
1

What I Wish They Taught in Engineering School:
Reflections on 30+ Years as a Software Developer
What I Wish They Taught in Engineering School:

Reflections on 30+ Years as a Software Developer

Bran Selic
IBM Distinguished Engineer

IBM Software – Canada
bselic@ca.ibm.com

Bran Selic
IBM Distinguished Engineer

IBM Software – Canada
bselic@ca.ibm.com

22

A Symbolic (and True) AnecdoteA Symbolic (and True) Anecdote

Speaker speaking to an audience of
experienced software developers:

Speaker: “Software developers don’t like to do
documentation, because it provides no value to
them…”
Audience: <nods knowingly in approval>

Speaker speaking to an audience of
experienced software developers:

Speaker: “Software developers don’t like to do
documentation, because it provides no value to
them…”
Audience: <nods knowingly in approval>

2

33

My BackgroundMy Background

10001000 5050 15001500 50005000 2020--150150 40004000 310000310000

Jr.
dev.

Team
leader

Senior
developer

Development Manager
and Architect (entrepreneur) Researcher

RoboRobo--
tics/tics/
HWHW

mini
(asm)

EDPEDP

mainf.
(Cobol)

AeroAero
simsim..

mini
(asm)

TelecomTelecom
SoftwareSoftware

custom minis + micros
(custom HLL, μcode)

Software DesignSoftware Design
and Modeling/Toolsand Modeling/Tools

workstation
(OO lang.)

PC
(modeling language)

’72 Dipl.Ing (EE)
’74 Mg. Ing (systems)

(Colorful)(Colorful)

19721972 19751975 19921992 2000200019851985 2004200419771977 19781978

(NB: not to scale)

44

What has Changed from a Developer’s Perspective…What has Changed from a Developer’s Perspective…

Changes with the greatest impact:
Hardware: speed, reliability, cost, capacity
Connectivity between computers
Team programming environments
Human-computer interfaces
Sophistication of development tools
Complexity of applications

Most significant non-change:
Level of abstraction of programming

Changes with the greatest impact:
Hardware: speed, reliability, cost, capacity
Connectivity between computers
Team programming environments
Human-computer interfaces
Sophistication of development tools
Complexity of applications

Most significant non-change:
Level of abstraction of programming

3

55

A Discipline in TroubleA Discipline in Trouble

"New FBI Software May Be Unusable"
Los Angeles Times (01/13/05);
A central pillar of the FBI's computer system overhaul, which has already
cost nearly half a billion dollars and missed its original deadline, may
be unusable, according to reports from bureau officials. The prototype …
software developed … at a cost of about $170 million has been
characterized by officials as unsatisfactory and already out of date;
sources indicate that scrapping the software would entail a roughly $100
million write-off while Sen. Judd Gregg … says the software's failure
would constitute a tremendous setback. … The computer system overhaul,
which has cost $581 million thus far, was tagged as a priority by
members of Congress ...

"New FBI Software May Be Unusable"
Los Angeles Times (01/13/05);
A central pillar of the FBI's computer system overhaul, which has already
cost nearly half a billion dollars and missed its original deadline, may
be unusable, according to reports from bureau officials. The prototype …
software developed … at a cost of about $170 million has been
characterized by officials as unsatisfactory and already out of date;
sources indicate that scrapping the software would entail a roughly $100
million write-off while Sen. Judd Gregg … says the software's failure
would constitute a tremendous setback. … The computer system overhaul,
which has cost $581 million thus far, was tagged as a priority by
members of Congress ...

On the Peculiar Nature of Software, Software
Technologies, and the Psychology of

Programming*

On the Peculiar Nature of Software, Software
Technologies, and the Psychology of

Programming*

*NB: from the unscientific perspective of an amateur psychologist*NB: from the unscientific perspective of an amateur psychologist

4

77

The Anatomy of an Engineering DisasterThe Anatomy of an Engineering Disaster
1987: AT&T Long Distance Network (Northeastern US)1987: AT&T Long Distance Network (Northeastern US)

CO

...

CO
. . .

