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1. Paradigm shift
✭ September 11th was a paradigm shift. See Byte

Wars for a more complete discussion of why I
think this is the case

✭ See Thomas Kuhn’s The Structure of Scientific
Revolutions to understand what “paradigm shift”
really means.

✓ not a repeal of the law of gravity, or other scientific laws
✓ But what about the lean inventory approach?
✓ What about globalization?
✓ What about replacing server-based systems with P2P

systems like Groove? See “Uncle Sam Wants Napster!”,
in Nov 8, 2001 issue of The Washington Post

✭ Reexamine your assumptions, values, priorities —
some assumptions need to be thrown out, some
need to be re-assessed in the light of September
11th.

✭ Re-commit to the things that really matter —
sometimes we need a wake-up call.

✭ Look at personal, professional, corporate
consequences of September 11 . They should be
compatible; if not, do something about it.
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2. PERSONAL CONSEQUENCES
✭ For most of us, the go-go, get-rich-quick, dot-com days of

the late 90s are not only gone, but permanently gone.

✭ We need to ask ourselves: what really matters?
✓ Much of what goes on in corporate IT departments seems utterly

irrelevant and petty in the post-9-11 world.

✓ Ask your children what they think (for inspiration listen to Teach Your
Children, from Crosby, Stills, and Nash)

✭ Review the ethics statements of ACM and IEEE

✭ Notice how we all used our own “networks” to
communicate in the aftermath of Sep 11th
✓ Compare this to the communication that took place after JFK

assassination, or after Pearl Harbor attack, or Gettysburg battle

✓ Recommendation: focus on bottom-up, grass-roots, emergent networks

✓ Beware efforts to “control” future crises through top-down,
hierarchical, communication mechanisms.
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3. CORPORATE CONSEQUENCES
✭See Chapter 12 of Michael Hammer’s new book, The

Agenda: what every business must do to dominate
the The Agenda, for a good discussion of this.

✭Prepare for a world you cannot predict:
✓ In 5-year strategic plans developed ~1990-1995, how many would

have predicted the Asian financial crisis, Internet/Web, ERP, Euro,
supply-chain integration, consequences of deregulation (CA
energy crisis)

✓ How many would have predicted Sep 11th, and its consequences?
✓ Bottom line: change is now too fast, too chaotic, too disruptive,

and sometimes too malevolent for us to be able to “plan” for

✭What this suggests
✓ Change-spotting: creating an “early warning system”
✓ Become adept at rapid organizational change
✓ Create an organizational infrastructure that supports early-

warning and rapid change
Q some of this involves technology
Q but much of it involves organizational culture
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3.1 Change-spotting
✭There are “early warning” indicators of disruptive change

✓ See Normal Accidents: Living with High-Risk Technologies, by Charles
Perrow

✓ Watch for “near-misses” and avoid common temptation to say, “Whew!”
✓ Use metaphors to help categorize “categories” of change — e.g., the

“weather” metaphor used by the Naval War College during its planning
for Y2K.

✭Recognize that lower-level, front-line employees are
usually the first to see hints and clues of critical change

✓ Michael Hammer: “The powerless know more than the powerful in
virtually all organizations. During periods of intense change, this
paradox can be fatal.”

✓ Michael Hammer: “…anyone looking for signs of change is almost
certainly guilty of not keeping his/her mind clamped on the formal job”

✭One solution: develop a formal business process for
detecting and reporting change, which incorporates:

✓ deep insight into customers
✓ analyzing potential as well as existing competitors
✓ looking for the seeds of the future, by extrapolating the present
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4. IT CONSEQUENCES
✭ Risk management has a new level of respectability
✭ Security now has a greater degree of urgency

✓ Prepare for cyber-warfare
Q 50% of corporate web servers have been attacked this year, and 90% of companies

have experienced worms/viruses; see “Web Attacks Have Doubled, Survey Says” (PC
World, Oct 10, 2001)

Q longer range: massive DOS zombie-army attacks, facilitated by IP-spoofing capabilities
of new Microsoft XP — see description of May 2001 DOS attack on Gibson Research
web site

✓ See adminspotting for a reminder that cyber-attacks can be caused by
disgruntled insiders, as well as outside hackers and terrorists.

