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Notes on the Data Encryption Standard (DES)

The Data Encryption Standard (DES) has been developed as a cryptographic standard for
general use by the public. DES was designed with the following objectives in mind [NIS77, Pfl89]:

1. High level of security

2. Completely specified and easy to understand

3. Cryptographic security do not depend on algorithm secrecy

4. Adaptable to diverse applications

5. Economical hardware implementation

6. Efficient (e.g. high data rates)

7. Can be validated

8. Exportable

1 Data Encryption Algorithm

• Substitution-permutation algorithm:

– 64-bit input and output blocks

– 56-bit key (with an additional 8 parity bits)

– information data is cycled 16 times through a set of substitution and permutation trans-
formations: highly non-linear input-output relationship

• Very high throughput rates achievable (up to 100 Mbits/s)

• Availability of economical hardware to implement DES

• Low to medium security applications (e.g. secure speech communications)
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Figure 1: DES encryption/decryption algorithm.
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Table 1: Initial IP and inverse initial IP−1 permutation tables.

Initial permutation IP

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Final permutation IP−1

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 2: Expansion permutation E and permutation P tables.

Expansion permutation E

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Permutation P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25
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Table 3: S-boxes (substitution boxes) tables.

Column
Box Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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Table 4: Permuted choices PC1 and PC2 tables.

Permuted choice PC1

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

Permuted choice PC2

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 5: Key schedule of left shifts (encryption).

Cycle Amount of
i left shifts

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1

10 2
11 2
12 2
13 2
14 2
15 2
16 1
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2 Diffusion properties of DES

The Data Encryption Standard algorithm diffuses the encipherment transformation over the whole
64-bit ciphertext within the 16 substitution and transposition transformation rounds (or cycles).
The table 6 (taken from [DP84]) gives the left and right register contents at each cycle i (i.e. Li

and Ri, i = 1, . . . , 16). The plaintext message

M1 = “0000000000000000′′

while the second message
M2 = “0000000000000001′′

differs only by one bit, that is;
dH(M1,M2) = 1

and the encipherment key
K = “08192A3B4C5D6E7F′′.

It can be easily seen that, as the plaintext goes through the series of substitution and permutation
transformations, the Hamming distance between the contents of the left and right registers increases
from 1 to about half of the 64 bits, indicating the diffusion effect of DES.

Table 6: Hamming distance dH between the L and R register contents as a function of the DES
sub-key cycle (from Davis and Price).

Cycle Left Right Left Right
i register Li register Ri register Li register Ri dH

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 A F 0 D 6 8 F D 0 0 0 0 0 0 0 0 A F 0 D 6 8 7 D 1
3 A F 0 D 6 8 F D C E 0 A 3 6 E A A F 0 D 6 8 7 D C E 3 A 3 2 E 2 5
4 C E 0 A 3 6 E A 0 B D C C 5 F E C E 3 A 3 2 E 2 8 1 B D E D 5 F 15
5 0 B D C C 5 F E 5 D 1 8 1 C C 3 8 1 B D E D 5 F F 8 C A 3 9 B 2 26
6 5 D 1 8 1 C C 3 1 7 4 4 B 9 7 8 F 8 C A 3 9 B 2 A 9 9 4 B 9 1 8 26
7 1 7 4 4 B 9 7 8 9 B 1 C B 0 D 8 A 9 9 4 B 9 1 8 3 E 9 D 0 5 D 8 22
8 9 B 1 C B 0 D 8 7 A E 8 C 7 E 0 3 E 9 D 0 5 D 8 2 3 F 4 8 D F F 26
9 7 A E 8 C 7 E 0 A 2 A C 7 B 3 F 2 3 F 4 8 D F F 9 D 5 8 D C F B 34

