans(p) ∪ trigTrans(p) ∪ timeTrans(p) ∪
decTrans(p)| = 0) follows from Lemma 3.

• For all places p ∈ Puc, |decTrans(p)| > 0 ⇒ |systTrans(p)∪nullTrans(p)| = 0. We already
established that when |nullTrans(p)| > 0, |decTrans(p)| = 0. We can also establish that
when |systTrans(p)| > 0, |decTrans(p)| = 0 by observing again that a transition tr ∈
systTrans(p) if and only if step stepi in Mapping Rule 3 is an operation step and p is
place pk. In order for |decTrans(p)| > 0, stepi needs to have alternatives or an extension
point referred by extend relations. In all these cases, according to Def. 9, stepi would
include at least one implicit guard and therefore, tr would not start from pk.

• Because of Consistency Rule 9, ∀tt ∈ trigTrans(p), 6 ∃t′t ∈ trigTrans(p)(tt 6= t′t) such that
tt and t′t correspond to the same operation, and ∀tt ∈ timeTrans(p),
6 ∃t′t ∈ timeTrans(p)(tt 6= t′t) such that tt and t′t correspond to timeout events with the
same delay. �
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5 State model synthesis

We developed an approach for state model synthesis from use cases based on the use case
formalization discussed above. Given a use case model, we generate a two-level state model
description of the behavior of the system under consideration. At the use case model level, the
system’s behavior is seen as an UML activity diagram [21] with main use cases as elements.
Behaviors corresponding to each main use case is detailed using a hierarchical state machine
(StateChart). We use the term StateChart-Chart to refer to the graphical depiction of the
two-level state model description. As discussed in the introduction, one of our motivations
is to provide a visual model of complex system behavior that can be analyzed and validated.
At the use case model level, it should be possible to visualize control flow between use cases
without delving into details. However, the specific points from which control flows from a
use case in another use case should be identifiable when needed. We present a prototype
tool allowing such capabilities in Section 5.3.

5.1 StateChart Generation

5.1.1 StateChart model

We generate a subset of UML StateChart that is formally defined as a tuple [Trigc, Reacc,
Gc, Sc, Chc, Fkc, Jnc, Fc].

• Trigc is a set of triggers consisting of operations from the environment and timeouts.

• Reacc is a set of reactions that are operations executed by the system.

• Gc is a set of guard conditions.

• Sc is a set of states.

• Chc is a set of choice pseudostates.

• Fkc is a set of fork pseudostates.

• Jnc is a set of join pseudostates.

• Fc is an edge3 function.

Vc = Sc ∪ Chc ∪ Fkc ∪ Jnc is the StateChart set of vertices. We distinguish simple states,
composite states and orthogonal states. We assume boolean functions issimple, iscomposite
and isorthogonal such that given a state s, issimple(s) returns true if s is a simple state
(false otherwise), iscomposite(s) returns true if s is a composite state (false otherwise) and
isorthogonal(s) returns true if s is an orthogonal state (false otherwise).

3We use the term “edge” for StateCharts rather than “transition” to avoid confusion with Petri nets
“transitions”.
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• Each composite state sc is a tuple [Sc, S0c, Chc, Fhkc, Jhnc] with Sc a set of states,
S0c ∈ (Sc∪Chc) a composite state initial vertex, Chc a set of choice pseudostates, Fhkc

a set of fork pseudostates and Jhnc a set of join pseudostates. We assume functions
sub-vertices and initial vertex defined as follow. sub-vertices(sc) is a set of sc sub-vertices.
For each vertex sj ∈ sub-vertices(sc), sc is a sup-vertex of sj. initial vertex(sc) returns
the initial sub-vertex of sc.

• For each si ∈ Sc such that isorthogonal(si), we assume function regions such that
regions(si) is a set of parallel regions. Each region r is a composite state.

