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Abstract

In the past years, the theory and practice of
machine learning and data mining have been
focused on static and finite data sets from
where learning algorithms generate a static
model. In this setting, evaluation metrics and
methods are quite well defined. Nowadays,
several sources produce data in a stream at
high-speed, creating environments with pos-
sibly infinite, dynamic and transient data
streams. Currently, there is no standard for
evaluating algorithms that learn from data
streams. In this paper we try to present ma-
jor issues that bind the evaluation strategy to
data stream environments, proposing evalua-
tion methods for both supervised and unsu-
pervised learning.

1. Introduction

The last twenty years or so have witnessed large
progress in machine learning and in its capability to
handle real-world applications. Nevertheless, machine
learning so far has mostly centered on one-shot data
analysis from homogeneous and stationary data, and
on centralized algorithms. Most of Machine Learning
and Data Mining approaches assume that examples
are independent, identically distributed and generated
from a stationary distribution. Most of learning algo-
rithms assume that computational resources are un-
limited, that is data fits in main memory. In that
context, standard data mining techniques use finite
training sets and generate static models. Nowadays
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we are faced with tremendous amount of distributed
data that could be generated from the ever increasing
number of smart devices. In most cases, this data is
transient, and may not be stored in permanent rela-
tions.

Examples of data mining applications that are faced
with this scenario include sensor networks, social net-
works, user modelling, radio frequency identification,
web mining, scientific data, financial data, etc. Data
continuously flow possibly at high-speed, in a dynamic
and time-changing environment. Data mining in these
contexts require a continuous processing of the incom-
ing data monitoring trends, and detecting changes.
Traditional one-shot systems, memory based, trained
from fixed training sets and generating static mod-
els are not prepared to process the high detailed data
available, they are not able to continuously maintain a
predictive model consistent with the actual state of the
nature, nor are they ready to quickly react to changes.

Our ability to collect data is changing dramatically.
Nowadays, computers and small devices send data to
other computers. We are faced with the presence of
distributed sources of detailed data. Data continu-
ous flow eventually at high-speed generated from non-
stationary processes. Most recent learning algorithms
(Cormode et al., 2007; Babcock et al., 2003; Domingos
& Hulten, 2000; Hulten et al., 2001; Gama et al., 2003;
Ferrer-Troyano et al., 2004; Gama & Rodrigues, 2007)
maintain a decision model that continuously evolve
over time, taking into account that the environment is
non-stationary and computational resources are lim-
ited.

P. Domingos and G. Hulten (Hulten & Domingos,
2001) identify desirable properties of learning systems
for efficient mining continuous, high-volume, open-
ended data streams: i) Require small constant time
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per data example; ii) Use fix amount of main memory,
irrespective to the total number of examples; iii) Built
a decision model using a single scan over the training
data; iv) Generating a any time model independent
from the order of the examples; and v) Ability to deal
with concept drift. For stationary data, ability to pro-
duce decision models that are nearly identical to the
ones we would obtain using batch learner.

From this desiderata, we can identify 3 dimensions
that influence the learning process: space – the avail-
able memory is fixed, learning time – process incom-
ing examples at the rate they arrive, and generaliza-
tion power – how effective the model is at capturing
the true underlying concept. In this work we focus
in the generalization power of the learning algorithm,
although we recognize that the two first dimensions
have direct impact in the generalization power of the
learned model.

Data streams are open-ended. This could facilitate
the evaluation methodologies, because we have train-
ing and test set as large as desired. Two aspects,
in the emerging applications and learning algorithms
that have strong impact in the evaluation methodolo-
gies are the continuous evolution of decision models
and the non-stationary nature of data streams. In this
work we discuss

2. Evaluation Issues

A key point in any intelligent system is the evaluation
methodology. Learning systems generate compact rep-
resentations of what is being observable. They should
be able to improve with experience and continuously
self-modify their internal state. Their representation
of the world is approximate. How approximate is the
representation of the world?

