Date: Monday, September 30, 2002
Prof.: Dr Jean-Yves Chouinard

Design of Secure Computer Systems CSI4138/CEG4394
 Notes on the Modular Arithmetics and Galois Fields

1 Congruence and modular arithmetics

Let a, b, and n be non-negative integers, i.e. $n \in \mathcal{N}$ the set of natural numbers, and $n \neq 0$; then a is said to be congruent to b modulo n, that is

$$
a \equiv_{n} b \quad \text { if and only if, } \quad a-b=k n
$$

for some integer k. In other words, n divides the difference $(a-b)$. For instance,

$$
17 \equiv_{5} 7 \quad \text { since } \quad 17-7=2 \times 5 .
$$

b is a residue of a modulo n and also a is a residue of b modulo n. For any modulus n, the set of integers $\{0,1, \ldots, n-1\}$ forms a complete set of residues modulo n :

$$
\left\{r_{1}, \ldots, r_{n}\right\}=\{0,1, \ldots, n-1\}
$$

The residue r of a modulo n is in the range $[0, n-1]$. Note that

$$
\begin{aligned}
a \bmod n=r & \Rightarrow \quad a \equiv_{n} r \quad \text { but not the converse: } \\
a \equiv_{n} r & \nRightarrow \quad a \bmod n=r
\end{aligned}
$$

meaning that $a \equiv_{n} r$ does not imply that $a \bmod n=r$; for instance,

$$
\begin{array}{ccc}
17 \bmod 5=2 & \Rightarrow \quad 17 \equiv_{5} 2 \quad \text { but } \\
17 \equiv_{5} 7 & \nRightarrow \quad 17 \bmod 5=7
\end{array}
$$

1.1 Properties of modular arithmetics:

Let the symbol (\odot) represent either an addition $(+)$ or a multiplication (\times) operation.

1. Existence of identities:

$$
\begin{aligned}
a+0 \bmod n & =0+a \bmod n=a \\
a \times 1 \bmod n & =1 \times a \bmod n=a
\end{aligned}
$$

2. Existence of inverses:

$$
\begin{aligned}
a+(-a) \bmod n & =0 \\
a \times\left(a^{-1}\right) \bmod n & =1 \quad \text { if } a \neq 0
\end{aligned}
$$

3. Commutativity:

$$
a \odot b \bmod n=b \odot a \bmod n
$$

4. Associativity:

$$
a \odot(b \odot c) \bmod n=(a \odot b) \odot c \bmod n
$$

5. Distributivity:

$$
a \times(b+c) \bmod n=[(a \times b)+(a \times c)] \bmod n
$$

6. Reducibility:

$$
\begin{aligned}
(a \odot b) \bmod n & =[(a \bmod n) \odot(b \bmod n)] \bmod n \quad \text { or equivalently: } \\
(a+b) \bmod n & =[(a \bmod n)+(b \bmod n)] \bmod n \\
(a \times b) \bmod n & =[(a \bmod n) \times(b \bmod n)] \bmod n
\end{aligned}
$$

- Ring: associativity and distributivity
- Commutative ring: associativity, distributivity, and commutativity
- Galois field: commutative ring where each element $\neq 0$ has a multiplicative inverse.

2 Principle of modular arithmetics (reducibility)

The reducibility property states that:

$$
(a \odot b) \bmod n=[(a \bmod n) \odot(b \bmod n)] \bmod n
$$

Proof:
Two integer numbers a_{1} and a_{2} can be written as: $a_{1}=k_{1} n+r_{1}$ and $a_{2}=k_{2} n+r_{2}$, where $r_{1}, r_{2} \in[0, n-1]$, and both k_{1} and k_{2} are positive integers. The reducibility property can be proven for the addition operation $(\odot:+)$ as follow:

