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1 Congruence and modular arithmetics

Let a, b, and n be non-negative integers, i.e. n € N the set of natural numbers, and n # 0; then a
is said to be congruent to b modulo n, that is

a=,b if and only if, a—b=kn
for some integer k. In other words, n divides the difference (a — b). For instance,
17=57 since 17—-7=2x5.

b is a residue of @ modulo n and also a is a residue of b modulo n. For any modulus n, the set of
integers {0,1,...,n — 1} forms a complete set of residues modulo n:

{ri,...,mn}={0,1,...,n -1}
The residue  of @ modulo n is in the range [0,n — 1]. Note that
amodn=r = a=, T but not the converse:

a=pT 2 amodn=r
meaning that a =, r does not imply that ¢ mod n = r; for instance,

17mod 5 =2 = 17 =5 2 but

17=57 # 17mod5=7

1.1 Properties of modular arithmetics:

Let the symbol (®) represent either an addition (4) or a multiplication (x) operation.

1. Existence of identities:

a+0modn = O04+amodn=a

ax1lmodn = 1xamodn=a



2. Existence of inverses:

a+(—a)modn = 0
ax(@Hmodn = 1 ifa#0

3. Commutativity:
a®bmodn=>b®amodn

4. Associativity:
a®(b®c)modn=(a®b)®cmodn

5. Distributivity:
ax (b+c)modn=[(axb)+ (axc) modn

6. Reducibility:

(a®b)modn = [(amodn)® (bmodn)] modn or equivalently:
(a+b)modn = [(amodn)+ (bmodn)] modn
(a xb)modn = [(amodn)x (bmodn)] modn

e Ring: associativity and distributivity
e Commutative ring: associativity, distributivity, and commutativity

e Galois field: commutative ring where each element # 0 has a multiplicative inverse.

2 Principle of modular arithmetics (reducibility)
The reducibility property states that:
(a ® b) mod n = [(a mod n) ® (b mod n)] mod n

Proof:

Two integer numbers a; and a2 can be written as: a; = kin + r1 and as = kan + ro, where
r1,r2 € [0,n—1], and both k; and ks are positive integers. The reducibility property can be proven
for the addition operation (® : 4) as follow:

(a1 +az) modn = [(kin+71)+ (ken +r2)] mod n
(k1 + k2)n + 71 + 7r2)] mod n
= (r1+72) modn
[

(a1 +a2) modn = [(ap mod n)+ (a2 mod n)] mod n

by definition of a residue. Similarly, for the multiplication operation, i.e. (® : X):



(kin +r1) X (kan + r2)] mod n
(klkignQ) + (/{711’”‘2) + (]{72711"1) + (7‘17‘2)] mod n
(kikom + kirg + kori)n + (r172)] mod n

r1 X r2) mod n

(a1 X ag) modn =

[
[
[
(
[(a1 mod n) x (ag mod n)] mod n

(a1 X ag) modn =

Principle of modular arithmetics

ai, az — reduction modulo n — (CLl mod n), (CLQ mod Tl)

° |

a1 ® az — reduction modulo n — [(a1 mod n) ® (CL2 mod TL)] mod n

3 Modular exponentiation

Using the properties of modular arithmetics, modular exponentiation can be performed with the
advantage of limiting the range of intermediate values:

emodn = [exex...xe modn
= {[emod n] [emod n| ... [e mod n|} mod n
¢ times

The intermediate values [e mod n] being reduced within the range of the modulus, that is
[e mod n] € [0,n —1].

t
e! mod n = [H(e mod n)] mod n

=1
Example (modular exponentiation):
Compute the following: 112°7 mod 13
11207 mod 13 = [11128+64+8+4+2+1] mod 13
117" mod 13 = [11'® x 11%% x 11% x 11* x 11 x 11] mod 13
117" mod 13 = {[11'*® mod 13] [11°* mod 13] [11® mod 13] [11* mod 13] [11% mod 13] x 11} mod 13
117" mod 13 = {[11'*® mod 13] [11°* mod 13] [11® mod 13] [11* mod 13] x 4 x 11} mod 13
117" mod 13 = {[11'*® mod 13] [11°* mod 13] [11® mod 13] x 3 x 4 x 11} mod 13