10 A 2 A C 7 B 3 F 5 8 0 E 5 1 E F 9 D 5 8 D C F B 3 F 0 7 6 3 0 3 34
11 5 8 0 E 5 1 E F 2 8 6 5 D B D 4 3 F 0 7 6 3 0 3 9 7 A E 4 A E 3 35
12 2 8 6 5 D B D 4 B F 6 8 F 7 7 C 9 7 A E 4 A E 3 6 8 A B B 6 1 2 37
13 B F 6 8 F 7 7 C 8 F 5 7 F 6 2 9 6 8 A B B 6 1 2 0 9 D 9 C 3 9 8 32
14 8 F 5 7 F 6 2 9 0 8 2 7 B 2 4 0 0 9 D 9 C 3 9 8 4 4 B 0 4 3 5 C 31
15 0 8 2 7 B 2 4 0 F 2 D E B F A C 4 4 B 0 4 3 5 C 3 1 9 F D 4 B 8 29
16 F 2 D E B F A C 1 6 C D 0 E B 8 3 1 9 F D 4 B 8 4 2 6 8 4 F F 9 24
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After the DES encryption transformation is completed on both plaintext messages, the resulting
ciphertexts are equal to:

C1 = “25DDAC3E96176467′′

and
C2 = “1BDD183F1626FB43′′

and the Hamming distance is:
dH(C1, C2) = 22

Here, changing only plaintext bit did resulted in changing 22 of the ciphertext bits.
Table 7 illustrates the effect of diffusion on a set of 16 plaintext messages, which differs only by

one bit, with the same key K:
K = “0123456789ABCDEF′′

The average Hamming distance over the resulting ciphertexts is:

d
H(average) =

1
16

17∑

i=2

dH(C1, Ci) = 31.06

Table 7: Hamming distance dH(C1, Ci) between a set of pair of ciphertexts when the plaintexts
differ by a single bit, i.e. dH(M1,Mi) = 1, for the same key K (from Davis and Price).

Index Plaintext Mi Ciphertext Ci dH(C1, Ci)

1 A B C D E F A B C D E F A B C D C D E 8 7 2 D 4 A 4 7 1 3 4 6 F
2 8 B C D E F A B C D E F A B C D C D 3 D 0 A A 4 C 4 0 2 4 B 4 A 29
3 A 9 C D E F A B C D E F A B C D 8 0 1 F 8 A 2 9 6 8 B C 4 4 7 3 38
4 A B D D E F A B C D E F A B C D 5 D 9 8 C 4 7 D D D B A 6 F 3 0 36
5 A B C F E F A B C D E F A B C D 9 9 8 9 5 6 2 A 8 4 F 4 0 1 C 9 26
6 A B C D 6 F A B C D E F A B C D 6 7 C 2 6 9 F 2 5 4 2 7 9 1 F 9 30
7 A B C D E B A B C D E F A B C D F 8 C 9 8 F 7 9 A D C 0 6 E A 4 33
8 A B C D E F D B C D E F A B C D 8 7 D 3 2 4 0 A B B F 4 4 0 7 4 34
9 A B C D E F A 9 C D E F A B C D D B 9 9 8 B 6 7 0 4 6 C D C E 7 30

10 A B C D E F A B E C E F A B C D 2 F 6 E 5 4 7 0 E 4 E 3 5 1 A C 25
11 A B C D E F A B C C E F A B C D B 5 3 E 4 2 D E 3 0 F 9 7 A D 0 29
12 A B C D E F A B C D 6 F A B C D 4 F 4 0 6 7 7 2 6 B 3 5 B 0 1 4 28
13 A B C D E F A B C D E 7 A B C D A B 1 5 5 2 8 9 6 6 0 C 6 0 B 2 35
14 A B C D E F A B C D E F 2 B C D 5 B D A 9 3 F 7 D 4 2 7 B 8 D 2 30
15 A B C D E F A B C D E F A F C D 9 8 5 3 C 5 1 1 E D 5 6 8 8 7 E 34
16 A B C D E F A B C D E F A B D D 7 0 A A 2 4 0 7 9 5 9 F 0 4 B 1 34
17 A B C D E F A B C D E F A B C 5 8 9 2 B E C 4 7 C 9 7 1 2 B E 3 26
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Table 8 shows the diffusion property, but this time for 16 different keys, which differing by one
bit from each other, over the same plaintext message M where

