
10

Semantic Text Similarity Using Corpus-Based
Word Similarity and String Similarity

AMINUL ISLAM and DIANA INKPEN

University of Ottawa

We present a method for measuring the semantic similarity of texts using a corpus-based measure

of semantic word similarity and a normalized and modified version of the Longest Common Sub-

sequence (LCS) string matching algorithm. Existing methods for computing text similarity have

focused mainly on either large documents or individual words. We focus on computing the similarity

between two sentences or two short paragraphs. The proposed method can be exploited in a variety

of applications involving textual knowledge representation and knowledge discovery. Evaluation

results on two different data sets show that our method outperforms several competing methods.

Categories and Subject Descriptors: I.2.1 [Artificial Intelligence]: Applications and Expert Sys-

tems—Natural language interfaces; I.2.7 [Artificial Intelligence]: Natural Language Process-

ing—Text analysis

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Semantic similarity of words, similarity of short texts, corpus-

based measures

ACM Reference Format:
Islam, A. and Inkpen, D. 2008. Semantic text similarity using corpus-based word similarity and

string similarity. ACM Trans. Knowl. Discov. Data. 2, 2, Article 10 (July 2008), 25 pages. DOI =
10.1145/1376815.1376819 http://doi.acm.org/10.1145/1376815.1376819

1. INTRODUCTION

Similarity is a complex concept which has been widely discussed in the lin-
guistic, philosophical, and information theory communities [Hatzivassiloglou
et al. 1999]. Frawley [1992] discusses all semantic typing in terms of two
mechanisms: the detection of similarities and differences. Jackendoff [1983]
argues that standard semantic relations such as synonymy, paraphrase, redun-
dancy, and entailment all result from judgments of likeness whereas antonymy,

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

Authors’ address: School of Information Technology and Engineering, The University of Ottawa,

800 King Edward, Ottawa, ON, K1N 6N5, Canada; email: {mdislam, diana}@site.uottawa.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0734-2071/2008/07-ART10 $5.00 DOI 10.1145/1376815.1376819 http://doi.acm.org/

10.1145/1376815.1376819

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:2 • A. Islam and D. Inkpen

contradiction, and inconsistency derive from judgments of difference. For our
task, given two input text segments, we want to automatically determine a
score that indicates their similarity at semantic level, thus going beyond the
simple lexical matching methods traditionally used for this task.

An effective method to compute the similarity between short texts or sen-
tences has many applications in natural language processing and related areas
such as information retrieval to be one of the best techniques for improving
retrieval effectiveness [Park et al. 2005] and in image retrieval from the Web,
the use of short text surrounding the images can achieve a higher retrieval
precision than the use of the whole document in which the image is embedded
[Coelho et al. 2004]. The use of text similarity is beneficial for relevance feedback
and text categorization [Ko et al. 2004; Liu and Guo 2005], text summariza-
tion [Erkan and Radev 2004; Lin and Hovy 2003], word sense disambiguation
[Lesk 1986; Schutze 1998], methods for automatic evaluation of machine trans-
lation [Liu and Zong 2004; Papineni et al. 2002], evaluation of text coherence
[Katarzyna and Szczepaniak 2005; Lapata and Barzilay 2005], formatted doc-
uments classification [Katarzyna and Szczepaniak 2005].

In databases, text similarity can be used in schema matching to solve se-
mantic heterogeneity, a key problem in any data sharing system whether it is
a federated database, a data integration system, a message passing system,
a web service, or a peer-to-peer data management system [Madhavan et al.
2005]. It can also be used in text similarity join operator that joins two rela-
tions if their join attributes are textually similar to each other, and it has a
variety of application domains including integration and querying of data from
heterogeneous resources; cleansing of data; and mining of data [Cohen 2000;
Schallehn et al. 2004].

In the next section, we point out some drawbacks of the existing methods.
One of the major drawbacks of most of the existing methods is the domain
dependency, that is, once the similarity method is designed for a specific ap-
plication domain, it cannot be adapted easily to other domains. This lack of
adaptability to the domain does not correspond to human language usage as
sentence meaning may change, to varying extents, from domain to domain. To
address this drawback, we aim to develop a method that is fully automatic with-
out requiring users’ feedback and can be used independently of the domain in
applications requiring small text or sentence similarity measure. The compu-
tation of text similarity can be viewed as a generic component for the research
community dealing with text-related knowledge representation and discovery.

This article is organized as follows: Section 2 presents a brief overview of the
related work. Our proposed method is described in Section 3. A walk-through
example of the method is presented in Section 4. Evaluation and experimental
results are discussed in Section 5. We address some contributions and future
related work in Section 6.

2. RELATED WORK

There is extensive literature on measuring the similarity between long texts
or documents [Hatzivassiloglou et al. 1999; Landauer and Dumais 1997;

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:3

Maguitman et al. 2005; Meadow et al. 2000], but there is less work related
to the measurement of similarity between sentences or short texts [Foltz et al.
1998]. Related work can roughly be classified into four major categories: word
co-occurrence/vector-based document model methods, corpus-based methods,
hybrid methods, and descriptive feature-based methods.

The vector-based document model methods are commonly used in Informa-
tion Retrieval (IR) systems [Meadow et al. 2000], where the document most
relevant to an input query is determined by representing a document as a word
vector, and then queries are matched to similar documents in the document
database via a similarity metric [Salton and Lesk 1971]. One extension of word
co-occurrence methods leads to the pattern matching methods which are com-
monly used in text mining and conversational agents [Corley and Mihalcea
2005]. This technique relies on the assumption that more similar documents
have more words in common. But it is not always the case that texts with simi-
lar meaning necessarily share many words. Again, the sentence representation
is not very efficient as the vector dimension is very large compared to the num-
ber of words in a short text or sentence, thus, the resulting vectors would have
many null components.

The Latent Semantic Analysis (LSA) [Landauer and Dumais 1997; Landauer
et al. 1998] and the Hyperspace Analogues to Language (HAL) model [Burgess
et al. 1998] are two well-known methods in corpus-based similarity. LSA, a
high-dimensional linear association model, analyzes a large corpus of natural
language text and generates a representation that captures the similarity of
words and text passages. The underlying idea is that the aggregation of all
the word contexts in which a given word does or does not appear provides a
set of mutual constraints that largely determines the similarity of meaning
of words and sets of words to each other [Landauer et al. 1998]. The model
tries to answer how people acquire as much knowledge as they do on the ba-
sis of as little information as they get. It uses Singular Value Decomposition
(SVD) to find the semantic representations of words by analyzing the statis-
tical relationships among words in a large corpus of text. When LSA is used
to compute sentence similarity, a vector for each sentence is formed in the
reduced-dimensional space; similarity is then measured by the cosine of the
angle between their corresponding row vectors [Foltz et al. 1998]. The dimen-
sion size of the word by context matrix is limited and fixed to several hundred
because of the computational limit of SVD. As a result the vector is fixed and is
thus likely to be a very sparse representation of a short text such as a sentence.
LSA does not take into account any syntactic information and is thus more
appropriate for longer texts.

Another corpus-based method is Hyperspace Analogues to Language (HAL)
[Burgess et al. 1998]. The HAL method uses lexical co-occurrence to produce a
high-dimensional semantic space. A semantic space is a space in which words
are represented as points, and the position of each word along the axes is related
to the word’s meaning. Once the space is constructed, a distance measure can
be used to determine relationships between words. In HAL, this space is con-
structed by first passing a window over a large corpus and recording weighted
lexical co-occurrences (words closer to the target word are given a higher weight

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:4 • A. Islam and D. Inkpen

than words farther away). These results are recorded in an n × n co-occurrence
matrix with one row and one column for each unique word appearing in the cor-
pus. Once this is complete, a vector representing each word in 2n dimensional
space is formed by concatenating the transpose of a word’s column to its row.
Subsequently, a sentence vector is formed by adding together the word vectors
for all words in the sentence. Similarity between two sentences is calculated
using a metric such as Euclidean distance. However, the authors’ experimental
results showed that HAL was not as promising as LSA in the computation of
similarity for short texts [Burgess et al. 1998]. HAL’s drawback may be due to
the building of the memory matrix and its approach to forming sentence vec-
tors: The word-by-word matrix does not capture sentence meaning well and the
sentence vector becomes diluted as a large number of words are added to it [Li
et al. 2006].