Evaluation is used in two contexts: inside the learn-
ing system to assess hypothesis, and as a wrapper over
the learning system to estimate the applicability of a
particular algorithm in a given problem. Three funda-
mental aspects are:

• What are the goals of the learning task?

• Which are the evaluation metrics?

• How to design the experiments to estimate the
evaluation metrics?

2.1. Supervised Learning

In most supervised tasks for machine learning, for each
new example an exact loss function may be computed
with respect to a previously made prediction. This is

especially useful to assess the quality of online predic-
tive models. For predictive learning tasks (classifica-
tion, and regression) the learning goal is to induce a
function ŷ = f(~x). The most relevant dimension is the
generalization error. It is an estimator of the difference
between f̂ and the unknown f , and an estimate of the
loss that can be expect when applying the model to
future examples. In online learners, this estimate can
be used not only to assess the quality of the model, but
also to tune the model’s parameters before applying it
to future examples.

Given the online setting of learning from data streams,
the quality of a learning model is difficult to con-
dense in a single value of loss or performance, since
data is being produced with evolving concepts and the
model itself is being continuously updated. In pre-
vious works, evaluation of online learners has been
sidestepped, assuming either a hold-out test set or a
fixed test set at the end of the learning process, com-
puting average losses in time windows.

The VFDT system (Domingos & Hulten, 2000) and
the CVFDT system (Hulten et al., 2001), fast decision-
tree learners without/with concept drift detection abil-
ity, were evaluated in synthetic data by keeping a hold-
out test set of the current concepts, in which the sys-
tem was tested every bunch of examples, being after-
wards computed the averaged loss. When applying
them to real data, while the first approach was mea-
sured in a test set at the end of the learning process,
the second approach was evaluated by measuring the
loss online, at each new example, updating the model
with it afterwards. Final performance was the aver-
aged accuracy, although a simple observation is also
made regarding the evolution of the error. In (Gama
et al., 2003), the VFDT system was enhanced with
better predictors at the leaves and allowing the contin-
uous update of the model with a single scan of data (a
major requirement when learning from data streams).
However The VFDTc system was evaluated likewise
by the averaged loss on a hold-out test set.

Another usual technique applied to data streams is
the induction of online neural networks. In (Gama &
Rodrigues, 2007) online neural networks are learned
from time series data, each example being fed only
once to the model after the loss of predicting it has
already been computed. The evaluation was carried
out by computing the averaged loss in natural time
windows, with respect to the real-world domain, but
without any analysis of error evolution.
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2.2. Unsupervised Learning

On unsupervised learning tasks, evaluating the learned
model is not straightforward as no objective correct
solution is usually known (Jain & Dubes, 1988). More
than being hard to evaluate from the point of view
of its application to real data, unsupervised learners
are weak in self-evaluating their own learning process,
which narrows their sustainability to learn from data
streams.

Clustering is possibly the most popular unsupervised
learning task in data mining. Given the application
to data streams, the output of clustering systems is
usually given by k centers, rather that an assignment
of clusters to the data. Most common validity mea-
sures for clustering structures, based on compactness
and separability measures, improve with the number
of clusters found. This is one of the major issues in
clustering validity. Not only the algorithm must find
the best partition of the data into k clusters, but its
performance will highly depend on the k number it-
self. This way, it should also be able to define k as
an output of the system, in order to find the best par-
tition of data into the best number of clusters pos-
sible. This is why most batch clustering procedures
assume k is given by the user, or it is estimated us-
ing several runs on the same data, clearly not possi-
ble in the data stream framework, even in static envi-
ronments. Furthermore, the performance of clustering
procedures is usually highly dependent from the choice
of the data set: most methods may give good results
for a particular type of data but otherwise perform
poorly (Beringer & Hüllermeier, 2006).

The previous facts have also a wide range of impli-
cations in the self-evaluation of online methods. On
supervised learners, parameters are tuned according
to the value of a given error measure with respect to
the real data. On unsupervised learning, not only a
error measure is hardly available, but also the defini-
tion of parameters may have an extremely high impact
on the quality measure, hence the inapplicability as a
parameter tuner.