$$
\begin{aligned}
\left(a_{1}+a_{2}\right) \bmod n & =\left[\left(k_{1} n+r_{1}\right)+\left(k_{2} n+r_{2}\right)\right] \bmod n \\
& \left.=\left[\left(k_{1}+k_{2}\right) n+r_{1}+r_{2}\right)\right] \bmod n \\
& =\left(r_{1}+r_{2}\right) \bmod n \\
\left(a_{1}+a_{2}\right) \bmod n & =\left[\left(a_{1} \bmod n\right)+\left(a_{2} \bmod n\right)\right] \bmod n
\end{aligned}
$$

by definition of a residue. Similarly, for the multiplication operation, i.e. $(\odot: \times)$:

$$
\begin{aligned}
\left(a_{1} \times a_{2}\right) \bmod n & =\left[\left(k_{1} n+r_{1}\right) \times\left(k_{2} n+r_{2}\right)\right] \bmod n \\
& =\left[\left(k_{1} k_{2} n^{2}\right)+\left(k_{1} n r_{2}\right)+\left(k_{2} n r_{1}\right)+\left(r_{1} r_{2}\right)\right] \bmod n \\
& =\left[\left(k_{1} k_{2} n+k_{1} r_{2}+k_{2} r_{1}\right) n+\left(r_{1} r_{2}\right)\right] \bmod n \\
& =\left(r_{1} \times r_{2}\right) \bmod n \\
\left(a_{1} \times a_{2}\right) \bmod n & =\left[\left(a_{1} \bmod n\right) \times\left(a_{2} \bmod n\right)\right] \bmod n
\end{aligned}
$$

Principle of modular arithmetics

a_{1}, a_{2}	\longrightarrow reduction modulo $n \longrightarrow$	$\left(a_{1} \bmod n\right),\left(a_{2} \bmod n\right)$
$\odot \downarrow$		$\odot \downarrow$
\downarrow		
$a_{1} \odot a_{2}$	\longrightarrow reduction modulo $n \longrightarrow$	$\left[\left(a_{1} \bmod n\right) \odot\left(a_{2} \bmod n\right)\right] \bmod n$

3 Modular exponentiation

Using the properties of modular arithmetics, modular exponentiation can be performed with the advantage of limiting the range of intermediate values:

$$
\begin{aligned}
e^{t} \bmod n & =[e \times e \times \ldots \times e] \bmod n \\
& =\{\underbrace{[e \bmod n][e \bmod n] \ldots[e \bmod n]}_{t \text { times }}\} \bmod n
\end{aligned}
$$

The intermediate values $[e \bmod n]$ being reduced within the range of the modulus, that is $[e \bmod n] \in[0, n-1]$.

$$
e^{t} \bmod n=\left[\prod_{i=1}^{t}(e \bmod n)\right] \bmod n
$$

Example(modular exponentiation):

Compute the following: $11^{207} \bmod 13$

```
11 207 mod 13 = [11 128+64+8+4+2+1}]\operatorname{mod}1
11207}\operatorname{mod}13=[1\mp@subsup{1}{}{128}\times1\mp@subsup{1}{}{64}\times1\mp@subsup{1}{}{8}\times1\mp@subsup{1}{}{4}\times1\mp@subsup{1}{}{2}\times11]\operatorname{mod}1
11207}\operatorname{mod}13={[1\mp@subsup{1}{}{128}\operatorname{mod}13][1\mp@subsup{1}{}{64}\operatorname{mod}13][1\mp@subsup{1}{}{8}\operatorname{mod}13][1\mp@subsup{1}{}{4}\operatorname{mod}13][1\mp@subsup{1}{}{2}\operatorname{mod}13]\times11}\operatorname{mod}1
```



```
11 207 mod 13 = {[11228}\operatorname{mod}13][11\mp@subsup{1}{}{64}\operatorname{mod}13][1\mp@subsup{1}{}{8}\operatorname{mod}13]\times3\times4\times11}\operatorname{mod}1
```

```
11 207 mod 13={[11 128 mod 13][11 64 mod 13] }\operatorname{ma\times3\times4\times11} mod 13
11 207 mod 13={[11'128}\operatorname{mod}13]\times3\times9\times3\times4\times11}\operatorname{mod}1
11207}\operatorname{mod}13={9\times3\times9\times3\times4\times11}\operatorname{mod}1
11207}\operatorname{mod}13={32076}\operatorname{mod}1
11207}\operatorname{mod}13=
```


4 Multiplicative inverses

Let $a \in[0, n-1]$ and $x \in[0, n-1]$ be a multiplicative inverse of a such that:

$$
a x \bmod n=1
$$

a has a unique multiplicative inverse modulo n when a and n are relatively prime or, in other words, if $\operatorname{gcd}(a, n)=1(\operatorname{gcd}(a, n):$ greatest common divisor of a and $n)$.