✓ Develop contingency plans for extended outages of the Internet

✭ Death-march projects will continue, for obvious reasons…
✭ Because the dot-com bubble has burst, the era of “glorious

anarchy” has been replaced with “extreme programming” and
“agile” methods

✭ And quality may be defined more in terms of “triage,” “survival,” and
“good enough” than “perfection” or “exceeding customer
expectations”
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5. PROJECT NEGOTIATIONS
✭ Managing project definition at the beginning of

the project
✭ Using project definition to manage requirements

creep
✭ Estimating techniques
✭ Tools for assisting estimation process
✭ Tradeoffs between schedule, budget, staff,

quality
✭ Tools for rational negotiation
✭ What to do when rational communications are

impossible
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5.1 Managing Project Definition:
What does “success” mean?

✭ Many projects succeed or fail at the very beginning,
before any technical work is done.

✭ Fundamental requirement: identifying who has the right
to declare “success” — owner, shareholder, etc, etc.

✭ Fundamental elements of “success”
✓ finishing on time
✓ staying within budget
✓ delivering the required functionality
✓ providing “good enough” level of quality
✓ getting the next round of VC funding, or launching the IPO

✭ The combination of these constraints may prove
impossible to achieve — so the pragmatic aspect of
success often depends on agreement as to which areas
can be compromised or satisfied.

✭ Biggest risk: lack of realistic triage at beginning of
project
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5.2 Using Project Definition to
Manage Requirements Creep

✭ Typical behavior in projects: new requirements are
added at the rate of 1% per month

✭ Requirements “creep” and requirements “churn” are a
major element of project management risk.

✭ But if you don’t have a formal document describing the
requirements, it’s hard to identify creep or churn.

✭ Assuming that you do have such a document, you need
to use it to negotiate schedule/budget/staff modifications
if the requirements change or increase.

✭ Biggest risk of all: an ambiguous spec is usually a sign
of unresolved conflict between diverse political camps in
the user community. Related risk: techies assume that
it’s their fault they can’t understand ambiguous spec
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5.3 Estimating Techniques
✭ Fundamental truth: it’s almost impossible to estimate a

project if you don’t have metrics from previous projects.
✭ Consequence: most of what’s described as “estimating”

is either “guessing” or “negotiating”
✭ Political reality: estimates are produced by people who

have little prior estimating experience, and who have a
vested interest in believing their optimistic predictions

✭ A radical suggestion: create a separate estimating group
whose work is judged and rewarded by the accuracy of
its estimates, not the political acceptability of estimates

✭ Main technical suggestion: break the project down into
small, independent “inch-pebbles” and get several
estimates

✭ For complex projects, get a commercial estimating tool
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5.4 Tools for Estimating
✭ KnowledgePlan, from Software Productivity Research

✭ SLIM, from Quantitative Software Management

✭ ESTIMACS, from Computer Associates

✭ COCOMO-2, available from several commercial vendors
(See CoStar from SoftStar Systems)

✭ OnYourMarkPro, from Omni-Vista (caveat emptor: I’m on
the Board of Technical Advisors at this company)
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5.5 Tradeoffs between schedule,
budget, functionality, staff, quality

✭ Key point: it’s not a linear tradeoff — see Fred Brooks,
The Mythical Man-Month (Addison-Wesley, 1995)

✭ Relationship is a non-linear, third-order polynomial
relationship — see Larry Putnam and Ware Myers,
Measures for Excellence: Reliable Software on Time,
Within Budget (Prentice-Hall, 1992)

✭ Biggest risk: tradeoffs are usually negotiated, under
pressure, late in the project schedule — without
accepting the non-linear tradeoffs...

✭ ...and without accepting the reality that much of the
partially-finished work will be lost forever

✭ To negotiate tradeoffs rationally, you need to have one of
the estimating packages mentioned earlier
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Typical trade-off chart from
estimating tools
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5.6 Project Negotiations
✭ Beware the temptation to give up... e.g.,

✭ “We have no idea how long this project
will really take, and it doesn’t matter, since
they’ve already told us the deadline...

