
T.C. Lethbridge 1998 Software Education Relevance Survey Data 1

The Relevance of Education to Software Practitioners:
Data from the 1998 Survey

University of Ottawa Computer Science Technical Report TR-99-06

July 1999

Timothy C. Lethbridge
School of Information Technology and Engineering

University of Ottawa
Ottawa, Canada, K1N 6N5

tcl@site.uottawa.ca
http://www.site.uottawa.ca/~tcl

Abstract
We present the complete results of our 1998 survey of software practitioners. In this
survey we asked over 200 software developers and managers from around the world what
they thought about 75 educational topics. For each topic, we asked them how much they
had learned about it in their formal education, how much they know now about it and
how important the topic has been in their career. The objective of the survey was to
provide data that can be used to improve the education and training of information
technology workers. The results suggest that some widely taught topics perhaps should
be taught less, while coverage of other topics should be increased.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 2

Table of Contents
Abstract .. 1
Table of Contents.. 2
1. Introduction ..2
2. The Survey Instrument .. 4
3. Knowledge Learned in Formal Education: Question 1... 7

Variability in the Responses to Question 1... 13
Differences Among Subsets of Participants in Answers to Question 1........................ 15

4. Present Knowledge: Question 2... 19
Variability of Responses to Question 2 .. 25
Differences Among Subsets of Participants in Answers to Question 2........................ 26

5. Importance of Topics: Questions 3 and 4... 31
Aggregate Measures of Importance... 31
Importance Compared with Amount Learned and Current Knowledge 36
Importance of The Details: Question 3 .. 39
Variability of Responses to Question 3 .. 42
Influence of Topics: Question 4 ... 43
Variability of Responses to Question 4 .. 45
Comparison of Importance vs. Influence ... 46
Forced Learning: An Alternative Measure of Importance.. 47
Differences Among Subsets of Participants Regarding Overall Importance............... 48

6. On-The-Job Knowledge Change ... 57
7. Needs for Learning and Training... 61
8. Comparisons with the 1997 Survey ... 65
9. Demographics ... 73

Educational Backgrounds ... 73
Geographical Distribution .. 74
Type of Software Developed.. 75
Industry in Which Participants Work... 76
Team Size.. 77
Type of Work Performed ... 78
Experience of Participants .. 79

10. Conclusions... 80
Acknowledgements... 81
References .. 81

1. Introduction
This report presents the complete results of a survey of software practitioners conducted
during the summer and autumn of 1998. The survey was designed to discover what
knowledge is important to the participants, and to better understand their educational and
training needs.

Our motivations for conducting this survey arose from our interactions with software
practitioners and managers: During these interactions, it became clear that the knowledge

T.C. Lethbridge 1998 Software Education Relevance Survey Data 3

they were taught in their formal computing education did not always match the
knowledge they needed to apply to their daily work. At the same time, we were
establishing a new academic program in software engineering, and wanted data to help us
make curriculum decisions.

Our studies of the work practices of software practitioners (Lethbridge and Singer 1998)
have shown us that they spend a great deal of time performing activities oriented around
software design, programming, requirements analysis and testing. They spend
considerable time on-the-job learning about software process issues as well as the details
of specific types of software architectures – topics they had not learned much about in
university. On the other hand, we did not observe practitioners making significant use of
certain material they were taught in university such as much of the mathematics. This
apparent imbalance suggests that university curricula might be improved in order to
better serve the needs of both industry and students. One manager, told us that he would
prefer to hire somebody from a good community college, rather than a university,
because such people were more likely to have the skills he required.

It is currently a good time to study software practice and curricula because a significant
transition is occurring, especially in North America: Traditional programs in computer
science and computer engineering are being joined by programs specializing in software
engineering. It is important for designers and accrediters of such programs, as well as
those who will be licensing the resulting software engineers, to have a full understanding
about what the profession involves. To gain that understanding normal approaches
include reading textbooks and research literature, and also talking to practitioners. From
these sources, one can learn about the many ideas and principles that comprise the state
of the art. However it is very hard to get a view of the relative importance of the various
knowledge areas; for this, one needs a body of data from a systematic survey of
practitioners.

This report covers our second survey of software practitioners. The first was conducted in
1997 (Lethbridge 1998a and 1998b) and served as a pilot study. The 1998 survey
involved substantially better sampling and improved questions. In particular the 1998
survey was a collaborative effort among researchers at various universities in North
America and the UK (for a list of collaborators, see the acknowledgements).

Data in this report can also be found in an on-line spreadsheet (Lethbridge 1999a) and in
articles submitted to IEEE Software (Lethbridge 1999b) and the Journal of Systems and
Software (Lethbridge 1999c). The latter is an abridged version of this report.

Section 2 of this report discusses the survey instrument and how the survey was
conducted. Section 3 focuses on the knowledge learned by the participants in their formal
education, while section 4 looks at their current knowledge. Section 5 then examines how
important the topics were to the participants, while sections 6 and 7 analyse changes in
knowledge over time as well as their education and training needs. Section 8 compares
the 1998 data to the 1997 data. We leave discussion of the demographics of the
participants to the end (Section 9), since it is of secondary importance.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 4

2. The Survey Instrument
The survey was conducted from May to October 1998. Participants were solicited in two
main ways: Members of the research team approached the management of various
companies to have their employees participate; also, requests were sent to various email
lists, postal mail lists (e.g. university computer science and computer engineering alumni)
as well as several Usenet newsgroups. The participation rate on mailing lists was 5%.

Four distinct questions (see Figure 1) were asked about each of 75 topics listed in Table
1. The topics were determined by studying typical university curricula and by including
topics that were suggested by participants in the 1997 survey.

Several versions of the questionnaire were prepared, each with the same topics but in a
different order (this rearrangement was intended to reduce inter-question bias). In
addition, we asked several demographic questions in order to learn about the educational,
geographic and work backgrounds of the participants. Most participants completed the
survey using the Web (see http://www.site.uottawa.ca/~tcl/edrel), however, a paper
version was used by a small percentage of the participants.

The total number of responses was 214. Of these, 212 were complete and contained valid
data. We wanted to achieve a balance of participants from various industries, yet the
distribution of our 212 participants was somewhat biased towards real-time processing
and away from MIS systems or data processing. We thus randomly eliminated a few of
the real-time responses, and arrived at a more balanced sample of 181 participants that
we used for further analysis.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 5

Question 1. How much did you learn about this in
your formal education (e.g. University or College)?

0=Learned nothing at all
1=Became vaguely familiar
2=Leaned the basics
3=Became functional (moderate working

knowledge)
4=Learned a lot
5=Learned in depth; became expert (Learned

almost everything)

Question 2. What is your current knowledge about
this, considering what you have learned on the job
as well as forgotten?

0=Know nothing
1=Am vaguely familiar
2=Know the basics
3=Am functional (moderate working knowledge)
4=Know a lot
5=Know in depth / am expert (Know almost

everything)
Question 3. How useful have the details of this
specific material been to you in your career as a
software developer or software manager? Please
leave blank if you know little about the material.

0=Completely Useless
1=Almost never useful
2=Occasionally useful
3=Moderately useful, but perhaps only in certain

activities
4=Very useful
5=Essential

Question 4. How much influence has learning the
material had on your thinking (i.e. your approach
to problems and your general intellectual maturity),
whether or not you have directly used the details
of the material? Please consider influence on both
your career and other aspects of your life. Please
leave blank if you know little about the material.

0=No influence at all
1=Almost no influence
2=Occasional influence
3=Moderate influence in some activities
4=Significant influence in many activities
5=Profound influence on almost everything I do

Figure 1. The four questions that were asked about each of the 75 topics in
the survey. Bold or underlined words and phrases were designed to ensure
that participants would understand key aspects of each question even if they
read it quickly.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 6

Software Engineering Process
• Analysis and Design Methods

• Configuration and Release Management

• Formal Specification Methods

• Maintenance, Reengineering and Reverse
Engineering

• Performance Measurement and Analysis

• Process standards CMM / ISO 9000 etc

• Project Management

• Requirements Gathering and Analysis

• Software Cost Estimation

• Software Metrics

• Software Reliability and Fault Tolerance

• Testing, Verification and Quality
Assurance

Software Design Core
• Data Structures

• Design of Algorithms

• Human Computer Interaction / User
Interfaces

• Object Oriented Concepts and Technology

• Software Architecture

• Software Design and Patterns

• Specific Programming Languages

Software Subsystem Design
• Databases

• File Management

• Parsing and Compiler Design

Other Software
• Artificial Intelligence

• Computational Methods for Numerical
Problems

• Computer Graphics

• Information Retrieval

• Pattern Recognition and Image Processing

• Security and Cryptography

• Simulation

Computer
Engineering Software
Topics
• Data Transmission and

Networks

• Operating Systems

• Parallel and Distributed
Processing

• Real-Time System Design

• Systems Programming

Computer Science
Theoretical Topics
• Computational Complexity

and Algorithm Analysis

• Programming Language
Theory

Mathematical Topics
Widely Used in
Computer Science
• Automata theory

• Control Theory

• Formal Languages

• Graph Theory

• Information Theory

• Predicate Logic

• Queuing Theory

• Set Theory

Other Mathematics
• Combinatorics

• Differential and Integral
Calculus

• Differential Equations

• Laplace and Fourier
Transforms

• Linear Algebra and
Matrices

• Probability and Statistics

Computer Engineering
Hardware Topics
• Computer System Architecture

• Digital Electronics and Digital
Logic

• Microprocessor Architecture

• Network Architecture and
Data Transmission

• Telephony and
Telecommunications

Other Hardware
• Analog Electronics

• Data Acquisition

• Digital Signal Processing

• Robotics

• VLSI

Basic Science
• Chemistry

• Physics

Business
• Accounting

• Economics

• Entrepreneurship

• Management

• Marketing

Humanities & Skills
• Ethics and Professionalism

• Giving Presentations to an
Audience

• Leadership

• Negotiation

• Philosophy

• Psychology

• Second Language Other than
English as Second Language

• Technical Writing

Table 1: The 75 topics in the survey, arranged in categories; alphabetically
within each category.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 7

3. Knowledge Learned in Formal Education: Question 1
In this section, we discuss the answers to question 1: In Tables 2 and 3, we present the
topics about which participants said they learned most and least respectively. The same
data is graphically presented in Figures 2 and 3.

Three separate metrics are presented about each topic:
• The mean score given to each topic in question 1 (Tables 2 and 3 are sorted by this

criterion);
• The percentage of participants who gave each topic a score of 4 or 5 (they learned a

lot about the topic, or learned it in depth);
• The percentage of participants who gave the topic a score of at least 2 (they learned

the basics or more).

Some interesting observations are as follows:

• Five of the top 8 topics are from the mathematics category. We will see in section 5
that this contrasts starkly with data from the questions about importance of topics.

• Participants did not in general think they became experts during their formal
education. In fact, Calculus was the only topic for which more than half of the
participants thought they had become expert.

• There are only 13 topics about which over 66% of the participants had become
basically familiar during their education. These topics might be considered as the core
of current educational programs.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 8

Rank Topic Mean
of Q1

%
rating
4 or 5

%
rating
> 1

n Std.
Dev.

Std.
Error

1 Specific Programming Languages 3.2 44% 89% 178 0.10 1.36
2 Differential and Integ. Calculus 3.2 52% 89% 176 0.11 1.41
3 Linear Algebra and Matrices 3.1 45% 85% 179 0.11 1.43
4 Probability and Statistics 2.9 34% 87% 179 0.09 1.25
5 Data Structures 2.9 42% 78% 178 0.12 1.55
6 Physics 2.7 31% 82% 173 0.11 1.42
7 Differential Equations 2.7 30% 79% 177 0.11 1.44
8 Set Theory 2.5 29% 75% 175 0.12 1.52
9 Design of Algorithms 2.3 26% 68% 177 0.12 1.54
10 Operating Systems 2.3 20% 71% 178 0.11 1.49
11 Computer System Architecture 2.2 28% 63% 179 0.12 1.65
12 Programming Lang. Theory 2.2 19% 68% 172 0.11 1.5
13 Predicate Logic 2.2 25% 65% 173 0.13 1.64
14 Chemistry 2.2 14% 70% 172 0.11 1.4
15 Comp. Meth. for Numeric Probs. 2.2 18% 67% 177 0.11 1.5
16 Formal Languages 2.2 29% 63% 171 0.13 1.66
17 Dig. Electronics & Dig. Logic 2.1 25% 59% 172 0.13 1.7
18 Comp. Complex. & Alg. Analysis 2.1 25% 59% 175 0.13 1.65
19 Software Architecture 2.0 17% 59% 175 0.12 1.54
20 Microprocessor Architecture 1.9 19% 56% 172 0.12 1.59
21 File Management 1.9 16% 57% 173 0.11 1.48
22 Databases 1.9 18% 56% 179 0.12 1.58
23 Graph Theory 1.9 20% 56% 174 0.12 1.55
24 Analysis and Design Methods 1.9 13% 57% 176 0.12 1.52
25 Second Lang. Other than English 1.8 15% 57% 173 0.12 1.61

Table 2: Topics about which participants had learned most in their formal
education: The topics ranked 1 to 25 according to the means of question 1.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 9

Rank Topic Mean
of Q1

%
rating
4 or 5

%
rating
> 1

n Std.
Dev.

Std.
Error

51 Simulation 1.2 7% 38% 175 0.11 1.43
52 Parallel and Distributed Proc. 1.2 11% 36% 174 0.11 1.44
53 Project Management 1.2 8% 37% 177 0.11 1.48
54 Management 1.2 6% 37% 172 0.10 1.36
55 HCI / User Interfaces 1.1 4% 35% 178 0.10 1.35
56 Psychology 1.1 3% 36% 171 0.10 1.27
57 SW Reliability & Fault Tolerance 1.0 5% 29% 174 0.10 1.28
58 Digital Signal Processing 1.0 10% 31% 167 0.11 1.42
59 Telephony and Telecom. 1.0 6% 31% 173 0.10 1.33
60 Accounting 1.0 6% 33% 168 0.10 1.33
61 Real-Time System Design 1.0 6% 30% 175 0.10 1.34
62 Pattern Recog. and Image Proc. 0.9 8% 26% 174 0.10 1.38
63 Leadership 0.8 3% 26% 174 0.09 1.22
64 Software Metrics 0.8 5% 24% 177 0.09 1.21
65 Security and Cryptography 0.8 4% 26% 171 0.10 1.29
66 Data Acquisition 0.8 2% 23% 167 0.09 1.17
67 Maint., Reeng. and Rev. Engg. 0.8 3% 21% 177 0.08 1.11
68 Marketing 0.7 4% 20% 171 0.09 1.13
69 VLSI 0.6 4% 17% 166 0.09 1.14
70 Robotics 0.6 5% 19% 167 0.09 1.11
71 Software Cost Estimation 0.6 3% 18% 174 0.08 1.05
72 Config. and Release Mgmt. 0.5 2% 15% 172 0.07 0.96
73 Entrepreneurship 0.5 3% 13% 175 0.08 1.07
74 Process Stds. CMM / ISO 9000 0.5 1% 14% 168 0.07 0.93
75 Negotiation 0.5 1% 14% 173 0.07 0.94