Hybrid methods use both corpus-based measures [Turney 2001] and
knowledge-based measures [Leacock and Chodorow 1998; Wu and Palmer 1994]
of word semantic similarity to determine the text similarity. Mihalcea et al.
[2006] suggest a combined method for measuring the semantic similarity of
texts by exploiting the information that can be drawn from the similarity of
the component words. Specifically, they use two corpus-based measures, PMI-
IR (Pointwise Mutual Information and Information Retrieval) [Turney 2001]
(details in Section 3.2) and LSA (Latent Semantic Analysis) [Landauer et al.
1998] and six knowledge-based measures [Jiang and Conrath 1997; Leacock
and Chodorow 1998; Lesk 1986; Lin 1998; Resnik 1995; Wu and Palmer 1994]
of word semantic similarity, and combine the results to show how these mea-
sures can be used to derive a text-to-text similarity metric. They evaluate their
method on a paraphrase recognition task. The main drawback of this method
is that it computes the similarity of words from eight different methods, which
is not computationally efficient.

Li et al. [2006] propose another hybrid method that derives text similarity
from semantic and syntactic information contained in the compared texts. Their
proposed method dynamically forms a joint word set only using all the distinct
words in the pairs of sentences. For each sentence, a raw semantic vector is de-
rived with the assistance of the WordNet lexical database [Miller et al. 1993].
A word order vector is formed for each sentence, again using information from
the lexical database. Since each word in a sentence contributes differently to
the meaning of the whole sentence, the significance of a word is weighted by us-
ing information content derived from a corpus. By combining the raw semantic
vector with information content from the corpus, a semantic vector is obtained
for each of the two sentences. Semantic similarity is computed based on the
two semantic vectors. An order similarity is calculated using the two order
vectors. Finally, the sentence similarity is derived by combining semantic simi-
larity and order similarity. These two hybrid measures [Li et al. 2006; Mihalcea
et al. 2006] do not take into account the string similarity, which plays an impor-
tant role in some cases. We discuss why string similarity is important in next
section.

Feature-based methods try to represent a sentence using a set of predefined
features. Similarity between two texts is obtained through a trained classifier.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:5

But finding effective features and obtaining values for these features from sen-
tences make this category of methods more impractical.

3. PROPOSED METHOD

The proposed method determines the similarity of two texts from semantic and
syntactic information (in terms of common-word order) that they contain. We
consider three similarity functions in order to derive a more generalized text
similarity method. First, string similarity and semantic word similarity are
calculated and then we use an optional common-word order similarity function
to incorporate syntactic information in our method, if we wish. Finally, the
text similarity is derived by combining string similarity, semantic similarity
and common-word order similarity with normalization. We call our proposed
method the Semantic Text Similarity (STS) method.

We investigate the importance of including string similarity by a simple
example. Let us consider a pair of texts, T1 and T2 that contain a proper noun
(proper name) ‘Maradona’ in T1. In T2 the name ‘Maradona’ is misspelled to
‘Maradena’.

T1 : Many consider Maradona as the best player in soccer history.
T2 : Maradena is one of the best soccer players.

Dictionary-based similarity measure can not provide any similarity value be-
tween these two proper names. And the chance to obtain a similarity value using
corpus-based similarity measures is very low. Even if we obtain any similarity
value using corpus-based similarity measures, we obtain a very low similarity
score. We obtain a good similarity score if we use string similarity measures.
The following sections present a detailed description of each of the above men-
tioned functions.

3.1 String Similarity between Words

We use the longest common subsequence (LCS) [Allison and Dix 1986] measure
with some normalization and small modifications for our string similarity mea-
sure. We use three different modified versions of LCS and then take a weighted
sum of these.1 Kondrak [2005] showed that edit distance and the length of the
longest common subsequence are special cases of n-gram distance and similar-
ity, respectively. Melamed [1999] normalized LCS by dividing the length of the
longest common subsequence by the length of the longer string and called it
longest common subsequence ratio (LCSR). But LCSR does not take into ac-
count the length of the shorter string which sometimes has a significant impact
on the similarity score.

We normalize the longest common subsequence (LCS) so that it takes into
account the length of both the shorter and the longer string and call it

1We use modified versions because in our experiments we obtained better results (precision and

recall) for schema matching on a sample of data than when using the original LCS, or other string

similarity measures.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:6 • A. Islam and D. Inkpen

normalized longest common subsequence (NLCS) which is,

v1 = NLCS(ri, sj) = length(LCS(ri, sj))
2

length(ri) × length(sj)
(1)

While in classical LCS, the common subsequence needs not be consecutive,
in database schema matching, consecutive common subsequence is important
for a high degree of matching. We use maximal consecutive longest common
subsequence starting at character 1, MCLCS1 (Algorithm 1) and maximal con-
secutive longest common subsequence starting at any character n, MCLCSn

(Algorithm 2). In Algorithm 1, we present an algorithm that takes two strings
as input and returns the shorter string or maximal consecutive portions of the
shorter string that consecutively match with the longer string, where match-
ing must be from first character (character 1) for both strings. In Algorithm 2,
we present another algorithm that takes two strings as input and returns the
shorter string or maximal consecutive portions of the shorter string that con-
secutively match with the longer string, where matching may start from any
character (character n) for both of the strings. We normalize MCLCS1 and
MCLCSn and call it normalized MCLCS1 (NMCLCS1) and normalized MCLCSn

(NMCLCSn), respectively.

v2 = NMCLCS1(ri, sj) = length(MCLCS1(ri, sj))
2

length(ri) × length(sj)
(2)

v3 = NMCLCSn(ri, sj) = length(MCLCSn(ri, sj))
2

length(ri) × length(sj)
. (3)

We take the weighted sum of these individual values v1, v2, and v3 to deter-
mine string similarity score, where w1, w2, w3 are weights and w1+w2+w3 = 1.
Therefore, the similarity of the two strings is:

α = w1v1 + w2v2 + w3v3 (4)

Algorithm 1. MCLCS1 (Maximal Consecutive LCS starting at character 1)

input : ri , sj /*ri and sj are two input strings where |ri| = τ,

|sj | = η and τ ≤ η */

output: ri /*ri is the Maximal Consecutive LCS starting at

character 1 */

1 τ ← |ri|, η ← |sj |
2 while |ri| ≥ 0 do
3 If ri ∩ sj then /∗ i.e., ri ⊂ sj = ri∗/

4 return ri

5 else
6 ri ← ri\cτ /* i.e., remove the right most character from ri */

7 end
8 end

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:7

Algorithm 2. MCLCSn (Maximal consecutive LCS starting at any character n)

input : ri, sj /* ri and sj are two input strings where |ri| = τ,

|sj | = η and τ ≤ η */

output: x /*x is the Maximal Consecutive LCS starting at any

character n */

1 τ ← |ri|, η ← |sj |
2 while |ri| ≥ 0 do
3 determine all n-grams from ri where n = 1 . . . |ri| and

4 ri is the set of n-grams

5 If x ∈ sj where {x|x ∈ ri , x = Max(ri)} then /* i is the number of n-grams
and Max(ri) returns the maximum length n-gram from ri

*/

6 return x
7 else
8 ri ← ri\x

/*remove x from ri */

9 end
10 end

We set equal weights for our experiments.2 Theoretically, v3 ≥ v2. For example,
if ri = albastru and sj = alabaster, then

LCS(ri, sj) = albastr
MCLCS1(ri, sj) = al
MCLCSn(ri, sj) = bast
NLCS(ri, sj) = 72/(8 × 9) = 0.68
NMCLCS1 = 22/(8 × 9) = 0.056
NMCLCSn(ri, sj) = 42/(8 × 9) = 0.22

The string similarity, α = w1v1 + w2v2 + w3v3

= 0.33 × 0.68 + 0.33 × 0.056 + 0.33 × 0.22
= 0.32

3.2 Semantic Similarity between Words

There is a relatively large number of word-to-word similarity metrics in the
literature, ranging from distance-oriented measures computed on semantic
networks or knowledge-based (dictionary/thesaurus-based) measures, to met-
rics based on models of information theory (or corpus-based measures) learned
from large text collections. A detailed review on word similarity can be found
in Li et al. [2003], Rodriguez and Egenhofer [2003], Weeds et al. [2004], and
Bollegala et al. [2007]. We focus our attention on corpus-based measures be-
cause of their large type coverage. The types that are used in real-world texts
are often not found in knowledge base.