Each state is associated with a timer to count elapsed time while the system is waiting in
that state. We assume a function timer such that given a state s, timer(s) returns the timer
associated to s. Implicitly timer(s) is started whenever an edge produces a state change to
s, and timer(s) is implicitly stopped whenever an edge exits from state s. A timeout event
timeout(d) occurs when a timer has been started and not stopped before delay d elapsed.

Each edge is a relationship vs × guards× trig × reacs × vt with vs ∈ Vc a source vertex,
vt ∈ Vc a target vertex, reacs ⊂ guards a set of guard conditions, trig ⊂ Trigc a set of

triggers and reacs ⊂ Reacc a set of reactions. The compound notation vs
[guards]trig/reacs

−→ vt

is used for edges. The UML specification defines different constraints on edges [21]. Edges
with choice pseudostates as sources must have trig empty. Fork pseudostates are used to
split an edge into several edges. The target of each of these edges must be a state in a
different region of an orthogonal state. Join pseudostates are used to merge several edges
from different regions of an orthogonal state into a single edge. An edge to a composite state
sc is equivalent to an edge ending in the initial vertex of sc (initial vertex(sc)). An edge to
an orthogonal state so is equivalent to an edge ending in the initial vertices of each of so

regions. An edge starting from a composite or orthogonal state s on a trigger t is equivalent
to a set of edges from each substates of s with no outgoing edge on t.

5.1.2 StateChart generation approach

Figures 10 - 12 show an algorithm for StateChart generation from a use case, and Figure 13
shows a StateChart generated from use case “Submit order” described in Figure 3. The
StateChart generation algorithm relies on the properties established in Section 4.4. It has
been shown in [5] that P/T nets which are balanced, 1-safe and without connection between
parallel places/transitions sequences, have structure-preserving equivalent StateCharts as a
one-to-one correspondence between P/T nets places and StateChart states can be made. We
also established that use case P/T nets do not include ignored events (Cf. Lemma 3) and are
not non-deterministic (Cf. Theorem 2). These properties allow generation of stateCharts

edges in vs
[guards]trig/reacs

−→ vt form.
StateChart generation starts from a P/T net equivalent of a use case obtained from the

application of Mapping Rules 1 to 11. Procedure GeneratePTNet a formulation of these
Mapping Rules, returns a P/T net from a use case. We assume relation PlaceVertices such
that p being a place and v a vertex, p × v ∈ PlaceVertices if vertex v corresponds to place
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GenerateStateChart(uc: Use Case): StateChart

A1. Pnuc = GeneratePTNet(uc)

A2. Let Scuc =[Trigc = ∅, Reacc = ∅, Gc = ∅, Sc = ∅, Chc = ∅, Fkc = ∅, Jnc = ∅,
Fc = ∅] be a StateChart

A3. Let root be a composite state, Sc = Sc∪{root} and sst be a simple state sub-vertex

of root, initial vertex(root) = sst, PlacesVertices = PlacesVertices ∪ {initialp(Uc) ×
sst}

A4. GenerateSCFromPLace(initialp(Uc), root, sst, Pnuc,Scuc)

A5. For each global alternative galt = [Acond, Adelay, Asteps = [astep0, · · ·, astepm],
Apost ] of uc

A5.1. Let Pnalt = [Palt, Talt, Falt] be a P/T net corresponding to galt

A5.2. GenerateSCFromPLace(startp(astep0), root, root, Pnalt,Scuc)

A6. return Scuc

Figure 10: StateChart generation algorithm (Part 1).