Example(multiplicative inverses):

Let $a=3$ and $n=5$, then $\operatorname{gcd}(a, n)=1$:

$$
\begin{aligned}
& a \times i \bmod 5 \\
& 3 \times 0 \bmod 5=0 \\
& 3 \times 1 \bmod 5=3 \\
& 3 \times 2 \bmod 5=1 \\
& 3 \times 3 \bmod 5=4 \\
& 3 \times 4 \bmod 5=2
\end{aligned}
$$

There is a unique inverse for each value of a. The set of inverses $\left\{a_{i}^{-1}\right\}$ is in fact a permutation of the set of indices $\{i\}$. Now, changing n to $n=6$:

$$
\begin{aligned}
& a \times i \bmod 6 \\
& 3 \times 0 \bmod 6=0 \\
& 3 \times 1 \bmod 6=3 \\
& 3 \times 2 \bmod 6=0 \\
& 3 \times 3 \bmod 6=3 \\
& 3 \times 4 \bmod 6=0 \\
& 3 \times 5 \bmod 6=3
\end{aligned}
$$

Since $\operatorname{gcd}(a, n) \neq 1$, the inverses of a are not unique.
If $\operatorname{gcd}(a, n)=1$, then there exists an integer $x, 0<x<n$, such that:

$$
a x \bmod n=1
$$

where, as stated above, the set $\{a \times i \bmod n\}$ is a permutation of $\{i\}$. The Euclid's algorithm can be used to compute to compute the greatest common divisor of a and n.

5 Euclid's algorithm

The following algorithm determines the greatest common divisor of two numbers, e.g. a and b :

$$
\begin{array}{rlrl}
a & =b q_{1}+r_{1}, & & \text { for } 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, & & \text { for } 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, & & \text { for } 0<r_{3}<r_{2} \\
r_{2} & =r_{3} q_{4}+r_{4}, & & \text { for } 0<r_{4}<r_{3} \\
& \vdots & & \\
r_{k-2} & & r_{k-1} q_{k}+r_{k}, & \\
\text { for } 0<r_{k}<r_{k-1} \\
r_{k-1} & =r_{k} q_{k+1} & &
\end{array}
$$

The last remainder, r_{k}, is the greatest common divisor of a and b, i.e. $\operatorname{gcd}(a, b)=r_{k}$.
Example ($\operatorname{gcd}(a, b)$ using the Euclid's algorithm):
For $a=360$ and $b=273$, determine their greatest common divisor $\operatorname{gcd}(a, b)$ by employing the Euclid's algorithm.

$$
\begin{aligned}
360 & =273 \times 1+87 \\
273 & =87 \times 3+12 \\
87 & =12 \times 7+3 \\
12 & =3 \times 4
\end{aligned}
$$

Therefore, the greatest common divisor $\operatorname{gcd}(360,273)$ is equal to the remainder $r_{3}=3$. In fact, a and b can be written as:

$$
\begin{aligned}
& 360=5 \times 3 \times 3 \times 2 \times 2 \times 2, \quad \text { and } \\
& 273=13 \times 7 \times 3
\end{aligned}
$$