2We use equal weights in several places in this article in order to keep the system unsupervised.

If development data would be available, we could adjust the weights.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:8 • A. Islam and D. Inkpen

PMI-IR [Turney 2001] is a simple method for computing corpus-based simi-
larity of words. It uses Pointwise Mutual Information, defined as follows:

PMI(w1, w2) = log p(w1 AND w2)/p(w1)p(w2) Here, w1 and w2 are the two
words. p(w1 AND w2) is the probability that the two words co-occur. If w1 and w2

are statistically independent, then the probability that they co-occur is given by
the product p(w1) · p(w2). If they are not independent, and they have a tendency
to co-occur, then p(w1 AND w2) will be greater than p(w1) · p(w2).

PMI-IR used AltaVista Advanced Search query syntax to calculate the
probabilities.3 In the simplest case, two words co-occur when they appear in
the same document. The probabilities can be approximated by the number of
documents retrieved:

PMI-IR(w1, w2) = hits(w1 AND w2)/(hits(w1)hits(w2))
Here, hits(x) be the number of hits (the number of documents retrieved) when
the query x is given to AltaVista. AltaVista provides how many documents
contain both w1 and w2, and then how many documents contain w1 alone, and
how many documents contain w2 alone.

LSA, another corpus-based measure, analyzes a large corpus of natural text
and generate a representation that captures the similarity of words (discussed
in Section 2).

We use the Second Order Co-occurrence PMI (SOC-PMI) word similarity
method [Islam and Inkpen 2006] that uses Pointwise Mutual Information to
sort lists of important neighbor words of the two target words from a large
corpus. PMI-IR used AltaVista’s Advanced Search query syntax to calculate
probabilities. Note that the “NEAR” search operator of AltaVista is an essential
operator in the PMI-IR method. However, it is no longer in use in AltaVista;
this means that, from the implementation point of view, it is not possible to use
the PMI-IR method in the same form in new systems [Islam et al. 2008]. In
any case, from the algorithmic point of view, the advantage of using SOC-PMI
in our system is that it can calculate the similarity between two words that
do not co-occur frequently, because they co-occur with the same neighboring
words. We used the British National Corpus (BNC)4 as a source of frequencies
and contexts. The method considers the words that are common in both lists
and aggregate their PMI values (from the opposite list) to calculate the relative
semantic similarity. We define the pointwise mutual information function for
only those words having f b(ti, w) > 0,

f pmi(ti, w) = log2

f b(ti, w) × m
f t(ti) f t(w)

, (5)

where f t(ti) tells us how many times the type ti appeared in the entire corpus,
f b(ti, w) tells us how many times word ti appeared with word w in a context
window5 and m is total number of tokens in the corpus. Now, for word w, we

3Google and other well-known search engines do not have a search feature similar to AltaVista’s

“NEAR” operator.
4The size of this corpus is approximately 100 million words, and it is a balanced corpus: it contains

texts from various sources, general British English. For details, see http://www.natcorp.ox.ac.uk/.
5The size of the window is 11 words. For example, a window of size 11 will have at most five context

words on either side of the middle word (which is actually the word of interest).

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:9

define a set of words, X w, sorted in descending order by their PMI values with
w and taken the top most β words having f pmi(ti, w) > 0.

X w = {X w
i }, where i = 1, 2, . . . , β and

f pmi(t1, w) ≥ f pmi(t2, w) ≥ · · · ≥ f pmi(tβ−1, w) ≥ f pmi(tβ , w)

A rule of thumb is used to choose the value of β.6 We define the β-PMI summa-
tion function of a word with respect to another word. The β-PMI summation
function for word w1 with respect to word w2 is:

f (w1, w2, β) =
β∑

i=1

(
f pmi(X w1

i , w2

))γ
, (6)

where, f pmi(X w1

i , w2) > 0, which sums all the positive PMI values of words
in the set X w2 also common to the words in the set X w1 . In other words, this
function actually aggregates the positive PMI values of all the semantically
close words of w2 which are also common in w1’s list. γ 7 should have a value
greater than 1. So, the β-PMI summation function for word w1 with respect to
word w2 having β = β1 and the β-PMI summation function for word w2 with
respect to word w1 having β = β2 are f (w1, w2, β1) = ∑β1

i=1(f pmi(X w1

i , w2))γ

and f (w2, w1, β2) = ∑β2

i=1(f pmi(X w2

i , w1))γ , respectively.8 Finally, we define the
semantic PMI similarity function between the two words, w1 and w2,

Sim(w1, w2) = f (w1, w2, β1)

β1

+ f (w2, w1, β2)

β2

. (7)

We normalize the semantic word similarity, so that it provides a similarity
score between 0 and 1 inclusively. The normalization of semantic similarity
algorithm (Algorithm 3) returns a normalized score of similarity between two
words. It takes as arguments the two words, ri and sj , and a maximum value,
λ, that is returned by the semantic similarity function, Sim(). It returns a
similarity score between 0 and 1 inclusively. For example, the algorithm returns
0.986 for words cemetery and graveyard with λ = 20 (for SOC-PMI method). The
word similarity method is a separate module in our Text Similarity Method.
Therefore, any other word similarity method could be substituted instead of
SOC-PMI, if someone wants to try other word-similarity methods (dictionary-
based, corpus-based or hybrid). In that case, we need to set λ to the maximum
similarity value specific to that method. For example, if we use the Roget-based

6The value of β is related to how many times the word, w appears in the corpus (i.e., the frequency

of w) as well as the number of types (n) in the corpus. We define β as β = (log(f t (w)))2 log2(n)
μ

, where

μ is a constant. For all of our experiments we used μ = 6.5. The value of μ depends on the size of

the corpus. The smaller the corpus we use, the smaller the value of μ we should choose. If we lower

the value of μ, we lose some important/interesting words, and if we increase it we consider more

words and this significantly degrades the result.
7The higher the value of γ is, the greater emphasis on words having very high PMI values with

w is given. For all our experiments, we chose γ = 3. The value γ ≥ 4 is not a good choice because

it puts too much emphasis on words that have very high PMI values with w and ignores all the

words having moderate or low PMI values. We experimented on a small portion of the BNC to find

out the values of γ , β and μ.
8β1 and β2 are the number of neighbours for w1 and w2 that we take into account.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:10 • A. Islam and D. Inkpen

Algorithm 3. Normalization of Semantic similarity matching

input : ri, sj, λ /* ri and sj are two input words where |ri| = τ, |sj | = η

and τ ≤ η

output: v /* v is the semantic similarity value between 0 and 1,

inclusively ∗ /

1 v ← Sim(ri , sj) /* This function determines semantic similarity between

two words using (8). Details of this method have been discussed in

Section 3.2. Any other similarity method can also be used instead. /*

2 If v > λ then /* λ is the maximum possible similarity value as discussed

in section 3.2 ∗/

3 v ← 1

4 else
5 v ← v/λ

6 end

measure [Jarmasz and Szpakowicz 2003], then we need to set λ to 16, as there
are eight levels in the Roget thesaurus and there can be at most 16 edges be-
tween two words. One of the main advantages of using distributional measures
based on corpus is that it covers significantly more tokens than any dictionary-
based measure.

3.3 Common Word Order Similarity between Sentences

If the two texts have some words in common, we can measure how similar the
order of the common-words is in the two texts (if these words appear in the same
order, or almost the same order, or very different order). Although syntactic
information (here approximated by the order of the common-words) has low
importance for the semantic processing of short texts according to Wiemer-
Hastings [2000], we incorporate the word order to test this hypothesis and to
make our method more generic. We use it when we consider the importance
of syntactic information by setting its weight factor, w f to less than 0.5, that
is, w f ∈ [0, 0.5). We set its weight factor, w f to 0, when we want to ignore its
importance. The value of w f should be much less than 0.5, as syntax has a little
importance in semantic processing.

