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Abstract

This paper argues that we, in machine learn-
ing, have adopted an evaluation procedure
which is an impoverished realization of a con-
troversial methodology. I call this an ortho-
doxy because it is widely accepted; it shows
up in our text books, we teach it to our grad-
uate students and expect other researchers
to abide by it. The attraction of this ortho-
doxy is that it avoids an anarchistic free-for-
all whose products would be difficult to judge
for their scientific validity. Adopting it gives
us a reassurance that we are being scientific.
Here, I call into question the validity of this
view. I argue that our present approach is not
a good realization of the “scientific method-
ology”, as many would understand it today.
An open and broad approach to experimenta-
tion is normal practice in science. Although,
this makes judgment harder and reviewing
longer, I claim that any reassurance gained
by the present approach is largely illusory.

1. Introduction

The claim of this paper is that our evaluation proce-
dures do not achieve all that they might and, worse,
are frequently counterproductive. This is because we
have adopted an impoverished realization of a contro-
versial methodology. The controversial methodology
embodies a narrow view of the “scientific method”,
that many nowadays would criticize as quite erroneous.
The impoverished realization is that, even if this view
were right, our current practice does not instantiate it.
I contend that this realization has become an ortho-
doxy; we discuss it in our text books, we teach it to
our students, and as reviewers we oblige experimental
studies in published work to follow it.
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The process, I am primarily addressing, is what I will
call “benchmark statistical testing”: an algorithm, and
a competitor, are trained on a sizable number of stan-
dard data sets; a null hypothesis test, based on the
difference in a single performance measure, is applied
to select the winner. I have argued elsewhere (Drum-
mond, 2006) that there are serious problems with this
process: with the single performance measure, the
null-hypothesis statistical test, and the data sets. But
I argue here, that even if we could address many of
these problems, it is far from clear that we should. I
am particularly concerned with any movement, within
the machine learning community, to make an already
constrained exercise even more strongly constrained.
Requiring authors to follow strict experimental proto-
cols is, I contend, not the answer. Instead, I believe,
we should encourage a broader view of what experi-
mentation is, in our publications, our own practices
and how we teach our students.

I think one reason our current practice is so com-
pelling is its rigor. It gives us some degree of reas-
surance that we are following good scientific practices.
Clearly most, if not all, of us would regard machine
learning as a scientific discipline. As such, we are
committed to the “scientific method”. The commonly
held view is that it is represented by an observation-
hypothesis-test cycle. Figure 1, from a web-site called
“BioWeb” (King, 2008), shows this view pictorially. In
this methodology, the scientist apparently should not
make any observations prior to forming a hypothesis
nor revise the hypothesis after the experiments.

This web site is far from atypical, there are many
other sites with simple diagrams like this one. Their
aim is to help both teachers and school children learn
more about science, certainly a commendable objec-
tive. This view is also taught at the undergraduate
level, often in introductory science courses. Through-
out this paper, I have deliberately used scare quotes
around the phrase “scientific method”. Although it is
now part of the common lexicon, its form is consid-
erably more controversial than most people imagine.
Many, including myself, see this view not only wrong
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historically but detrimental to scientific practice. If
this claim is right, any experimental process based on
it is of dubious merit.

Figure 1. The Scientific Method for School Children

2. An Impoverished Realization

It is the observation-hypothesis-test view of the “scien-
tific method” that I would claim our evaluation process
most closely mirrors. Yet, it is far from an accurate re-
flection of the method. In our papers, the hypothesis,
if stated explicitly at all, is often rather minor, little
more than one algorithm is better than another. This
is not to say that the research itself is of no value. It
is just that the focus is too often on minor improve-
ments in performance rather than a deeper insight into
why some things work and others do not. Forcing pub-
lished experiments to have this form encourages minor
hypotheses, developed by individuals, rather than the
identification and pursuit of deeper and more broad
reaching hypotheses by the community as a whole.
We also seldom analyze how our experiments support
a hypothesis, except that it improves on some gen-
erally accepted performance measure. Performance is
not the only characteristic of a learning algorithm that
is important. It is certainly far from clear then that
minor improvements in performance are worth having,
particularly if other characteristics suffer. Our process

also tests statistical hypotheses rather than scientific
ones. I would claim that variation due to sampling is
the least of our worries. We would be better off explor-
ing the myriad of other factors that might influence the
results in any experiment.