112%7 mod 13
112%7 mod 13
112%7 mod 13
11297 mod 13
11297 mod 13

{[11'*® mod 13] [11°* mod 13] x 9 x 3 x 4 x 11} mod 13
{[11'*® mod 13] x 3 x 9 x 3 x 4 x 11} mod 13
{9%x3x9x3x4x11} mod13

{32076} mod 13
5

4 Multiplicative inverses

Let a € [0,n — 1] and = € [0,n — 1] be a multiplicative inverse of a such that:

’ammodnzl‘

a has a unique multiplicative inverse modulo n when a and n are relatively prime or, in other words,
if ged(a,n) =1 (ged(a,n): greatest common divisor of a and n).

Example (multiplicative inverses):

Let a = 3 and n = 5, then ged(a,n) = 1:

There is a unique inverse for each value of a. The

a X imod b
3 x 0mod 5
3 x 1mod5H
3 x2mod 5
3 x 3 mod 5
3 x4 mod 5

of the set of indices {i}. Now, changing n to n = 6:

a Xt mod 6
3 x 0 mod 6
3 x 1 mod 6
3 X 2mod 6
3 x 3 mod 6
3 X 4 mod 6
3 X 5 mod 6

I
N OR = W O

set of inverses {a; '} is in fact a permutation



Since ged(a,n) # 1, the inverses of a are not unique.

If ged(a,n) = 1, then there exists an integer z, 0 < = < n, such that:

’ammodnzl

where, as stated above, the set {a x i mod n} is a permutation of {i}. The Euclid’s algorithm can
be used to compute to compute the greatest common divisor of a and n.

5 Euclid’s algorithm

The following algorithm determines the greatest common divisor of two numbers, e.g. a and b:

a = bq +r1, forO<r; <b
b = r1q+ro, for 0 <19 <1y
ry = Troq3+rs, for 0 <73 <rog
ro = T3 qq+Ta, for0 <ry <rs
Th—o = Th_1qr+ Tk, for 0 < 7 < rp_1
Thk—1 = Tk dk+1

The last remainder, rg, is the greatest common divisor of a and b, i.e. ged(a,b) = ri.

Example (ged(a,b) using the Euclid’s algorithm):

For a = 360 and b = 273, determine their greatest common divisor ged(a,b) by employing the
Euclid’s algorithm.

360 = 273 x 1487
273 = 87T x3+412
87 = 12x743
12 = 3 x4

Therefore, the greatest common divisor ged(360,273) is equal to the remainder r3 = 3. In fact,
a and b can be written as:

360 = Hx3x3x2x2x2, and
273 = 13x7x3




6 Inverse computation
Consider the complete set {r;} of residues modulo n:

{ri,...,riy...,rn} ={0,...,n —1}

where 7; is a residue, such that a =, r;. The reduced set of residues modulo n is defined as the
subset of {7;}i=1,.. n, such that r; is relatively prime to n (excluding 0):

{Ti}z‘:l,...,¢(n)
where ¢(n) (called Euler totient function of n) represents the number of elements in this reduced
set of residues. If

ged(a,n) =1 then ged(ary,n) =1
for the reduced set of residues {r1,..., 74}, then since (ar;) is relatively prime with n:
(ar;) mod n =r;
In other words, the set {r;} is a permutation of the set {r;}:
{r;} = {(ari) mod n}izl,...,qﬁ(n) =Po {ri}izl,...,qb(n)
The following examples give the Euler totient function ¢(n) for different values of n. For
instance, if n is prime then, by definition: ¢(n) = n — 1. For n = pq where p and ¢ are primes:

p(n) = ¢(pq)
p(n) = (p—1)(¢—1)

Examples (Euler totient function ¢(n)):

For the following examples, let p, ¢ and p; be prime numbers while e and e; are positive integers.