Let us consider a pair of sentences, P and R has m and n tokens respectively,
that is, P = p1, p2, . . . , pm and R = r1, r2, . . . , rn and n ≥ m. Otherwise, we
switch P and R. We count the number of pi ’s (say, δ) for which pi = r j , for all
p ∈ P and for all r ∈ R. That is, there are δ tokens in P that exactly match with
R, where δ ≤ m. We remove all δ tokens from P and put them in X and from R
in Y , in the same order as they appear in the sentences. So, X = {x1, x2, . . . , xδ}
and Y = { y1, y2, . . . , yδ}. We replace X by assigning a unique index number
for each token in X starting from 1 to δ, that is, X = {1, 2, . . . , δ}. Based on this
unique index numbers for each token in X , we also replace Y where X = Y .
We propose a measure for measuring the common-word order similarity of two
texts as:

So = 1 − |x1 − y1| + |x2 − y2| + · · · + |xδ − yδ|
|x1 − xδ| + |x2 − xδ−1| + · · · + |xδ − x1| (8)

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:11

That is, common-word order similarity is determined by the normalized differ-
ence of common-word order (the denominator is the largest possible dissimilar-
ity value, the worse order of pairwise elements in X). Equation (9) demonstrates
three individual cases of (8).9

So =

⎧⎪⎪⎨
⎪⎪⎩

1 − 2
∑δ

i=1 |xi− yi |
δ2 if δ is even

1 − 2
∑δ

i=1 |xi− yi |
δ2−1

if δ is odd and δ > 1

1 if δ is odd and δ = 1.

(9)

For example:
P : Many consider Maradona as the best player in soccer history.
R : Maradona is one of the best soccer players.
There are five tokens (δ) in P that exactly match with R. We remove all five

tokens from both P and R to X and Y in the same order as they appear in the
sentences. So, X = {maradona, the, best, player, soccer} and Y = {maradona,
the, best, soccer, player}. We replace X by assigning a unique index number for
each token in X starting from 1 to 5, that is, X = {1, 2, 3, 4, 5}. Based on this
unique index numbers for each token in X , we also replace Y where X = Y .
That is, Y = {1, 2, 3, 5, 4}.

So = 1 − 2
∑5

i=1 |xi − yi|
52 − 1

, that is, So = 0.83 as δ is odd and δ > 1.

3.4 Overall Sentence Similarity

Our task is to derive a score between 0 and 1 inclusively that will indicate the
similarity between two texts P and R at semantic level. The main idea is to
find, for each word in the first sentence, the most similar matching in the second
sentence. The method consists in the following six steps:

Step 1. We use all special characters, punctuations, and capital letters, if any,
as initial word boundary and eliminate all these special characters, punctua-
tions and stop words. We lemmatize each of the segmented words to generate
tokens. After cleaning we assume that the text P = {p1, p2, . . . , pm} has m to-
kens and text R = {r1, r2, . . . , rn} has n tokens and n ≥ m. Otherwise, we switch
P and R.

Step 2. We count the number of pi ’s (say, δ) for which pi = r j , for all p ∈ P and
for all r ∈ R. That is, there are δ tokens in P that exactly match with R, where
δ ≤ m. We remove all δ tokens from both of P and R. So, P = {p1, p2, . . . , pm−δ}
and R = {r1, r2, . . . , rn−δ}. If all the terms match, m − δ = 0, we go to step 6.

Step 3. We construct a (m − δ) × (n − δ) string similarity matrix (say, M1 =
(αi j)(m−δ)×(n−δ)) using the following process: we assume any token pi ∈ P has τ

characters, that is, pi = {c1c2 · · · cτ } and any token r j ∈ R has η characters, that
is, r j = {c1c2 · · · cη} where τ ≤ η. In other words, η is the length of the longer

9The denominator is different for δ even or odd. For example, if δ is even and X = {1, 2, 3, 4, 5, 6}
then the denominator is |1−6|+|2−5|+|3−4|+|4−3|+|5−2|+|6−1| = 5+3+1+1+3+5 = δ2/2.

If δ is odd and X = {1, 2, 3, 4, 5}, then the denominator is |1−5|+ |2−4|+ |3−3|+ |4−2|+ |5−1| =
4 + 2 + 0 + 2 + 4 = (δ2 − 1)/2.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:12 • A. Islam and D. Inkpen

token and τ is the length of the shorter token. We calculate the following:

v1 ← NLCS(pi, r j)
v2 ← NMCLCS1(pi, r j)
v3 ← NMCLCSn(pi, r j)
αi j ← w1v1 + w2v2 + w3v3,

that is, αi j is a weighted sum of v1, v2, and v3 where w1, w2, w3 are weights and
w1 + w2 + w3 = 1. We set equal weights for our experiments.

We put αi j in row i and column j position of the matrix for all i = 1 · · · m − δ

and j = 1 · · · n − δ.

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 . . . α1 j . . . α1(n−δ)

α21 α22 . . . α2 j . . . α2(n−δ)

...
...

. . .
...

. . .
...

αi1 αi2 . . . αi j . . . αi(n−δ)

...
...

. . .
...

. . .
...

α(m−δ)1 α(m−δ)2 . . . α(m−δ) j . . . α(m−δ)(n−δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 4. We construct a (m − δ) × (n − δ) semantic similarity matrix
(say, M2 = (βi j)(m−δ)×(n−δ)) using the following process: We put βi j (βi j ←
semanticMatching (pi, r j) (Algorithm 3) in row i and column j position of the
matrix for all i = 1 · · · m − δ and j = 1 · · · n − δ.

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β11 β12 . . . β1 j . . . β1(n−δ)

β21 β22 . . . β2 j . . . β2(n−δ)

...
...

. . .
...

. . .
...

βi1 βi2 . . . βi j . . . βi(n−δ)

...
...

. . .
...

. . .
...

β(m−δ)1 β(m−δ)2 . . . β(m−δ) j . . . β(m−δ)(n−δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 5. We construct another (m − δ) × (n − δ) joint matrix (say, M =
(γi j)(m−δ)×(n−δ)) using

M ← ψ M1 + ϕM2, (10)

(i.e., γi j = ψαi j + ϕβi j), where ψ is the string matching matrix weight factor. ϕ

is the semantic similarity matrix weight factor, and ψ + ϕ = 1. Setting any one
of these factors to 0 means that we do not include that matrix. Setting both of
the factors to 0.5 means we consider them equally important.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ11 γ12 . . . γ1 j . . . γ1(n−δ)

γ21 γ22 . . . γ2 j . . . γ2(n−δ)

...
...

. . .
...

. . .
...

γi1 γi2 . . . γi j . . . γi(n−δ)

...
...

. . .
...

. . .
...

γ(m−δ)1 γ(m−δ)2 . . . γ(m−δ) j . . . γ(m−δ)(n−δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:13

After constructing the joint matrix, M , we find out the maximum-valued
matrix-element, γi j . We add this matrix element to a list (say, ρ and ρ ← ρ∪γi j)
if γi j ≥ 0. We remove all the matrix elements of ith row and j th column from
M .10 We repeat the finding of the maximum-valued matrix-element, γi j adding
it to ρ and removing all the matrix elements of the corresponding row and
column until either γi j = 0, or m − δ − |ρ| = 0, or both.

Step 6. We sum up all the elements in ρ and add δ(1 − w f + w f So) to it
to get a total score, where So is common-word order similarity score and w f

is common-word order weight that decides the relative contributions of word
similarity (string similarity and semantic similarity) and common-word order
similarity score. We multiply this total score by the reciprocal harmonic mean
of m and n to obtain a balanced similarity score between 0 and 1, inclusively.