One argument for the validity of this particular in-
stantiation of the “scientific method” is that it has
been made by others. Certainly, our experimental
procedures have much in common with those of other
fields. For instance, null-hypothesis statistical tests
are widely used. However, concerns about them are
also widespread: in psychology (Schmidt, 1996), in ed-
ucation (Nix and Barnette, 1998), in political science
(Gill and Meier, 1999) and in wildlife research (John-
son, 1999). Nor is this a recent phenomenon, it has
been around for more than sixty years (Hagood, 1941).
The controversy is particularly evident in psychology
as seen in the response from critics that accompanied
a paper (Chow, 1998) in the journal “Behavioral and
Brain Sciences”. One suggestion, to address these
concerns, is to better train researchers in statistics
(Young, 2007). It is interesting that researchers some-
times appear to more willing to use null-hypothesis
statistical tests than statisticians themselves (Chat-
field, 2002, sec 8.1). If more exposure to statistics
makes researchers aware that null hypothesis statisti-
cal tests are only one of many tools in a statistician’s
toolbox, then I am all for it. My concern would be
that instead it might simply encourage the addition of
further layers of statistical sophistry.

The similarities, we share, are not solely in the sta-
tistical tests we use. Ideally, in medical research, the
researcher has access to data from properly random-
ized clinical trials. But this is often impractical, for
reasons of cost, ethics, or the rarity of the disease.
There is therefore a strong reliance on retrospective
studies. As there is no control over how the data were
collected, there are problems with these and the valid-
ity of conclusions drawn from them questionable. The
problem of having no control over how the data were
collected is one we share in machine learning. The
standard benchmark data sets, such as those of the
UCI collection (Bay et al., 2000), have almost com-
pletely unknown histories. But even in applications
where data are current, we are obliged to take the
data how they come. Yet, as statisticians emphasize
(Chatfield, 2002), it is critical to know how the data
were collected. Social scientists have been sensitive to
this problem, which they call “purposive sampling”,
for years (Patton, 1990). Without random sampling,
any statistical guarantees we have are questionable at
best. In medical research, there is an increasing worry
that many preliminary encouraging results (that often
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end up in the general media) turn out to be consid-
erably less effective than the original claim (Altman,
1994; Horton, 2001; Smith, 2006). Relying on these
sort of tests is certainly not a guarantee that question-
able work will not be published (Giles, 2004; Brumfiel,
2002; Couzin, 2006).

Some might argue that fielded applications are what
really matters and here our process is effective. Having
a definitive answer of which is the right algorithm for
the job would seem paramount. Yet, end users are of-
ten reluctant to accept new methods that they do not
understand. Any single performance measure will not
capture all their possible concerns. It is worth look-
ing at how, in weather forecasting, a measure can be
decomposed into multiple factors (Blattenberger and
Lad, 1985). These factors give an idea of what matters
to both researchers and end users in that field and may
well matter to us. So, even in practical applications,
our process is well short of ideal and a wider set of
experiments should be encouraged. I would also argue
that although applications are useful to the field in ex-
posing new problems, we should not let the tail wag
the dog. Machine learning is not solely an engineer-
ing discipline. Any experiments we carry out should
support scientific progress within our field.

3. A Controversial Methodology

If we fall short of realizing this “scientific method”,
should we at least aim at an evaluation process that
better realizes it? Platt (1964) has argued that if we
did follow it, we would produce much better science.
His views are not without controversy (O’Donohue and
Buchanan, 2001). I hold that science is a considerably
more diverse activity than this suggests and so much
the better for it. This view is shared by many in statis-
tics, who emphasize the exploratory role over the more
traditional confirmatory one (Tukey, 1977). Experi-
ments are critical to machine learning, it is an exper-
imental science after all. But we should not equate
experiments with hypotheses testing or, worse still,
with statistical hypotheses testing. The role of exper-
iments in an experimental science is, and should be,
very broad. Experiments are used to explore ideas,
discover relationships, compare alternatives as well as
testing hypotheses. The experimental results do often
act as empirical support for the views of the researcher,
but to require that they be couched as a hypothesis
test is an unnecessary restriction. To insists that some
sort of statistical test is required is to replace personal
judgment with an ill-understood test.