✭ ...so we’ll just work 7 days a week, 24
hours a day, until we drop from
exhaustion. They can whip us and beat us,
but we can’t do any more than that...”
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5.6, cont’d Negotiating games

✭ Doubling and add some...
✭ Reverse doubling
✭ Guess the Number I’m Thinking of...
✭ Double Dummy Spit
✭ The X-Plus Game
✭ Spanish Inquisition
✭ Low Bid
✭ Gotcha — throwing good money after bad
✭ Chinese Water Torture
✭ Smoke and Mirrors/Blinding with Science

✓ thanks to Rob Thomsett, “Double Dummy Spit, and Other Estimating
Games,” American Programmer (now Cutter IT Journal), June 1996
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5.6 Negotiating strategies
✭ Don’t get tricked into making an “instant estimate” — ask for time to

think about (a week, a day, even an hour)

✭ State the estimate in terms of confidence levels, or ± ranges, etc.

✭ Jim McCarthy (formerly of Microsoft, author of Dynamics of Software
Development): make the customer, or other members of the
organization, share some of the uncertainty.

✭ Project manager: “I don’t know precisely when we’ll finish — but I’m
more likely to be able to figure it out than anyone else in the
organization. I promise that as soon as I have a more precise
estimate, I’ll tell you right away.”

✭ Do some reading and research to become better at this area, e.g.:
✓  Bargaining for Advantage: Negotiating Strategies for Reasonable People, by

G. Richard Shell (reissue edition, Penguin Books, June 2000)

✓ Getting Past No: Negotiating Your Way from Confrontation to Cooperation, by
William Ury (Bantam Doubleday Dell, 1993)
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5.7 What to do when rational
negotiation breaks down

✭ Quit (the project or the company)
✭ Appeal to a higher authority
✭ Go see the movie Gladiator, and learn to say, like

Russell Crowe, “We who are about to die salute you!”
✭ Decide which “rules” you’re going to break in order to

achieve an “irrational” set of schedule/resource
demands that have been imposed upon you.

✭ Redefine the project as a kamikaze, suicide, etc., and
make sure entire project team knows it.

✭ Key point: project leader has to believe in the possibility
of achieving project goals

✭ ...and must be able to convince team members without
“conning” them
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6. SOFTWARE PROCESSES
Optimized
    

Initial

Repeatable

Defined

Managed

  

• SW configuration management
• SW quality assurance
• SW subcontract management
• SW project tracking & oversight
• SW project planning
• Requirements management

• Peer reviews
• SW product engineering
• Integrated SW management
• SW process definition
• SW process focus

•  Quality management
•  Quantitative process mgmt

•  Process change  mgmt
• Technology change mgmt
• Defect prevention

You can definitely have an SEI
level-3 lightweight process; ability
to reach level-4 or level-5 depends
on how much you’re willing to
invest in metrics — but level 4/5 is
not incompatible with Internet-time!
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6.1. “Lite” vs. “Heavy” Processes
✭ Formal (heavy) processes are great if you know what you’re doing,

and if you’ve done the same thing several times before
✭ SEI-CMM guru Watts Humphrey: “if a process can’t be used in a

crisis, it shouldn’t be used at all.”
✭ But many high-pressure projects involve doing things that have

never been done before — with teams that have never worked
together before.

✭ Conversely, if a team has worked together before, and really “jells”,
then it doesn’t need a formal, heavy process

✭ Nevertheless, team needs to agree on what processes will be
formalized (e.g., change management, source code control, testing(a
la XP)), and what processes will be done on a completely ad hoc
basis.

✭ For more details, see
✓ “Extreme Programming,” by Jim Highsmith, e-Business Application Delivery, Feb 2000.
✓ November 2000 issue of Cutter IT Journal on “Light Methodologies”
✓ “Put Your Process on a Diet,” by Martin Fowler, Software Development, Dec 2000
✓ “Retiring Lifecycle Dinosaurs,” by Jim Highsmith, Software Testing & Quality Engineering, Jul/Aug 2000
✓  “The Light Touch,” by Ed Yourdon, Computerworld, Sep 18, 2000
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6.2 More on “lite” vs “heavy”
✭ Areas where there are differences

✓ Degree/volume of documentation
✓ Frequency of reviews and approvals
✓ Degree of decision-making authority — borrowed from “lean manufacturing”

approach

✭ Examples of documentation differences: the requirements analysis
phase

✓ Lite approach: one sentence per requirement
✓ Medium approach: one paragraph per requirement
✓ Heavy approach: detailed UML models, data dictionary,etc.
✓ What happens to requirements when development is done?

