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Notes on the Modular Arithmetics and Galois Fields

1 Congruence and modular arithmetics

Let a, b, and n be non-negative integers, i.e. n ∈ N the set of natural numbers, and n 6= 0; then a
is said to be congruent to b modulo n, that is

a ≡n b if and only if, a− b = kn

for some integer k. In other words, n divides the difference (a− b). For instance,

17 ≡5 7 since 17− 7 = 2× 5.

b is a residue of a modulo n and also a is a residue of b modulo n. For any modulus n, the set of
integers {0, 1, . . . , n− 1} forms a complete set of residues modulo n:

{r1, . . . , rn} = {0, 1, . . . , n− 1}

The residue r of a modulo n is in the range [0, n− 1]. Note that

a mod n = r ⇒ a ≡n r but not the converse:

a ≡n r 6⇒ a mod n = r

meaning that a ≡n r does not imply that a mod n = r; for instance,

17 mod 5 = 2 ⇒ 17 ≡5 2 but

17 ≡5 7 6⇒ 17 mod 5 = 7

1.1 Properties of modular arithmetics:

Let the symbol (¯) represent either an addition (+) or a multiplication (×) operation.

1. Existence of identities:

a + 0 mod n = 0 + a mod n = a

a× 1 mod n = 1× a mod n = a
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2. Existence of inverses:

a + (−a) mod n = 0
a× (a−1) mod n = 1 if a 6= 0

3. Commutativity:
a¯ b mod n = b¯ a mod n

4. Associativity:
a¯ (b¯ c) mod n = (a¯ b)¯ c mod n

5. Distributivity:
a× (b + c) mod n = [(a× b) + (a× c)] mod n

6. Reducibility:

(a¯ b) mod n = [(a mod n)¯ (b mod n)] mod n or equivalently:
(a + b) mod n = [(a mod n) + (b mod n)] mod n

(a× b) mod n = [(a mod n)× (b mod n)] mod n

• Ring: associativity and distributivity

• Commutative ring: associativity, distributivity, and commutativity

• Galois field: commutative ring where each element 6= 0 has a multiplicative inverse.

2 Principle of modular arithmetics (reducibility)

The reducibility property states that:

(a¯ b) mod n = [(a mod n)¯ (b mod n)] mod n

Proof:
Two integer numbers a1 and a2 can be written as: a1 = k1n + r1 and a2 = k2n + r2, where

r1, r2 ∈ [0, n−1], and both k1 and k2 are positive integers. The reducibility property can be proven
for the addition operation (¯ : +) as follow:

(a1 + a2) mod n = [(k1n + r1) + (k2n + r2)] mod n

= [(k1 + k2)n + r1 + r2)] mod n

= (r1 + r2) mod n

(a1 + a2) mod n = [(a1 mod n) + (a2 mod n)] mod n

by definition of a residue. Similarly, for the multiplication operation, i.e. (¯ : ×):
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(a1 × a2) mod n = [(k1n + r1)× (k2n + r2)] mod n

= [(k1k2n
2) + (k1nr2) + (k2nr1) + (r1r2)] mod n

= [(k1k2n + k1r2 + k2r1)n + (r1r2)] mod n

= (r1 × r2) mod n

(a1 × a2) mod n = [(a1 mod n)× (a2 mod n)] mod n

Principle of modular arithmetics

a1, a2 −→ reduction modulo n −→ (a1 mod n), (a2 mod n)

¯
y ¯

y
a1 ¯ a2 −→ reduction modulo n −→ [(a1 mod n)¯ (a2 mod n)] mod n

3 Modular exponentiation

Using the properties of modular arithmetics, modular exponentiation can be performed with the
advantage of limiting the range of intermediate values:

et mod n = [e× e× . . .× e] mod n

= {[e mod n] [e mod n] . . . [e mod n]︸ ︷︷ ︸
t times

} mod n

The intermediate values [e mod n] being reduced within the range of the modulus, that is
[e mod n] ∈ [0, n− 1].