M = “ABCDEFABCDEFABCD′′

The average Hamming distance is equal to:

d
H(average) =

1
16

17∑

i=2

dH(C1, Ci) = 32.88

Table 8: Hamming distance dH(C1, C2) between a set of pair of ciphertexts when the keys differ
by a single bit (dH(K1, Ki) = 1) for the same plaintext M (from Davis and Price).

Index Key Ki Ciphertext Ci dH(C1, Ci)

1 0 1 2 3 4 5 6 7 8 9 A B C D E F C D E 8 7 2 D 4 A 4 7 1 3 4 6 F
2 8 1 2 3 4 5 6 7 8 9 A B C D E F 1 B 7 3 F E 8 B C 0 B 8 8 6 0 6 35
3 0 2 2 3 4 5 6 7 8 9 A B C D E F 0 F 9 2 F 6 0 D 2 F D 4 D 8 B 7 32
4 0 1 6 2 4 5 6 7 8 9 A B C D E F 3 1 A F D 8 C 5 4 F B F 4 B C D 37
5 0 1 2 6 4 5 6 7 8 9 A B C D E F C 7 9 F 5 9 6 3 D 4 6 5 A 7 E E 29
6 0 1 2 3 0 5 6 7 8 9 A B C D E F 3 6 5 2 9 C C 1 0 7 1 7 A 3 8 9 39
7 0 1 2 3 4 6 6 7 8 9 A B C D E F 7 F 3 5 F 7 E 6 C E C 5 7 E E 3 30
8 0 1 2 3 4 5 4 6 8 9 A B C D E F C 9 F 3 F D 9 2 6 0 C 6 8 1 8 A 27
9 0 1 2 3 4 5 6 4 8 9 A B C D E F E 6 9 2 8 3 2 2 E E 8 B 9 A 6 9 36

10 0 1 2 3 4 5 6 7 A 8 A B C D E F 0 9 9 7 A 5 A F 6 E 4 E 1 4 6 0 37
11 0 1 2 3 4 5 6 7 8 A A B C D E F C 7 B 4 1 C 4 F 3 8 D 9 A F 7 A 31
12 0 1 2 3 4 5 6 7 8 9 E A C D E F 4 B 4 A A 2 0 A B 2 1 4 4 D D D 30
13 0 1 2 3 4 5 6 7 8 9 A 8 C D E F 1 2 9 9 7 E E 8 0 0 1 B D 2 7 C 32
14 0 1 2 3 4 5 6 7 8 9 A B 4 C E F 4 2 D 1 7 B 7 D F 5 3 4 3 B 7 9 28
15 0 1 2 3 4 5 6 7 8 9 A B C E E F 8 7 F 6 4 9 3 C 4 C 8 9 8 3 2 7 33
16 0 1 2 3 4 5 6 7 8 9 A B C D 6 F F C 3 0 F 6 F 7 6 B D 4 2 5 9 2 31
17 0 1 2 3 4 5 6 7 8 9 A B C D E C 1 C B D E C 4 B 7 9 B C A 7 A 1 39
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3 DES Weaknesses

3.1 Key space size

In DES, the key consists in a 56-bit vector providing a key space K of 256 = 7.2058×1016 elements.
In an exhaustive search known-plaintext attack, the cryptanalyst will obtain the solution after 255,
or 3.6029× 1016 trials, on average.

In 1977, Diffie and Hellman[DH77] have shown that a special purpose multiple parallel processor
consisting of 106 intergrated circuits, each one trying a key every 1µ s, could determine the key used
in about 10 hours on average in a known-plaintext attack. The cost of such a multiple processor
machine would have been around $50,000,000 in 1977 [Pfl89]. If such a machine was used 365 days
a year, 24 hours a day, amortizing the price over the number of key solutions obtained, then the
price per solution would have been about $20,000 per solution.