Learning clustering structures from streaming exam-
ples has been addressed in several works, with dif-
ferent evaluating approaches (Aggarwal et al., 2003;
Spiliopoulou et al., 2006; Cormode et al., 2007). Cur-
rent works on learning clusters of streaming time se-
ries also presents different analysis of cluster valid-
ity (Beringer & Hüllermeier, 2006; Rodrigues et al.,
2008). Most of them, however, lack the ability to track
quality evolution in a meaningful way.

3. Design of Evaluation Methods

Data stream scenarios focus machine learning research
in a precise problem: the design of evaluation methods
for models that learn from data streams.

3.1. Supervised Learning

In batch learning using finite training sets, cross-
validation and variants (leave-one-out, bootstrap)
are the standard method to evaluate learning sys-
tems. Cross-validation is appropriate for restricted
size datasets, generated by stationary distributions,
and assuming examples are independent. In data
streams context, where data is potentially infinite, the
distribution generating examples and decision models
evolve over time, cross-validation is not applicable, and
research communities need other evaluation strategies.

Two viable alternatives are: i) Holdout an indepen-
dent test set. Apply the current decision model to
the test set, at regular time intervals (or set of exam-
ples); ii) Predictive Sequential: Prequential (Dawid,
1984), where the error of a model is computed from
the sequence of examples. For each example the actual
model makes a prediction based only on the example
attribute-values. The prequential-error is a computed
based on an accumulated sum of a loss function be-
tween the prediction and observed values.

Both methods provide a learning curve that monitor
the evolution of learning as a process, the disadvan-
tage is that both estimates are affected by the order of
the examples. In the case of stationary data streams
both might provide reliable error estimates. Neverthe-
less, the applicability of the holdout method in non-
stationary streams is questionable.

3.2. Unsupervised Learning

In unsupervised learning, no real truth is available to
the learning process in order to assess the quality of the
resulting model. Moreover, most common clustering
evaluation metrics require the entire set of examples to
determine the quality of the clustering structure. This
is obviously not possible in the data stream context,
being a major problem in applying machine learning
to data streams. Therefore, systems should being able
to compress information while giving more relevance
to recent examples.

The range of recent clustering algorithms that operate
online over data streams is wide. A common connect-
ing feature is the definition of unit cells or representa-
tive points, from which clustering can be obtained with
less computational costs (O’Callaghan et al., 2002;
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Zhang et al., 1996). Afterwards, two alternatives are
viable for evaluating hypotheses: i) apply incremental
validity measures, which are defined by previous value
and new data; ii) assessing quality by validity mea-
sures computed using only the representatives of the
complete data set.

Although resulting in exact values for the clustering
quality, given the usual definitions for validity indices
which are based on compactness and separability, the
first alternative is extremely hard to use. In data
streams it is often allowed to present approximate so-
lutions for the problems, since we never get to see or
process the whole data. Given the huge number of
clustering algorithms that use the notion of represen-
tative points to compress data, the second alternative
presents a clear method to assess the quality of the
clustering structure, even if only approximately.

4. Evaluation Methodology in
Non-Stationary Environments

Any evaluation method should measure how the cur-
rent model fits the current data.

4.1. Supervised Learning

An additional problem of the hold-out method comes
from the non-stationary properties of data streams.
The holdout-method using a fixed test set cannot pro-
vide reliable estimates for non-stationary streams. The
main advantage of the Prequential becomes clear in
these environments.

The prequential-error is a computed based on an accu-
mulated sum of a loss function. We can consider two
alternatives to compute the accumulated sum: i) from
the starting of the learn process; ii) in a sliding window
of fixed size. This latter option, seems to be more ap-
propriate for non-stationary environments. The slid-
ing window forgets past information, eventually from
older contexts. The aggregated error estimate better
reflects the current fit between the actual model and
the state of the nature.