6 Inverse computation

Consider the complete set $\left\{r_{i}\right\}$ of residues modulo n :

$$
\left\{r_{1}, \ldots, r_{i}, \ldots, r_{n}\right\}=\{0, \ldots, n-1\}
$$

where r_{i} is a residue, such that $a \equiv_{n} r_{i}$. The reduced set of residues modulo n is defined as the subset of $\left\{r_{i}\right\}_{i=1, \ldots, n}$, such that r_{i} is relatively prime to n (excluding 0):

$$
\left\{r_{i}\right\}_{i=1, \ldots, \phi(n)}
$$

where $\phi(n)$ (called Euler totient function of n) represents the number of elements in this reduced set of residues. If

$$
\operatorname{gcd}(a, n)=1 \quad \text { then } \quad \operatorname{gcd}\left(a r_{i}, n\right)=1
$$

for the reduced set of residues $\left\{r_{1}, \ldots, r_{\phi(n)}\right\}$, then since $\left(a r_{i}\right)$ is relatively prime with n :

$$
\left(a r_{i}\right) \bmod n=r_{j}
$$

In other words, the set $\left\{r_{j}\right\}$ is a permutation of the set $\left\{r_{i}\right\}$:

$$
\left\{r_{j}\right\}=\left\{\left(a r_{i}\right) \bmod n\right\}_{i=1, \ldots, \phi(n)}=P \circ\left\{r_{i}\right\}_{i=1, \ldots, \phi(n)}
$$

The following examples give the Euler totient function $\phi(n)$ for different values of n. For instance, if n is prime then, by definition: $\phi(n)=n-1$. For $n=p q$ where p and q are primes:

$$
\begin{aligned}
\phi(n) & =\phi(p q) \\
\phi(n) & =(p-1)(q-1)
\end{aligned}
$$

Examples (Euler totient function $\phi(n)$):
For the following examples, let p, q and p_{i} be prime numbers while e and e_{i} are positive integers.

1. If $n=p$, then the reduced set of residues is:

$$
\left\{r_{i}\right\}=\{1,2, \ldots, p-1\}
$$

whereas the Euler function is equal to:

$$
\phi(n)=\phi(p)=p-1
$$

2. If $n=p^{2}$, the reduced set of residues is:

$$
\left\{r_{i}\right\}=\left\{1,2, \ldots, p-1, p+1, \ldots, 2 p-1,2 p+1, \ldots, p^{2}-1\right\}
$$

and,

$$
\phi(n)=\phi\left(p^{2}\right)=p(p-1)
$$

3. If $n=p q$, the reduced set of residues is:

$$
\begin{gathered}
\left\{r_{i}\right\}=\{1,2, \ldots, p q-1\}-\{p, 2 p, \ldots,(q-1) p\}-\{q, 2 q, \ldots,(p-1) q\} \\
\phi(n)=\phi(p q)=(p q-1)-(q-1)-(p-1)=(p-1)(q-1)
\end{gathered}
$$

4. If $n=p^{e}$, the reduced set of residues is:

$$
\begin{gathered}
\left\{r_{i}\right\}=\left\{1,2, \ldots, p^{e}-1\right\}-\left\{p, 2 p, \ldots,\left(p^{e-1}-1\right) p\right\} \\
\phi(n)=\phi\left(p^{e}\right)=\left(p^{e}-1\right)-\left(p^{e-1}-1\right)=\left(p^{e-1}\right)(p-1)
\end{gathered}
$$

5. If $n=\prod_{i=1}^{t} p_{i}^{e_{i}}$, the Euler function is:

$$
\phi(n)=\phi\left[\prod_{i=1}^{t} p_{i}^{e_{i}}\right]=\prod_{i=1}^{t} p_{i}^{\left(e_{i}-1\right)}\left(p_{i}-1\right)
$$

An integer n can always be expressed as a product of primes numbers:

$$
\begin{aligned}
n & =p_{1}^{e_{1}} \times p_{2}^{e_{2}} \times \ldots \times p_{t}^{e_{t}} \\
n & =\prod_{i=1}^{t} p_{i}^{e_{i}}
\end{aligned}
$$

where the p_{i} 's are t distinct prime numbers and their exponents e_{i} are positive integers. As indicated above, the number of elements in the reduced set is given by:

$$
\phi(n)=\prod_{i=1}^{t} p_{i}^{\left(e_{i}-1\right)}\left(p_{i}-1\right)
$$

6.1 Euler's generalization theorem

Euler's generalization theorem states that, for a and n (with $a<n$) such that $\operatorname{gcd}(a, n)=1$:

$$
a^{\phi(n)} \bmod n=1
$$

To show that $a^{\phi(n)} \bmod n=1$, consider the reduced set of residues $\left\{r_{i}\right\}_{i=1, \ldots, \phi(n)}$ and the (permuted) set of residues $\left\{r_{j}\right\}$:

$$
\begin{aligned}
\left\{r_{j}\right\} & =\left\{a r_{i} \bmod n\right\}_{i=1, \ldots, \phi(n)} \\
\left\{r_{j}\right\} & =P \circ\left\{r_{i}\right\}_{i=1, \ldots, \phi(n)}
\end{aligned}
$$

Then the product of all the elements from the two reduced sets of residues, namely $\left\{r_{i}\right\}$ and $\left\{r_{j}\right\}$, must be equal:

$$
\prod_{i=1}^{\phi(n)} r_{i}=\prod_{j=1}^{\phi(n)} r_{j}
$$

Since the right-hand and left-hand sides of the equation are equal they should also be congruent modulo n :

$$
\begin{aligned}
\prod_{j=1}^{\phi(n)} r_{j} & \equiv \prod_{i=1}^{\phi(n)} r_{i}(\bmod n) \\
\prod_{i=1}^{\phi(n)}\left(a r_{i} \bmod n\right) & \equiv \prod_{i=1}^{\phi(n)} r_{i}(\bmod n) \\
\prod_{i=1}^{\phi(n)} a r_{i} & \equiv \prod_{i=1}^{\phi(n)} r_{i}(\bmod n) \\
a^{\phi(n)} \prod_{i=1}^{\phi(n)} r_{i} & \equiv \prod_{i=1}^{\phi(n)} r_{i}(\bmod n)
\end{aligned}
$$

because of the reducibility property. Dividing both sides by the factor $\prod_{i=1}^{\phi(n)} r_{i}$ leads to:

$$
a^{\phi(n)} \equiv 1 \quad(\bmod n)
$$

and since $1 \in\{0, \ldots, n-1\}$ then:

$$
a^{\phi(n)} \bmod n=1
$$

6.2 Fermat's little theorem

Fermat's little theorem states that if n is a prime number, with $a<n$, then:

$$
a^{n-1} \bmod n=1
$$

by property of the Euler function of a prime number, i.e. $\phi(n)=n-1$.

6.3 Multiplicative inverses

Consider the expression

$$
a x \bmod n=1
$$

What is the multiplicative inverse x of a modulo n (assuming that $\operatorname{gcd}(a, n)=1$)? By Euler's generalization theorem:
$a x \bmod n=a^{\phi(n)} \bmod n=1$
which implies that:

$$
x=a^{\phi(n)-1} \bmod n
$$

Hence to compute an inverse a modular exponentiation program with the arguments ($a,[\phi(n)-$ $1], n$) can be used. If n is a prime number, then $\phi(n)=n-1$ (Fermat's theorem) and:

$$
x=a^{(n-1)-1} \bmod n=a^{n-2} \bmod n
$$

$7 \quad$ Galois Fields of Order p

Definition (Galois Field of Order p):
Let p be a prime number and $\mathbf{Z}_{p}=\{0,1, \ldots, p-1\}$ be the set of residues modulo p. The finite (Galois) field $G F(p)$ is defined as the set \mathbf{Z}_{p} with the arithmetics modulo p.

Example(Galois Field modulo $p=5$):

Consider the Galois Field of order $p=5$, i.e. $G F(5)$. Since $p=5$ is a prime, the Galois field $G F(5)$ consists of $\mathbf{Z}_{5}=\{0,1,2,3,4\}$. The addition and multiplication operations in $G F(5)$ are given in Table 1 as well as the additive and multiplicative inverses, $-w$ and w^{-1}.

Table 1: Addition and multiplication operations in $G F(5)$.

Addition

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Multiplication

\times	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Inverses

w	$-w$	w^{-1}
0	0	
1	4	1
2	3	3
3	2	2
4	1	4