Diffie and Hellman argued that if the key length was increased from 56 to 64 bits, it would make
the DES algorithm secure even for “intelligence agencies budgets...” [Sim92], while decreasing the
key length from 56 to only 48 would make DES “vulnerable to attack by almost any reasonable sized
organization” [Sim92]. The key length is thus a very critical parameter to the security of DES.

3.2 Complement property

Another possible weakness of DES lies in the complement property of the DES algorithm. Let M
be a 64-bit plaintext message to be encrypted into a 64-bit ciphertext C using the 56-bit key K:

C = DESK(M)

The complement property of DES [Pfl89] indicates that the bit-by-bit modulo-2 complement of
the ciphertext C, i.e. C̄, can be obtained from the plaintext M and key K as:

C̄ = DESK̄(M̄)
C̄ = DESK(M)

Since complementing the ciphertext vector C̄ takes much less time than actually performing the
DES encryption transformation, the exhaustive key search attack can be reduced almost by half.

3.3 DES weak keys

The DES algorithm generates from the 56-bit key K a set, or sequence, of 16 distinct 48-bit sub-
keys which are then used in each round of substitution and permutation transformation of DES.
However, if the left and right registers Ci and Di of the sub-key schedule calculation branch are
filled with “0” or “1”, the sub-keys will be identical:

k1 = k2 = . . . = k16

The encryption and decryption processes being the same except for the order of sub-keys, when
such weak keys are employed, enciphering a plaintext messages M twice will result in the original
plaintext message [DP84]:

11



DESK [DESK(M)] = M

The weak keys of the DES are listed hereafter:

K1 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
K2 = F E F E F E F E F E F E F E F E
K3 = 1 F 1 F 1 F 1 F 0 E 0 E 0 E 0 E
K4 = E 0 E 0 E 0 E 0 F 1 F 1 F 1 F 1

3.4 DES semi-weak key pairs

Another property observed in the DES algorithm is the existence of semi-weak pairs of keys for
which the pattern of alternating zeroes and ones in the two sub-key registers Ci and Di. This
results in the first key, say K1, producing the sub-key sequence: k1, k2, . . ., k16, while the second
key of the pair, K2, generates the inverse sub-key sequence: k16, k15, . . ., k1. Thus the encryption
of message M by key K1 followed by a second encryption with key K2 will give the original message
M :

DESK2 [DESK1(M)] = M

The semi-weak keys of the DES are [DP84]:

K1,1 = 0 1 F E 0 1 F E 0 1 F E 0 1 F E
K1,2 = F E 0 1 F E 0 1 F E 0 1 F E 0 1

K2,1 = 1 F E 0 1 F E 0 0 E F 1 0 E F 1
K2,2 = E 0 1 F E 0 1 F F 1 0 E F 1 0 E

K3,1 = 0 1 E 0 0 1 E 0 0 1 F 1 0 1 F 1
K3,2 = E 0 0 1 E 0 0 1 F 1 0 1 F 1 0 1

K4,1 = 1 F F E 1 F F E 0 E F E 0 E F E
K4,2 = F E 1 F F E 1 F F E 0 E F E 0 E

K5,1 = 0 1 1 F 0 1 1 F 0 1 0 E 0 1 0 E
K5,2 = 1 F 0 1 1 F 0 1 0 E 0 1 0 E 0 1

K6,1 = E 0 F E E 0 F E F 1 F E F 1 F E
K6,2 = F E E 0 F E E 0 F E F 1 F E F 1

12



4 Differential and linear cryptanalysis

Traditional cryptanalysis of block ciphers such as the Data Encryption Standard rely on such
known plaintext methods as doing exhaustive search over the whole key space. While this type
of brute force cryptanalytic attack may seem practical on conventional single DES encryption,
it becomes impractical to perform on double DES and triple DES enciphering implementations.
More sophisticated cryptanalysis methods have been proposed in the recent years to reduce the
computational complexity of a brute force attack. Two such methods are differential cryptanalysis
and linear cryptanalysis cryptanalysis. Differential cryptanalysis is briefly described in section 4.1
and linear cryptanalysis cryptanalysis in section 4.2.