Other criteria relevant for change detection methods
include:

1. Resilience to noise. That is, ability to not detect
drift when there is no change in the target con-
cept. We designate this type of errors as Type 1
error.

2. Type 2 error: does not detect drift when drift
exist.

3. The number of examples required to detect a

change after the occurrence of a change.

4.2. Unsupervised Learning

As previously stated, the main problem in apply-
ing machine learning to data streams is that systems
should consider data evolution and adapt to new con-
cepts. In non-stationary data streams, clustering al-
gorithms should keep track of several aspects of the
learning process:

1. What is the best partition of clusters (or the best
centers) that fit the current data?

2. What is the validity of the resulting structure with
respect to the recent data?

3. How did clusters and the clustering structure
evolve since the last definition?

Evaluating these aspects is an overwhelming task. We
have shown how clustering validity may be highly de-
pendent of the correct definition of parameters such
as the number k of clusters to find. Additionally,
in dynamic environments, the real number of clusters
may evolve with time, rising the difficulty to define
k. Moreover, even if the number of clusters is con-
stant, clusters’ configuration may evolve with time.
Methods that aim at finding clustering structures from
data streams must include techniques for detection
of structural drift (Rodrigues et al., 2008) or cluster
change (Spiliopoulou et al., 2006).

Hierarchical techniques, which divide or aggregate
clusters, are useful for structural drift detection, as
they automatically define the number of clusters based
on specifications or generalizations of previous clus-
ters. Another advantage of these algorithms is that
the clustering validity measure can be easily estimated
from previous structure. However, they lack the abil-
ity to detect cluster evolution and transitions, which
sometimes lead to the fusion of non-related clusters.

Cluster transitions are commonly measured by over-
lap ratios which are not possible in strict hierarchical
structures. However, when considering data streams,
if only representatives of real data are kept, how can
overlap be accurately measured? This problem in-
cludes another issue in learning from data streams,
as different granularity’s can be used in the compact
representation of the data points.

As in supervised learning, the use of sliding windows
to assess fitness of the clustering structure to the most
recent data is a viable approach if we measure valid-
ity using real data within the window. If a system
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is designed to use representatives, computing valid-
ity in the sliding window offers the system with more
robust estimation given the maintenance of some old
representatives along with recent real data. However,
cluster evolution may become harder to define.

Overall, if a specific validity index, defined as a loss
function, is able to include the fitness of the clustering
definition to real data, given the number of clusters
found and the overlap ratio, the system could use the
Predictive Sequential technique to this loss function. If
we keep track of the values for the validity over a re-
cent set of sliding windows, we could present a robust
method to estimate not only the quality of the result-
ing structure, but also the evolution of the clustering
structure, triggering changes in the process (e.g. divi-
sion/aggregation of clusters, granularity of representa-
tives, update or reset of the whole structure, etc.).

5. Conclusions

The main problem in the evaluation methods when
learning from data streams consists of monitoring the
evolution of the learning process. In this work we de-
fend the use of Predictive Sequential error estimates
over a sliding window to assess performance of learning
algorithms that learn from open-ended data streams in
non-stationary environments.

In this work we propose the prequential method as a
general methodology to evaluate learning algorithms
in a streaming scenario. In some applications, where
feedback is available later, it can be implemented in-
side the learning algorithm. This open interesting op-
portunities: the system would be capable of monitor-
ing the evolution of the learning process itself and self-
diagnosis the evolution of the learning process.

In this work we only discuss loss as performance cri-
teria. Nevertheless, other criteria, imposed by data
streams characteristics, must be taken into account.
Memory is one of the most important constrains.
Learning algorithms run in fixed memory. They need
to manage the available memory, eventually discarding
parts of the required statistics or parts of the decision
model. We need to evaluate the memory usage over
time, and the impact in accuracy when using the avail-
able memory. Another aspect is that algorithms must
process the examples as fast if not faster than they
arrive. Whenever the rate of arrival is faster than the
processing speed, same sort of sampling is required.
The number of examples processed per second and the
impact of sampling in performance are other evalua-
tion criteria.
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