CO
...

tandem

tandem
tandem

tandem

tandem

tandem

tandem

tandem

tandem
tandem

tandem

tandemtandem

tandem

Recovery time: Recovery time:
1 day1 day

Cost: hundreds Cost: hundreds
of millions of of millions of
$$’’ss

88

The Root CauseThe Root Cause
Missing “break” statement in a software module

one (missing) line among millions
Missing “break” statement in a software module

one (missing) line among millions
. . .;
switch (...) {

case a : ...;
break;

case b :...;
break;
. . .

case m : ...;
case n : ...;

. . .
};

Execution
“fell through”
unintentionally
into the next
case

Recovery time: Recovery time:
1 day1 day

Cost: hundreds Cost: hundreds
of millions of of millions of
$$’’ss

5

99

Q: Why is Writing Correct Software so Difficult?Q: Why is Writing Correct Software so Difficult?

A: COMPLEXITY!
Modern software is reaching levels of complexity encountered in biological
systems; sometimes comprising systems of systems each of which may
include tens of millions of lines of code

…any one of which may bring down the entire system at great expense

A: COMPLEXITY!
Modern software is reaching levels of complexity encountered in biological
systems; sometimes comprising systems of systems each of which may
include tens of millions of lines of code

…any one of which may bring down the entire system at great expense

1010

Fred Brooks on ComplexityFred Brooks on Complexity
[From: F. Brooks, “The Mythical Man-Month”, Addison Wesley, 1995]

Essential complexity
inherent to the problem
cannot be eliminated by technology or technique
e.g., solving the traveling salesman problem

Accidental complexity
due to technology or methods used to solve the problem
e.g., building a skyscraper using hand tools only

Modern software development suffers from an excess of
accidental complexity

[From: F. Brooks, “The Mythical Man-Month”, Addison Wesley, 1995]

Essential complexity
inherent to the problem
cannot be eliminated by technology or technique
e.g., solving the traveling salesman problem

Accidental complexity
due to technology or methods used to solve the problem
e.g., building a skyscraper using hand tools only

Modern software development suffers from an excess of
accidental complexity

6

1111

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

A Bit of Modern Software…A Bit of Modern Software…

Can you see the Can you see the
architecture?architecture?

1212

…and its Model…and its Model

«sc_slave»
B1:consumer

««sc_slavesc_slave»»
B1B1:consumer:consumer

«sc_method»
A1:producer

««sc_methodsc_method»»
A1:A1:producerproducer

start out1 in1

Can you see it now?Can you see it now?

7

1313

Breaking the Architecture….Breaking the Architecture….
SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

//A1.out1(link1);

B1 = new consumer(“B1”);

//B1.in1(link1);}};

Can you see where?Can you see where?

1414

Breaking the Architecture….Breaking the Architecture….

«sc_slave»
B1:consumer

««sc_slavesc_slave»»
B1B1:consumer:consumer

«sc_method»
A1:producer

««sc_methodsc_method»»
A1:A1:producerproducer

start out1 in1

Can you see it now?Can you see it now?

⇒Clearly, models can be useful in software development
How useful can they be?

⇒Clearly, models can be useful in software development
How useful can they be?

8

1515

Use of Models in EngineeringUse of Models in Engineering
Probably as old as engineering (c.f., Vitruvius)
Engineering model:

A reduced representation of some system that highlights the properties of
interest from a given viewpoint

Probably as old as engineering (c.f., Vitruvius)
Engineering model:

A reduced representation of some system that highlights the properties of
interest from a given viewpoint

• We don’t see everything
at once

• What we do see is adjusted
to human understanding

1616

The Model and the CodeThe Model and the Code

«sc_slave»
B1:consumer

««sc_slavesc_slave»»
B1B1:consumer:consumer

«sc_method»
A1:producer
««sc_methodsc_method»»

A1:A1:producerproducer
start out1 in1

«sc_link_mp»

link1

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

{

sc_inslave<int> in1;

int sum; // state variable

void accumulate (){

sum += in1;

cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, in1);

sum = 0; // initialize
};

SC_MODULE(top) // container

{

producer *A1;

consumer *B1;

sc_link_mp<int> link1;

SC_CTOR(top)

{

A1 = new producer(“A1”);

A1.out1(link1);

B1 = new consumer(“B1”);

B1.in1(link1);}};

9

1717

Modeling Languages vs Programming LanguagesModeling Languages vs Programming Languages

Level of Level of
AbstractionAbstraction

high

low

ProgrammingProgramming
LanguagesLanguages

(C/C++, Java, (C/C++, Java, ……))

Modeling
Languages

(UML,…)

ModelingModeling
LanguagesLanguages

(UML,(UML,……))

ΔLO:data layout,
arithmetical
and logical
operators,
etc.

