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Abstract

One of the greatest machine learning prob-
lems of today is an intractable number of
new algorithms being presented at our con-
ferences, workshops and journals. A similar
rush of ideas and results also plagues most
other scientific fields and some have already
questioned the usefulness of statistical tests
for telling the true relations from the false.
Statistical tests have been criticized as con-
ceptually wrong almost from their inception.
They do not work well in situations when nu-
merous groups conduct similar research. Not
measuring what we are really interested in,
they can promote the randomly successful
ideas instead of the good but unlucky ones.
We unfortunately see no established alterna-
tives in other fields of science which could be
transplanted to our field. We however spec-
ulate on a possible spontaneously appearing
solution in a form of a worldwide peer review.

Machine learning is being suffocated by the ease with
which we can generate new algorithms or, in most
cases, slight variations of the existing ones by using
flexible and extendible frameworks such as Weka (Wit-
ten & Frank, 1999) and many others. Our confer-
ences and journals are beleaguered by papers describ-
ing novel ways to do feature subset selection, dis-
cretization and model selection, not to mention every-
thing that one can do to kernel methods, which can in
this respect compete only with random forests from a
few years ago, and boosting and bagging before that.

The traditional criteria to tell the publication-worthy
from the worthless is to apply statistical tests to com-
pare the results of the new and the old methods. Be-
ing aware of the problem, a lot of effort has been
put into testing various methods for testing the meth-
ods of machine learning (Salzberg, 1997; Dietterich,
1998); the author of this paper happened to be active
in this pursuit, too (Demsar, 2006). However, new
machine learning methods are still miraculously suc-

cessful in beating the competition, although usually
only marginally.

This perpetual enhancement of our methods – often
without the new methods actually getting any wide
attention and use after being published – should be
suspicious and alarming by itself. Instead, we are get-
ting used to read and hear about new and statistically
significantly better methods... and do not pay any at-
tention to them.

This pessimistic paper will first discuss why null-
hypothesis significance testing is problematic in prin-
ciple, next section will show why it is becoming in-
applicable in most modern science including ours, fol-
lowed and concluded by a section presenting several
non-viable alternatives. The basic message of the pa-
per is, however, that any evaluations and comparisons
– statistical or non-statistical – of new methods should
be taken with a grain of salt (as well as this paper it-
self).

1. Objections to Significance Tests

Null-hypothesis significance testing (NHST) is aimed
at distinguishing between random and non-random
differences or, in general, relations found in experi-
mental results. Yet its appropriateness has been dis-
puted from its beginnings. The heaviest fire comes
from psychologists (Harlow & Mulaik, 1997) who ac-
cuse NHST of systematically retarding the growth of
cumulative knowledge in psychology (Schmidt, 1996).
Meehl (1967) calls it “a potent but sterile intellectual
rake who leaves in his merry path a long train of rav-
ished maidens but no viable scientific offspring”.

The first objection to NHST is that many tend to mis-
interpret its results. For instance, authors of one of
the papers accepted at ICML a few years ago con-
clude that “the statistical test shows the probability
that our method is better is greater than 99.9 %”.
Similar conclusions can often be found in proceed-
ings of other machine learning conferences and peer-
reviewed journals. Statistical tests do not provide for
such conclusions. Statistical tests measure how prob-
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able are the experimental results D if the hypoth-
esis H is correct, P (D|H).1 This is not the same
as the probability of correctness of hypothesis given
the experimental results, P (H|D). The latter could
be computed from the former using Bayesian rule as
P (H|D) = P (D|H)P (H)/P (D), if we knew the prior
probabilities of the hypothesis and experimental re-
sults – which we do not.

The second objection is that NHST does not tell us
what we need to know (which is actually the reason
why we misinterpret it as if it did). Tests compute the
(conditional) probability of certain statistic and tell
nothing about the hypothesis (Fisher, 1959). Many
statisticians argue that the logic of null-hypothesis
testing is flawed. Cohen (1994; 1997) wittily illustrates
this by observing that only a small proportion of US
citizens are members of the Congress, which leads him
to conclude that if some person is a congressman, he is
probably not a US citizen. Absurd as it sounds, this is
the logic of inferential testing, where event D is being
a congressman and H is being a US citizen; when D
happens (we “measure” that someone is a congress-
man), we refer to the low probability of P (D|H) (be-
ing congressman if you are a US citizen) and reject
the hypothesis H that he is a US citizen. When the
premises are probabilistic, Aristotelian syllogisms be-
hind the NHST can lead to incorrect and insensible
conclusions.