S(P, R) =
(
δ(1 − w f + w f So) + ∑|ρ|

i=1 ρi
) × (m + n)

2mn
(11)

(11) could take four specific forms: First, if we ignore the importance of syntactic
information by setting w f = 0 in (11), we obtain:

S(P, R) =
(
δ + ∑|ρ|

i=1 ρi
) × (m + n)

2mn
(12)

Second, if we obtain common-word order similarity value (So) as 1, S(P, R) will
be independent of w f , that is, same as (12). Third, if we ignore the importance
of string similarity, we set ψ in (10) to 0. Fourth, if we ignore the importance of
semantic word similarity, we set ϕ in (10) to 0.

4. A WALK THROUGH EXAMPLE

Let P = “A cemetery is a place where dead people’s bodies or their ashes are
buried.”, R = “A graveyard is an area of land, sometimes near a church, where
dead people are buried.”. This example is from the dataset used by Li et al.
[2006] (see the description of the full dataset in Section 5.1).

Step 1. After eliminating all special characters and punctuations, if any, and
then removing all stop words and lemmatizing, we get P = {cemetery, place,
where, dead, body, ash, bury} and R = {graveyard, area, land, sometime, near,
church, where, dead, bury} where m = 7 and n = 9.

Step 2. Only three tokens (i.e., where, dead and bury) in P exactly matches
with R therefore we set δ to 3. We remove where, dead and bury from both P
and R. So, P = {cemetery, place, body, ash} and R = {graveyard, area, land,
sometime, near, church}. As m − δ �= 0, we proceed to next step.

Step 3. We construct a 4 × 6 string matching matrix, M1. Consider the place
land pair where length(LCS(place, land)) = 2, η = 5 is the length of the longer
token (place), τ = 4 is the length of the shorter token (land) and 2 is the maximal
length of the consecutive portions of the shorter token that consecutively match

10We remove the row and column in order to remove the pair with maximum similarity. This makes

the computation manageable: in the next steps, fewer words are left for matching.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:14 • A. Islam and D. Inkpen

with the longer token, where matching starts from the 1st character of the
shorter token and 2nd character of the longer token. So,

v1 = 22/(5 × 4) = 0.2, v2 = 0, v3 = 22/(5 × 4) = 0.2
and α23 = 0.33 × v1 + 0.33 × v2 + 0.33 × v3 = 0.132

M1 =

⎛
⎜⎜⎝

graveyard area land sometime near church
cemetery 0.023 0.021 0 0.129 0.052 0.041
place 0.037 0.083 0.132 0.017 0.033 0.022
body 0.018 0 0.041 0.021 0 0
ash 0.024 0.083 0.055 0.028 0.055 0.037

⎞
⎟⎟⎠.

Step 4. We construct a 4 × 6 semantic similarity matrix, M2. Here, λ = 20 as
we used SOCPMI method.

M2 =

⎛
⎜⎜⎝

graveyard area land sometime near church
cemetery 0.986 0 0.390 0.195 0.542 0.856
place 0 0.413 0.276 0.149 0 0
body 0.465 0 0.363 0.122 0.063 0.088
ash 0.796 0 0.213 0.238 0.395 0.211

⎞
⎟⎟⎠.

Step 5. We construct a 4 × 6 joint matrix, M and assign equal weight factor
by setting both ψ and ϕ to 0.5.

M =

⎛
⎜⎜⎝

graveyard area land sometime near church
cemetery 0.505 0.010 0.195 0.162 0.297 0.449
place 0.018 0.248 0.204 0.083 0.017 0.011
body 0.242 0 0.039 0.071 0.032 0.044
ash 0.416 0.041 0.134 0.133 0.225 0.124

⎞
⎟⎟⎠.

We find the maximum-valued matrix-element, γi j = 0.505 and add it to ρ as
γi j ≥ 0. So, ρ = {0.505}. The new M after removing ith (i = 1) row and j th (j =
1) column is:

M =
⎛
⎝

area land sometime near church
place 0.248 0.204 0.083 0.017 0.011
body 0 0.039 0.071 0.032 0.044
ash 0.041 0.134 0.133 0.225 0.124

⎞
⎠.

We find the maximum-valued matrix-element, γi j = 0.248 for this new M and
add it to ρ as γi j ≥ 0. So, ρ = {0.505, 0.248}. The new M after removing ith
(i = 1) row and j th (j = 1) column is:

M =
(land sometime near church

body 0.039 0.071 0.032 0.044
ash 0.134 0.133 0.225 0.124

)
.

Here, 0.225 is the maximum-valued matrix-element and γi j ≥ 0. So, ρ =
{0.505, 0.248, 0.225}. The new M after removing ith (i = 2) row and j th (j = 3)
column is:

M = (land sometime church
body 0.039 0.071 0.044

)
.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:15

We find 0.071 as the maximum-valued matrix-element and γi j ≥ 0. So, ρ =
{0.505, 0.248, 0.225, 0.071}. The new M is empty after removing ith (i = 1) row
and j th (j = 2) column.

We proceed to next step as m − δ − |ρ| = 0. (Here, m = 7, δ = 3 and |ρ| = 4)
Step 6.

S(P, R) =
(
δ + ∑|ρ|

i=1 ρi
) × (m + n)

2mn
= (3 + 1.049) × 16/126 = 0.514.

For this specific example, it does not matter what value we choose for w f

(common-word order factor), because we obtain common-word order similar-
ity value as 1. That is, S(P, R) = 0.514 for all w f ∈ [0, 0.5).

5. EVALUATION AND EXPERIMENTAL RESULTS

In order to evaluate our text similarity measure, we use two different data
sets. In our first experiment, we compute the similarity score for 30 sentence
pairs and find the correlation with human judges in order to compare with Li
et al. [2006] who also use the same 30 sentence pairs and find the correlation
with human judges. In our second experiment, we use the Microsoft paraphrase
corpus [Dolan et al. 2004], consisting of 4,076 training and 1,725 test pairs, and
determine the number of correctly identified paraphrase pairs in the corpus
using our proposed semantic text similarity method and compare the result
with Mihalcea et al. [2006] and Corley and Mihalcea [2005] as they also use the
same data set to evaluate their method.

Since syntax plays a less important role in semantic processing of shorter
texts, the results of the following experiments are for the common-word order
similarity factor set to zero (if set to a higher value the results are slightly
lower).

5.1 Experiment with Human Similarities of Sentence Pairs

We use the same data set as Li et al. [2006].11 Li et al. [2006] collected hu-
man ratings for the similarity of pairs of sentences following existing designs
for word similarity measures. The participants consisted of 32 volunteers, all
native speakers of English educated to graduate level or above. Li et al. [2006]
began with the set of 65 noun pairs from Rubenstein and Goodenough [1965]
and replaced them with their definitions from the Collins Cobuild dictionary
[Sinclair 2001]. Cobuild dictionary definitions are written in full sentences,
using vocabulary and grammatical structures that occur naturally with the
word being explained. The participants were asked to complete a question-
naire, rating the similarity of meaning of the sentence pairs on the scale from
0.0 (minimum similarity) to 4.0 (maximum similarity), as in Rubenstein and
Goodenough [1965]. Each sentence pair was presented on a separate sheet. The
order of presentation of the sentence pairs was randomized in each question-
naire. The order of the two sentences making up each pair was also randomized.

11Available at http://www.docm.mmu.ac.uk/STAFF/D.McLean/SentenceResults.htm.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:16 • A. Islam and D. Inkpen

Table I. Sentence Data Set Results

Human Li et al. Semantic Text

R&G R&G Word Pair in Similarity Similarity Similarity

No. the Sentences (Mean) Similarity Method Method

1 Cord Smile 0.01 0.33 0.06

5 Autograph Shore 0.01 0.29 0.11

9 Asylum Fruit 0.01 0.21 0.07

13 Boy Rooster 0.11 0.53 0.16

17 Coast Forest 0.13 0.36 0.26

21 Boy Sage 0.04 0.51 0.16

25 Forest Graveyard 0.07 0.55 0.33

29 Bird Woodland 0.01 0.33 0.12

33 Hill Woodland 0.15 0.59 0.29

37 Magician Oracle 0.13 0.44 0.20

41 Oracle Sage 0.28 0.43 0.09

47 Furnace Stove 0.35 0.72 0.30

48 Magician Wizard 0.36 0.65 0.34

49 Hill Mound 0.29 0.74 0.15

50 Cord String 0.47 0.68 0.49

51 Glass Tumbler 0.14 0.65 0.28

52 Grin Smile 0.49 0.49 0.32

53 Serf Slave 0.48 0.39 0.44

54 Journey Voyage 0.36 0.52 0.41

55 Autograph Signature 0.41 0.55 0.19

56 Coast Shore 0.59 0.76 0.47

57 Forest Woodland 0.63 0.70 0.26

58 Implement Tool 0.59 0.75 0.51

59 Cock Rooster 0.86 1 0.94

60 Boy Lad 0.58 0.66 0.60

61 Cushion Pillow 0.52 0.66 0.29

62 Cemetery Graveyard 0.77 0.73 0.51

63 Automobile Car 0.56 0.64 0.52

64 Midday Noon 0.96 1 0.93

65 Gem Jewel 0.65 0.83 0.65

This was to prevent any bias being introduced by order of presentation. Each
of the 65 sentence pairs was assigned a semantic similarity score calculated as
the mean of the judgments made by the participants.