p. In procedure GenerateSCFromPlace, we assume a relation TransJoins such that t being
a transition and j a join pseudostate, t × j ∈ TransJoins if j corresponds to t. Each use
case corresponds to a root composite state that is supervertex of all other vertices. We
consider global alternatives separately from the other alternatives and exploit StateCharts
composite states properties. As an example, use case “Submit order” global alternative
results in a transition from the root state s0 to s12. This transition applies to all of s0
sub-vertices. Procedure GenerateSCFromPlace considers a place and generates an edge in

the format vs
[guards]trig/reacs

−→ vt by looking up guards, triggers and reactions from the place.
Notice that use case P/T net properties are such that either all or none of the transitions
from a place are decisions. Places from which all transitions are decisions correspond to
choice pseudostates, while the other places correspond to simple states (C5). Concurrent
sequences of places/transitions are mapped to orthogonal states (B2.1. and B2.2). Forking
transitions correspond to fork pseudosates and join transitions to join pseudostates. As an
example, Figure 14 shows a StateChart corresponding to use case uc1 shown in Figure 6. We
assume steps 1, 1.2, 2.2 are actor operations and steps 2, 1.1, 2.1, 3 are system reactions.
Use case uc1 P/T net is shown in Figure 7.

5.2 Sequential integration of Use Cases

We use a variant of UML activity diagrams [21] called StateChart-Charts, to integrate se-
quentially related main use cases. A StateChart is not appropriate for use case integration
as the properties discussed in Section 4.4 can not extend to use case model P/T nets without
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GenerateSCFromPlace(p: Place, supv: Vertex, v: Vertex, Pn = [Puc, Tuc, Fuc]:
P/T net, Scuc = [Trigc, T imec, Reacc, Gc, Sc, Chc, Fkc, Jnc, Fc]: StateChart)

B1. Mark p as visited
B2. For each transition t such that p × t ∈ Fuc,

B2.1. If |t • | > 1, let so be an orthogonal state sub-vertex of supv, let sf be a fork

pseudostate sub-vertex of supv, let cond be the condition corresponding to t,
Fc = Fc ∪ {v × {cond} × ∅ × ∅ × sf}

B2.1.1. For each t × po ∈ Fuc, Let r be a region in so and state soi the initial state
of r, Fc = Fc ∪ {sf × ∅ × ∅ × ∅ × soi},
GenerateSCFromPlace(po, r, soi, Pn, Scuc)

B2.2. If | • t| > 1,

B2.2.1. If 6 ∃t × sj ∈ TransJoins, let sj be a join pseudostate sub-vertex of supv,

- add t × sj to TransJoins

- let t × pj ∈ Fuc, sj = GatherReactions(pj, Reacs, supv, Pn, Scuc)

- Fc = Fc ∪ {sj × ∅ × ∅ × Reacs × sj}

B2.2.2. Let t × sj ∈ TransJoins, Fc = Fc ∪ {v × ∅ × ∅ × ∅ × sj}

B2.3. If | • t| = |t • | = 1

B2.3.1. If t corresponds to trig, an actor operation or a timeout, let t × pj ∈ Fuc

- nv = GatherReactions(pj, Reacs, supv, Pn, Scuc), Fc = Fc∪{v×∅×{trig}×
Reacs × nv}

B2.3.2. If t corresponds to cond, a condition let t × pj ∈ Fuc

- nv = GatherReactions(pj, Reacs, supv, Pn, Scuc), Fc = Fc ∪ {v × {cond} ×
∅ × Reacs × nv}

B2.3.3. If t corresponds to reac, a system operation, let t × pj ∈ Fuc

- nv = GatherReactions(pj , Reacs, supv, Pn, Scuc),

- Reacs = {reac} ∪ Reacs, Fc = Fc ∪ {v × ∅ × ∅ × Reacs × nv}

Figure 11: StateChart generation algorithm (Part 2).
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GatherReactions(p: Place,Reacs: Set, supv: Vertex, Pn = [Puc, Tuc, Fuc]:
P/T net, Scuc = [Trigc, T imec, Reacc, Gc, Sc, Chc, Fkc, Jnc, Fc]: StateChart):
Vertex

C.1. Let t be such that p × t ∈ F

C.2. If t corresponds to the null event, let t × pj ∈ Fuc, p = pj, GOTO C.1.