ΔHI:statecharts,
interaction
diagrams,
architectural
structure, etc.

1818

ActionAction
LanguageLanguage

Models: Filling in the DetailModels: Filling in the Detail

Level of Level of
AbstractionAbstraction

high

low

ProgrammingProgramming
LanguagesLanguages

(C/C++, Java, (C/C++, Java, ……))

Modeling
Languages

(UML,…)

ModelingModeling
LanguagesLanguages

(UML,(UML,……))

Implementation
detail

10

1919

refine

NotStarted

Started

start

producer

Model Evolution: RefinementModel Evolution: Refinement

Models can be refined continuously until the application is fully
specified ⇒ the model becomes the system that it was modeling!
Models can be refined continuously until the application is fully
specified ⇒ the model becomes the system that it was modeling!

«sc_method»
producer

««sc_methodsc_method»»
producerproducer

start out1

NotStarted

Started

start

producer

St1St1 St2St2

void generate_data()
{for (int i=0; i<10; i++)
{out1 = i;}}

/generate_data()

2020

Model-Driven DevelopmentModel-Driven Development
Model-Driven Development (MDD): An approach to software
development in which the focus and primary artifacts of development are
models (as opposed to programs)
Based on 2 time-proven approaches:

Model-Driven Development (MDD): An approach to software
development in which the focus and primary artifacts of development are
models (as opposed to programs)
Based on 2 time-proven approaches:

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

««sc_modulesc_module»»
producerproducer

start out1

(1) ABSTRACTION (2) AUTOMATION

««sc_modulesc_module»»
producerproducer

start out1

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

11

2121

MDD: State of the Art and AdoptionMDD: State of the Art and Adoption

Systems using fully automated code generation from models
written using a modeling language:

Size: Complete systems equivalent to ~ 5 MLoC and involving several
hundred developers
Performance: within ±5-15% of equivalent manually coded system
There are many similar examples of successful MDD projects

Yet, MDD is practiced by only a small percentage of software
developers

In fact, the vast majority dislike it and many actively oppose it!

Why?

Systems using fully automated code generation from models
written using a modeling language:

Size: Complete systems equivalent to ~ 5 MLoC and involving several
hundred developers
Performance: within ±5-15% of equivalent manually coded system
There are many similar examples of successful MDD projects

Yet, MDD is practiced by only a small percentage of software
developers

In fact, the vast majority dislike it and many actively oppose it!

Why?

2222

Req. 3.2.4:
The system shall jump
through burning hoops
and leap over 30’ fences

Req. 3.2.4:
The system shall be
mauve with pink frills.
…

RequirementsRequirements

The Idiosyncrasies of Software – 1The Idiosyncrasies of Software – 1

““MindstuffMindstuff””

HardwareHardware

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

SoftwareSoftware

Relative to other engineering
disciplines, this ingredient plays a
disproportionally dominant role in

the engineering process

Relative to other engineering Relative to other engineering
disciplines, this ingredient plays a disciplines, this ingredient plays a
disproportionallydisproportionally dominant roledominant role in in

the engineering processthe engineering process

Process and toolsProcess and tools

12

2323

Some ConsequencesSome Consequences
Products are much less hampered by physical reality

…but, not completely free

The effects of aptitude differences between individuals are strongly
accentuated

Productivity of individuals can differ by an order of magnitude
Not necessarily a measure of quality
…or intelligence

The path from conception to realization is exceptionally fast (edit-compile-
run cycle)

Often leads to an impatient state of mind
…which leads to unsystematic and hastily conceived solutions (hacking)
Also yields a highly seductive and engrossing experience
…so that, often, the medium becomes the message