The next objection to NHST is that null-hypothesis
can nearly always be rejected if enough data is avail-
able. Even the smallest difference can be made “signif-
icant” by conducting a huge number of experiments.
For instance, if we program a learning algorithm to
intentionally misclassify one example in one thousand,
the difference can be detected as statistically signifi-
cant if a sufficient number of tests are made (the ex-
pected sample size required can be determined using
power analysis). The test would not be mistaken since
the difference is real. But as a matter of fact, it is prac-
tically insignificant. On the other hand, performance
of two algorithms can be practically different, but the
number of experiments was too small to confirm it
as statistically different, for instance if the algorithm
is specialized for a certain area for which there was
not enough different data sets available. In a sense,
p values do not tell us how different are the observed
means, but whether we have gathered enough data to
prove the difference. In words of Cohen (1997): “So if
the null hypothesis is always false, what’s the big deal
about rejecting it?” It is the difference and its prac-

1Even this is estimated only indirectly, through various
statistics such as t or χ2.

tical significance that matters, and not the statistical
significance, a rather artificially constructed measure
that depends not only upon the true difference but also
upon a number of unrelated factors some of which –
most notably the sample size, in many cases – are even
under directly control of the experimenter.

This objection is very applicable to our area. Many
researchers routinely run hundreds or even thousands
of experiments to be able to report sufficiently small p
values. Besides raising doubts about independence of
such experiments since the classifiers are being trained
on essentially the same data over and over again, one
might also argue that if such small confidence inter-
vals are needed to prove the difference between the al-
gorithms, the difference, although real, must be small
indeed.

2. The Curse of Multiplicity

Modern genetics is struggling with an old phenomenon
called the “curse of dimensionality” (Bellman, 1961):
a typical task in the genetics of the microarray era is
to identify a small subset of genes which are related to
the particular condition. While the number of genes
goes into several thousand, the number of instances
seldom reaches one thousand. With the data of such
dimensionality, random correlations can easily cover
the true ones (in case they even exist at all).

A similar problem has been noted in medicine (Ioan-
nidis, 2005), where a number of groups explore es-
sentially the same phenomena with rather small ef-
fect sizes, they use numerous different experimental
designs and, typically, relatively small samples. Ioan-
nidis proves that under such conditions most statisti-
cally significant findings are false.

Both situations are quite similar to ours. Since the
sample size in the task of comparing machine learning
methods is, in most setups, not the number of exam-
ples in a particular data set but the number of different
data sets used, trying numerous new methods and fit-
ting their parameters on ten or twenty (but certainly
not one hundred) data sets from various repositories
is not unlike testing thousands of genes on a few data
samples.

The problem is further emphasized by the fact that
only successful work gets published, where the success
is measured by the p values. The way this affects the
field is best described by turning the work of Mozina
et al (2006) on classification rules into a meta-study.
Among multiple rules of similar quality, the learning
algorithm does not choose the best one but the lucki-
est, that is, the one whose quality is the most overesti-
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mated due to random chance. The same mechanism is
at work when multiple groups are performing similar
modifications to an algorithm, like experimenting with
small variations of top-down discretization. Although
their methods might generally perform the same (with-
out exceeding the performance of, say, the Fayyad and
Irani’s method which they choose to use as a baseline),
the group which had the most luck in picking the data
sets for testing the method and in choosing the random
samples and the statistical test will publish the results.
The unsuccessfulness of others will go unnoticed.

3. True Virtues as a Guide

Our field occupies an unfortunate place between pure
empirical sciences, like psychology, and the more ax-
iomatic ones, like mathematics and statistics, and to
certain extent, physics. Compared to psychology, it is
much simpler to invent and tweak a new or old ma-
chine learning methods and test them on a bunch of
UCI data sets, than it is for a psychologist to postulate
a new relation, verify it on a bunch of people and then
even modify and reevaluate it in a few more iterations,
like we are used to.