Table 3: Topics about which participants had learned least in their formal
education: The topics ranked 51 to 75 according to the means of question 1.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
pe

ci
fic

 P
ro

gr
am

m
in

g
La

ng
ua

ge
s

D
iff

er
en

tia
l a

nd
 In

te
gr

al
 C

al
cu

lu
s

Li
ne

ar
 A

lg
eb

ra
 a

nd
 M

at
ric

es

P
ro

b
a

b
ili

ty
 a

n
d

 S
ta

tis
tic

s

D
at

a
S

tr
uc

tu
re

s

P
h

ys
ic

s

D
iff

er
en

tia
l E

qu
at

io
ns

S
et

 T
he

or
y

D
e

si
g

n
 o

f
A

lg
o

ri
th

m
s

O
p

e
ra

tin
g

 S
ys

te
m

s

C
om

pu
te

r
S

ys
te

m
 A

rc
hi

te
ct

ur
e

P
ro

gr
am

m
in

g
La

ng
ua

ge
 T

he
or

y

P
re

di
ca

te
 L

og
ic

C
h

e
m

is
tr

y

C
om

pu
ta

tio
na

l M
et

ho
ds

 f
or

 N
um

er
ic

al
 P

ro
bl

em
s

F
or

m
al

 L
an

gu
ag

es

D
ig

ita
l E

le
ct

ro
ni

cs
 a

nd
 D

ig
ita

l L
og

ic

C
o

m
p

u
ta

tio
n

a
l C

o
m

p
le

xi
ty

 a
n

d
 A

lg
o

ri
th

m
 A

n
a

ly
si

s

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

M
ic

ro
pr

oc
es

so
r

A
rc

hi
te

ct
ur

e

F
ile

 M
an

ag
em

en
t

D
at

ab
as

es

G
ra

ph
 T

he
or

y

A
na

ly
si

s
an

d
D

es
ig

n
M

et
ho

ds

S
ec

on
d

La
ng

ua
ge

 O
th

er
 th

an
 E

ng
lis

h
as

 S
ec

on
d

La
ng

ua
ge

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Amount Known (0 to 5)
% Familiar
% Mastered

Figure 2: Graph of the three learning metrics for the top 25 topics.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
im

u
la

tio
n

P
ar

al
le

l a
nd

 D
is

tr
ib

ut
ed

 P
ro

ce
ss

in
g

P
ro

je
ct

 M
an

ag
em

en
t

M
an

ag
em

en
t

H
um

an
 C

om
pu

te
r

In
te

ra
ct

io
n

/ U
se

r
In

te
rf

ac
es

P
sy

ch
o

lo
g

y

S
of

tw
ar

e
R

el
ia

bi
lit

y
an

d
F

au
lt

T
ol

er
an

ce

D
ig

ita
l S

ig
n

a
l P

ro
ce

ss
in

g

T
el

ep
ho

ny
 a

nd
 T

el
ec

om
m

un
ic

at
io

ns

A
cc

ou
nt

in
g

R
e

a
l-

T
im

e
 S

ys
te

m
 D

e
si

g
n

P
at

te
rn

 R
ec

og
ni

tio
n

an
d

Im
ag

e
P

ro
ce

ss
in

g

Le
ad

er
sh

ip

S
of

tw
ar

e
M

et
ric

s

S
ec

ur
ity

 a
nd

 C
ry

pt
og

ra
ph

y

D
at

a
A

cq
ui

si
tio

n

M
ai

nt
en

an
ce

, R
ee

ng
in

ee
rin

g
an

d
R

ev
er

se
 E

ng
in

ee
rin

g

M
ar

ke
tin

g

V
L

S
I

R
o

b
o

tic
s

S
o

ft
w

a
re

 C
o

st
 E

st
im

a
tio

n

C
on

fig
ur

at
io

n
an

d
R

el
ea

se
 M

an
ag

em
en

t

E
nt

re
pr

en
eu

rs
hi

p

P
ro

ce
ss

 s
ta

nd
ar

ds
 C

M
M

 /
IS

O
 9

00
0

et
c

N
eg

ot
ia

tio
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Amount Known (0 to 5)
% Familiar
% Mastered

Figure 3: Graph of the three learning metrics for the bottom 25 topics.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 11

Table 4 gives the mean scores given to question 1 for each of the categories of topics (see
figure 1 for a list of categories).

These figures are only marginally useful because, for example, a few highly-learned
software topics are averaged with many software topics that are normally taught as
electives, if at all. Nevertheless it is interesting to note that mathematics appears to be the
most taught category, while software engineering process is tied with business as the least
taught category.

Subject Amount learned
All 75 topics 1.6
General mathematics (14 topics) 2.1
Computer science theory (10 software & math) 1.9
Software (all 36 topics) 1.5
Software design (10 topics) 2.0
Software engineering process (12 topics) 1.0
Specialized software techniques (10 topics) 1.4
Computer engineering (10 topics) 1.7
Hardware (10 topics) 1.3
Non-computing, non-math (15 topics) 1.3
Business (5 topics) 1.0

Table 4: Average learning for the categories of topics. Mean answers to
question 1 (see Figure 1).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 12

Tables 5 and 6 provide top-10 rankings of those topics in which people became experts,
or minimally familiar, respectively during their education. These tables highlight some of
the data found in columns 4 and 5 of Table 2.

Rank Topic % Expert
1 Differential and Integral Calculus 52%
2 Linear Algebra and Matrices 45%
3 Specific Programming Languages 44%
4 Data Structures 42%
5 Probability and Statistics 34%
6 Physics 31%
7 Differential Equations 30%
8 Formal Languages 29%
9 Set Theory 29%
10 Programming Language Theory 28%

Table 5: Top 10 topics in terms of the percentage of people who became
experts (scored question 1 with 4 or 5) during their education. See Figure 1
for the test of question 1.

Rank Topic % Familiar
1 Specific Programming Languages 89%
2 Differential and Integral Calculus 89%
3 Probability and Statistics 87%
4 Linear Algebra and Matrices 85%
5 Physics 82%
6 Differential Equations 79%
7 Data Structures 78%
8 Set Theory 75%
9 Operating Systems 71%
10 Chemistry 70%

Table 6: Top 10 topics in terms of the percentage of people who became
minimally familiar with each topic (scored question 1 with 2 or above) during
their education. See Figure 1 for the test of question 1.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 13

Variability in the Responses to Question 1

Tables 7 and 8 provide information about the variability of the responses to question 1.

Table 7 shows bipolarity, which is the tendency for there to be two distinct peaks in the
data. Bipolarity is a measure of the depth and width of valleys between any two peaks in
the histogram for a topic; a monotonically increasing or decreasing histogram would have
a bipolarity of 0, as would a histogram with just one peak. Bipolarity reaches a maximum
value of 100 if all the responses are evenly distributed between the two extreme buckets
of the histogram (buckets 0 and 5 in our case). The formula for bipolarity is:

 bipolarity

valley(,)

=

















− −

= +=

−

−

∑∑
100

2

2

1

21

2

3

j i

j i

h

i

h

h

i j

n
(eq. 1)

where:

 n is the total number of participants responding to the question (the sum of all the
buckets in the histogram)

 h is the number of buckets in the histogram (in our case 6)

valley(,)

intermax(,) intermax(,)

intermin(,), intermin(,)

i j

n i j n i j

n i j n i j

i j

i j

=
∧

− − 
 if > >

 then

 else 0

(eq.2)

 intermax(,)i j k
k i

j

n=
= +

−

 
1

1

(eq.3)

 inter min(,)i j k
k i

j

n=
= +

−

 
1

1

(eq.4)

 ni is the number of responses in the ith bucket of the histogram.

The data show that the strongest bipolarity occurs in formal languages. This indicates that
students either learned a considerable amount about this topic or else almost nothing –
there were few people who responded with intermediate scores. In general the bipolar
topics tend to be ones that are normally elective (e.g. second languages), or else are
compulsory in certain programs but not others (e.g. formal languages, predicate logic,
combinatorics, etc.).

Knowing that a topic has high bipolarity can be useful:

T.C. Lethbridge 1998 Software Education Relevance Survey Data 14

• To those hiring people needing certain knowledge, so they do not assume that all
applicants have the knowledge.

• To curriculum designers, so that they can be aware of strong differences of opinion
about what might be included in a program.

The standard deviation figures given in Table 8 provide further information about the
variability of the data. However, unlike bipolarity, a high standard deviation does not
necessarily point to systematic and sharp differences in the types of education received.
For example, there was a wide variability in the amount participants learned about
automata, digital electronics and parsing; however, none of these topics showed bipolar
distributions.

Rank Topic Bipolarity
1 Formal Languages 20.6
2 Second Language Other than English 10.1
3 Predicate Logic 9.1
4 Combinatorics 9.0
5 Technical Writing 8.4
6 Analysis and Design Methods 8.2
7 Computational Methods for Numerical Problems 7.8
8 Chemistry 7.5
9 Operating Systems 6.6
10 Network Architecture & Data Transmission 6.5

Table 7: The 10 topics with the most pronounced bipolar distributions,
suggesting the presence of distinctly different types of education.

Rank Topic Standard Deviation
1 Automata theory 1.70
2 Digital Electronics & Digital Logic 1.70
3 Parsing and Compiler Design 1.67
4 Laplace and Fourier Transforms 1.67
5 Formal Languages 1.66
6 Computational Complexity & Algorithm Analysis 1.65
7 Programming Language Theory 1.65
8 Predicate Logic 1.64
9 Combinatorics 1.63
10 Second Language Other than English 1.61

Table 8: The 10 topics with the most pronounced standard deviations of
amount learned, indicating wide variability in education.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 15

Differences Among Subsets of Participants in Answers to Question 1
Tables 9 and 10 compare the education of those who graduated in the four years prior to
1998 (junior participants) with that of those who graduated prior to 1976 (experts).

The expert participants had learned more about non-computing topics, while the junior
participants learned more about computing topics, particularly those, such as object
oriented technology, that have only become widely known in recent years.

Rank Topic % Increase
for juniors

Junior
learning

Expert
learning

1 Object Oriented Concepts & Tech. 256% 2.4 0.7
2 Parallel and Distributed Proc. 161% 2.0 0.8
3 SW Reliability & Fault Tolerance 154% 1.5 0.6
4 Software Cost Estimation 154% 1.0 0.4
5 Computer Graphics 141% 2.0 0.8
6 HCI / User Interfaces 141% 1.6 0.7
7 Software Metrics 135% 1.3 0.5
8 Pattern Recognition and Image Proc. 131% 1.4 0.6
9 Digital Signal Processing 121% 1.4 0.6
10 Config. and Release Management 108% 0.8 0.4
11 Artificial Intelligence 100% 1.7 0.8
12 Data Transmission and Networks 98% 2.6 1.3
13 Process Stds. CMM / ISO 9000 94% 0.6 0.3
14 Network Arch. & Data Trans. 94% 2.4 1.2
15 Project Management 92% 1.7 0.9

Table 9: Topics which those graduating in the last four years (junior
participants) learned more thoroughly in their formal education as opposed
to those graduating 12 or more years ago (expert participants).

Rank Topic % Decrease for
juniors

Junior
learning

Expert
learning

1 Psychology -42% 0.7 1.2
2 Marketing -41% 0.4 0.8
3 Accounting -38% 0.7 1.1
4 Economics -30% 1.4 1.9
5 Philosophy -29% 1.0 1.4
6 Second Lang. Other than English -19% 1.5 1.8
7 Analog Electronics -15% 1.1 1.3
8 Set Theory -7% 2.4 2.6

Table 10: Topics which junior participants learned less about in their formal
education than did expert participants

T.C. Lethbridge 1998 Software Education Relevance Survey Data 16

Tables 11 and 12 provide information about how a computer science education differs
from an engineering education, in terms of how much was learned about various topics.
For this analysis, we have grouped together all 49 engineering graduates (including 23
electrical engineers, 12 computer engineers and 17 other engineers). We have also
grouped together into the 106-member ‘CS/SE’ category, the 88 computer science
graduates, the 22 software engineering graduates, and the 10 graduates of information
systems. We performed the calculations at this level of granularity to ensure we had
reasonable sample sizes for the comparison.

There are few surprises in the data: Software topics are clearly learned far more by the
CS/SE graduates, while the engineers learn more about traditional engineering topics
such as electronics and Fourier transforms, as well as physics and chemistry. Engineers
also have more background in such computing-related topics as digital signal processing,
control theory, telecommunications and simulation. It is interesting to note that engineers
have more background in entrepreneurship and also ethics and professionalism than
computer scientists.

Rank Topic % CS/SE
Learned Less

Engineering
Learning

CS/SE
Learning

1 Digital Signal Processing -59% 2.1 0.9
2 Analog Electronics -54% 2.5 1.1
3 Control Theory -50% 2.3 1.2
4 Laplace and Fourier Transforms -47% 3.1 1.6
5 VLSI -43% 1.1 0.6
6 Telephony and Telecom. -36% 1.7 1.1
7 Entrepreneurship -35% 0.7 0.4
8 Simulation -31% 1.8 1.2
9 Physics -25% 3.5 2.6
10 Differential Equations -24% 3.4 2.6
11 Dig. Electronics & Dig. Logic -22% 3.0 2.3
12 Ethics and Professionalism -21% 1.4 1.1
13 Data Acquisition -20% 1.1 0.9
14 Chemistry -18% 2.7 2.2
15 Robotics -17% 0.9 0.7

Table 11: Topics where computer science graduates learned considerably less
than engineering graduates.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 17

Rank Topic % CS/SE
Learned
More

Engineering
Learning

CS/SE
Learning

1 Parsing and Compiler Design 90% 1.3 2.4
2 Process Stds. CMM / ISO 9000 90% 0.3 0.7
3 File Management 80% 1.4 2.5
4 Information Retrieval 79% 0.9 1.7
5 Security and Cryptography 73% 0.6 1.1
6 Programming Language Theory 70% 1.7 2.9
7 Databases 69% 1.5 2.5
8 Systems Programming 65% 1.4 2.2
9 Software Cost Estimation 65% 0.5 0.8
10 Software Architecture 61% 1.6 2.6
11 Operating Systems 49% 2.0 3.0
12 Automata theory 44% 1.5 2.1
13 Design of Algorithms 43% 2.0 2.9
14 Information Theory 39% 1.4 1.9
15 Comput. Complexity & Algor. Analysis 38% 1.8 2.5
16 Artificial Intelligence 37% 1.2 1.7
17 Software Design and Patterns 36% 1.6 2.2
18 Requirements Gathering and Analysis 35% 1.2 1.6
19 Formal Languages 35% 2.0 2.7
20 Analysis and Design Methods 34% 1.7 2.3
21 Data Structures 33% 2.7 3.5
22 Graph Theory 31% 1.7 2.3
23 Project Management 29% 1.1 1.4
24 Parallel and Distributed Processing 28% 1.2 1.5
25 Computer Graphics 28% 1.3 1.6

Table 12: Topics where computer science graduates learned considerably
more than engineering graduates

T.C. Lethbridge 1998 Software Education Relevance Survey Data 18

Table 13 lists the topics for which students with masters or PhD degrees in computer
science had learned considerably more during their education compared with those
having only undergraduate degrees in computer science.

This data might be useful for managers who are attempting to decide whether to look for
applicants with a postgraduate degree, or whether a bachelors degree is sufficient. It is
interesting that Table 13 contains topics such as management and marketing that are not
normally taught as part of CS graduate programs: Perhaps those who are interested in
pursuing graduate degrees were also motivated to learn about these business topics in at
some other time.

Rank Topic % Increase
1 Simulation 31%
2 Pattern Recognition and Image Proc. 25%
3 Second Language Other than English 23%
4 Management 22%
5 Marketing 21%
6 Formal Specification Methods 18%
7 Real-Time System Design 18%
8 Configuration and Release Management 18%
9 Robotics 18%
10 Project Management 18%

Table 13: Topics where graduate students in computer science had learned
considerably more in their formal education than undergraduates.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 19

4. Present Knowledge: Question 2
In this section we move on to examine the answers to question 2 in the survey: The
present knowledge participants have about the topics.

Tables 14 and 15, as well as Figures 4 and 5, give data for the three metrics discussed in
the last section: The mean score, the percent that know the topic very well, and the
percent that know the topic at least minimally. As the figures show, these three metrics
provide very similar information about which topics are better known.

We see that all but three of the 25 most-known topics are related to computing, and the
remaining three are ‘soft’ topics: Giving presentations, technical writing, and ethics and
professionalism.

Specific programming languages and data structures are far out in front of all other topics
in terms of both mean knowledge, and the percentage of those who know them
minimally. These are followed by topics that have to do with design, as well as
supporting technologies such as operating systems and databases.

The bottom 25 topics are courses that were both not extensively taught in university, and
also not significantly used on the job. If a company expects to start a project that requires
any of these topics, then it would do well to find out if employees have sufficient
knowledge and provide training courses as appropriate.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 20

Rank Topic Mean
of Q2

%
rating
4 or 5

%
rating
> 1

n Std.
Dev.