C.3. If t corresponds to reac, a system operation, Reacs = Reacs ∪ {reac}, let t × pj ∈
Fuc, p = pj, GOTO C.1.

C.4. If p is marked as visited, let p × sv ∈ PlacesVertices, return sv

C.5. Let sst be:

– a choice pseudostate sub-vertex of supv, if all transitions from initialp are
decisions, or

– a simple state sub-vertex of supv, otherwise

PlacesVertices = PlacesVertices ∪ {p × sst}

C.6. GenerateSCFromPLace(p, supv, sst, Pnuc,Scuc)

C.7. return sst

Figure 12: StateChart generation algorithm (Part 3).

imposing unpractical constraints on use case sequencing. For instance, P/T nets balance-
ness and hence 1-safety would require every set of concurrent use cases to be subsequently
synchronized. The “Online Broker System” example as presented in Section 3, would be in
violation of such constraint. UML activity diagrams allows modeling of use case sequencing
constraints with the formal interpretation provided by Mapping Rules 12 to 14.

5.2.1 StateChart-Charts

A StateChart-Chart is a subset of an activity diagram where action nodes are StateCharts.
Formally a StateChart-Chart is a tuple [SChs, CNds, CFls ] with: SChs a set of StateCharts,
CNds a set of Flow Nodes, and CFls a StateChart-Chart flow relation. Elements in SChs are
StateCharts generated from use cases. Flow Nodes include activity diagram initial nodes,
decision nodes, join nodes, fork nodes and merge nodes [21]. The StateChart-Chart flow
relation CFls is a relation defined in domain (SEnc ∪ CNds) and range (SRootc ∪ CNds)
with SEnc the union of all the StateCharts in SChs use case enabling vertices, and SRootc
the union of all the StateCharts in SChs root nodes. A use case enabling vertex corresponds
to a use case enabling directive in a StateChart. More precisely, given a step sequence
step0, · · · , stepk, stepl with stepl a use case enabling directive, the target vertex of the edge
corresponding to step stepk in Schar is a use case enabling vertex for stepl. An element
nds × nda ∈ CFls represents control flow from nds to nda. Control flows between nodes in
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Figure 13: StateChart generated from use case “Submit order”. The event labels are the
same as in Figure 5.
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Figure 14: StateChart corresponding to use case uc1 shown in Figure 6.
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CNds obey to UML activity diagram semantics. A flow from an enabling vertex captures the
enabling of use cases by the use case from which the flow originates, while a flow ending at a
use case root node signifies that the target use case is enabled and may start its execution.
We consider that a new instance of activity (with a corresponding StateChart) is started for
each execution of a use case.

Mappings between use cases sequencing constructs, P/T nets and StateChart-Charts
are described in Figure 15. There is a straightforward mapping between use case sequencing
concepts and UML activity diagram as we formally defined these sequencing concepts in term
of P/T nets on one hand, and the semantics of UML activity diagrams are expressed in term
of the Petri nets token game [21] on the other hand. States labelled Se in the StateChart-
Chart fragments correspond to use case enabling directives. An enabling directive that refers
to a single use case (with its matching follow list) corresponds to a simple flow from one use
case to the other (Figure 15-a). Situations where a follow list refers to more than one use
case correspond to a join when operator AND is used (Figure 15-b), or a merge when operator
OR is used (Figure 15-c). Figures 15-d shows that a non-parallel use case enabling directive
corresponds to a decision modeling a deferred choice based on the next event occurrence,
while 15-e shows that a parallel use case enabling directive corresponds to a fork. Finally in
a situation where there are steps after an enabling directive, Figure 15-f shows that in the
corresponding StateChart-Chart, the steps after the directive are separated in a composite
state. A fork node is used to model the concurrent execution of these steps with the enabled
use cases.