Products are much less hampered by physical reality
…but, not completely free

The effects of aptitude differences between individuals are strongly
accentuated

Productivity of individuals can differ by an order of magnitude
Not necessarily a measure of quality
…or intelligence

The path from conception to realization is exceptionally fast (edit-compile-
run cycle)

Often leads to an impatient state of mind
…which leads to unsystematic and hastily conceived solutions (hacking)
Also yields a highly seductive and engrossing experience
…so that, often, the medium becomes the message

2424

The Idiosyncrasies of Software – 2The Idiosyncrasies of Software – 2
In all other engineering disciplines abstractions are artifacts that are
necessarily distinct from the systems that they abstract

Results in divergence and inaccuracy of abstractions

Uniquely, in software, the abstraction can be integrated with its system and
can be extracted automatically

In all other engineering disciplines abstractions are artifacts that are
necessarily distinct from the systems that they abstract

Results in divergence and inaccuracy of abstractions

Uniquely, in software, the abstraction can be integrated with its system and
can be extracted automatically

SC_MODULE(producer)

{

sc_outmaster<int> out1;

sc_in<bool> start; // kick-start

void generate_data ()

{

for(int i =0; i <10; i++) {

out1 =i ; //to invoke slave;}

}

SC_CTOR(producer)

{

SC_METHOD(generate_data);

sensitive << start;}};

SC_MODULE(consumer)

«sc_slave»
B1:consumer

««sc_slavesc_slave»»
B1B1:consumer:consumer

«sc_method»
A1:producer

««sc_methodsc_method»»
A1:A1:producerproducer

start out1 in1

«sc_link_mp»

link1

«sc_method»
producer

««sc_methodsc_method»»
producerproducer

0..1
«sc_slave»

consumer
««sc_slavesc_slave»»

consumerconsumer
0..*

13

2525

So, Is Programming = Mathematics?So, Is Programming = Mathematics?

“I see no meaningful difference between programming methodology and
mathematical methodology” (EWD 1209)
“[The interrupt] was a great invention, but also a Pandora’s Box.
.…essentially, for the sake of efficiency, concurrency [became] visible…
and then, all hell broke loose” (EWD 1303)

“I see no meaningful difference between programming methodology and
mathematical methodology” (EWD 1209)
“[The interrupt] was a great invention, but also a Pandora’s Box.
.…essentially, for the sake of efficiency, concurrency [became] visible…
and then, all hell broke loose” (EWD 1303)

Edsgar Wybe Dijkstra (1930 – 2002)EdsgarEdsgar WybeWybe DijkstraDijkstra (1930 (1930 –– 2002)2002)

2626

Two Opposing ViewsTwo Opposing Views
“Because [programs] are put together in the context of a set of
information requirements, they observe no natural limits other
than those imposed by those requirements. Unlike the world of
engineering, there are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002

“Because [programs] are put together in the context of a set of
information requirements, they observe no natural limits other
than those imposed by those requirements. Unlike the world of
engineering, there are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002
“All machinery is derived from nature, and is founded on the
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC

“All machinery is derived from nature, and is founded on the
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC

14

2727

Software Physics: The Great Impossibility ResultSoftware Physics: The Great Impossibility Result
It is not possible to guarantee that agreement can be
reached in finite time over an asynchronous
communication medium, if the medium is lossy or one
of the distributed sites can fail

Fischer, M., N. Lynch, and M. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process” Journal of the ACM, (32, 2) April
1985.

It is not possible to guarantee that agreement can be
reached in finite time over an asynchronous
communication medium, if the medium is lossy or one
of the distributed sites can fail

Fischer, M., N. Lynch, and M. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process” Journal of the ACM, (32, 2) April
1985.

• In many practical systems, the physical setting is a primary
design constraint that cannot be overcome by layers of
software

• Yet, students are still being taught that “platform concerns” are
second order issues

What I (and Others) Did Not Learn in SchoolWhat I (and Others) Did Not Learn in School

– But Should Have– But Should Have

or, How can Education Help?or, How can Education Help?

15

2929

What is Engineering?What is Engineering?