Std.
Error

1 Specific Programming Languages 4.1 78% 97% 179 0.08 1.03
2 Data Structures 3.7 65% 96% 178 0.08 1.12
3 Operating Systems 3.4 46% 96% 179 0.08 1.11
4 Software Design and Patterns 3.4 52% 90% 179 0.10 1.30
5 Software Architecture 3.3 49% 87% 175 0.10 1.36
6 Giving Presentations to an Audience 3.3 50% 89% 172 0.10 1.34
7 Databases 3.2 45% 89% 180 0.09 1.22
8 Object Oriented Concepts & Tech. 3.2 45% 85% 178 0.11 1.41
9 Testing, Verif. & Quality Assurance 3.2 41% 91% 179 0.09 1.18
10 Analysis and Design Methods 3.2 50% 85% 179 0.10 1.33
11 Requirements Gath. & Analysis 3.1 48% 87% 180 0.10 1.37
12 Project Management 3.1 39% 91% 180 0.09 1.25
13 File Management 3.1 45% 84% 176 0.11 1.46
14 Ethics and Professionalism 3.0 38% 84% 173 0.11 1.47
15 Design of Algorithms 3.0 44% 83% 178 0.11 1.46
16 Technical Writing 3.0 41% 85% 172 0.11 1.43
17 Data Transmission and Networks 3.0 39% 87% 179 0.10 1.29
18 Configuration and Release Mgmt. 2.8 34% 79% 174 0.11 1.50
19 HCI / User Interfaces 2.8 30% 81% 179 0.10 1.39
20 Programming Language Theory 2.7 33% 77% 180 0.11 1.48
21 Computer System Architecture 2.7 31% 79% 173 0.11 1.45
22 Performance Meas. & Analysis 2.6 28% 79% 180 0.11 1.43
23 Maintenance, Reeng. and Rev. Engg. 2.6 33% 79% 180 0.11 1.42
24 Network Architecture & Data Trans. 2.6 27% 77% 173 0.11 1.41
25 Systems Programming 2.5 36% 68% 174 0.13 1.67

Table 14: Topics about which participants currently know most. The topics
ranked 1 to 25 according to the means of question 2. See Figure 1 for the text
of question 2.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 21

Rank Topic Mean
of Q2

%
rating
4 or 5

%
rating
> 1

n Std.
Dev.

Std.
Error

51 Security and Cryptography 2.0 12% 62% 178 0.11 1.45
52 Predicate Logic 1.9 18% 55% 173 0.12 1.55
53 Telephony and Telecommunications 1.9 14% 57% 168 0.12 1.53
54 Second Language Other than English 1.8 14% 54% 171 0.12 1.56
55 Philosophy 1.7 10% 52% 169 0.11 1.42
56 Graph Theory 1.7 11% 51% 176 0.11 1.43
57 Psychology 1.6 9% 50% 170 0.11 1.38
58 Entrepreneurship 1.6 13% 50% 167 0.12 1.53
59 Information Theory 1.6 13% 49% 169 0.11 1.48
60 Queuing Theory 1.6 9% 47% 176 0.11 1.43
61 Differential Equations 1.6 8% 47% 179 0.10 1.30
62 Accounting 1.5 7% 49% 169 0.10 1.34
63 Data Acquisition 1.5 13% 42% 166 0.12 1.60
64 Automata theory 1.5 13% 44% 169 0.12 1.56
65 Chemistry 1.4 4% 47% 171 0.09 1.18
66 Marketing 1.4 9% 42% 168 0.11 1.42
67 Combinatorics 1.4 8% 43% 164 0.11 1.42
68 Artificial Intelligence 1.4 6% 43% 175 0.10 1.29
69 Digital Signal Processing 1.3 10% 36% 165 0.11 1.44
70 Pattern Recognition and Image Proc. 1.3 7% 36% 174 0.11 1.41
71 Laplace and Fourier Transforms 1.2 6% 37% 172 0.10 1.36
72 Analog Electronics 1.2 7% 36% 169 0.11 1.39
73 Control Theory 1.1 5% 34% 173 0.10 1.32
74 Robotics 0.9 4% 27% 167 0.09 1.19
75 VLSI 0.7 4% 20% 165 0.09 1.19

Table 15: Topics about which participants currently know least. The topics
ranked 51 to 75 according to means of question 2. See Figure 1 for the text of
question 2.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 22

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
pe

ci
fic

 P
ro

gr
am

m
in

g
La

ng
ua

ge
s

D
at

a
S

tr
uc

tu
re

s

O
pe

ra
tin

g
S

ys
te

m
s

S
of

tw
ar

e
D

es
ig

n
an

d
P

at
te

rn
s

S
of

tw
ar

e
A

rc
hi

te
ct

ur
e

G
iv

in
g

P
re

se
nt

at
io

ns
 to

 a
n

A
ud

ie
nc

e

D
at

ab
as

es

O
bj

ec
t O

rie
nt

ed
 C

on
ce

pt
s

an
d

T
ec

hn
ol

og
y

T
es

tin
g,

 V
er

ifi
ca

tio
n

an
d

Q
ua

lit
y

A
ss

ur
an

ce

A
na

ly
si

s
an

d
D

es
ig

n
M

et
ho

ds

R
eq

ui
re

m
en

ts
 G

at
he

rin
g

an
d

A
na

ly
si

s

P
ro

je
ct

 M
an

ag
em

en
t

F
ile

 M
an

ag
em

en
t

E
th

ic
s

an
d

P
ro

fe
ss

io
na

lis
m

D
es

ig
n

of
 A

lg
or

ith
m

s

T
ec

hn
ic

al
 W

rit
in

g

D
at

a
T

ra
ns

m
is

si
on

 a
nd

 N
et

w
or

ks

C
on

fig
ur

at
io

n
an

d
R

el
ea

se
 M

an
ag

em
en

t

H
um

an
 C

om
pu

te
r

In
te

ra
ct

io
n

/ U
se

r
In

te
rf

ac
es

P
ro

gr
am

m
in

g
La

ng
ua

ge
 T

he
or

y

C
om

pu
te

r
S

ys
te

m
 A

rc
hi

te
ct

ur
e

P
er

fo
rm

an
ce

 M
ea

su
re

m
en

t a
nd

 A
na

ly
si

s

M
ai

nt
en

an
ce

, R
ee

ng
in

ee
rin

g
an

d
R

ev
er

se
 E

ng
in

ee
rin

g

N
et

w
or

k
A

rc
hi

te
ct

ur
e

an
d

D
at

a
T

ra
ns

m
is

si
on

S
ys

te
m

s
P

ro
g

ra
m

m
in

g
 0%

20%

40%

60%

80%

100%

120%

Amount Known (0 to 5)
% Familiar
% Mastered

Figure 4: Graph of the three knowledge metrics for the top 25 topics.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
ec

ur
ity

 a
nd

 C
ry

pt
og

ra
ph

y

P
re

di
ca

te
 L

og
ic

T
el

ep
ho

ny
 a

nd
 T

el
ec

om
m

un
ic

at
io

ns

S
ec

on
d

La
ng

ua
ge

 O
th

er
 th

an
 E

ng
lis

h
as

 S
ec

on
d

La
ng

ua
ge

P
h

ilo
so

p
h

y

G
ra

ph
 T

he
or

y

P
sy

ch
o

lo
g

y

E
nt

re
pr

en
eu

rs
hi

p

In
fo

rm
at

io
n

T
he

or
y

Q
ue

ui
ng

 th
eo

ry

D
iff

er
en

tia
l E

qu
at

io
ns

A
cc

ou
nt

in
g

D
at

a
A

cq
ui

si
tio

n

A
ut

om
at

a
th

eo
ry

C
h

e
m

is
tr

y

M
ar

ke
tin

g

C
o

m
b

in
a

to
ri

cs

A
rt

ifi
ci

al
 In

te
lli

ge
nc

e

D
ig

ita
l S

ig
n

a
l P

ro
ce

ss
in

g

P
at

te
rn

 R
ec

og
ni

tio
n

an
d

Im
ag

e
P

ro
ce

ss
in

g

La
pl

ac
e

an
d

F
ou

rie
r

T
ra

ns
fo

rm
s

A
na

lo
g

E
le

ct
ro

ni
cs

C
on

tr
ol

 T
he

or
y

R
o

b
o

tic
s

V
LS

I

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Amount Known (0 to 5)
% Familiar
% Mastered

Figure 5: Graph of the knowledge metrics for the bottom 25 topics.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 23

Table 16 shows the mean answers to question 2 for the categories of topics presented in
Table 1.

Category Amount known
All 75 topics 2.2
General mathematics (14 topics) 1.7
Computer science theory (10 software & math) 1.8
Software (all 36 topics) 2.6
Software design (10 topics) 3.2
Software engineering process (12 topics) 2.7
Specialized software techniques (10 topics) 2.1
Computer engineering (10 topics) 2.5
Hardware (10 topics) 1.7
Non-computing, non-math (15 topics) 2.1
Business (5 topics) 1.8

Table 16: Amount known about specific categories of topic.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 24

Tables 17 and 18 highlight data from columns 4 and 5 of Table 14. Many of the same
topics are in these top-ten lists; the most interesting observation is the appearance of
project management near the top of Table 18: Although few people are expert in project
management, almost everybody knows the basics.

Rank Topic % Expert
1 Specific Programming Languages 78%
2 Data Structures 65%
3 Software Design and Patterns 52%
4 Giving Presentations to an Audience 50%
5 Analysis and Design Methods 50%
6 Software Architecture 49%
7 Requirements Gathering & Analysis 48%
8 Operating Systems 46%
9 File Management 45%
10 Databases 45%

Table 17: Topics with the highest percentage of people who are experts.

Rank Topic % Familiar
1 Specific Programming Languages 97%
2 Operating Systems 96%
3 Data Structures 96%
4 Project Management 91%
5 Testing, Verif. & Quality Assurance 91%
6 Software Design and Patterns 90%
7 Databases 89%
8 Giving Presentations to an Audience 89%
9 Software Architecture 87%
10 Requirements Gathering & Analysis 87%

Table 18: Topics with the highest percentage of people who have become
familiar with the topic.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 25

Variability of Responses to Question 2
Table 19 presents those topics where there is the greatest bipolarity in the distribution of
responses to question 2. A definition of bipolarity was given in equation 1 of section 3.

The data suggest that some organizations use metrics while others do not – with few
intermediate cases. Similarly there are sharp differences between those who do cost
estimation, lead projects or perform negotiation, and those who do not. The bipolarity in
real-time knowledge makes sense because of the natural split between real-time software
developers and MIS developers: Differences between these groups will be explored in the
next subsection.

Some of these same differences appear in wide standard deviations of current knowledge,
presented in table 20. Also notable in Table 20 is the wide variation in the amount of
knowledge that participants have about process standards.

Rank Topic Bipolarity Peak 1 Peak 2
1 Software Metrics 11.8 0 3
2 Software Cost Estimation 7.9 0 3
3 Leadership 7.4 0 3
4 Negotiation 6.9 0 3
5 Real-Time System Design 6.8 0 3
6 Queuing Theory 6.1 0 3
7 Data Acquisition 5.8 0 3
8 Parsing and Compiler Design 5.7 0 3
9 Telephony and Telecom. 5.2 0 3
10 Predicate Logic 4.9 0 3
11 Information Retrieval 4.7 0 3
12 Formal Languages 4.5 0 3

Table 19: Topics with the most pronounced bipolar distributions – indicating
systematic differences in the kinds of knowledge needed for work.

Rank Topic Standard Deviation
1 Systems Programming 1.67
2 Process Stds. CMM / ISO 9000 1.65
3 Real-Time System Design 1.63
4 Formal Languages 1.62
5 Data Acquisition 1.60
6 Software Metrics 1.59
7 Parsing and Compiler Design 1.59
8 Information Retrieval 1.58

Table 20: Topics with the highest standard deviations of knowledge –
indicating wide differences in amounts known.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 26

Differences Among Subsets of Participants in Answers to Question 2
This section looks at differences in responses to question 2 from various demographic
subsets. See section 9 for details of the demographic groups themselves.

Table 21 and 22 compare the knowledge of Real-Time and MIS developers. There are
relatively few surprises: Real-time developers know more about real-time design, as well
as related topics such as control theory, digital signal processing, systems programming
and electronics. Interestingly, they also know more about process standards and software
metrics; this is likely because organizations developing real-time software have greater
requirements for reliability, and the software often is more complex.

As expected, MIS participants know more about business topics, information retrieval
and databases. However, the number of topics where they beat real-time developers is
relatively few, suggesting that real-time developers are more knowledgeable overall.

Rank Topic %
Increase

Know-
ledge of
real time
particip-
ants

Know-
ledge
of
whole
sample

Absolute
difference

1 Control Theory 37% 1.5 1.1 0.4
2 Real-Time System Design 35% 2.8 2.1 0.7
3 Digital Signal Processing 34% 1.7 1.3 0.4
4 Data Acquisition 29% 1.9 1.5 0.4
5 Robotics 29% 1.1 0.9 0.3
6 Process Stds. CMM / ISO 9000 29% 2.7 2.1 0.6
7 VLSI 21% 0.9 0.7 0.1
8 Analog Electronics 21% 1.5 1.2 0.3
9 Simulation 20% 2.3 2.0 0.4
10 Laplace and Fourier Transforms 20% 1.5 1.2 0.2
11 Microprocessor Architecture 19% 2.7 2.2 0.4
12 Digital Electronics & Digital Logic 19% 2.5 2.1 0.4
13 Software Metrics 17% 2.5 2.1 0.4
14 SW Reliability & Fault Tolerance 15% 2.9 2.5 0.4
15 Systems Programming 13% 2.9 2.5 0.3
16 Computer System Architecture 13% 3.0 2.7 0.4
17 Queuing Theory 13% 1.8 1.6 0.2
18 Software Cost Estimation 13% 2.4 2.2 0.3
19 Automata theory 12% 1.6 1.5 0.2
20 Technical Writing 12% 3.3 3.0 0.3

Table 21: Topics with the greatest relative difference in amount known
between real-time developers and the whole sample.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 27

Rank Topic %
Increase

Know-
ledge of
MIS
particip-
ants

Know-
ledge
of
whole
sample

Absolute
difference

1 Marketing 21% 1.6 1.4 0.3
2 Accounting 19% 1.8 1.5 0.3
3 Psychology 16% 1.9 1.6 0.3
4 Security and Cryptography 14% 2.2 2.0 0.3
5 Information Retrieval 11% 2.6 2.3 0.3
6 Entrepreneurship 10% 1.8 1.6 0.2
7 Databases 10% 3.5 3.2 0.3

Table 22: Topics with the greatest relative difference in amount known
between MIS developers and the whole sample.

Tables 23 and 24 compare the current knowledge of junior and expert participants. As
might be anticipated, the expert participants have a much longer list of topics in which
their knowledge is superior – the list is also very diverse.

Junior participants continue to know more about object-oriented technology (see also
Table 9) and a few other topics that are still relatively fresh in their minds from their
education (graph theory, predicate logic etc.).