5.2.2 Use Cases integration algorithm

Figure 16 shows an algorithm for StateChart-Charts generation. We assume the following
functions and relations. Given a use case model M, stateCharts(M) is a set of StateCharts
obtained from the main use cases in M according to algorithm GenerateStateChart. Given
a use case uc, stateChart(uc) is a StateChart corresponding to uc. Function enable vertex is
such that enable vertex(edir, Schar) is a use case enabling vertex corresponding to edir in a
StateChart Schar. Given the set of all use case enabling vertices Ests, relation nodes ucases is
such that uco×ni ×ucd ∈ nodes ucases if ni ∈ (Ests∪CNds) is a node corresponding to the
enabling of use case ucd by use case uco. Function enableNodes is such that given (uci, ucj)
a pair of use cases, enableNodes(uci, ucj) = {rel|rel = uci × nuci × ucj ∈ nodes ucases}.
Function unique nodes ucases is similar to nodes ucases except that every pair of use case
corresponds to at most one node.

The StateChart-Charts algorithm is a formulation of Mapping Rules 12 to 14 based on the
relation between P/T nets and StateChart-Charts depicted in Figure 15. Step 2.1 deals with
the situation where an enabling directive is followed by further steps (Figure 15-f). Steps
2.2, 2.3 and 2.4 correspond to Mapping Rule 12. The parallel form of enabling directives
are dealt with in step 2.2 (Figure 15-e), the non-parallel form in step 2.3 (Figure 15-d) and
the situation where only one use case is enabled in step 2.4 (Figure 15-a). Step 3 of the
algorithm corresponds to Mapping Rule 13, and consists of merging all enabling flows from
an enabling use case targeted toward a use case. Mapping Rule 14 corresponds to step 4.
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Use Case Construct P/T net fragment StateChart-Chart fragment
Title: uc0
1. ...
...
n. enable: uc1
Title: uc1
...
Follows: uc0

(a)

pi pj

uc0 uc1
uc0

Se

uc1

flow

Title: uc0
...
Follows: uc1 AND uc2

(b)

pi pj

pk
uc0

uc1 uc2

uc0

uc1

Se

uc2

Se

join

Title: uc0
...
Follows: uc1 OR uc2

(c)

pi pj

pk
uc0

uc1 uc2

merge uc0

uc1

Se

uc2

Se

merge

Title: uc0
1. ...
...
n. enable: uc1, uc2

(d)
pi pj

pk

uc1
uc2

uc0
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Figure 15: Mappings between use case sequencing constructs, P/T nets and StateChart-
Charts.
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GenerateStateChartChart(M = [Act,Uc, Rel, InitialUc]: Use Case Model):
StateChart-Chart

1. Let Scc = [SChs = stateCharts(M), CNds = ∅, CFls = ∅] be a StateChart-Chart.

2. For each uc ∈M, let Schuc be stateChart(uc).
For each edir ∈ enable dirs(uc), let se be enable vertex(edir,Schuc)

2.1. If there are steps after edir, let Schn be the StateChart corresponding to the
steps after edir, CNds = CNds ∪ {En} with En a fork node,

- CFls = CFls ∪ {se × En,En × root(Schn)}, let sen = En

Else let sen = se

2.2. If isParallel(edir), CNds = CNds ∪ {Nde} with Nde a fork node,

- CFls = CFls ∪ {sen × Nde}, ∀uci ∈ enabled uc(edir), nodes ucases =
nodes ucases ∪ {uc × Nde × uci}

2.3. If ¬ isParallel and |enabled uc(edir)| > 1 CNds = CNds ∪ {Nde} with Nde a
decision node,

- CFls = CFls ∪ {sen × Nde}, ∀uci ∈ enabled uc(edir), nodes ucases =
nodes ucases ∪ {uc × Nde × uci}

2.4. If |enabled uc(edir)| = 1, let enabled uc(edir) = {uci}, nodes ucases =
nodes ucases ∪ {uc × Nde × uci}

3. For each pair of main use cases (uci, ucj), let EnN be = enableNodes(uci, ucj), if
|EnN | ≥ 1, let Nmu ∈ CNds be a merge node, for each uci × nuci × ucj ∈ EnN ,
CFls = CFls ∪ {nuci × Nmu} uci × Nmu × ucj ∈ unique nodes ucases.