4.1 Differential cryptanalysis

Differential cryptanalysis has been proposed since 1990 to break block ciphers such as DES and its
predecessor LUCIFER. While successful for breaking LUCIFER, differential cryptanalysis is still,
at least for the time being, of “academic” interest for breaking the 16-round full-fledged DES. The
reason why DES is resistant against differential cryptanalysis is that while differential cryptanalysis
has been known to the general public for less than ten years, its techniques were known to the DES
developers in the seventies. Neverthless differential cryptanalysis, as linear cryptanalysis, is one of
the most promising cryptanalysis methods.

Differential cryptanalysis involves the analysis of the distribution of the difference (modulo-2
bit per bit) between two plaintexts X1 and X2 and the two ciphertexts Y1 and Y2 resulting from
their encryption. Here the plaintexts X1 and X2 are in fact the 32-bit contents of the right register
prior the extension permutation E(X) in a DES round. The two ciphertexts Y1 and Y2 are the
32-bit output from the standard permutation P (C) after the substitution boxes.

Figure 4 shows a single round of DES encryption. Let ∆X represent the difference of the two
known (and chosen) plaintexts X1 and X2:

∆X = X1 ⊕X2

where X1 ⊕X2 represents the addition modulo-2 bit by bit of the 2 plaintext vectors. In a chosen
plaintext attack, the two plaintexts X1 and X2 are chosen such as to give a desired plaintext
difference ∆X.

Since ∆X = X1 ⊕X2 and A = E(X) is simply an expansion permutation of the plaintext bits
A, then the difference ∆A is also known:

∆A = A1 ⊕A2

∆A = E(X1)⊕ E(X2)
∆A = E(∆X)

At each DES round, the unknown 48-bit subkey Ki is added to the 48-bit vector A at the output
of the expansion permutation box:

B1 = A1 ⊕Ki and
B2 = A2 ⊕Ki

13



Since the 48-bit subkey Ki is secret, the two 48-bit vectors B1 and B2 are also unknown.
However, their difference ∆B is known!

∆B = B1 ⊕B2

∆B = (A1 ⊕Ki)⊕ (A2 ⊕Ki)
∆B = A1 ⊕A2

∆B = ∆A

∆B = E(∆X)

So, by chosing the plaintexts X1 and X2 and therefore their difference ∆X, one finds the inputs
to the 8 substitution boxes even if the subkeys are unknown.

Now working backward from known ciphertexts Y1 and Y2 obtained from the encryption of the
above plaintexts X1 and X2, we can also determine their difference ∆Y 1:

∆Y = Y1 ⊕ Y2

Both Y1 and Y2 vectors are permuted versions of the 32-bit outputs C1 and C2 of the substitution
boxes:

Y1 = P (C1) and
Y2 = P (C2)

or, expressing the substitution boxes outputs C1 and C2 as a function of the ciphertexts Y1 and Y2:

C1 = P−1(Y1) and
C2 = P−1(Y2)

Finally, the difference at the output of the substitution boxes ∆C is:

∆C = C1 ⊕ C2

∆C = (P−1(Y1))⊕ (P−1(Y2))
∆C = P−1(∆Y )

Differential cryptanalysis compares the distribution of the difference ∆X for a plaintext pair
X1 and X2 with the distribution of the ciphertext difference ∆Y for the corresponding ciphertext
pair Y1 and Y2. In a chosen plaintext-ciphertext attack, the plaintext is chosen such as to provide
the desired difference ∆X. It exploit the fact that the plaintext differences ∆X and the ciphertext
differences ∆Y are not equally likely. Some differences in plaintext pairs have a higher probability
of causing difference in ciphertext pairs than others.