Rank Topic %
Increase

Know-
ledge of
junior
particip-
ants

Know-
ledge
of
whole
sample

Absolute
difference

1 Graph Theory 13% 1.9 1.7 0.2
2 Object Oriented Concepts & Tech. 12% 3.6 3.2 0.4
3 Combinatorics 8% 1.5 1.4 0.1
4 Predicate Logic 8% 2.0 1.9 0.1
5 Linear Algebra and Matrices 7% 2.4 2.3 0.2
6 Programming Language Theory 5% 2.8 2.7 0.1
7 Computer Graphics 5% 2.1 2.0 0.1

Table 23: Topics that junior participants (up to 4 years experience) know
better than the whole sample.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 28

Rank Topic %
Increase

Know-
ledge of
expert
particip-
ants

Know-
ledge
of
whole
sample

Absolute
difference

1 Data Acquisition 28% 1.9 1.5 0.4
2 Real-Time System Design 25% 2.6 2.1 0.5
3 Software Cost Estimation 24% 2.7 2.2 0.5
4 Robotics 24% 1.1 0.9 0.2
5 Analog Electronics 21% 1.4 1.2 0.2
6 Software Metrics 19% 2.5 2.1 0.4
7 Psychology 16% 1.9 1.6 0.3
8 Economics 16% 2.3 2.0 0.3
9 Simulation 15% 2.3 2.0 0.3
10 Accounting 15% 1.7 1.5 0.2
11 Maint., Reeng. and Reverse Engg. 15% 3.0 2.6 0.4
12 Process Stds. CMM / ISO 9000 13% 2.4 2.1 0.3
13 Management 13% 2.8 2.5 0.3
14 Negotiation 13% 2.3 2.0 0.3
15 Digital Signal Processing 12% 1.5 1.3 0.2
16 VLSI 12% 0.8 0.7 0.1
17 Philosophy 12% 1.9 1.7 0.2
18 Configuration and Release Mgmt. 12% 3.2 2.8 0.3
19 Marketing 11% 1.5 1.4 0.2
20 Systems Programming 11% 2.8 2.5 0.3
21 Laplace and Fourier Transforms 11% 1.4 1.2 0.1
22 Microprocessor Architecture 10% 2.5 2.2 0.2
23 SW Reliability & Fault Tolerance 10% 2.8 2.5 0.2
24 Telephony and Telecom. 10% 2.0 1.9 0.2

Table 24: Topics that expert participants (12 or more years experience) know
better than the whole sample.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 29

Table 25 examines the current knowledge of managers (those 37 participants who spend
25% or more of their time performing management tasks), comparing it to the
participants at large. Not surprisingly, ‘management’ itself is near the top of the list. Of
the top 17 topics, all but two are very clearly management-related topics.

The table can provide guidance to those who desire to become managers: Among ‘soft’
topics, they should clearly study negotiation, marketing, psychology and leadership. They
should also study process standards and software metrics.

Rank Topic %
Increase

Know-
ledge of
managers

Know-
ledge
of
whole
sample

Absolute
difference

1 Negotiation 50% 3.0 2.0 1.0
2 Management 48% 3.6 2.5 1.2
3 Marketing 42% 1.9 1.4 0.6
4 Process Stds. CMM / ISO 9000 40% 2.9 2.1 0.8
5 Psychology 38% 2.2 1.6 0.6
6 Software Metrics 37% 2.9 2.1 0.8
7 Leadership 35% 3.4 2.5 0.9
8 Project Management 32% 4.1 3.1 1.0
9 Software Cost Estimation 31% 2.8 2.2 0.7
10 Accounting 29% 2.0 1.5 0.4
11 Entrepreneurship 27% 2.1 1.6 0.4
12 Ethics and Professionalism 21% 3.6 3.0 0.6
13 Queuing Theory 21% 1.9 1.6 0.3
14 Requirements Gath. & Analysis 20% 3.8 3.1 0.6
15 Giving Presentations to Audience 19% 3.9 3.3 0.6
16 Information Theory 19% 1.9 1.6 0.3
17 Configuration and Release Mgmt. 18% 3.3 2.8 0.5
18 Real-Time System Design 18% 2.5 2.1 0.4
19 Testing, Verif. & Qual. Assurance 18% 3.8 3.2 0.6
20 Artificial Intelligence 17% 1.6 1.4 0.2
21 Data Acquisition 15% 1.7 1.5 0.2
22 Formal Languages 14% 2.3 2.1 0.3
23 Formal Specification Methods 14% 2.6 2.3 0.3
24 Parallel and Distributed Proc. 13% 2.4 2.1 0.3
25 Network Arch. & Data Trans. 12% 2.9 2.6 0.3
26 Digital Signal Processing 12% 1.5 1.3 0.2
27 Security and Cryptography 12% 2.2 2.0 0.2
28 Pattern Recog. and Image Proc. 12% 1.4 1.3 0.1
29 Technical Writing 12% 3.3 3.0 0.3

Table 25: Topics that managers know better than the whole sample.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 30

Tables 26 and 27 compare the knowledge of programmers with that of the rest of the
participants. Programmers are defined as those 102 participants who spend 25% or more
of their time programming.

As expected programmers know more about core programming topics such as algorithm
design, programming languages, object technology and parsing. However, they know less
about certain other topics that probably should be important to a programmer: Process
standards, metrics, cost estimation and requirements.

Rank Topic %
Increase

Knowledge
of pro-
grammers

Know-
ledge of
whole
sample

Absolute
dif-
ference

1 Design of Algorithms 10% 3.3 3.0 0.3
2 Object Oriented Concepts & Tech. 9% 3.5 3.2 0.3
3 Specific Programming Languages 8% 4.4 4.1 0.3
4 Parsing and Compiler Design 8% 2.1 2.0 0.2
5 Combinatorics 8% 1.5 1.4 0.1

Table 26: Topics that programmers know better than the whole sample.

Rank Topic % In-
crease

Knowledge
of pro-
grammers

Know-
ledge of
whole
sample

Absolute
dif-
ference

1 Process Stds. CMM / ISO 9000 -23% 1.6 2.1 -0.5
2 Management -22% 1.9 2.5 -0.5
3 Robotics -21% 0.7 0.9 -0.2
4 Leadership -19% 2.1 2.5 -0.5
5 Negotiation -17% 1.7 2.0 -0.3
6 Software Metrics -16% 1.8 2.1 -0.3
7 Data Acquisition -15% 1.2 1.5 -0.2
8 Control Theory -15% 0.9 1.1 -0.2
9 Software Cost Estimation -15% 1.8 2.2 -0.3
10 Project Management -13% 2.7 3.1 -0.4
11 Giving Presentations to Audience -12% 2.9 3.3 -0.4
12 Marketing -12% 1.2 1.4 -0.2
13 Entrepreneurship -12% 1.4 1.6 -0.2
14 Psychology -11% 1.4 1.6 -0.2
15 Accounting -10% 1.4 1.5 -0.2
16 Requirements Gath. & Analysis -10% 2.8 3.1 -0.3
17 Telephony and Telecom. -10% 1.7 1.9 -0.2
18 Information Theory -10% 1.5 1.6 -0.2

Table 27: Topics that programmers know less about than the whole sample.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 31

5. Importance of Topics: Questions 3 and 4
An important objective of this survey was to determine the topics that software
practitioners find most important to their work. As presented earlier, two distinct
questions were asked about each topic: Question 3 asked about the importance of each
topics’ details, while question 4 asked about how much each topic had influenced the
participant.

In this section, we present several different analysis of the answers to these questions.
Tables 28 to 31 provide rankings of topic importance that combine various analyses.
Tables 32-38 look specifically at question 3; Tables 39-45 look at question 4; Table 46
looks at topics that novices with no education were forced to learn, and the remaining
tables in the section look at how importance differs according to the participant’s
background and job function.

Aggregate Measures of Importance
Table 28, on the next page, provides an aggregate importance ranking. A topic is listed on
Table 28 if it appears in the top ten of any one of seven other importance tables. The
seven tables considered were:

Rankings of the importance participants attributed to the topics’ details:
• Table 32: Mean of question 3.
• Table 33: Percent of people who considered the topic’s details very important (scored

question 3 with 4 or 5).
• Table 34: Percentage of people who considered the topic’s details at least minimally

important (scored question 3 with at least 2).

Rankings of the influence that participants attributed to the topics:
• Table 39: Mean of question 4.
• Table 40: Percent of people who considered the topic to have influenced them very

much (scored question 4 with 4 or 5).
• Table 41: Percent of people who considered the topic to have at least minimally

influenced them (scored question 4 with at least 2).

Forced learning:
• Table 46: Topics that people were forced to learn about when they knew nothing to start

with.

To arrive at the aggregate importance ranking for the topics, we applied the following
formula to each of the top-ten rankings.

 TopicAggrImportance = −∑11 topicRankingtable
table

(eq. 5)

The most interesting observations about table 28 are: a) no math topics appear; b) 14 out
of 17 topics (including the top 5) are software topics; and c) professional topics such as
ethics, technical writing and giving presentations rank very high.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 32

Table: 32 33 34 39 40 41 46
Rank Topic # of

top-
10s

Ag-
gregate
import-
ance

Details
mean

Details
%
import-
ant

Details
minimally
important

Influ-
ence
mean

Influ-
enced %
import-
ant

Influ-
enced
min-
imally

Novice
forced
to learn

(eq. 5) (rank) (rank) (rank) (rank) (rank) (rank) (rank)

1 Data Structures 7 61 2 2 1 4 4 1 2
2 Specific

Programming
Languages

7 59 1 1 2 1 3 9 1

3 Software Design
and Patterns

6 44 3 3 6 2 1 7

4 Requirements
Gath. & Analysis

7 40 5 7 3 6 5 2 9

5 Software
Architecture

6 33 4 6 5 8 6 4

6 Ethics and
Professionalism

4 21 3 2 8 10

7 HCI / User
Interfaces

4 21 7 5 8 3

8 Object Oriented
Concepts & Tech.

6 20 10 10 7 7 6 6

9 Project
Management

4 17 8 4 10 5

10 Analysis and
Design Methods

5 13 9 9 9 10 5

11 Technical
Writing

3 12 7 5 9

12 Giving Presenta-
tions to Audience

2 12 6 4

13 Testing, Verif. &
Qual. Assurance

3 11 8 10 4

14 Operating
Systems

1 8 3

15 Configuration
and Release
Mgmt.

2 6 8 8

16 Databases 1 4 7
17 Design of

Algorithms
2 3 10 9

Table 28: The most important topics, determined by combining the top-10
rankings from various other tables in this section. Each of the 17 topics
appeared in at least one top-10 list. Topics nearest the top of this list
appeared near the top of the other lists.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 33

Another approach to computing overall importance of topics is to simply take the average
of questions 3 and 4. Results of this computation for all 75 topics are presented in tables
29 through 31.

This approach gives similar results to the approach taken for Table 28; topics are only
shifted up and down a very few points in the rankings.

The most interesting data is found near the top of table 29, the most important topics that
every software engineer should presumably know; and near the bottom of table 31, topics
that most software engineers clearly do not need to know.

Rank Topic Overall
Importance

Details
(Q3)

Influence
(Q4)

1 Specific Programming Languages 3.8 4.1 3.5
2 Data Structures 3.6 3.7 3.4
3 Software Design and Patterns 3.5 3.6 3.5
4 Software Architecture 3.4 3.5 3.3
5 Requirements Gathering & Analysis 3.4 3.5 3.3
6 HCI / User Interfaces 3.3 3.3 3.3
7 Object Oriented Concepts & Tech. 3.3 3.3 3.3
8 Ethics and Professionalism 3.3 3.2 3.4
9 Analysis and Design Methods 3.3 3.3 3.3
10 Giving Presentations to an Audience 3.3 3.5 3.1
11 Project Management 3.3 3.4 3.2
12 Testing, Verif. & Quality Assurance 3.2 3.3 3.1
13 Design of Algorithms 3.2 3.3 3.1
14 Technical Writing 3.1 3.4 2.9
15 Operating Systems 3.1 3.3 3.0
16 Databases 3.1 3.3 2.8
17 Leadership 3.0 3.1 3.0
18 Configuration and Release Management 3.0 3.3 2.8
19 Data Transmission and Networks 3.0 3.1 2.8
20 Management 2.9 2.9 2.9
21 File Management 2.8 3.2 2.4
22 Software Reliability & Fault Tolerance 2.8 2.9 2.7
23 Systems Programming 2.8 2.9 2.7
24 Network Architecture & Data Trans. 2.8 2.8 2.7
25 Negotiation 2.8 2.9 2.6

Table 29: The most important 25 topics – based on the average of both
importance of details and influence.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 34

Rank Topic Overall
Importance

Details
(Q3)

Influence
(Q4)

26 Performance Measurement & Analysis 2.7 2.8 2.6
27 Maintenance, Reeng. and Rev. Engg. 2.7 2.8 2.6
28 Programming Language Theory 2.7 2.7 2.7
29 Computer System Architecture 2.7 2.7 2.6
30 Comput. Complexity & Algor. Analysis 2.6 2.6 2.6
31 Probability and Statistics 2.6 2.4 2.7
32 Software Cost Estimation 2.6 2.7 2.4
33 Real-Time System Design 2.5 2.6 2.5
34 Information Retrieval 2.5 2.7 2.3
35 Software Metrics 2.5 2.6 2.4
36 Formal Languages 2.4 2.4 2.4
37 Formal Specification Methods 2.4 2.4 2.4
38 Process Standards CMM / ISO 9000 2.4 2.4 2.4
39 Predicate Logic 2.4 2.2 2.5
40 Entrepreneurship 2.4 2.2 2.5
41 Simulation 2.3 2.4 2.3
42 Security and Cryptography 2.3 2.2 2.4
43 Telephony and Telecommunications 2.3 2.3 2.3
44 Parsing and Compiler Design 2.3 2.3 2.3
45 Parallel and Distributed Processing 2.3 2.3 2.3
46 Microprocessor Architecture 2.2 2.2 2.3
47 Digital Electronics & Digital Logic 2.2 2.1 2.3
48 Set Theory 2.2 2.2 2.2
49 Automata theory 2.1 2.0 2.3
50 Data Acquisition 2.1 2.2 2.0

Table 30: The middle 25 topics in terms of importance – based on the average
of both importance of details and influence. Continuation of Table 29.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 35

Rank Topic Overall
Importance

Details
(Q3)

Influence
(Q4)

51 Marketing 2.1 2.0 2.3
52 Comput. Methods for Numeric Probs. 2.1 2.2 2.0
53 Psychology 2.1 2.0 2.2
54 Accounting 2.1 2.1 2.1
55 Economics 2.1 1.8 2.3
56 Linear Algebra and Matrices 2.0 2.0 2.1
57 Philosophy 2.0 1.5 2.5
58 Second Language Other than English 2.0 1.9 2.1
59 Physics 2.0 1.6 2.3
60 Information Theory 2.0 1.9 2.0
61 Graph Theory 2.0 2.0 1.9
62 Queuing Theory 1.9 2.1 1.8
63 Computer Graphics 1.9 1.9 1.8
64 Digital Signal Processing 1.8 1.7 1.8
65 Control Theory 1.7 1.6 1.8
66 Pattern Recognition and Image Proc. 1.6 1.6 1.7
67 Differential and Integral Calculus 1.6 1.3 1.9
68 Combinatorics 1.6 1.5 1.6
69 Artificial Intelligence 1.5 1.3 1.8
70 Analog Electronics 1.5 1.4 1.7
71 Laplace and Fourier Transforms 1.3 1.3 1.4
72 Differential Equations 1.3 1.1 1.4
73 Chemistry 1.3 0.9 1.6
74 Robotics 1.3 1.2 1.4
75 VLSI 1.2 1.1 1.3

Table 31: The least important 25 topics – based on the average of both
importance of details and influence. Continuation of Table 30.

 Figure 6. The 25 topics considered most important by participants. The
connected line shows overall importance; boxes represent amount learned
during education; vertical lines represent learning since education. (Shaded
boxes represent computing or engineering topics, unshaded boxes highlight
other topics).

 Figure 7. The 25 intermediate topics in terms of importance (continuation of
Figure 6 using the same notation). Vertical lines extending downward
represent material forgotten following education. Unshaded boxes without a
bold outline highlight theory and mathematics topics.

 Figure 8. The 25 topics considered least important (Continuation of Figures 6
and 7 using the same notation).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 39

Importance of The Details: Question 3
Tables 32 to 38 present the data for the importance of the details, one of the two
components of importance investigated by the survey. In the 1997 survey (see section 8)
we did not separate importance into the two components, however participants informed
us that some topics might have influenced their thinking even though they had little use
for the details and vice-versa.

Table 32 has most of the same topics in the same order as in Table 29 (combined overall
importance), including the top five. It is interesting to note, however, the topics nearest
the top that have risen in the rankings: Giving presentations, technical writing, project
management and operating systems. Three of these are ‘soft skills’. On the other hand
human-computer interaction has fallen somewhat in the rankings: Perhaps this area
teaches awareness of the issues, more than the details.