The distribution of the semantic similarity scores was heavily skewed toward
the low similarity end of the scale (a total of 46 out of 65 sentence pairs were
rated 0.0 to 0.9 and the rest 19 pairs were rated 1.00 to 4.00). That is why a
subset of 30 sentence pairs containing all of the 19 sentence pairs rated 1.0 to 4.0
and 11 (from the rest 46) sentence pairs rated 0.0 to 0.9 taken at equally spaced
intervals from the list were selected to obtain a more even distribution across
the similarity range based on a similar procedure to Miller and Charles [1991].
The detailed procedure of this data set preparation is in Li et al. [2006]. Table I
shows human similarity scores along with Li et al.’s [2006], Similarity Method
scores and our proposed Semantic Text Similarity scores. Human similarity
scores are provided as the mean score for each pair and have been scaled into
the range [0..1].

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:17

Fig. 1. Similarity correlations.

Figure 1 shows that our proposed Semantic Text Similarity Measure achieves
a high Pearson correlation coefficient of 0.853 with the average human simi-
larity ratings, whereas Li et al.’s [2006], Similarity Measure achieves 0.816.
The improvement we obtained is statistically significant at the 0.05 level.12

The best participant obtained a correlation of 0.921 and the worst 0.594 with
the average of the human judges that is used as expected solution to the task.
Li et al. [2006] calculated the correlation coefficient for the judgments of each
participant against the rest of the group and then took the mean to determine
the mean of all participants which is 0.825 and considered this as the upper
bound. We do not think this is necessarily an upper bound. The upper bound
should be the correlation for the best human participant mentioned by Li et al.
[2006], which is 0.921.

5.2 Experiment with the Microsoft Paraphrase Corpus

We use the semantic text similarity method to automatically identify if two
text segments are paraphrases of each other. We use the Microsoft paraphrase
corpus [Dolan et al. 2004], consisting of 4,076 training and 1,725 test pairs,
and determine the number of correctly identified paraphrase pairs in the cor-
pus using the semantic text similarity measure. The paraphrase pairs in this
corpus were automatically collected from thousands of news sources on the
Web over a period of 18 months, and were subsequently labeled by two human
annotators who determined if the two sentences in a pair were semantically
equivalent paraphrases or not. The agreement between the human judges who
labeled the candidate paraphrase pairs in this data set was measured at ap-
proximately 83%, which can be considered as an upper bound for an automatic
paraphrase recognition task performed on this data set. Table II summarizes
the characteristics of the dataset and presents our experimental results.

12We used the test from http://faculty.vassar.edu/lowry/rdiff.html?

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:18 • A. Islam and D. Inkpen

Table II. Characteristics of the Paraphrase Evaluation Data Set and Our Results

Number of Pairs Similarity Number of Number of

Number of Determined as Correct Threshold Score Correct Predicted

Pairs in by Human Annotators in Our Accuracy Pairs Pairs

(Data Set) (TP + FN) Method (%) (TP) (TP + FP)

0 67.54 2753 4076

0.1 67.54 2753 4076

0.2 67.54 2753 4076

0.3 67.59 2753 4074

0.4 67.74 2751 4064

4076 2753 0.5 69.53 2708 3905

(Training) 0.6 72.42 2435 3241

0.7 68.45 1874 2281

0.8 56.67 1085 1183

0.9 37.78 218 219

1.0 32.82 15 15

0 66.49 1147 1725

0.1 66.49 1147 1725

0.2 66.49 1147 1725

0.3 66.49 1147 1725

1725 1147 0.4 66.66 1146 1720

(Test) 0.5 68.86 1128 1646

0.6 72.64 1022 1369

0.7 68.06 768 940

0.8 56.29 443 493

0.9 38.38 86 88

1.0 33.79 5 5

Here are two examples from the Microsoft paraphrase corpus. The first ex-
ample show two sentences that are labeled by the human judges as paraphrases
and the second example shows two sentences that are not paraphrases:

Example 1:
T1: Now, with the agency’s last three shuttles grounded in the wake of the
Columbia disaster, that wait could be even longer.
T2: With the remaining three shuttles grounded in the wake of the Columbia
accident, the rookies will have to wait even longer.

Example 2:
T1: Ballmer has been vocal in the past warning that Linux is a threat to Mi-
crosoft.
T2: In the memo, Ballmer reiterated the open-source threat to Microsoft.

We acknowledge, as in Corley and Mihalcea [2005], that the semantic simi-
larity measure for short texts is a necessary step in the paraphrase recognition
task, but not always sufficient. There might be cases when the same mean-
ing is expressed in one sentence and the exact opposite meaning in the second
sentence (e.g., by adding the word not). For these situations, deeper reasoning
methods are needed.

We evaluate the results in terms of accuracy, the number of pairs predicted
correctly divided by the total number of pairs. We also measure precision, recall
and F-measure. Recall is defined as the percentage of pairs in the manually
annotated pairs set identified by the method and precision is defined as the

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:19

Fig. 2. Precision vs. similarity threshold curves of two data sets for eleven different similarity

thresholds.

percentage of pairs returned by the method that also occurred in the manually
annotated pairs set. In general, it is easy to obtain high performance for one of
the two measures but relatively difficult to obtain high performance for both.
F-measure (F) is the geometric mean of precision (P) and recall (R) and ex-
presses a trade-off between those two measures. These performance measures
are defined as follows:

P = TP/(TP + FP)
R = TP/(TP + FN)
F = (1 + β)PR/(β P + R)

= 2PR / (P + R),

with β = 1 such that precision and recall weighted equally. Here, TP, FP and
FN stand for True Positive (how many pairs of sentences were classified as
paraphrases and they were indeed labeled as paraphrases in the data set),
False Positive (how many were classified as nonparaphrases while they truly
are paraphrases), and False Negative (how many were labeled as paraphrases
when they should not have been), respectively.

We use eleven different similarity thresholds ranging from 0 to 1 with inter-
val 0.1. For example, using test data set when we use similarity threshold 0.6,
our method predicts 1369 pairs as correct, out of which 1022 pairs are correct
among the 1725 manually annotated pairs. Precision vs. similarity threshold
curves and recall vs. similarity threshold curves of the two data sets (training
and test) for the eleven different similarity thresholds are shown in Figure 2
and Figure 3, respectively. Accuracy of the two data sets for the eleven different
similarity thresholds is shown in Figure 4, whereas Figure 5 shows F-measure
vs. similarity threshold curves.

In Figure 3, when we use a similarity threshold score of 1 (i.e., matching
word by word exactly, therefore no semantic similarity matching is needed),
we obtain recall values of 0.0054 and 0.0044 for the training and the test data
set, respectively. We can consider these scores as one of the baselines. Mihal-
cea et al. [2006] mentioned two other baselines: Vector-based and Random. See
Table III for the results of these baselines and the results of several meth-
ods from Mihalcea et al. [2006] and Corley and Mihalcea [2005] (on the test
set).

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:20 • A. Islam and D. Inkpen

Fig. 3. Recall vs. similarity threshold curves of two data sets for eleven different similarity thresh-

olds.