✭ Criteria for choosing lite vs heavy:
✓ Degree of pressure for fast delivery
✓ Project cost
✓ Project duration
✓ Staff size
✓ Risk assessment — consequences of failure (safety-critical?)
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6.3 The Airlie Council
“Principal Best Practices”

✭ Formal Risk management

✭ Agreement on Interfaces

✭ Peer Reviews

✭ Metric-Based Scheduling and management

✭ Binary Quality Gates at the “Inch-Pebble” Level

✭ Program-Wide Visibility of Project Plan and Progress Vs.
Plan

✭ Defect Tracking Against Quality Targets

✭ Configuration management

✭ People-aware management Accountability
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6.4 Worst Practices
✭ Don’t expect schedule compression of ≥10% compared to statistical norm

for similar projects
✭ Don’t justify new technology by the need for schedule compression
✭ Don’t force customer-specific implementation solutions on the project
✭ Don’t advocate the use of silver bullet approaches
✭ Don’t miss an opportunity to move items that are under external control off

the critical path
✭ Don’t bury all project complexity in software as opposed to hardware
✭ Don’t conduct critical system engineering tasks without sufficient software

engineering expertise
✭ Don’t expect to achieve an accurate view of project health from a formal

review attended by a large number of unprepared, active reviewers
✭ Don’t expect to recover from a schedule slip of ≥10% without

acknowledging a disproportionately greater reduction in software
functionality to be delivered.
For more discussion along the same lines, involving the concept of “anti-
processes,” see Anti-Patterns and Patterns in Software Configuration
Management, by William J. Brown, Hays W., Iii McCormick, Scott W.
Thomas (Wiley, 1999).
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6.5  Breathalyzer Test
✭ Do you have a current, credible activity network supported by a

work breakdown structure (WBS)?

✭ Do you have a current, credible schedule and budget?

✭ Do you know what software you are responsible for delivering?

✭ Can you list the top ten project risks?

✭ Do you know your schedule compression percentage?

✭ What is the estimated size of your software deliverable? How was it
derived?

✭ Do you know the percentage of external interfaces that are not
under your control?

✭ Does your staff have sufficient expertise in the project domain?

✭ Have you identified adequate staff to allocate to the scheduled
tasks at the scheduled time?
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7. MEASURING, MANAGING,
AND CONTROLLING PROGRESS

✭ General comments and suggestions

✭ The importance of the “daily build”
approach
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7.1 General comments
✭ Management approaches based on classical waterfall

approach are almost certain to fail in large, complex
projects

✭ Need some kind of “time-box” approach based on
versions, features, deliverables, etc.

✭ Jim McCarthy: “Never let a programmer disappear into a
dark room”

✭ If team understands what features/dependencies are
required for the next milestone, they will exert their own
pressure upon themselves, rather than depending on the
manager to beat them up.

✭ If you miss one milestone deadline, it’s crucial to
succeed on the next one.

✭ Milestone post-mortems can be incredibly valuable.



27

7.2 The “daily build”
✭ Popularized by Dave Cutler at Microsoft
✭ Jim McCarthy (former head of Microsoft’s Visual

C++ project): “The daily build is the heartbeat of
the project — it’s how you know you’re alive”

✭ Should be automated, and performed overnight
— or even more often.

✭ Various “tricks” can be used to increase its
effectiveness
✓ Punishing people who “break” the daily build
✓ Using red-flag/green-flag at office entrance
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5. CONCLUSIONS
✭ September 11th has profound consequences

that we don’t even fully grasp yet
✭ We need to help our organizations implement

“change-spotting”
✭ Professional/IT consequences

✓ Risk management has a new level of respectability
✓ Security now has a greater degree of urgency
✓ Death-march projects will continue, for obvious reasons…
✓ Quality may be defined more in terms of “triage,” “survival,”

and “good enough” than “perfection” or “exceeding customer
expectations”

✓ The era of “glorious anarchy” has been replaced with “extreme
programming” and “agile” methods
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Words to live by
in the software field

“I wake up each morning determined to change
the World ...
...and also to have one hell of a good time.
Sometimes that makes planning the day a little
difficult.”
E.B. White

found in the opening of the preface of Succeeding with Objects, by
Adele Goldberg and Kenneth S. Rubin (Addison-Wesley, 1995)
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