Rank Topic Importance of
details

Standard
Deviation

1 Specific Programming Languages 4.1 1.19
2 Data Structures 3.7 1.22
3 Software Design and Patterns 3.6 1.34
4 Software Architecture 3.5 1.29
5 Requirements Gathering & Analysis 3.5 1.22
6 Giving Presentations to an Audience 3.5 1.45
7 Technical Writing 3.4 1.41
8 Project Management 3.4 1.32
9 Analysis and Design Methods 3.3 1.38
10 Object Oriented Concepts & Tech. 3.3 1.45
11 Operating Systems 3.3 1.31
12 HCI / User Interfaces 3.3 1.23
13 Testing, Verif. & Quality Assurance 3.3 1.30
14 Databases 3.3 1.51
15 Configuration and Release Mgmt. 3.3 1.35
16 Design of Algorithms 3.3 1.30
17 File Management 3.2 1.34
18 Ethics and Professionalism 3.2 1.50
19 Data Transmission and Networks 3.1 1.30
20 Leadership 3.1 1.46

Table 32: Topics whose details are perceived to be most important. Mean
responses to question 3 (see Table 35 for the bottom scores).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 40

Tables 33 and 34 show complementary data to Table 32, the percentages of people who
believe the topics to be very important, or minimally important, respectively.

Many of the topics in these lists are also in Table 32, indicating widespread agreement
about the most important topics. A significant point to note in Table 33 is that details of
configuration and release management are considered of moderate importance (ranked 15
in Table 32), but have a particularly large number of people who consider them to be
very important (the ranking has risen to 8 in Table 33).

In Table 9, some topics are higher in the rankings than in Table 32, including
requirements gathering, project management and user interfaces: This indicates a
widespread acknowledgement that the details are useful.

Rank Topic % who believe important
1 Specific Programming Languages 75%
2 Data Structures 60%
3 Software Design and Patterns 58%
4 Giving Presentations to an Audience 57%
5 Technical Writing 53%
6 Software Architecture 53%
7 Requirements Gathering & Analysis 53%
8 Configuration and Release Management 48%
9 Analysis and Design Methods 48%
10 Object Oriented Concepts & Tech. 48%
11 Databases 48%
12 Design of Algorithms 47%

Table 33: Topics by the percentage who perceive the details to be very
important (those who rated question 3 with 4 or 5).

Rank Topic % believe at least minimally
important

1 Data Structures 96%
2 Specific Programming Languages 95%
3 Requirements Gathering & Analysis 93%
4 Project Management 92%
5 Software Architecture 92%
6 Software Design and Patterns 91%
7 HCI / User Interfaces 91%
8 Testing, Verification & Qual. Assurance 90%
9 Technical Writing 90%
10 Design of Algorithms 90%

Table 34: Topics by the percentage who believe the details to be at least of
minimal importance (those who rated question 3 with at least 2).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 41

Tables 35 and 36 show the topics for which participants believe the details are least
important. The presence of continuous mathematics as well as chemistry and electronics
is notable in these tables.

Rank Topic Importance
1 Chemistry 0.9
2 Differential Equations 1.1
3 VLSI 1.1
4 Robotics 1.2
5 Laplace and Fourier Transforms 1.3
6 Artificial Intelligence 1.3
7 Differential and Integral Calculus 1.3
8 Analog Electronics 1.4
9 Philosophy 1.5
10 Combinatorics 1.5

Table 35: Topics whose details are perceived to be least important: Mean
responses to question 3 (see Table 32 for the top scores).

Rank Topic % who believe not important
1 Differential Equations 71%
2 Chemistry 71%
3 VLSI 70%
4 Robotics 68%
5 Differential and Integral Calculus 66%
6 Laplace and Fourier Transforms 65%
7 Artificial Intelligence 61%
8 Pattern Recognition and Image

Processing
59%

9 Analog Electronics 55%
10 Control Theory 53%
11 Philosophy 53%
12 Digital Signal Processing 48%
13 Physics 48%
14 Combinatorics 47%
15 Second Language Other than English 46%

Table 36: Topics by the percentage who believe the details to be not at all
important (those who rated question 3 with 0 or 1).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 42

Variability of Responses to Question 3
Tables 37 and 38 show topics where there were differences of opinion about the
importance of details.

Table 37 shows two topics where there is a bipolarity (defined in section 3) in the
opinions, suggesting two schools of thought about the importance of the details of these
topics.

Table 20 shows a variety of topics where there is a variety of opinion about the details. It
can be seen that many of these are topics that are used only in particular job functions, or
particular types of organizations.

Rank Topic Bipola
rity

peak 1 peak 2 Details
importance

1 Economics 5.5 0 3 1.8
2 Digital Signal Processing 3.7 0 3 1.7

Table 37: Topics with the most pronounced bipolar distribution in terms of
the importance of details, indicating the presence of specific subpopulations
with differing needs

Rank Topic Std. Dev.

1 Second Language Other than English 1.73
2 Entrepreneurship 1.70
3 Formal Languages 1.64
4 Real-Time System Design 1.62
5 Telephony and Telecommunications 1.60
6 Marketing 1.60
7 Digital Electronics & Digital Logic 1.56
8 Process Standards CMM / ISO 9000 1.56
9 Software Cost Estimation 1.56
10 Negotiation 1.55
11 Parsing and Compiler Design 1.53
12 Microprocessor Architecture 1.53

Table 38: Topics with the widest standard deviations of importance of details
- indicating widely varying needs

T.C. Lethbridge 1998 Software Education Relevance Survey Data 43

Influence of Topics: Question 4
The second question about importance asked about how influential each topic has been to
the participants, irrespective of whether the details have been important.

Tables 39, 40 and 41 present the answers to question 4 using the three metrics that we
have presented in earlier sections: Mean, percent rating 4 or 5, and percent rating at least
2.

Although it is clear that many of the same topics whose details are important, also prove
influential, it is interesting to note where differences exist: The following topics have a
higher ranking for influence than for details in each of the tables: Ethics and
professionalism, and human computer interaction / user interfaces.

It is interesting to note that ‘specific programming languages’ is at the top of Table 39:
Not only are the details of programming languages important, but learning them has been
more influential, on average, than anything else. However in Table 41, this topic drops
down to 9th rank behind other topics that have had more widespread at-least-minimal
influence.

Rank Topic Influence
1 Specific Programming Languages 3.5
2 Software Design and Patterns 3.5
3 Ethics and Professionalism 3.4
4 Data Structures 3.4
5 HCI / User Interfaces 3.3
6 Requirements Gathering & Analysis 3.3
7 Object Oriented Concepts & Tech. 3.3
8 Software Architecture 3.3
9 Analysis and Design Methods 3.3
10 Project Management 3.2
11 Testing, Verif. & Quality Assurance 3.1

Table 39: Topics that have had the most influence. Mean responses to
question 4.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 44

Rank Topic % influenced
1 Software Design and Patterns 57%
2 Ethics and Professionalism 56%
3 Specific Programming Languages 55%
4 Data Structures 52%
5 Requirements Gathering & Analysis 51%
6 Software Architecture 49%
7 Object Oriented Concepts & Tech. 49%
8 HCI / User Interfaces 49%
9 Design of Algorithms 47%
10 Analysis and Design Methods 45%

Table 40: Percentage of participants who believe they were very influenced
by each topic (those who rated question 4 with 4 or 5).

Rank Topic % minimally influenced
1 Data Structures 91%
2 Requirements Gathering & Analysis 90%
3 HCI / User Interfaces 88%
4 Software Architecture 87%
5 Analysis and Design Methods 87%
6 Object Oriented Concepts & Tech. 86%
7 Software Design and Patterns 86%
8 Ethics and Professionalism 86%
9 Specific Programming Languages 86%
10 Testing, Verif. & Quality Assurance 85%

Table 41: Percentage of participants that were at least slightly influenced by
the topic (those who rated question 4 with at least 2).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 45

Variability of Responses to Question 4
Tables 42 and 43 show topics where there was considerable variability of opinion about
their influence.

Participants were somewhat divided about the influence obtained from learning about
process standards, second languages and physics. On the other hand, there was a wide
range of opinion, but not a division of opinion, about the influence obtained by learning
about other topics such as entrepreneurship, formal languages, marketing, logic, etc.

Rank Topic Bipol-
arity

Peak
1

Peak
2

Peak
3

Infl-
uence

1 Process Standards CMM / ISO 9000 9.0 0 4 2.4
2 Second Language Other than English 8.8 0 3 2.1
3 Physics 6.9 0 3 2.3
4 Digital Electronics & Digital Logic 4.9 0 3 2.3
5 Parsing and Compiler Design 3.3 0 3 2.3
6 Formal Languages 2.9 0 3 2.4
7 Differential and Integral Calculus 2.8 0 3 1.9

Table 42: Topics with the most pronounced bipolar distribution in terms of
influence, indicating the presence of specific subpopulations with differing
perceptions.

Rank Topic St. Dev.
1 Process Standards CMM / ISO 9000 1.73
2 Entrepreneurship 1.71
3 Second Language Other than English 1.69
4 Physics 1.69
5 Formal Languages 1.68
6 Marketing 1.66
7 Predicate Logic 1.64
8 Parsing and Compiler Design 1.63
9 Digital Electronics & Digital Logic 1.62
10 Real-Time System Design 1.62

Table 43: Topics with the widest standard deviations of influence - indicating
widely varying perceptions.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 46

Comparison of Importance vs. Influence
Tables 44 and 45 compare the means of questions 3 and 4: Importance of details vs.
general influence.

Table 44 shows those topics (some of them with low importance scores) where
participants felt whatever importance they had came from their general influence. It is
interesting to note that chemistry and calculus, two widely-taught topics are considered
unimportant by participants primarily because their details are unimportant: At least some
people think that learning these topics has been of some influence.

The topics listed in table 45 are mostly technical topics that presumably do not inspire
participants: Their importance, if high, stems from a need to know the details.

Rank Topic % by which
influence was
greater

Influence Details

1 Chemistry 70% 1.6 0.9
2 Philosophy 63% 2.5 1.5
3 Differential and Integral Calculus 47% 1.9 1.3
4 Physics 43% 2.3 1.6
5 Artificial Intelligence 41% 1.8 1.3
6 Differential Equations 30% 1.4 1.1
7 Economics 28% 2.3 1.8
8 Analog Electronics 23% 1.7 1.4
9 Robotics 16% 1.4 1.2
10 Entrepreneurship 15% 2.5 2.2

Table 44: Topics where influence was highest relative to details

Rank Topic % by which
influence was less

Influence Details

1 File Management -24% 2.4 3.2
2 Technical Writing -16% 2.9 3.4
3 Specific Programming Languages -15% 3.5 4.1
4 Configuration and Release Mgmt. -15% 2.8 3.3
5 Software Cost Estimation -14% 2.4 2.7
6 Databases -13% 2.8 3.3
7 Information Retrieval -13% 2.3 2.7
8 Queuing Theory -13% 1.8 2.1
9 Giving Presentations to an Audience -11% 3.1 3.5
10 Data Transmission and Networks -11% 2.8 3.1

Table 45: Topics where influence was lowest relative to details, suggesting
that the material didn't make participants think in new ways

T.C. Lethbridge 1998 Software Education Relevance Survey Data 47

Forced Learning: An Alternative Measure of Importance
Table 46 presents a completely different approach to ascertaining the importance of
topics. The premise is that if a participant did not learn much about a topic in his or her
formal education, but has since increased his or her knowledge very substantially in order
to meet the requirements of work, then the topic must be important.

Table 46 lists topics with the highest increase in knowledge since completion of formal
education, i.e. the difference between question 2 and question 1. However only those
people who had said that they knew almost nothing about the topic at the time they
completed their education (scoring question 1 with 0 or 1) are considered. The number of
people considered is listed in the last column of the table.

The table contains the same topics that were seen when using the other ways of
computing importance, with only slight differences in the order.

Several institutions are in the business of retraining people from other fields so that they
can enter the information technology field. The topics listed in table 46 might be the most
suitable material for such retraining.

Note that increase in knowledge, irrespective of the amount learned in education, is
discussed further in section 6.

Rank Topic Forced
Learning

Std. Dev. n

1 Specific Programming Languages 3.1 1.45 20
2 Data Structures 2.7 1.61 38
3 Operating Systems 2.7 1.24 52
4 Testing, Verification & Quality Assurance 2.7 1.23 106
5 Project Management 2.7 1.35 111
6 Object Oriented Concepts & Technology 2.6 1.54 103
7 Databases 2.6 1.30 79
8 Configuration and Release Management 2.6 1.58 146
9 Requirements Gathering & Analysis 2.5 1.47 100
10 Ethics and Professionalism 2.5 1.65 104
11 Software Design and Patterns 2.5 1.43 83
12 Giving Presentations to an Audience 2.4 1.42 88

Table 46: Topics which people where forced to learn most about on the job
when they knew almost nothing to start with – indirectly indicating
importance.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 48

Differences Among Subsets of Participants Regarding Overall Importance
This section examines the differences of opinion about overall importance (average of
questions 3 and 4) for various demographic subsets of the participants. The tables only
include topics where there was a significance in overall importance from developers at
large and where overall importance was greater than 2.5. The tables are ordered by
overall importance so as not to give false impressions about which topics are important.

Tables 47 and 48 list the topics that real-time developers and MIS developers
respectively consider more important than others. Certain topics are on the lists as
expected: Databases in the MIS list and real-time design on the real-time list. However it
is notable that technical writing and giving presentations are of particular importance to
real-time developers, while entrepreneurship is of particular interest to MIS developers. It
is interesting to compare these tables with Tables 21 and 22.

Rank Topic % increased
importance

Importance
for real time
developers

Importance
for
developers at
large

1 Technical Writing 12% 3.5 3.1
2 Giving Presentations to an Audience 6% 3.5 3.3
3 Real-Time System Design 29% 3.3 2.5
4 Software Reliability & Fault Tol. 10% 3.1 2.8
5 Systems Programming 5% 2.9 2.8
6 Negotiation 6% 2.9 2.8
7 Computer System Architecture 9% 2.9 2.7
8 Digital Electronics & Digital Logic 24% 2.8 2.2
9 Process Standards. CMM / ISO 9000 9% 2.6 2.4
10 Simulation 11% 2.6 2.3
11 Data Acquisition 19% 2.5 2.1
12 Parallel and Distributed Processing 11% 2.5 2.3
13 Microprocessor Architecture 11% 2.5 2.2
14 Telephony and Telecommunications 8% 2.5 2.3

Table 47: Important topics (>= 2.5) that real-time developers considered
more important than other developers.

Rank Topic % increased
importance

Importance
for MIS

Importance
for all

1 Databases 10% 3.4 3.1
2 Information Retrieval 6% 2.6 2.5
3 Entrepreneurship 12% 2.6 2.4
4 Security and Cryptography 9% 2.5 2.3

Table 48: Important topics (>=2.5) that MIS developers consider more
important than developers at large.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 49

Tables 49 and 50 compare the importance scores given by participants with different
levels of experience.

In Table 49, it can be seen that those topics that junior developers consider more
important than developers at large have to do with programming and low-level design.
On the other hand, it can be seen in Table 50 that experts ascribe relatively greater
importance to topics that have to do mostly with management, communication and
professionalism.

These tables can be compared with Tables 23 and 24 that look at the current knowledge
of the same subsets of the participants.

Rank Topic % increase
for juniors

Importance
for juniors

1 Data Structures 5% 3.8
2 Software Design and Patterns 5% 3.7
3 Object Oriented Concepts & Technology 8% 3.6
4 Systems Programming 6% 3.0
5 Programming Language Theory 9% 2.9
6 Parsing and Compiler Design 9% 2.5

Table 49: Important topics (>=2.5) that junior developers consider more
important than developers at large.