Fig. 4. Accuracy vs. similarity threshold curves of two data sets for eleven different similarity

thresholds.

Fig. 5. F-measure vs. similarity threshold curves of two data sets for eleven different similarity

threshold.

For this paraphrase identification task, we can consider our proposed STS
method as a supervised method. Using the training data set, we obtain the best
accuracy of 72.42% when we use 0.6 as the similarity threshold score. Therefore
we can recommend this threshold for use on the test set, achieving an accuracy
of 72.64% (our method predicts 1369 pairs as correct, out of which 1022 pairs

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:21

Table III. Text Similarity for Paraphrase Identification

Metric Accuracy Precision Recall F-Measure

Semantic Similarity (corpus-based)

PMI-IR 69.9 70.2 95.2 81.0

LSA 68.4 69.7 95.2 80.5

STS 72.6 74.7 89.1 81.3
Semantic Similarity (knowledge-based)

J & C 69.3 72.2 87.1 79.0

L & C 69.5 72.4 87.0 79.0

Lesk 69.3 72.4 86.6 78.9

Lin 69.3 71.6 88.7 79.2

W & P 69.0 70.2 92.1 80.0

Resnik 69.0 69.0 96.4 80.4

Combined(S) 71.5 72.3 92.5 81.2

Combined(U) 70.3 69.6 97.7 81.3
Baselines

Threshold-1 33.8 100.0 0.44 0.87

Vector-based 65.4 71.6 79.5 75.3

Random 51.3 68.3 50.0 57.8

are correct among the 1725 manually annotated pairs). Our results on the test
set are shown in Table III.

For each candidate paraphrase pair in the test set, we first calculate the
semantic text similarity score using (12), and then label the candidate pair
as a paraphrase if the similarity score exceeds a threshold of 0.6. The results
on the test set are shown in Table III. We obtain the same F-measure (81%)
at the combined methods from Mihalcea et al. [2006] and Corley and Mihal-
cea [2005]. We obtain higher accuracy and precision at the cost of decreasing
recall.

6. CONCLUSION

6.1 Contributions of the Work

The proposed method determines the similarity of two texts from semantic
and syntactic information (in terms of common-word order) that they contain.
We consider two mandatory (string similarity and semantic word similarity)
functions and an optional (common-word order similarity) function in order to
derive a more generalized text similarity method. Our proposed STS method
achieves a very good Pearson correlation coefficient for 30 sentence pairs data
set and outperforms the results obtained by Li et al. [2006] (the improvement is
statistically significant). For the paraphrase recognition task, our proposed STS
method performs similarly to the combined unsupervised method [Mihalcea
et al. 2006] and the combined supervised method [Corley and Mihalcea 2005].
The main advantage of our system is that it has lower time complexity than
the other system [Mihalcea et al. 2006; Corley and Mihalcea 2005], because we
use only one corpus-based measure, while they combine both corpus-based and
WordNet-based measures. For example, Mihalcea et al. [2006] use six WordNet-
based measures and two corpus-based measures. The time complexity of the
algorithms is given mainly by the number of searches in the corpus and in

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:22 • A. Islam and D. Inkpen

WordNet. One difference between our method and that of Mihalcea et al. [2006]
with respect to time complexity is the size of the corpus. We use a corpus of size
108 whereas they use a web corpus of size 7 × 1011. Another difference is that
we do not use WordNet at all, therefore we save time complexity. The third
difference is that we add the string similarity measure on short strings, but
this is very fast, because the strings are short.13

Our method can be used as unsupervised or supervised. For the second task,
paraphrase recognition, we used it as supervised, but only to find the best
threshold. For the first task, comparing our sentence similarity score to scores
assigned by human judges, our system is used as unsupervised (there is no
training data available).

We also tested our proposed semantic text similarity method by setting
common-word order similarity factor, w f ∈ [0, 0.5) to observe the effects of
common-word order similarity on both data sets for determining short text
similarity. For both the paraphrase identification and 30 sentence pair similar-
ity tasks, we got lower accuracy and correlation with human ratings when using
the word order similarity factor. This is similar to the conclusion of the word

13In our proposed method we do the following steps:

(i) First, we use three string similarity functions to determine a combined string similarity score.

The time complexity calculation is straightforward. Assume that the maximum length of the

two strings is m (where m is a small number, maximum 22 in the dataset). Then the time

complexity of LCS, MCLCS1 and MCLCSn are O(m2), O(m2) and O(m2), respectively. So, the

total complexity of the string matching is O(m2).

(ii) We use one semantic word similarity method; it has a linear time complexity with the size

of the corpus N = 108 (the size of the BNC). We can ignore quadratic time complexity of

the window size (10 words) as it is much smaller than the size N of the corpus. So the total

complexity of the corpus-based similarity matching is O(N).

(iii) We use an optional common-word order similarity function to incorporate syntactic informa-

tion in our method. It has a linear time complexity of the number of common words. We could

omit this step as it lowers the accuracy and the correlation.

(iv) Finally, we combine the two matrices; this has a quadratic complexity of the size of the matri-

ces. If s is the length of the longest sentence (s is 32 in the dataset), then the time complexity

is O(s2).

The total complexity is O(N) + O(m2) + O(s2).

Mihalcea et al. [2006] does the following steps:

(i) They use two corpus-based measures which have linear time complexity of the size of the

corpus where the size of the corpus is N ′ = 7 × 1011 (a Web corpus). The complexity is O(N ′).
(ii) They use six WordNet-based measures where the complexities of the WordNet-based mea-

sures are given mainly by the number of searches in WordNet. The theoretical complexity is

proportional with the square of the number of senses of the two words, because we need to

compare every sense of one word with every sense of the other word, and with the depth of

WordNet hierarchy (h). If the maximum number of senses in WordNet is r, the time complexity

of the WordNet-based similarity is O(s2r2h), for the s2 pairs of words. In practice, searches in

WordNet are known to be time consuming.

(iii) Then they combine the corpus-based and WordNet-based measures.

(iv) Finally, they match the words in the two sentences. If s is the length of the longest sentence,

the time complexity is O(s2), the same as in our method because we use the same data.

The total complexity is O(N ′) + O(s2r2h) + O(s2).

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:23

order experiments of Li et al. [2006] on the 30 sentence data set (note that they
use a different method for dealing with word order, for all the words in the two
sentences, not only the shared words). One of the possible reasons may be that
the same meaning is expressed by different syntactic order in the short texts.

6.2 Future Work

A follow up study could use a topic directory such as Dmoz14 (where about
590,000 categories are available) to collect category descriptions. Semantic sim-
ilarity for pairs of category descriptions could be computed using our proposed
method, because they are short texts. This approach would allow evaluation
over a large number of pairs of topic descriptions, and we could estimate the
expected similarity scores from the positions of the nodes in the topic ontologies
available in Dmoz.

REFERENCES

ALLISON, L. AND DIX, T. 1986. A bit-string longest-common-subsequence algorithm. Inf. Proc.
Lett. 23, 305–310.

BOLLEGALA, D., MATSUO, Y., AND ISHIZUKA, M. 2007. Measuring semantic similarity between words

using web search engines. In WWW ’07: Proceedings of the 16th International Conference on World
Wide Web. ACM, New York, 757–766.

BURGESS, C., LIVESAY, K., AND LUND, K. 1998. Explorations in context space: Words, sentences,

discourse. Disc. Proc. 25, 2–3, 211–257.

COELHO, T., CALADO, P., SOUZA, L., RIBEIRO-NETO, B., AND MUNTZ, R. 2004. Image retrieval using

multiple evidence ranking. IEEE Trans. Knowl. Data Eng. 16, 4, 408–417.

COHEN, W. 2000. Data integration using similarity joins and a word-based information represen-

tation language. ACM Trans. Inf. Syst. 18, 3, 288–321.

CORLEY, C. AND MIHALCEA, R. 2005. Measures of text semantic similarity. In Proceedings of the
ACL workshop on Empirical Modeling of Semantic Equivalence (Ann Arbor, MI).

DOLAN, W., QUIRK, C., AND BROCKETT, C. 2004. Unsupervised construction of large paraphrase

corpora: Exploiting massively parallel news sources. In Proceedings of the 20th International
Conference on Computational Linguistics.