Physics, on the other side, is respected as a science
where the first test of a theory is its intrinsic beauty,
and the ideas which do not pass this test are not
considered worthy of experimental evaluation. Asked
about the validity of his theories, Einstein is said to re-
ply that they are correct, otherwise the Creator would
have missed a very good idea.

In machine learning, justification and understanding
of what the method does (and what it does not), and
why (or why not) tend to often seem of secondary im-
portance as compared to whether the method actually
works, where the latter is proven by statistical tests.
Adhering to them makes us blind to what the tests
do not measure, the true virtues of the proposed ideas
– their correctness, interestingness, usefulness, beauty,
novelty.

In author’s experience as an author and as a reviewer,
reviewers are quite hesitant to reject a paper present-
ing a suspiciously looking method if it still succeeds to
show good results. If it works, it is difficult to reject
the paper based on subjective judgment. Statistical
tests thus tend to be implicitly enforced as a method
for mechanistic selection of what to publish and what
to reject.

As a good example, it has been noticed that when se-
lecting a model with a better classification accuracy on
the future examples, taking the one with the highest
AUC usually works better than taking the one with the

highest classification accuracy, although it is the accu-
racy we are after. This finding is counterintuitive and,
to our best knowledge, still lacks a convincing explana-
tion. The fact has however, been found by experiments
and confirmed by significance tests, and thus worthy
of publishing. With more experiments done recently,
the evidence is surfacing that this could have been just
a chance observation.

On the other hand, interesting methods can go un-
published simply since they do not outperform the ex-
isting methods in the accuracy or any other standard
performance score. There is a whole spectra of po-
tential reasons for their failure, from bad luck in data
sets selection and sampling, to true problems with the
method which were not spotted by the authors but can
be discovered by the community if it is given a chance.
In the latter case we can either learn from the failure
or use the failed method as a springboard for inventing
a better one. Or both.

With this in mind, the fact that the Journal of Inter-
esting Negative Results has to exist seems quite wrong.
Interesting negative results have every right to be pub-
lished and read in the journals from the correspond-
ing fields and not in a special journal for the methods
which failed to make it elsewhere.

4. (Im)Possible Solutions

The conservative solution to the described problems
is to keep the current testing rituals of the machine
learning community, but become more aware of its
limitations. Statistical testing may be as much a use-
ful mechanistic determination of a good method, as
democracy is a useful mechanistic determination of a
good ruler, yet we are sticking to the democracy in
absence of any better options.

The other extreme would be to mimic the idealistic
beauty judging physicist and accept or reject new ideas
solely by their unmeasurable true qualities. This illu-
sory approach does not work well even in physics since
it is essentially oligarchical: especially in the areas
where experimentation is difficult or impossible (the
most prominent example is cosmology) new ideas can
prevail only after a shift in generations.

The radical solution would be to confess that the prob-
lem of determining the “publication-worthy” ideas is
unsolvable, abandon the current way the scientific
work is being published and let everybody present any
work he wants on his own web site. The ultimate test
of new ideas would hence be neither statistical nor
subjective: good ideas would be noticed and cited else-
where – in blogs, forums and sites with links to other,
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interesting cites. This approach resembles a web-like
(tribe-like?) democracy, where the papers are evalu-
ated by an unofficial, disorganized and implicit, yet,
as experience with the web tells us, efficient collabora-
tive world wide peer review. In this way, the internet
which in a great part caused (or at least made possi-
ble) the explosion of new ideas in machine learning, as
well as in other sciences, would also provide the means
for solving the problems it arose.

This idea is unrealistic at the time being, the main
reason being that publishing in journals is necessary
to get tenures and research funds. On the other hand,
many (most? all?) researchers already use the web as
their primary source of information instead of books,
conference proceedings and journals. Therefore, while
inconceivable at the moment, this may eventually –
perhaps sooner than we expect – replace the tradi-
tional journals, conferences and the peer-review sys-
tem.
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