1. If n = p, then the reduced set of residues is:

{ri} ={1,2,...,p—1}

whereas the Euler function is equal to:

2. If n = p?, the reduced set of residues is:
{ri}=1{1,2,....,p—1,p+1,....2p—1,2p+1,...,p> — 1}

and,

¢(n) = ¢(p°) =p(p—1)



3. If n = pq, the reduced set of residues is:
{rit ={1.2,....pa =1} = {p,2p,..., (¢ = Dp} —{a.2¢,.... (p — 1)g}
o(n) =o(pg) =(pg—1)—(¢—-1)—(p-1)=(@—-1)(¢—-1)
4. If n = p®, the reduced set of residues is:
{rid={L2...p° =1} —{p.2p,..., (0" = L)p}
¢(n) = o) = (=) =@ =D =")p-1)

5. If n =[['_, p*, the Euler function is:

¢(n) = ¢ [Hp?] =TI " - 1)
i=1 =1

An integer n can always be expressed as a product of primes numbers:

_ €1 e2 €t
n = p Xp2 X...Xpt

t
o= 1D
i=1

where the p;’s are t distinct prime numbers and their exponents e; are positive integers. As indicated
above, the number of elements in the reduced set is given by:

t
o(n) = [[p™" (i - 1)
i=1

6.1 Euler’s generalization theorem

Euler’s generalization theorem states that, for a and n (with a < n) such that ged(a,n) = 1:

’ad)(”) modn =1 ‘

To show that a?™ modn = 1, consider the reduced set of residues {ri}iz1,.. ¢mn) and the
(permuted) set of residues {r;}:

{ri} = A{arimod n}i—1 ()
{rj} Po{ri}izi,. ¢m)



Then the product of all the elements from the two reduced sets of residues, namely {r;} and
{r;}, must be equal:

#(n) #(n)
[Iri=1I"
i=1 j=1

Since the right-hand and left-hand sides of the equation are equal they should also be congruent
modulo n:

é(n) #(n)
H r; = H ri (mod n)
j=1 i=1
¢(n) ¢(n)
H (ar; mod n) = H r; (mod n)
i=1 i=1
é(n) #(n)
H ar; = H ri (mod n)
i=1 =1
¢(n) #(n)
a®™ H i = H ri (mod n)

because of the reducibility property. Dividing both sides by the factor Hf):(?) r; leads to:
a®™ =1 (mod n)

and since 1 € {0,...,n — 1} then:
a®™ modn =1

6.2 Fermat’s little theorem

Fermat’s little theorem states that if n is a prime number, with a < n, then:

a" ! mod n = 1‘

by property of the Euler function of a prime number, i.e. ¢(n) =n — 1.

6.3 Multiplicative inverses

Consider the expression

armodn =1

What is the multiplicative inverse  of a modulo n (assuming that ged(a,n) = 1)? By Euler’s
generalization theorem:



ar mod n = a®™ modn = 1

which implies that:

z=a®™ modn

Hence to compute an inverse a modular exponentiation program with the arguments (a, [¢p(n) —
1],n) can be used. If n is a prime number, then ¢(n) =n — 1 (Fermat’s theorem) and:

’.1‘ = a™ Y mod n = a2 mod n‘

7 Galois Fields of Order p

Definition (Galois Field of Order p):
Let p be a prime number and Z, = {0,1,...,p — 1} be the set of residues modulo p. The finite

(Galois) field GF(p) is defined as the set Z, with the arithmetics modulo p.

Example (Galois Field modulo p =5):

Consider the Galois Field of order p = 5, i.e. GF(5). Since p = 5 is a prime, the Galois field
GF(5) consists of Zs = {0,1,2,3,4}. The addition and multiplication operations in GF(5) are
given in Table 1 as well as the additive and multiplicative inverses, —w and w~".

Table 1: Addition and multiplication operations in GF'(5).

Addition Multiplication Inverses
+/0 1 2 3 4 x[0 1 2 3 4 w|—w w!
0j/0 1 2 3 4 0[O0 0 0 0 O 0 O
111 2 3 4 0 110 1 2 3 4 1] 4 1
212 3 4 0 1 210 2 4 1 3 2| 3 3
313 4 0 1 2 310 3 1 4 2 3| 2 2
414 0 1 2 3 410 4 3 2 1 41 1 4