et mod n = [
t∏

i=1

(e mod n)] mod n

Example(modular exponentiation):
Compute the following: 11207 mod 13

11207 mod 13 =
[
11128+64+8+4+2+1

]
mod 13

11207 mod 13 =
[
11128 × 1164 × 118 × 114 × 112 × 11

]
mod 13

11207 mod 13 =
{[

11128 mod 13
] [

1164 mod 13
] [

118 mod 13
] [

114 mod 13
] [

112 mod 13
]× 11

}
mod 13

11207 mod 13 =
{[

11128 mod 13
] [

1164 mod 13
] [

118 mod 13
] [

114 mod 13
]× 4× 11

}
mod 13

11207 mod 13 =
{[

11128 mod 13
] [

1164 mod 13
] [

118 mod 13
]× 3× 4× 11

}
mod 13
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11207 mod 13 =
{[

11128 mod 13
] [

1164 mod 13
]× 9× 3× 4× 11

}
mod 13

11207 mod 13 =
{[

11128 mod 13
]× 3× 9× 3× 4× 11

}
mod 13

11207 mod 13 = {9× 3× 9× 3× 4× 11} mod 13
11207 mod 13 = {32076} mod 13
11207 mod 13 = 5

4 Multiplicative inverses

Let a ∈ [0, n− 1] and x ∈ [0, n− 1] be a multiplicative inverse of a such that:

ax mod n = 1

a has a unique multiplicative inverse modulo n when a and n are relatively prime or, in other words,
if gcd(a, n) = 1 (gcd(a, n): greatest common divisor of a and n).

Example(multiplicative inverses):
Let a = 3 and n = 5, then gcd(a, n) = 1:

a× i mod 5
3× 0 mod 5 = 0
3× 1 mod 5 = 3
3× 2 mod 5 = 1
3× 3 mod 5 = 4
3× 4 mod 5 = 2

There is a unique inverse for each value of a. The set of inverses {a−1
i } is in fact a permutation

of the set of indices {i}. Now, changing n to n = 6:

a× i mod 6
3× 0 mod 6 = 0
3× 1 mod 6 = 3
3× 2 mod 6 = 0
3× 3 mod 6 = 3
3× 4 mod 6 = 0
3× 5 mod 6 = 3
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Since gcd(a, n) 6= 1, the inverses of a are not unique.

If gcd(a, n) = 1, then there exists an integer x, 0 < x < n, such that:

ax mod n = 1

where, as stated above, the set {a× i mod n} is a permutation of {i}. The Euclid’s algorithm can
be used to compute to compute the greatest common divisor of a and n.

5 Euclid’s algorithm

The following algorithm determines the greatest common divisor of two numbers, e.g. a and b:

a = b q1 + r1, for 0 < r1 < b

b = r1 q2 + r2, for 0 < r2 < r1

r1 = r2 q3 + r3, for 0 < r3 < r2

r2 = r3 q4 + r4, for 0 < r4 < r3

...
rk−2 = rk−1 qk + rk, for 0 < rk < rk−1

rk−1 = rk qk+1

The last remainder, rk, is the greatest common divisor of a and b, i.e. gcd(a, b) = rk.

Example (gcd(a, b) using the Euclid’s algorithm):

For a = 360 and b = 273, determine their greatest common divisor gcd(a, b) by employing the
Euclid’s algorithm.

360 = 273× 1 + 87
273 = 87× 3 + 12
87 = 12× 7 + 3
12 = 3× 4

Therefore, the greatest common divisor gcd(360, 273) is equal to the remainder r3 = 3. In fact,
a and b can be written as:

360 = 5× 3× 3× 2× 2× 2, and
273 = 13× 7× 3
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6 Inverse computation

Consider the complete set {ri} of residues modulo n:

{r1, . . . , ri, . . . , rn} = {0, . . . , n− 1}
where ri is a residue, such that a ≡n ri. The reduced set of residues modulo n is defined as the
subset of {ri}i=1,...,n, such that ri is relatively prime to n (excluding 0):

{ri}i=1,...,φ(n)

where φ(n) (called Euler totient function of n) represents the number of elements in this reduced
set of residues. If

gcd(a, n) = 1 then gcd(ari, n) = 1

for the reduced set of residues {r1, . . . , rφ(n)}, then since (ari) is relatively prime with n:

(ari) mod n = rj

In other words, the set {rj} is a permutation of the set {ri}:

{rj} = {(ari) mod n}i=1,...,φ(n) = P ◦ {ri}i=1,...,φ(n)

The following examples give the Euler totient function φ(n) for different values of n. For
instance, if n is prime then, by definition: φ(n) = n− 1. For n = pq where p and q are primes:

φ(n) = φ(pq)
φ(n) = (p− 1) (q − 1)

Examples (Euler totient function φ(n)):

For the following examples, let p, q and pi be prime numbers while e and ei are positive integers.