ERKAN, G. AND RADEV, D. 2004. Lexrank: Graph-based lexical centrality as salience in text sum-

marization. J. Artif. Intell. Research 22, 457–479.

FOLTZ, P., KINTSCH, W., AND LANDAUER, T. 1998. The measurement of textual coherence with latent

semantic analysis. Disc. Proc. 25, 2–3, 285–307.

FRAWLEY, W. 1992. Linguistic Semantics. Lawrence Erlbaum Associates, Hillsdale, NJ.

HATZIVASSILOGLOU, V., KLAVANS, J., AND ESKIN, E. 1999. Detecting text similarity over short pas-

sages: Exploring linguistic feature combinations via machine learning. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing and Very Large Corpora.

203–212.

ISLAM, A. AND INKPEN, D. 2006. Second order co-occurrence PMI for determining the semantic

similarity of words. In Proceedings of the International Conference on Language Resources and
Evaluation. (Genoa, Italy). 1033–1038.

ISLAM, A., INKPEN, D. Z., AND KIRINGA, I. 2008. Applications of corpus-based semantic similarity

and word segmentation to database schema matching. The VLDB Journal (Published online).
JACKENDOFF, R. 1983. Semantics and Cognition. MIT Press, Cambridge, MA.

JARMASZ, M. AND SZPAKOWICZ, S. 2003. Roget’s thesaurus and semantic similarity. In Proceedings
of the International Conference on Recent Advances in Natural Language Processing. 212–219.

JIANG, J. AND CONRATH, D. 1997. Semantic similarity based on corpus statistics and lexical taxon-

omy. In Proceedings of the International Conference on Research in Computational Linguistics.

14http://www.dmoz.org/

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

10:24 • A. Islam and D. Inkpen

KATARZYNA, W.-W. AND SZCZEPANIAK, P. 2005. Classification of rss-formatted documents using full

text similarity measures. In Proceedings of the 5th International Conference on Web Engineering,

D. Lowe and M. Gaedke, Eds. LNCS 3579. Springer, 400–405.

KO, Y., PARK, J., AND SEO, J. 2004. Improving text categorization using the importance of sentences.

Inf. Proc. Manage. 40, 65–79.

KONDRAK, G. 2005. N-gram similarity and distance. In Proceedings of the 12h International Con-
ference on String Processing and Information Retrieval (Buenos Aires, Argentina). 115–126.

LANDAUER, T. AND DUMAIS, S. 1997. A solution to platos problem: The latent semantic analysis

theory of the acquisition, induction, and representation of knowledge. Psych. Rev. 104, 2, 211–

240.

LANDAUER, T., FOLTZ, P., AND LAHAM, D. 1998. Introduction to latent semantic analysis. Dis.
Proc. 25, 2–3, 259–284.

LAPATA, M. AND BARZILAY, R. 2005. Automatic evaluation of text coherence: Models and represen-

tations. In Proceedings of the 19th International Joint Conference on AI.
LEACOCK, C. AND CHODOROW, M. 1998. WordNet: An electronic lexical database. MIT Press, Chapter

Combining local context andWordNet similarity for word sense identification, 265–283.

LESK, M. 1986. Automatic sense disambiguation using machine readable dictionaries: How to

tell a pine cone from an ice cream cone. In Proceedings of the SIGDOC Conference.

LI, Y., BANDAR, Z., AND MCLEAN, D. 2003. An approach for measuring semantic similarity using

multiple information sources. IEEE Trans. Knowl. Data Eng. 15, 4, 871–882.

LI, Y., MCLEAN, D., BANDAR, Z., O’SHEA, J., AND CROCKETT, K. 2006. Sentence similarity based on

semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18, 8, 1138–1149.

LIN, C. AND HOVY, E. 2003. Automatic evaluation of summaries using n-gram co-occurrence statis-

tics. In Proceedings of the Human Language Technology Conference.

LIN, D. 1998. An information-theoretic definition of similarity. In Proceedings of the International
Conference on Machine Learning.

LIU, T. AND GUO, J. 2005. Text similarity computing based on standard deviation. In Proceedings
of the International Conference on Intelligent Computing, D.-S. Huang, X.-P. Zhang, and G.-B.

Huang, Eds. Lecture Notes in Computer Science, vol. 3644. Springer-Verlag, New York, 456–464.

LIU, Y. AND ZONG, C. 2004. Example-based chinese-english mt. In Proceedings of the 2004 IEEE
International Conference on Systems, Man, and Cybernetics. Vol. 1–7. IEEE Computer Society

Press, Los Alamitos, CA, 6093–6096.

MADHAVAN, J., BERNSTEIN, P., DOAN, A., AND HALEVY, A. 2005. Corpus-based schema matching. In

Proceedings of the International Conference on Data Engineering.

MAGUITMAN, A., MENCZER, F., ROINESTAD, H., AND VESPIGNANI, A. 2005. Algorithmic detection of

semantic similarity. In Proceedings of the 14th International World Wide Web Conference.

MEADOW, C., BOYCE, B., AND KRAFT, D. 2000. Text Information Retrieval Systems, second ed. Aca-

demic Press.

MELAMED, I. D. 1999. Bitext maps and alignment via pattern recognition. Computat. Lin-
guist. 25, 1, 107–130.

MIHALCEA, R., CORLEY, C., AND STRAPPARAVA, C. 2006. Corpus-based and knowledge-based measures

of text semantic similarity. In Proceedings of the American Association for Artificial Intelligence.

(Boston, MA).

MILLER, G., BECKWITH, R., FELLBAUM, C., GROSS, D., AND MILLER, K. 1993. Introduction to wordnet:

An on-line lexical database. Tech. Rep. 43, Cognitive Science Laboratory, Princeton University,

Princeton, NJ.

MILLER, G. A. AND CHARLES, W. G. 1991. Contextual correlates of semantic similarity. Lang. and
Cognitive Processes 6, 1, 1–28.

PAPINENI, K., ROUKOS, S., WARD, T., AND ZHU, W. 2002. Bleu: A method for automatic evaluation of

machine translation. In Proceedings of the 40th Annual Meeting Association for Computational
Linguistics.

PARK, E., RA, D., AND JANG, M. 2005. Techniques for improving web retrieval effectiveness. Inf.
Processing and Management 41, 5, 1207–1223.

RESNIK, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. In

Proceedings of the 14th International Joint Conference on AI.

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

Semantic Text Similarity Using Word and String Similarity • 10:25

RODRIGUEZ, M. A. AND EGENHOFER, M. J. 2003. Determining semantic similarity among entity

classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15, 2, 442–456.

RUBENSTEIN, H. AND GOODENOUGH, J. B. 1965. Contextual correlates of synonymy. Comm.
ACM 8, 10, 627–633.

SALTON, G. AND LESK, M. 1971. Computer Evaluation of Indexing and Text Processing. Prentice

Hall, Inc. Englewood Cliffs, NJ.

SCHALLEHN, E., SATTLER, K., AND SAAKE, G. 2004. Efficient similarity-based operations for data

integration. Data Knowl. Eng. 48, 361–387.

SCHUTZE, H. 1998. Automatic word sense discrimination. Computat. Linguist. 24, 1, 97–124.

SINCLAIR, J., ED. 2001. Collins Cobuild English Dictionary for Advanced Learners, third ed.

Harper Collins.

TURNEY, P. 2001. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In Proceedings of
the 12th European Conference on Machine Learning.

WEEDS, J., WEIR, D., AND MCCARTHY, D. 2004. Characterising measures of lexical distributional

similarity. In Proceedings of the 20th International Conference on Computational Linguistics.

1015–1021.

WIEMER-HASTINGS, P. 2000. Adding syntactic information to lsa. In Proceedings of the 22nd Annual
Conference Cognitive Science Society. 989–993.

WU, Z. AND PALMER, M. 1994. Verb semantics and lexical selection. In Proceedings of the Annual
Meeting Association for Computational Linguistics.

Received May 2007; revised April 2008; accepted May 2008

ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2, Article 10, Publication date: July 2008.