Rank Topic %
increase
for
experts

Importance
for experts

Importance
for
developers at
large

1 Ethics and Professionalism 10% 3.6 3.3
2 Giving Presentations to an Audience 5% 3.5 3.3
3 Project Management 5% 3.4 3.3
4 Technical Writing 7% 3.4 3.1
5 Databases 5% 3.2 3.1
6 Management 6% 3.1 2.9
7 Software Cost Estimation 11% 2.8 2.6
8 Real-Time System Design 7% 2.7 2.5
9 Probability and Statistics 6% 2.7 2.6
10 Formal Languages 8% 2.6 2.4
11 Process Standards CMM / ISO 9000 5% 2.5 2.4

Table 50: Important topics (>=2.5) that expert developers consider more
important than developers at large.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 50

Table 51 gives a long list of topics that managers consider more important than
developers at large. There are few surprises in this table: Process standards, marketing,
management, project management and cost estimation are the topics with the greatest
increase in importance in the opinion of managers. These same topics are also found near
the top of Table 25, the topics which managers know most about.

Rank Topic %
increase
for
managers

Importance
for
managers

Importance
for
developers at
large

1 Project Management 25% 4.1 3.3
2 Requirements Gathering & Analysis 14% 3.9 3.4
3 Giving Presentations to an Audience 14% 3.7 3.3
4 Management 26% 3.7 2.9
5 Ethics and Professionalism 11% 3.7 3.3
6 Analysis and Design Methods 8% 3.6 3.3
7 Software Architecture 5% 3.6 3.4
8 Leadership 17% 3.5 3.0
9 Testing, Verification & Qual. Assurance 7% 3.4 3.2
10 Technical Writing 9% 3.4 3.1
11 Negotiation 20% 3.3 2.8
12 Network Architecture & Data Trans. 17% 3.2 2.8
13 Data Transmission and Networks 7% 3.2 3.0
14 Software Cost Estimation 25% 3.2 2.6
15 Process Stds. CMM / ISO 9000 32% 3.2 2.4
16 Software Metrics 24% 3.1 2.5
17 File Management 6% 3.0 2.8
18 Performance Meas. & Analysis 8% 3.0 2.7
19 Maintenance, Reeng. and Rev. Engg. 5% 2.9 2.7
20 Probability and Statistics 10% 2.8 2.6
21 Formal Specification Methods 17% 2.8 2.4
22 Simulation 20% 2.8 2.3
23 Marketing 31% 2.8 2.1
24 Real-Time System Design 10% 2.8 2.5
25 Information Retrieval 8% 2.7 2.5
26 Entrepreneurship 14% 2.7 2.4
27 Parallel and Distributed Processing 14% 2.6 2.3
28 Telephony and Telecommunications 11% 2.6 2.3
29 Psychology 21% 2.5 2.1
30 Security and Cryptography 8% 2.5 2.3
31 Economics 19% 2.5 2.1

Table 51: Important topics (>=2.5) that managers consider more important
than developers at large.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 51

The topics that programmers consider more important than developers at large, as listed
in Table 52, also hold few surprises.

Rank Topic %
increase
for
program-
mers

Importance
for program-
mers

Importance
for
developers at
large

1 Specific Programming Languages 8% 4.1 3.8
2 Object Oriented Concepts & Tech. 5% 3.5 3.3
3 Maintenance, Reeng. and Rev. Engg. 5% 2.9 2.7
4 Comput. Complexity & Algor. Analysis 7% 2.8 2.6
5 Parsing and Compiler Design 10% 2.5 2.3

Table 52: Important topics (>=2.5) that programmers consider more
important than developers at large.

Table 53 presents a list of topics that those most knowledgeable consider to be more
important than do developers at large. The most knowledgeable participants are those
whose weighted average knowledge on question 2 was in the top 40%. The weighted
average was calculated by counting the most important topics with a greater weight.

The objective of doing this separate analysis was to eliminate any bias that might have
been introduced by the presence of participants with relatively little knowledge about
what is actually important to a software developer.

It is not surprising that somebody who learns more about a topic should find it more
important: Such a person may well have been motivated to learn a topic precisely because
it was important to them. Also, in learning a topic they become both personally involved
in the topic and see its potential.

The topics that rank highest in Table 53 are thus those topics that have the greatest
synergy between learning and appreciation of importance. Interestingly, the highest
ranking topics are high-level computer topics that have to do with architecture (software
architecture, computer system architecture and microprocessor architecture), design (real-
time design and compiler design), parallel processing and computational complexity.

One very significant piece of information does not appear on the table: There was exactly
one topic where the more knowledgeable people were, the less they found this topic
important: Differential and Integral Calculus.

One might have expected that the set of 83 expert software developers, discussed in
Table 50, would be very similar to the set of knowledgeable developers. In fact, the two
sets only share about 35 participants.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 52

Rank Topic %
increase

Importance
for the most
knowledge-
able
participants

Importance
for all
participants

1 Specific Programming Languages 7% 4.1 3.8
2 Data Structures 13% 4.0 3.6
3 Software Design and Patterns 14% 4.0 3.5
4 Software Architecture 16% 4.0 3.4
5 Analysis and Design Methods 13% 3.7 3.3
6 Requirements Gath. & Analysis 6% 3.6 3.4
7 Object Oriented Concepts & Tech. 9% 3.6 3.3
8 Testing, Verif. & Qual. Assurance 11% 3.6 3.2
9 Operating Systems 14% 3.6 3.1
10 Design of Algorithms 12% 3.6 3.2
11 HCI / User Interfaces 6% 3.5 3.3
12 Databases 7% 3.3 3.1
13 Computer System Architecture 18% 3.1 2.7
14 SW Reliability & Fault Tolerance 10% 3.1 2.8
15 File Management 8% 3.1 2.8
16 Systems Programming 9% 3.0 2.8
17 Comput. Complexity & Algor. Analysis 16% 3.0 2.6
18 Maint., Reeng. and Rev. Engg. 9% 3.0 2.7
19 Real-Time System Design 16% 3.0 2.5
20 Negotiation 7% 2.9 2.8
21 Performance Meas. & Analysis 7% 2.9 2.7
22 Programming Lang. Theory 6% 2.9 2.7
23 Software Cost Estimation 9% 2.8 2.6
24 Formal Specification Methods 14% 2.7 2.4
25 Entrepreneurship 15% 2.7 2.4
26 Information Retrieval 7% 2.7 2.5
27 Parsing and Compiler Design 18% 2.7 2.3
28 Parallel and Distributed Proc. 18% 2.7 2.3
29 Predicate Logic 11% 2.6 2.4
30 Microprocessor Architecture 17% 2.6 2.2
31 Simulation 10% 2.6 2.3
32 Formal Languages 7% 2.6 2.4
33 Security and Cryptography 7% 2.5 2.3

Table 53: Important topics (>=2.5) that the most knowledgeable people
consider more important than developers at large.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 53

Table 54 provides a similar analysis to Table 53, but this time the participants selected
were those who scored above the 50th percentile in terms of mathematics knowledge. We
wanted to see if these people would rank mathematics substantially higher in importance
than it was ranked by others.

Indeed we do see two mathematics topics with significant increases in importance: Set
theory and linear algebra. Notably absent is calculus – even those knowledgeable in
mathematics don’t see it as important to computing.

Physics and parsing also show significant increases in importance among those
knowledgeable in mathematics.

Rank Topic %
increase

Importance
for those
most
knowledge-
able in math

Importance
for all

1 Software Design and Patterns 8% 3.8 3.5
2 Software Architecture 10% 3.8 3.4
3 Design of Algorithms 15% 3.6 3.2
4 Object Oriented Concepts & Tech. 8% 3.6 3.3
5 Operating Systems 7% 3.4 3.1
6 Programming Lang. Theory 11% 3.0 2.7
7 Comput. Complexity & Algor. Analysis 16% 3.0 2.6
8 SW Reliability & Fault Tolerance 6% 3.0 2.8
9 Network Arch. & Data Trans. 8% 3.0 2.8
10 Systems Programming 6% 3.0 2.8
11 Computer System Architecture 10% 2.9 2.7
12 Real-Time System Design 13% 2.9 2.5
13 Parsing and Compiler Design 26% 2.9 2.3
14 Formal Languages 19% 2.9 2.4
15 Probability and Statistics 11% 2.8 2.6
16 Set Theory 30% 2.8 2.2
17 Predicate Logic 19% 2.8 2.4
18 Simulation 19% 2.8 2.3
19 Dig. Electronics & Dig. Logic 24% 2.7 2.2
20 Linear Algebra and Matrices 34% 2.7 2.0
21 Formal Specification Methods 10% 2.7 2.4
22 Physics 33% 2.6 2.0
23 Microprocessor Architecture 14% 2.6 2.2
24 Parallel and Distributed Proc. 12% 2.5 2.3
25 Automata theory 17% 2.5 2.1

Table 54: Important topics (>=2.5) which the most knowledgeable people in
mathematics consider more important than developers at large.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 54

Table 55 gives a similar analysis to Tables 53 and 54, but this time considering those who
know most about software process.

All but one of the process topics listed in Table 1 appear in Table 55; most notably cost
estimation and formal specification. In addition, process experts find real-time design and
parsing to be important – perhaps because experts in those areas tend to become process
experts.

Topic % increase Importance
for those
most
knowledge-
able about
the software
process

Importance
for all
participants

Software Design and Patterns 18% 4.1 3.5
Software Architecture 21% 4.1 3.4
Requirements Gath. & Analysis 17% 4.0 3.4
Analysis and Design Methods 20% 3.9 3.3
Data Structures 9% 3.9 3.6
Project Management 16% 3.8 3.3
Testing, Verification & Quality Assurance 14% 3.7 3.2
Giving Presentations to an Audience 11% 3.6 3.3
Design of Algorithms 12% 3.5 3.2
Leadership 12% 3.4 3.0
Configuration and Release Mgmt. 12% 3.4 3.0
Negotiation 17% 3.2 2.8
Real-Time System Design 26% 3.2 2.5
Performance Measurement & Analysis 17% 3.2 2.7
Computer System Architecture 19% 3.2 2.7
Software Cost Estimation 24% 3.2 2.6
File Management 12% 3.2 2.8
Maintenance, Reeng. and Rev. Engg. 14% 3.1 2.7
Formal Specification Methods 29% 3.1 2.4
Comput. Complexity & Algor. Analysis 17% 3.0 2.6
Software Metrics 21% 3.0 2.5
Programming Lang. Theory 11% 3.0 2.7
Process Standards CMM / ISO 9000 19% 2.9 2.4
Parsing and Compiler Design 23% 2.8 2.3
Formal Languages 15% 2.8 2.4
Simulation 17% 2.7 2.3
Predicate Logic 15% 2.7 2.4

Table 55: Important topics (>=2.5) which the most knowledgeable people in
software process consider more important than developers at large.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 55

Tables 56, 57 and 58 list those topics that people with different educational backgrounds
have found relatively more important in their careers than have others.

As Table 56 shows, those with a graduate degree in computing show an increased
appreciation for process standards and software metrics.

Topic % increase Importance for
those with a
CS/SE
postgraduate
degree

Importance for
all participants

Software Architecture 9% 3.7 3.4
Analysis and Design Methods 13% 3.7 3.3
Project Management 11% 3.6 3.3
Object Oriented Concepts & Tech. 8% 3.6 3.3
Giving Presentations to an Audience 8% 3.5 3.3
Config. and Release Mgmt. 11% 3.4 3.0
Leadership 8% 3.3 3.0
Systems Programming 17% 3.3 2.8
Management 8% 3.2 2.9
Process Standards CMM / ISO 9000 29% 3.1 2.4
Software Metrics 23% 3.1 2.5
Negotiation 10% 3.0 2.8
Performance Measurement & Analysis 8% 3.0 2.7
Software Cost Estimation 11% 2.8 2.6
Real-Time System Design 7% 2.7 2.5
Formal Specification Methods 11% 2.7 2.4
Marketing 18% 2.5 2.1
Entrepreneurship 6% 2.5 2.4

Table 56: Important topics (>=2.5) which those with a CS/SE postgraduate
degree consider more important than do developers at large (ordered by
importance)

T.C. Lethbridge 1998 Software Education Relevance Survey Data 56

For participants with an engineering degree (Table 57), the greatest increases in
perceived importance are towards marketing, digital electronics and formal languages.

Finally, as Table 58 shows, for those with a computing degree (undergraduate or
graduate) the topic with the greatest increase in importance is process standards.

Topic % increase Importance for
those with an
engineering
degree

Importance for
developers at
large

Formal Languages 17% 2.8 2.4
Probability and Statistics 7% 2.7 2.6
Digital Electronics & Digital Logic 19% 2.7 2.2
Simulation 12% 2.6 2.3
Marketing 20% 2.6 2.1

Table 57: Important topics (>=2.5) which those with an engineering degree
consider more important than developers at large (ordered by importance).

Topic % increase Importance for
those with a
CS/SE degree

Importance for
developers at
large

Data Structures 6% 3.8 3.6
Software Architecture 6% 3.6 3.4
Object Oriented Concepts & Tech. 6% 3.5 3.3
Analysis and Design Methods 6% 3.5 3.3
Operating Systems 6% 3.3 3.1
Systems Programming 9% 3.0 2.8
Programming Lang. Theory 7% 2.9 2.7
Software Metrics 11% 2.8 2.5
Process Stds. CMM / ISO 9000 15% 2.8 2.4
Comput. Complexity & Algor. Analysis 6% 2.7 2.6
Formal Specification Methods 7% 2.6 2.4

Table 58: Important topics (>=2.5) which those with a CS/SE degree consider
more important than developers at large (ordered by importance).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 57

6. On-The-Job Knowledge Change
In this section we examine the difference between responses to question 2 (current
knowledge) and responses to question 1 (knowledge after education). This difference
represents the amount of on the job-learning when it is positive, or forgetting when it is
negative.

If there is much on-the-job learning of a topic, then that topic must, to some extent, be
important. We cannot use the difference as a direct measure of learning, however,
because if a topic has already been extensively taught then this will reduce its potential
for on-the-job-learning.

The most important application for this data is to find out cases where formal education
should be improved so that the amount of on-the-job learning needed is less. Similarly, if
there is net on-the-job forgetting, then this suggests reductions in the amount of formal
education that should be devoted to the topic in question.

Graphical views of the data provided in this section can be seen in Figures 6 through 8,
where the length of the vertical lines extending from the bars is the on-the-job learning.
Forgetting is indicated by vertical lines that extend downward into the boxes.

One factor that was not measured in this survey was the ease with which a given topic
can be learned on the job. It seems clear that a topic like configuration management,
which appears at the top of Table 59, should be relatively easier to learn on the job that a
complex topic like a branch of mathematics, or real-time design. Future researchers might
consider studying this issue. Knowing this information would help educators know
whether in fact it is necessary for them to provide coverage of topics listed here, or
whether they can safely rely on the workplace to provide the needed training and
experience.

Tables 59 and 60 provide two different ways of measuring high on-the-job learning: The
mean difference between questions 2 and 1, as well as the percentage of people reporting
a large difference. Both lists contain most of the same topics.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 58

Rank Topic On-the-
job
learning
(Q2-Q1)

Q1:
Knowledge
after
education.