4. For each main use case uc = [UCTitle, UCPrec, UCFoll, UCSt, UCAlt, UCPost ], let
FolUC be followed ucases(UCFoll),

4.1. If isSynchronized(UCFoll), let Nf ∈ CNds be a join node, CFls = CFls ∪
{Nf × root(uc)}.

4.2. If ¬ isSynchronized(UCFoll) and |FolUC| > 1, let Nf ∈ CNds be a merge node,
CFls = CFls ∪ {Nf × root(uc)}.

4.3. If |FolUC| = 1 let Nf = root(uc).

For each nuci such that ∃uci ∈ FolUC with uci × nuci × uc ∈ unique places ucases,
CFls = CFls ∪ {nuci × Nf}

5. CNds = CNds ∪ {In} with In an initial node. For each uci ∈ InitialUc, CFls =
CFls ∪ {In × root(stateChart(uci))}

6. return Scc

Figure 16: StateChart-Chart generation algorithm.
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Step 4.2 handles synchronized follow lists (Figure 15-b), step 4.1 handles unsynchronized
follow lists (Figure 15-c) and step 4.3 handles situations where only one use case is referred
to in a follow list.

Figure 17 shows a StateChart-Chart corresponding to the use cases in Figure 8. A

s0

s1

s0

s1

s0

s1 s2

s0

s1 s2

uc2

1/

uc2’

3/4

1

not(c1) c1

uc1

[c2]/2a1
1/2
[not(c1)]/

3

uc3

Figure 17: StateChart-Chart corresponding to use cases in Figure 8.

corresponding P/T net is presented in Figure 9. The example illustrates a situation where
a use case is split by an enabling statement, with use case uc2 corresponding to composite
states uc2 and uc2’. We assume use case uc1 is the only initial use case among the three
use cases.

5.3 Implementation and initial evaluation

The StateChart-Chart synthesis algorithm is implemented in a tool called Use Case Editor
(UCEd) [1]. The tool accepts use cases in the concrete syntax outlined in Section 3.2,
checks for the consistency rules enumerated in Sections 3.2 and 4, and generates StateChart-
Charts from consistent use cases. UCEd provides a visualization mechanism for generated
StateChart-Charts at two levels: the use case model level with StateCharts details hidden
and use case StateCharts level. Figure 18 shows a StateChart-Chart generated from the
“Online Broker System” example at the use case model level. Detailed StateChart for each
use case can be seen by expanding use case nodes. Generated StateChart-Charts can be
animated as prototypes. UCEd includes a Simulator that provides a graphical user interface
that allows “playing” generated StateChart-Charts. This gives an opportunity to validate
use cases and their sequencing constraints.

We used UCEd to carry different case studies aimed at validating our approach. The
tool is being used to teach use case modeling in an academic setting. Moreover, UCEd
is released as an open source project for further feedback. The projects we experimented
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Figure 18: Use case model view of a StateChart-Chart generated from the “Online Broker
System”.
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with involve up to 20 use cases of varying degree of complexity. Because use cases are
requirements artifacts, the number of use cases in project is typically limited. In any case,
scaling to much larger projects should not be an issue because of the complexity of the
state model construction algorithm. It is note-worthy that the complexity of StateChart
and StateChart-Chart generation algorithms are both polynomial. Only Mapping Rule 11
induces an exponential complexity in term of the number of extension parts contributing to
an extension point. However, this number is generally very limited in realistic examples.

6 Conclusions

This paper has proposed a formalization of textual use cases. We started from a formal
definition of use case syntax; a UML metamodel as abstract syntax and a restricted natural
language as concrete syntax. The main contribution of the paper is a definition of formal
control-flow based semantics for use cases. We chose to express these semantics using the
Basic Petri nets formalism. The choice of Basic Petri nets is sufficient for the assumed event
model. Different assumptions or the consideration of control flow issues may ask for other
forms of Petri nets such as Timed [30] or Coloreds Petri nets [12].