It is certainly doubtful that many scientists, success-
ful or otherwise, have followed this putative methodol-

ogy. It is strongly criticized by philosophers of science
(Polanyi, 1958; Kuhn, 1962) and practitioners (Bridg-
man, 1955) alike. Francis Bacon (1620) is often cred-
ited with its origin. Yet, even some of his contempo-
raries thought his views were too regimented. William
Harvey, as reported in the Times (1878), said ”. . . he
writes philosophy like a Chancellor.”

If this view is far from historically accurate, as many
claim, it hardly seems the right view to use as the basis
for evaluating our algorithms. One may ask why, if
this view of science is so seriously flawed, it has been
so broadly promulgated. One advantage is that it is a
simple and clearly defined approach, that it is easy to
teach to school children and to explain to the public
at large. It also makes it easier to separate science
from pseudo-science, a critical role some would claim
(Popper, 1963). I would take the view, shared by many
others, that an overly restrictive view of the “scientific
method” does more harm than good.

I do not advocate an completely anarchistic approach
as suggested by Feyerabend (1975), that anything
goes. I believe, there is something to science which
separates it from other activities. One strong attrac-
tion to how we evaluate algorithms presently is its ob-
jectivity. It gives a clear answer to which algorithm is
the best. If the algorithm is well described, and the
experimental set up is well specified, then the experi-
mental results could be reproduced by anyone. Being
objective, largely achieved by carrying out careful ex-
periments which can be repeated by others, is certainly
one of science’s main strengths. It is interesting to see
how in physics today, unquestionably the archetypal
science, there is such controversy over string theory
exactly because it is not currently amenable to experi-
mental validation. However, we should not equate ob-
jectivity with definitiveness. Although we might prefer
a single definitive answer, we should be aware there is
commonly a trade-off between many important prop-
erties.

Empirical validation is a necessary part of any science,
but it is still possible to overemphasize its importance.
Other evidence is also required; it must fit with cur-
rent understanding within the research field. This is
not to say that novel experimental results should be
disregarded, it is only to say that it is just one of the
checks and balances. Empirical evidence should lead
to explanation, not stand in its stead. We might take
inspiration from our own algorithms. The view that
learning is a search through hypothesis space suggests
that it is wise to entertain multiple hypotheses. We
are still searching. So, eliminating ideas, or indeed
accepting them, too early is counterproductive.
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4. Possible Criticisms

One criticism of the position I am taking is that it
deals with experiments reported in publications. Ex-
periments are used in a much broader sense by re-
searchers, they are simply not reported in publications.
I argue that some at least would be published if there
was not such a constrained view of what sort of exper-
iments count. One might ask oneself, why would we
value such experiments for our own sake but not to be
shared. Not everything we do, as part of research, is of
general interest, but I suggest that as a field we would
learn more from a greater variety of experiments.

Another criticism of my position is that even if true,
it is limited to classification, a small part of a much
broader research field. I would respond by saying that
classification has been, and continues to be, a mainstay
of machine learning. I would also claim that although
we are more flexible when new types of learning are
explored, I suspect this is largely due to the fact that
we simply haven’t had time to standardize our pro-
cedures. Some might agree with much that I say, but
still claim that this is old news and the community has
moved past this. Certainly, as we have gone beyond
simple classification, to ranking and probabilistic pre-
diction researchers have used multiple measures. But
it seems that the lure of the single measure is just
too strong. As seen at an ROC workshop Ferri et al.
(2004) many researchers are now using the scalar mea-
sure “Area under the ROC curve”, even though this
measure is ineffective for highly skewed classes. My
contention is that, unless we correct these problems,
they will inevitably propagate to other areas.

5. Conclusions

I contend that our current evaluation procedure is an
impoverished realization of a controversial methodol-
ogy. An open and broad approach to experimentation
is normal practice in science and one we should adopt.
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