Q2:
Knowledge
now

1 Configuration and Release Mgmt. 2.3 0.5 2.8
2 Project Management 1.9 1.2 3.1
3 Testing, Verif. & Qual. Assurance 1.9 1.3 3.2
4 Maint., Reeng. and Rev. Engg. 1.9 0.8 2.6
5 Object Oriented Concepts & Tech. 1.8 1.4 3.2
6 Requirements Gath. & Analysis 1.8 1.4 3.1
7 Ethics and Professionalism 1.8 1.2 3.0
8 Leadership 1.7 0.8 2.5
9 HCI / User Interfaces 1.7 1.1 2.8
10 Giving Presentations to Audience 1.6 1.6 3.3
11 Process Stds. CMM / ISO 9000 1.6 0.5 2.1
12 Software Cost Estimation 1.6 0.6 2.2
13 Negotiation 1.5 0.5 2.0
14 Software Design and Patterns 1.5 1.8 3.4
15 SW Reliability & Fault Tolerance 1.5 1.0 2.5
16 Databases 1.3 1.9 3.2
17 Software Metrics 1.3 0.8 2.1
18 Analysis and Design Methods 1.3 1.9 3.2
19 Management 1.3 1.2 2.5
20 Technical Writing 1.3 1.6 3.0
21 Software Architecture 1.3 2.0 3.3
22 Performance Meas. & Analysis 1.2 1.4 2.6
23 Data Transmission and Networks 1.2 1.7 3.0
24 File Management 1.2 1.9 3.1
25 Entrepreneurship 1.1 0.5 1.6
26 Security and Cryptography 1.1 0.8 2.0
27 Real-Time System Design 1.1 1.0 2.1
28 Operating Systems 1.0 2.3 3.4

Table 59: Topics for which on-the-job learning was highest: Differences
between questions 2 and 1.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 59

Rank Topic Percentage reporting high
on-the-job learning

1 Configuration and Release Mgmt. 54%
2 Project Management 41%
3 Testing, Verif. & Qual. Assurance 39%
4 Requirements Gath. & Analysis 36%
5 Object Oriented Concepts & Tech. 36%
6 Ethics and Professionalism 35%
7 HCI / User Interfaces 35%
8 Maintenance, Reeng. and Rev. Engg. 34%
9 Leadership 33%
10 Software Cost Estimation 32%
11 Process Stds. CMM / ISO 9000 32%
12 Giving Presentations to an Audience 31%
13 Software Design and Patterns 29%
14 SW Reliability & Fault Tolerance 29%
15 Software Metrics 29%
16 Databases 28%
17 Negotiation 27%
18 Software Architecture 24%
19 Technical Writing 24%
20 Management 23%
21 Data Transmission and Networks 23%
22 File Management 23%
23 Real-Time System Design 22%
24 Analysis and Design Methods 22%
25 Performance Measurement & Analysis 22%
26 Operating Systems 21%
27 Entrepreneurship 21%
28 Network Arch. & Data Trans. 20%

Table 60: Topics for which the most people reported very high on-the-job
learning (A difference between question 2 and question 1 of 3 points or
greater).

It may be considered a waste if students forget significant amounts of what they have
learned following graduation. Table 61 and 62 show those topics where this has
happened: Both tables show very similar sets of topics, starting with continuous
mathematics, and also containing other mathematics as well as basic science and
theoretical material.

It might be the case that mathematical and theoretical material might be more prone to be
forgotten, no matter how important it is. However, when the forgetting data is compared
with the data about which topics are unimportant from the last section, we see a lot of
correlation.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 60

Rank Topic Forgetting
since
education
(Q2-Q1)

Q1:
Knowledge
after
education

Q2:
Knowledge
Now

1 Differential Equations -1.2 2.7 1.6
2 Differential and Integral Calculus -1.1 3.2 2.1
3 Linear Algebra and Matrices -0.8 3.1 2.3
4 Chemistry -0.8 2.2 1.4
5 Physics -0.7 2.7 2.1
6 Laplace and Fourier Transforms -0.6 1.8 1.2
7 Probability and Statistics -0.5 2.9 2.4
8 Combinatorics -0.4 1.7 1.4
9 Set Theory -0.4 2.5 2.1
10 Predicate Logic -0.3 2.2 1.9
11 Graph Theory -0.2 1.9 1.7
12 Control Theory -0.2 1.2 1.1
13 Analog Electronics -0.2 1.3 1.2
14 Formal Languages -0.1 2.2 2.1
15 Automata theory -0.1 1.5 1.5
16 Comput. Methods for Numeric Probs. -0.1 2.2 2.1
17 2nd Lang. Other than English -0.1 1.8 1.8

Table 61: Topics for which there was net forgetting of material following
completion of education.

Rank Topic Percentage reporting high
forgetting since completing
their education

1 Differential Equations 38%
2 Differential and Integral Calculus 38%
3 Linear Algebra and Matrices 24%
4 Chemistry 21%
5 Physics 21%
6 Laplace and Fourier Transforms 21%
7 Probability and Statistics 17%
8 Formal Languages 12%
9 Set Theory 12%
10 Combinatorics 12%
11 Predicate Logic 12%
12 Comput. Methods for Numeric Probs. 11%

Table 62: Topics for which the most people reported a high level of forgetting
since their education.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 61

7. Needs for Learning and Training
The data presented in sections 5 and 6 provide insights into which topics are important
and therefore should be included in education and training programs. However,
additional analyses presented in this section can help inform us where the biggest gaps lie
between what is taught or known and what is important. Knowing this information can
help us to focus curriculum improvement process on the most needed topics.

Table 63 presents the difference between the importance of details and the current
knowledge of practitioners. A large lag suggests that although practitioners recognise the
importance of the topic’s details, they don’t feel that, relative to its importance, they have
adequate knowledge. We suggest that topics in this table might be the most suitable
topics for focus by corporate training programs.

Rank Topic % Lag Current
knowledge
(Q2)

Importance of
details (Q3)

1 Software Design and Patterns 6% 3.4 3.6
2 Software Architecture 7% 3.3 3.5
3 Requirements Gathering & Analysis 10% 3.1 3.5
4 Giving Presentations to an Audience 6% 3.3 3.5
5 Technical Writing 13% 3.0 3.4
6 Project Management 8% 3.1 3.4
7 Analysis and Design Methods 5% 3.2 3.3
8 HCI / User Interfaces 17% 2.8 3.3
9 Configuration and Release Mgmt. 13% 2.8 3.3
10 Design of Algorithms 9% 3.0 3.3
11 Ethics and Professionalism 5% 3.0 3.2
12 Data Transmission and Networks 6% 3.0 3.1
13 Leadership 17% 2.5 3.1
14 Systems Programming 14% 2.5 2.9
15 Software Reliability & Fault Tolerance 14% 2.5 2.9
16 Management 15% 2.5 2.9
17 Negotiation 31% 2.0 2.9
18 Performance Meas. & Analysis 7% 2.6 2.8
19 Maintenance, Reeng. and Rev. Engg. 6% 2.6 2.8
20 Network Arch. & Data Trans. 8% 2.6 2.8
21 Software Cost Estimation 21% 2.2 2.7
22 Information Retrieval 13% 2.3 2.7
23 Real-Time System Design 21% 2.1 2.6
24 Comput. Complexity & Algor. Analysis 10% 2.3 2.6
25 Software Metrics 17% 2.1 2.6

Table 63: Topics for which there may be a need for training. Important
(>2.5) topics where current knowledge lags most behind the importance of
details (ordered by importance).

T.C. Lethbridge 1998 Software Education Relevance Survey Data 62

For Table 63, we have selected only the topics that have an overall importance greater
than 2.5 (the half-way point) because trainers probably would not care about a large lag
for other topics. We have also ordered the table by importance; ordering it by lag would
have placed some topics near the top that are only moderately important (e.g. real-time
design), and we thought that this would be misleading. Trainers should pay particular
attention to topics that are both near the top of the table and have the highest lag:
Requirements gathering, technical writing and human-computer interaction / user
interfaces.

Table 64 is structured similarly to table 63. This time, however, the comparison is
between overall importance of topics and the amount students learn in their higher
education. The purpose of the table is to guide educators about which topics might need
more emphasis. It is notable that the topics in both tables are very similar, and in a similar
order. Again we see requirements analysis and user interfaces as having both high lags
and high importance.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 63

Rank Topic % Lag Knowledge after
education (Q1)

Overall
importance
(Q3+Q4)/2

1 Software Design and Patterns 48% 1.8 3.5
2 Requirements Gathering & Analysis 60% 1.4 3.4
3 Software Architecture 43% 2.0 3.4
4 HCI / User Interfaces 67% 1.1 3.3
5 Object Oriented Concepts & Tech. 58% 1.4 3.3
6 Ethics and Professionalism 63% 1.2 3.3
7 Analysis and Design Methods 44% 1.9 3.3
8 Giving Presentations to an Audience 52% 1.6 3.3
9 Project Management 63% 1.2 3.3
10 Testing, Verif. & Quality Assurance 59% 1.3 3.2
11 Technical Writing 48% 1.6 3.1
12 Leadership 73% 0.8 3.0
13 Configuration and Release Mgmt. 83% 0.5 3.0
14 Data Transmission and Networks 42% 1.7 3.0
15 Management 61% 1.2 2.9
16 SW Reliability & Fault Tolerance 64% 1.0 2.8
17 Systems Programming 42% 1.6 2.8
18 Network Architecture & Data Trans. 40% 1.7 2.8
19 Negotiation 84% 0.5 2.8
20 Maintenance, Reeng. and Rev. Engg. 72% 0.8 2.7
21 Performance Meas. & Analysis 48% 1.4 2.7
22 Software Cost Estimation 77% 0.6 2.6
23 Real-Time System Design 61% 1.0 2.5
24 Information Retrieval 46% 1.4 2.5
25 Software Metrics 67% 0.8 2.5

Table 64: Data showing the need for improvement in university courses.
Important (>2.5) topics where learning in educational programs lagged most
behind overall importance (ordered by importance).

Table 65 shows a similar comparison to table 64, but for topics that are apparently taught
far more in universities than their importance might warrant. It is interesting that all these
topics are from the mathematics or basic science categories, and most of them are taught
as compulsory topics to computing students.

The topics on this table are taught in university programs for a variety of reasons, some
of which are:
• Some of the topics are considered by many educators, in fact, to be useful to

computing professionals in their work, even if, according to the survey, software
practitioners do not recognize it. This is particularly true for set theory as well as
probability and statistics. Both these topics might come to be seen as more important if
formal methods and statistical analysis of metrics come into more widespread use. It
might therefore be wise for educators to keep these topics in curricula, or even
increased coverage, so future professionals are adequately prepared.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 64

• The topics perhaps should be taught in case students need to work in application
domains that require the knowledge – especially since such knowledge is not the kind
that can be readily picked up on the job.

• The topics are useful to other scientists and engineers, and hence many believe that
they must be taught to computing professionals so they can communicate with
colleagues and be considered real scientists and engineers. This reasoning is widely
used in other disciplines: For example, certain medical specialists like psychiatrists
have to learn a full spectrum of medical knowledge even though they will only need a
part of it: They are doctors, so they must learn a common core that all doctors know.

• The knowledge perhaps helps create a well-rounded person with a broader educational
background.

• Learning the topics might help discipline the mind.

We do not conclude absolutely whether the above reasons provide sufficient justification
for keeping the topics in educational programs. However, given that our survey results
show that certain topics might need greater emphasis, it seems logical to look near the top
of this list for topics where emphasis can be reduced (e.g. differential equations, calculus
and chemistry).

Rank Topic %
Excess

Knowledge after
education (Q1)

Overall
importance

1 Differential Equations 115% 2.7 1.3
2 Differential and Integral Calculus 97% 3.2 1.6
3 Chemistry 73% 2.2 1.3
4 Linear Algebra and Matrices 50% 3.1 2.0
5 Laplace and Fourier Transforms 39% 1.8 1.3
6 Physics 37% 2.7 2.0
7 Set Theory 15% 2.5 2.2
8 Probability and Statistics 13% 2.9 2.6
9 Combinatorics 11% 1.7 1.6
10 Comput. Methods for Numeric Probs. 3% 2.2 2.1

Table 65: Topics taught relatively more than their importance might
warrant.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 65

8. Comparisons with the 1997 Survey
In this section we present a comparison between the 1997 survey (Lethbridge 1998a,
1998b) and the 1998 survey.

The topics and questions were not exactly the same between the two surveys; we
therefore have attempted a best-match comparison. We have only included the 53 topics
that are present in both surveys. In general, the 1998 survey covered more topics; most
notably missing from the 1997 survey was ‘Specific Programming Languages’ – the topic
considered the most important in 1998.

The first two questions asked about each topic were roughly similar between the two
surveys. In 1997, however, we asked a single question about importance; this was split
into two separate questions in 1998 (details vs. influence). To form a comparison we are
therefore using the average of the two 1998 questions; we also used this ‘overall
importance’ data earlier in this report.

In all of the comparison tables (Tables 66 to 71), we present both the differences in mean
score and the differences in topic rank. Add the given differences to arrive at the 1998
score or rank. Differences are more interesting if they occur at the top of the tables where
the differences between successive mean scores are wider.

We have highlighted the most important differences in bold. Any differences should be
caused by one of the following reasons:
• Differences in questions or topic names
• Differences in the sampling approach
• Normal statistical variation
We will attempt to explain each of the significant differences according to one of these
reasons.

Tables 66 and 67 compare the two surveys’ responses to question 1: The amount learned
in education. We attribute most of the negative differences (lower scores in 1998) to be
due to a bias in 1997 towards real-time developers. The negative value for ‘General
Software Design and Analysis’ was probably because in 1998 we split this into two
separate topics (the average is given for comparison purposes).

The positive change for second language learning is probably because of the increased
international coverage in 1998; and the positive change for object orientation is probably
due to this material being more widely taught in recent years. The positive change for
chemistry is not easy to explain, but may have to do with differences in the types of
education given to international audiences.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 66

Topic 1997
mean
score

Difference
with 1998
mean score

Rank
difference

Differential and Integral Calculus 3.43 -0.22 0
Linear Algebra and Matrices 3.38 -0.33 0
Data Structures 3.21 -0.33 -1
Probability & Statistics 3.10 -0.20 1
Differential Equations 2.96 -0.24 -1
General software Design and Analysis 2.88 -1.00 -11
Set Theory 2.83 -0.33 0
Physics 2.75 -0.02 3
Programming Language Theory 2.73 -0.49 -1
Operating Systems 2.65 -0.34 2
Computer Architecture 2.64 -0.40 2
Computational Methods for Numeric Problems 2.56 -0.40 -1
Digital Electronics & Digital Logic 2.52 -0.43 -2
File & Information Management 2.43 -0.53 -2
Predicate Logic 2.43 -0.25 4
Graph Theory 2.33 -0.46 -3
Computational Complexity & Algorithm Analysis 2.28 -0.19 3
Chemistry 2.20 -0.03 6
Databases 2.07 -0.19 1
Parsing and Compiler Design 2.06 -0.32 -1
Systems Programming 2.03 -0.40 -4
Data Transmission And Networks 1.93 -0.21 -1
Simulation 1.91 -0.70 -13
Information Theory 1.87 -0.35 -2
Analog Electronics 1.86 -0.55 -8

Table 66: Top 25 topics according to question 1, the amount learned in
formal education, considering topics found in both 1997 and 1998 surveys.
Interesting differences highlighted in bold are explained in the text.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 67

Topic 1997
mean
score

Difference
with 1998
mean score

Rank
difference

Economics 1.72 0.02 4
Requirements Gathering and Analysis 1.66 -0.31 -2
Artificial Intelligence 1.58 -0.37 -9
Technical Writing 1.55 0.09 5
Second Language Other Than English 1.53 0.30 10
Information Retrieval 1.46 -0.11 1
Real Time System Design 1.43 -0.44 -13
Formal Methods 1.41 -0.10 1
Parallel And Distributed Processing 1.39 -0.19 -4
Computer Graphics 1.33 -0.10 1
Project Management 1.30 -0.11 -3
OO Analysis And Design 1.26 0.12 10
Human Computer Interaction/User Interfaces 1.24 -0.15 -3
Ethics And Professionalism 1.24 -0.02 4
Philosophy 1.24 0.12 12
Testing And Quality Assurance 1.22 0.09 10
Pattern Recognition & Image Processing 1.19 -0.27 -4
Psychology 1.15 -0.09 1
Accounting 1.06 -0.06 0
Software Metrics 0.91 -0.09 -2
Software Reliability 0.91 0.11 3
Management 0.88 0.27 7
Robotics 0.88 -0.26 -2
Maintenance, Reengineering and Rev. Engg. 0.83 -0.07 1
Software Cost Estimation 0.76 -0.17 -1
Configuration Management 0.60 -0.08 -1
Marketing 0.52 0.17 3
Process Standards 0.44 0.02 0

Table 67: Continuation of table 66; topics about which less was learned,
comparing 1997 with 1998 data.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 68

Tables 68 and 69 compare the two surveys’ responses to question 2: The amount
currently known. The major negative differences (lower scores in 1998) for real-time
system design and process standards are probably due to the real-time bias in 1997. It
would appear from the data that organizations that develop software care more about
process standards, perhaps because they have more stringent reliability needs. The
positive differences for databases and information retrieval are also probably due to
correction of the 1997 real-time bias: In 1998 there was a more appropriate representation
from MIS and data processing practitioners who apparently need databases more.