Engineering (Merriam-Webster Collegiate Dictionary) :

the application of science and mathematics by which the
properties of matter and the sources of energy in nature
are made useful to people

Engineering (Merriam-Webster Collegiate Dictionary) :

the application of science and mathematics by which the
properties of matter and the sources of energy in nature
are made useful to people

3030

Why “Software Engineering”?Why “Software Engineering”?

Dubious premise
The objective is not to develop software but useful systems
Software should be just one of the tools used by engineers for solving
engineering problems

Consequences:
Software engineers often identify themselves not by their solution-
domain expertise (e.g., telecom, financial systems, aerospace) but by
their technology expertise (e.g., C++, EJB, Linux)
“When the only tool you have is a hammer, all problems start looking
like nails”
Technology obsolescence and suboptimal solutions
High degree of resistance to technological innovation

Dubious premise
The objective is not to develop software but useful systems
Software should be just one of the tools used by engineers for solving
engineering problems

Consequences:
Software engineers often identify themselves not by their solution-
domain expertise (e.g., telecom, financial systems, aerospace) but by
their technology expertise (e.g., C++, EJB, Linux)
“When the only tool you have is a hammer, all problems start looking
like nails”
Technology obsolescence and suboptimal solutions
High degree of resistance to technological innovation

16

3131

Getting Closer to the End UserGetting Closer to the End User
There is an unfortunate lack of awareness of and respect for
end users

Personal gratification should not come solely from having designed and
constructed the system, but from seeing it in use
The medium is not the message

Implies achieving a deep level of understanding of the value of
the system to the customer

Implies a scope of skills and knowledge that extends far beyond the
technical domain
Required at every level (not just system architects)

There is an unfortunate lack of awareness of and respect for
end users

Personal gratification should not come solely from having designed and
constructed the system, but from seeing it in use
The medium is not the message

Implies achieving a deep level of understanding of the value of
the system to the customer

Implies a scope of skills and knowledge that extends far beyond the
technical domain
Required at every level (not just system architects)

3232

“The [engineer] should be equipped with knowledge of
many branches of study and varied kinds of learning, for
it is by his judgment that all work done by the other arts
is put to test. This knowledge is the child of practice and
theory.”

- Vitruvius
On Architecture, Book I (1st Century BC)

“The [engineer] should be equipped with knowledge of
many branches of study and varied kinds of learning, for
it is by his judgment that all work done by the other arts
is put to test. This knowledge is the child of practice and
theory.”

- Vitruvius
On Architecture, Book I (1st Century BC)

17

3333

An Unexpected Source of InspirationAn Unexpected Source of Inspiration

“In an instant, I saw it all.”
Nikola Tesla describing the moment of insight that led to the
invention of the rotating magnetic field and the alternating
current electric motor – considered one of the 10 most
important modern inventions

“In an instant, I saw it all.”
Nikola Tesla describing the moment of insight that led to the
invention of the rotating magnetic field and the alternating
current electric motor – considered one of the 10 most
important modern inventions

“The glow retreats, done in the day of toil;
It yonder hastes, new fields of life exploring;
Ah, that no wing can lift me from the soil,
Upon its track to follow, follow soaring! .”

-- Goethe, Faust

3434

The Value of a Broader EducationThe Value of a Broader Education

More than just finding inspiration for technical solutions in non-
technical sources

Although, higher levels of general literacy are direly needed (particularly
writing skills)

Understanding and respect for the greater social, cultural,
economic context in which technical inventions function

Understand when and how to apply technological solutions
Avoid often futile attempts to solve non-technical issues with yet more
technology
Reduce current glut of confusing and problematic technologies that
cause more problems than they solve

More than just finding inspiration for technical solutions in non-
technical sources

Although, higher levels of general literacy are direly needed (particularly
writing skills)

Understanding and respect for the greater social, cultural,
economic context in which technical inventions function

Understand when and how to apply technological solutions
Avoid often futile attempts to solve non-technical issues with yet more
technology
Reduce current glut of confusing and problematic technologies that
cause more problems than they solve

18

3535

Understanding the Business CaseUnderstanding the Business Case

There is often a reason why the “best” technical solution is not
the best solution

E.g., cost of retraining
Perhaps the most frequent (and most futile) complaint of software
developers worldwide
Based on the assumption that technical concerns (e.g., elegance) are
always paramount
Often reflects a lack of awareness of overriding non-technical issues