1. If n = p, then the reduced set of residues is:

{ri} = {1, 2, . . . , p− 1}

whereas the Euler function is equal to:

φ(n) = φ(p) = p− 1

2. If n = p2, the reduced set of residues is:

{ri} = {1, 2, . . . , p− 1, p + 1, . . . , 2p− 1, 2p + 1, . . . , p2 − 1}

and,
φ(n) = φ(p2) = p(p− 1)
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3. If n = pq, the reduced set of residues is:

{ri} = {1, 2, . . . , pq − 1} − {p, 2p, . . . , (q − 1)p} − {q, 2q, . . . , (p− 1)q}

φ(n) = φ(pq) = (pq − 1)− (q − 1)− (p− 1) = (p− 1)(q − 1)

4. If n = pe, the reduced set of residues is:

{ri} = {1, 2, . . . , pe − 1} − {p, 2p, . . . , (pe−1 − 1)p}

φ(n) = φ(pe) = (pe − 1)− (pe−1 − 1) = (pe−1)(p− 1)

5. If n =
∏t

i=1 pei
i , the Euler function is:

φ(n) = φ

[
t∏

i=1

pei
i

]
=

t∏

i=1

p
(ei−1)
i (pi − 1)

An integer n can always be expressed as a product of primes numbers:

n = pe1
1 × pe2

2 × . . .× pet
t

n =
t∏

i=1

pei
i

where the pi’s are t distinct prime numbers and their exponents ei are positive integers. As indicated
above, the number of elements in the reduced set is given by:

φ(n) =
t∏

i=1

p
(ei−1)
i (pi − 1)

6.1 Euler’s generalization theorem

Euler’s generalization theorem states that, for a and n (with a < n) such that gcd(a, n) = 1:

aφ(n) mod n = 1

To show that aφ(n) mod n = 1, consider the reduced set of residues {ri}i=1,...,φ(n) and the
(permuted) set of residues {rj}:

{rj} = {ari mod n}i=1,...,φ(n)

{rj} = P ◦ {ri}i=1,...,φ(n)
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Then the product of all the elements from the two reduced sets of residues, namely {ri} and
{rj}, must be equal:

φ(n)∏

i=1

ri =
φ(n)∏

j=1

rj

Since the right-hand and left-hand sides of the equation are equal they should also be congruent
modulo n:

φ(n)∏

j=1

rj ≡
φ(n)∏

i=1

ri (mod n)

φ(n)∏

i=1

(ari mod n) ≡
φ(n)∏

i=1

ri (mod n)

φ(n)∏

i=1

ari ≡
φ(n)∏

i=1

ri (mod n)

aφ(n)

φ(n)∏

i=1

ri ≡
φ(n)∏

i=1

ri (mod n)

because of the reducibility property. Dividing both sides by the factor
∏φ(n)

i=1 ri leads to:

aφ(n) ≡ 1 (mod n)

and since 1 ∈ {0, . . . , n− 1} then:
aφ(n) mod n = 1

6.2 Fermat’s little theorem

Fermat’s little theorem states that if n is a prime number, with a < n, then:

an−1 mod n = 1

by property of the Euler function of a prime number, i.e. φ(n) = n− 1.

6.3 Multiplicative inverses

Consider the expression

ax mod n = 1

What is the multiplicative inverse x of a modulo n (assuming that gcd(a, n) = 1)? By Euler’s
generalization theorem:
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ax mod n = aφ(n) mod n = 1

which implies that:

x = aφ(n)−1 mod n

Hence to compute an inverse a modular exponentiation program with the arguments (a, [φ(n)−
1], n) can be used. If n is a prime number, then φ(n) = n− 1 (Fermat’s theorem) and:

x = a(n−1)−1 mod n = an−2 mod n

7 Galois Fields of Order p

Definition (Galois Field of Order p):
Let p be a prime number and Zp = {0, 1, . . . , p− 1} be the set of residues modulo p. The finite

(Galois) field GF (p) is defined as the set Zp with the arithmetics modulo p.

Example(Galois Field modulo p = 5):
Consider the Galois Field of order p = 5, i.e. GF (5). Since p = 5 is a prime, the Galois field

GF (5) consists of Z5 = {0, 1, 2, 3, 4}. The addition and multiplication operations in GF (5) are
given in Table 1 as well as the additive and multiplicative inverses, −w and w−1.

Table 1: Addition and multiplication operations in GF (5).

Addition

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Multiplication

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Inverses

w −w w−1

0 0
1 4 1
2 3 3
3 2 2
4 1 4
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