The negative difference for second language is interesting and unexplained. Whereas
1998 participants had learned more second languages, they currently know less than their
1997 counterparts.

Topic 1997
mean
score

Difference
with 1998
mean score

Rank
difference

General software Design and Analysis 3.87 -0.56 -2
Data structures 3.67 0.05 1
Testing and quality assurance 3.36 -0.18 -3
Requirements gathering and Analysis 3.28 -0.15 -3
Operating systems 3.24 0.12 3
Project management 3.18 -0.09 -2
Technical writing 3.17 -0.20 -4
File & information management 3.06 0.02 -1
Data transmission and networks 3.04 -0.09 -3
OO analysis and design 3.02 0.18 5
Configuration management 3.00 -0.17 -2
Databases 2.95 0.28 8
Human Computer Interaction/User interfaces 2.89 -0.14 -1
Real time system design 2.88 -0.80 -18
Ethics and professionalism 2.88 0.12 5
Computer architecture 2.87 -0.22 0
Programming language theory 2.84 -0.14 2
Maintenance, Reengineering and Rev. Engg. 2.84 -0.20 1
Systems programming 2.83 -0.29 1
Process standards 2.57 -0.49 -13
Management 2.46 0.01 1
Software reliability 2.44 0.07 3
Computational complexity & algorithm analysis 2.31 0.01 0
Software cost estimation 2.30 -0.14 -2
Probability & statistics 2.30 0.14 4

Table 68: Top 25 topics according to question 2, the amount currently
known, considering topics found in both 1997 and 1998 surveys. Interesting
differences highlighted in bold are explained in the text.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 69

Topic 1997
mean
score

Difference
with 1998
mean score

Rank
difference

Second Language Other than English 2.28 -0.45 -15
Physics 2.26 -0.18 -7
Formal methods 2.25 0.03 4
Linear Algebra and Matrices 2.23 0.03 4
Parsing and compiler design 2.22 -0.27 -8
Parallel and Distributed Proc. 2.22 -0.08 4
Information retrieval 2.21 0.12 10
Software metrics 2.20 -0.06 5
Digital Electronics & Dig. Logic 2.18 -0.06 4
Simulation 2.12 -0.17 -4
Set Theory 2.08 0.06 7
Differential. and Integ. Calculus 2.03 0.05 2
Predicate logic 2.00 -0.13 -2
Computational Methods for Numeric Problems 1.90 0.21 8
Economics 1.84 0.12 3
Graph Theory 1.75 -0.10 -2
Computer Graphics 1.74 0.23 6
Information Theory 1.66 -0.05 -2
Differential Equations 1.63 -0.08 -2
Psychology 1.51 0.12 1
Accounting 1.48 0.04 -1
Philosophy 1.47 0.21 5
Artificial Intelligence 1.46 -0.11 -2
Chemistry 1.44 0.00 1
Analog Electronics 1.41 -0.21 -2
Pattern Recognition and Image Processing 1.35 -0.10 0
Marketing 1.33 0.03 3
Robotics 0.89 -0.03 0

Table 69: Continuation of table 68; topics about which less is known,
comparing 1997 with 1998 data.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 70

Tables 70 and 71 compare the two surveys’ responses to the questions about importance
of topics.

There are many more interesting differences between the surveys for importance than for
amount learned or known. We have no clear explanation why this should be so.

The big negative difference in real-time design appears in the importance data, as it did in
the current-knowledge data. As before, this is attributed to 1997 survey bias; the 1998
figures are seen as more representative. Negative changes for operating systems, data
transmission, testing and possibly technical writing might also be related to a real-time
bias. We also see a significant mean-score difference in ‘General Software Design and
Analysis’ that was found in the ‘amount learned’ data, and attributed to a split in the topic
for 1998.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 71

Topic 1997
Score

Difference
with 1998
mean score

1998 Rank
difference

General software Design and Analysis 4.33 -0.88 -1
Data structures 4.05 -0.46 1
Testing and quality assurance 3.71 -0.50 -5
Requirements gathering and Analysis 3.69 -0.28 1
Technical writing 3.63 -0.49 -4
Operating systems 3.51 -0.37 -4
Project management 3.51 -0.26 0
Data transmission and networks 3.50 -0.52 -5
Real time system design 3.35 -0.81 -15
OO analysis and design 3.30 0.02 5
Configuration management 3.28 -0.26 -1
File & information management 3.23 -0.41 -3
HCI/User interfaces 3.19 0.13 9
Maint., Reeng. and Rev. Engg. 3.17 -0.44 -4
Systems programming 3.11 -0.32 -2
Databases 3.10 -0.04 5
Ethics and professionalism 3.01 0.29 11
Computer architecture 2.90 -0.24 -2
Management 2.84 0.07 5
Programming language theory 2.80 -0.10 1
Software reliability 2.69 0.13 5
Software cost estimation 2.62 -0.07 -1
Process standards 2.51 -0.11 -5
Computational complexity & algorithm analysis 2.41 0.17 4
Information retrieval 2.37 0.14 1

Table 70: The most important 25 topics, considering topics found in both
1997 and 1998 surveys. Interesting differences highlighted in bold are
explained in the text.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 72

Two interesting positive changes can be noted, although with little explanation: Human
computer interaction /user interfaces, and ethics and professionalism were both found
significantly more important in the 1998 data.

Other new positive differences appear in the importance data: These are found in
business topics (marketing, economics and accounting) and mathematics topics (statistics
and predicate logic). Since these differences are nearer to the bottom of the rankings, they
are of less interest.

Topic 1997
Score

Difference
with 1998
mean score

1998 Rank
difference

Formal methods 2.31 0.10 0
Parallel and Distributed Proc. 2.31 -0.05 -4
Software metrics 2.22 0.27 3
Dig. Electronics & Dig. Logic 2.21 0.02 -3
Parsing and compiler design 2.19 0.09 0
Probability & statistics 2.18 0.39 10
Simulation 2.13 0.21 3
2nd Lang. Other than English 2.11 -0.10 -8
Predicate logic 1.88 0.48 6
Psychology 1.82 0.27 -1
Set Theory 1.76 0.40 3
Comput. Methods for Numeric Probs. 1.75 0.35 2
Linear Algebra and Matrices 1.62 0.42 -1
Information Theory 1.58 0.39 -4
Physics 1.56 0.43 -2
Graph Theory 1.55 0.40 -3
Marketing 1.55 0.59 8
Computer Graphics 1.47 0.38 -2
Economics 1.47 0.59 6
Accounting 1.29 0.79 8
Analog Electronics 1.27 0.27 -3
Differential. and Integ. Calculus 1.13 0.50 1
Philosophy 1.09 0.93 9
Pattern Recog. and Image Proc. 1.04 0.61 4
Artificial Intelligence 0.97 0.57 3
Differential Equations 0.94 0.32 2
Chemistry 0.60 0.66 4
Robotics 0.56 0.69 4

Table 71: Continuation of table 70; topics that are considered less important,
comparing 1997 with 1998 data.

Figure 9. Highest educational level reached by the participants (170
responses).

Figure 10. Work locations of the participants. Participants work in a total of
24 countries.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 75

Type of Software Developed
Table 74 describes the types of software developed by the participants. Participants were
given four categories from which they could choose one or more. Only 28% of
participants just chose one of the categories.

Type of software developed #
participants

Percentage

Management Information Systems (MIS) or other
software for running the business (e.g. accounting,
inventory etc.) that is being developed or tailored largely
for in-house use

78 45.1%

MIS Software ONLY 29 16.8%

Only NON MIS software 95 54.9%

Consumer or mass-market software (typically sold on the
open-market in shrink-wrapped packages)

20 11.6%

Consumer Software ONLY 3 1.7%

Application software produced for specialized markets
that does not fit into the MIS, Consumer or Real Time
categories

95 54.9%

Specialized Application software ONLY 27 15.6%

Real-time, embedded, systems or telecommunications
software (in general, software that is developed as part
of a larger system)

82 47.4%

Real Time software ONLY 33 19.1%

Only NON Real Time software 91 52.6%

Table 74: The type of software developed by each of the 169 participants who
answered this question. Participants were given the list of four categories and
were asked to check all that apply.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 76

Industry in Which Participants Work
Table 75 presents a breakdown of the participants by industry. It appears from this data
that no one sector had an unduly large representation, although the ‘business’ category
was probably somewhat under-represented.

Industry # parti-
cipants

Percent

Software Industry 74 42.0%
Telecommunications or networking software development 19 10.8%
Development of other application software for specialized markets 20 11.4%
Software consulting 13 7.4%
Financial software development 10 5.7%
Engineering or scientific software development 8 4.5%
Consumer software development 4 2.3%

Industries Whose Main Focus is Other than Software 102 58.0%
Public Sector 36 20.5%

Military (also included in military / aerospace below) 16 9.1%
Other government including agencies, law enforcement, local 20 11.4%

Military / Aerospace 27 15.3%
Aeronautics, space, defense contracting 13 7.4%

Engineering (includes also military/aerospace and engineering
software)

53 30.1%

Telecommunications or networking equipment manufacturing 2 1.1%
Manufacturing other computer hardware, computer engineering 10 5.7%
Other engineering 6 3.4%

Business (includes also financial software) 35 19.9%
Banking, Finance, Insurance, Financial Services or Consulting
etc.

13 7.4%

Health Care 5 2.8%
Retailing, Marketing, Distributing 1 0.6%
Broadcasting, Publishing, Media 2 1.1%
Law, Legal Services 1 0.6%
Other Service Industry 3 1.7%

Telecommunications (includes also telecom software and
telecom equipment manufacturing)

24 13.6%

Telecommunication or Networking Service 3 1.7%
Education 8 4.5%

Food Processing 1 0.6%

Non-Profit 1 0.6%

Table 75: Industries in which the participants worked. Note that some
categories (e.g. ‘telecommunications software’, and ‘military’) have been
counted in more than one higher-level category.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 77

Team Size
Table 76 describes the sizes of the teams in which participants worked. We originally
included a ‘very large’ category (Over 45 people working on an extremely large and
complex system; typically more than 1.5 million lines of code); however, nobody in the
final sample selected this category.

Team size Number of
participants

Percent

Small team: 1-7 people working on a small system (typically
less than 10000 lines of code)

78 46.4%

Medium team: 5-20 people working on a medium sized
system(typically 8000 to 150000 lines of code)

68 40.5%

Large team: 15-60 people working on a large and complex
system (typically between 100000 and 2 million lines of
code)

22 13.1%

Table 76: The sizes of teams in which participants worked.

Figure 11. How the average participant distributes his or her time. These
figures should be considered highly subjective, and account for no idle time,
meetings, phone calls etc.

No time
spent on
this

0-5%
of time

5-10%
of time

10-25%
of time

25-50%
of time

50-75%
of time

75-100%
of time

Programming : Working with
Source Code (writing code,
understanding code etc.)

7% 9% 10% 14% 35% 15% 9%

Requirements Analysis or
Specification

5% 22% 37% 27% 7% 1% 1%

Software Architecture
and Design

8% 17% 24% 23% 22% 3% 2%

Testing Software Written by
Others

21% 34% 25% 11% 6% 1% 1%

Installation and
Customer Support

28% 29% 18% 15% 5% 5% 1%

Maintenance :
Understanding or Modifying
Software or Documents
Written by Others

7% 18% 24% 21% 14% 11% 5%

Management or Project
Management

13% 27% 18% 20% 8% 10% 4%

Table 77: Details of percentage of time spent by participants

Figure 12. Experience of participants developing software: the number of
years working in the software industry.

T.C. Lethbridge 1998 Software Education Relevance Survey Data 80

10. Conclusions
The data from the 1998 survey of software practitioners contain relatively few surprises.
However, they provide concrete evidence that can be used for decision-making on the
part of educators and trainers.

Among the important conclusions that can be drawn are:

• There is far more to software development than programming; however the participants
in this survey put programming topics, specifically languages and data structures, at the
very top when asked both what topics were the most important, and what they know most
about. This might be a symptom of the tendency in much of software development to
jump into coding without much requirements analysis or design. On the other hand it
might just reflect the observation that whereas most software developers do some
programming (and spend an average of 40% of their time at it), other tasks may be
distributed to various members of the team. It is also possible that our data are biased
towards programmers to some extent.

• Behind programming in the amount-known and importance questions come a cluster of
topics that have to do with software design, and then a variety of topics that have to do
with other activities such as requirements, user interface design and testing. Supporting
knowledge such as databases and operating systems also rank quite high.

• Mathematics, especially calculus, is extensively taught in computing programs.
Participants feel that following their education they had a more thorough grasp of
calculus than practically anything else, except perhaps programming languages. On the
other hand, relatively little mathematics turns out to be important for software engineers
in practice and it tends to be forgotten. If we are to continue to teach the amount and type
of mathematics, we must justify it by other means than by saying it is important to a
software developers work: It is normally not. Other justifications could include the need
to communicate with other scientists and engineers, or the occasional need to work on
problems that do indeed require it. At the very least educators should look at the
mathematics elements of computing programs and examine how they can be made more
relevant – at least so the investment in math education is not wasted by it being
subsequently forgotten.

• Many ‘skills’ or ‘soft’ topics were placed very high in this survey. Giving presentations,
technical writing, as well as ethics and professionalism were given very prominent
rankings. Educators should therefore increasing their emphasis to these topics.

• At the time they graduate, there are considerable differences between engineering
students and computing students in terms of the amount of computing knowledge. This is
particularly the case for parsing, information retrieval, databases and software process
topics. Since many engineering students find their way into computing jobs, this might be
of concern: Engineering educators perhaps should boost the computing content in
engineering curricula, while corporate trainers might target their engineering new-hires

T.C. Lethbridge 1998 Software Education Relevance Survey Data 81

for additional computing training. At the same time, engineering graduates typically have
greater knowledge than computer science graduates in important areas such as digital
signal processing, telecommunications, control systems, simulation and entrepreneurship.

• Both universities and corporate training departments could improve their offerings by
adding more material about software design, architecture, user interfaces and project
management as well as giving presentations to an audience and technical writing.
Training departments ought additionally to focus on configuration management, while
universities ought additionally to focus on object-oriented concepts as well as ethics and
professionalism.

We would be happy to provide additional data to readers on request, although of course
we cannot release the individual responses.

Acknowledgements
This research was supported by the Consortium for Software Engineering Research
(CSER). I thank all the participants and participating companies (who must remain
anonymous). I also thank Anatol Kark at the National Research Council of Canada for
assistance with data gathering, as well as the following researchers who provided much
essential feedback and helped solicit participants: Nancy Mead at the Software
Engineering Institute of Carnegie Mellon University; W. Michael McCracken at Georgia
Tech; Laurie Werth at the University of Texas, Austin; Lawrence West at Columbia
College; Lesley Beddie at Napier University, UK; Michael Lutz at the Rochester
Institute of Technology, and Pearl Brereton at Keele University, UK. Finally, I thank K.
Teresa Khidir for editing the report.

References
Lethbridge, T.C. (1998a), "A Survey of the Relevance of Computer Science and Software

Engineering Education", 11th IEEE Conference on Software Engineering Education
and Training, Atlanta, pp. 56-66.

Lethbridge, T.C. (1998b), "The Relevance of Software Education: A Survey and Some
Recommendations", Annals of Software Engineering, 6, pp. 91-110.

Lethbridge, T.C (1999a) Online Excel spreadsheet with the data for the survey.
http://www.site.uottawa.ca/~tcl/edrel/EdrelData1998.xls.

Lethbridge, T.C. (1999b), "What Knowledge is Important to a Software Engineer?"
Submitted January 1999, IEEE Software.

Lethbridge, T.C. (1999c), "Priorities for the Education and Training of Software
Engineers", to be submitted, Journal of Systems and Software.

Lethbridge, T.C. and Singer, J. (1998), "From Work Patterns to Requirements",
Submitted December 1998, International Journal of Human-Computer Studies.