Engineers must be trained to understand and appreciate the
greater context

There is often a reason why the “best” technical solution is not
the best solution

E.g., cost of retraining
Perhaps the most frequent (and most futile) complaint of software
developers worldwide
Based on the assumption that technical concerns (e.g., elegance) are
always paramount
Often reflects a lack of awareness of overriding non-technical issues

Engineers must be trained to understand and appreciate the
greater context

3636

Speaking of Business…Speaking of Business…

Prepare software experts for work in a business-oriented
environment

They may become entrepreneurs or they may work in an
entrepreneurial environment

“Must know” topics
Economics fundamentals: how markets work
Basics of business management and administration
Basics of accounting and key legal aspects (e.g., IP law)
Professional ethics
Basics of psychology and sociology
Project management/work organization
The essentials of marketing

Prepare software experts for work in a business-oriented
environment

They may become entrepreneurs or they may work in an
entrepreneurial environment

“Must know” topics
Economics fundamentals: how markets work
Basics of business management and administration
Basics of accounting and key legal aspects (e.g., IP law)
Professional ethics
Basics of psychology and sociology
Project management/work organization
The essentials of marketing

19

3737

On the Technical SideOn the Technical Side

Abstraction plays a central role in software
More so than any other engineering discipline

Mathematics is an excellent foundation for developing and
honing abstraction skills

…and may even be directly applicable to the technical problems
Mathematical logic
Probability theory
Discrete mathematics
Optimization theory
History of technology and mathematics

An understanding of the physics underlying software

Abstraction plays a central role in software
More so than any other engineering discipline

Mathematics is an excellent foundation for developing and
honing abstraction skills

…and may even be directly applicable to the technical problems
Mathematical logic
Probability theory
Discrete mathematics
Optimization theory
History of technology and mathematics

An understanding of the physics underlying software

3838

Theory and PracticeTheory and Practice

“The difference between theory and practice is much greater in
practice than it is in theory”
The divide is growing
Most practitioners disdain theory

Unfortunate, since some theory could help them substantially
Most theoreticians don’t understand practice

Unfortunate, since they could work on more useful lines of research
Educational requirements:

Instill an appreciation for the value of theory
Instill an understanding of the pragmatics of industrial software
development

“The difference between theory and practice is much greater in
practice than it is in theory”
The divide is growing
Most practitioners disdain theory

Unfortunate, since some theory could help them substantially
Most theoreticians don’t understand practice

Unfortunate, since they could work on more useful lines of research
Educational requirements:

Instill an appreciation for the value of theory
Instill an understanding of the pragmatics of industrial software
development

20

3939

Teaching the Pragmatics of Industrial Software DevelopmentTeaching the Pragmatics of Industrial Software Development

Educational examples tend to be naïve and small
Little or no team programming
“Greenfields” (vs maintenance) type of development
Small scale gives an incorrect basic impression about the nature of
software development

Proposal: develop a multi-year “product” project in SE courses
Requires work in teams (learning the dynamics of teams)
Requires understanding of others’ designs (and an appreciation of the
value of documentation)

Educational examples tend to be naïve and small
Little or no team programming
“Greenfields” (vs maintenance) type of development
Small scale gives an incorrect basic impression about the nature of
software development

Proposal: develop a multi-year “product” project in SE courses
Requires work in teams (learning the dynamics of teams)
Requires understanding of others’ designs (and an appreciation of the
value of documentation)

4040

ConclusionConclusion

Software is a truly unique engineering medium
Dominated by the human mind rather than physical reality
…but not completely
The ability to define our own realities

This requires a unique combination of new and old engineering
principles

We have yet to discover the right balance

The role of education is crucial
Developing an engineer’s sense of responsibility and perspective
Inevitably, this requires a broader education that extends beyond
specific technologies

Software is a truly unique engineering medium
Dominated by the human mind rather than physical reality
…but not completely
The ability to define our own realities

This requires a unique combination of new and old engineering
principles

We have yet to discover the right balance

The role of education is crucial
Developing an engineer’s sense of responsibility and perspective
Inevitably, this requires a broader education that extends beyond
specific technologies