An equivalent P/T net may be constructed from a use case model granted that Consis-
tency Rules specified in this paper are satisfied. These Consistency Rules should therefore
be considered as part of a guideline for authoring use cases. We also developed algorithms
for the synthesis of a two-level state model from a set of sequentially related use cases. These
algorithms are implemented in a prototype tool and serve to validate the formal semantics.

We only consider UML use case << include >> and << extend >> relations in our
formalization. We do not consider use cases generalization mainly because of uncertainties
about the impact of this relation on textual use cases. We expect it would be possible to
support use cases generalization in the future by extending use cases to Petri nets Mapping
Rules. Our future works also includes system acceptance test generation from use cases
based on the formal semantics.
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A Description of the Online Broker System use cases

Title: SupplierA Bid
System Under Design: Broker System
Follows: Submit order

Precondition: An Order has been broadcasted
Follows Use Cases: Submit order
Success Postcondition: SupplierA has submitted a bid
STEPS

1. SupplierA receives the Order and examines it

2. SupplierA submits a Bid for the Order

3. The Broker System sends the Bid to the Customer

4. enable use case Process bids
ALTERNATIVES

1.a. SupplierA can not satisfy the Order

1.a.1. SupplierA passes on the Order

Figure 19: Description of use case “SupplierA Bid” in the Online Broker System.
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Title: SupplierB Bid
System Under Design: Broker System
Follows: Submit order

Precondition: An Order has been broadcasted
Follows Use Cases: Submit order
Success Postcondition: SupplierB has submitted a bid
STEPS

1. SupplierB receives the Order and examines it

2. SupplierB submits a Bid for the Order

3. The Broker System sends the Bid to the Customer

4. enable use case Process bids
ALTERNATIVES

1.a. SupplierB can not satisfy the Order

1.a.1. SupplierB passes on the Order

Figure 20: Description of use case “SupplierB” in the Online Broker System.

Title: SupplierC Bid
System Under Design: Broker System
Follows: Submit order

Precondition: An Order has been broadcasted
Follows Use Cases: Submit order
Success Postcondition: SupplierC has submitted a bid
STEPS

1. SupplierC receives the Order and examines it

2. SupplierC submits a Bid for the Order

3. The Broker System sends the Bid to the Customer

4. enable use case Process bids
ALTERNATIVES

1.a. SupplierC can not satisfy the Order

1.a.1. SupplierC passes on the Order

Figure 21: Description of use case “SupplierC Bid” in the Online Broker System.
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Title: Process Bids
System Under Design: Broker System
Follows Use Cases: SupplierA Bid OR SupplierB Bid OR SupplierC Bid

Precondition: SupplierA has bidded or SupplierB has
bidded or SupplierC has bidded
STEPS

1. Customer examines the bid

2. Customer signals the system to proceed with bid

3. include Handle Payment

4. System put an order with the selected bidder

Figure 22: Description of use case “Process bids” in the Online Broker System.

Title: Handle Payment
System Under Design: Broker System STEPS

1. The Broker System asks the Customer for Credit Card information

2. The Customer provides her Credit Card information

3. The Broker System asks a Payment System to process the Customer’s Payment

4. The Broker System displays an acknowledgement message to the Customer
ALTERNATIVES

3.a. The Customer Payment is denied

3.a.1. The Broker System displays a payment denied page

Figure 23: Description of use case “Process bids” in the Online Broker System.
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[26] S. Somé, R. Dssouli, and J. Vaucher. From Scenarios to Timed Automata: Building
Specifications from Users Requirements. In Proceedings of the 2nd Asia Pacific Software
Engineering Conference (APSEC’95). IEEE, dec 1995.
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