1As we know the actual ciphertexts are obtained by adding Y to the previous (and known) contents of the left
register.
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For each of the 8 DES substitution boxes, we can construct a table of joint plaintext and
ciphertext differences (see Table 9 below) where each row represents a given plaintext difference ∆X
and each column represent a given ciphertext difference ∆Y . The entry pi,j in Table 9 represents
the number of occurences that a given plaintext difference ∆Xi has produced a given ciphertext
difference ∆Yj .

Table 9: Plaintext and ciphertext differences relative frequencies.

∆Y1 · · · ∆Yj · · ·
∆X1 p1,1 · · · p1,j · · ·

...
...

. . .
...

. . .
∆Xi pi,1 · · · pi,j · · ·

...
...

. . .
...

. . .

Biham and Shamir [BS93] have demonstrated that a full-fledged 16-round DES cryptanalysis
requires 247 chosen plaintext-ciphertext pairs or 255 known plaintext-ciphertext pairs with 237 DES
operations, thus making this type attack on DES not practical yet.
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Figure 4: Differential cryptanalysis of a single DES encryption round.
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4.2 Linear cryptanalysis

A method to break a block cipher such as DES is linear cryptanalysis. It basically consists in trying
to represent (or approximate) a round of DES encryption with a linear transformation. Figure 5
illustrates how linear cryptanalysis can be applied on a single round of DES encryption.

In the known plaintext attack both the plaintext M and the corresponding ciphertext C are
known. Since the output IP (M) after the initial permutation function IP is known, one knows
also the contents of the left and right registers.

Let X = x1, x2, . . . , x32 be the 32 bits contents of the right register. These 32 bits go through
an expansion permutation A = E(X): the resulting 48-bit vector A = a1, a2, . . . , a48 is added
modulo-2 bit by bit with the 48-bit subkey Ki = ki,1, ki,2, . . . , ki,48 at the ith iteration from the
permuted choice transformation PC2.

The 48-bit vector B = b1, b2, . . . , b48 are then passed through the 8 DES substitution boxes
{Sk}k=1,...,8 where each 6-bit input vector (b1, b2, b3, b4, b5, b6) is replaced, or substituted, with a
4-bit output vector (c1, c2, c3, c4). The 32-bit vector C = c1, c2, . . . , c32 is transformed through a
standard permutation P and the 32-bit vector Y = y1, y2, . . . , y32 is then added to the contents of
the left register. The right register is updated with the resulting 32-bit vector.

Y = P (C) and
C = P−1(Y )

As can be seen in figure 5, if one knows the input (plaintext after initial permutation) X then
the output:

A = E(X)

of the expansion permutation is also known. However, because the subkey Ki = ki,j , for j =
1, . . . , 48 at iteration i (we can begin with i = 1), is secret one cannot determine the sum at the
output of the modulo-2 adders.

bj = aj ⊕ ki,j for 1 ≤ j ≤ 48

The bits at the output of the adders ({bj}j=1,...,48) constitute the 48 input bits for the 8 substi-
tution boxes {Sk}.

Now, working backward from the contents of the left register L and the previous contents of
the right register X ′ (in fact the temporary register TEMP32 from a previous iteration of DES),
one can determine the 32 bits vector Y . Since Y is the result of a standard permutation of the
output of the substitution boxes:

C = P−1(Y )

the 32 bits c1, c2, . . . , c32 at the output substitution boxes are also determined.
The substitution boxes {Sk}k=1,...,8 should be random and unbiased. For any 6-bit input b1, b2,

b3, b4, b5, and b6, there should be a uniform distribution of output bits. Now, by the construction
of the table of all possible 64 input vectors of a substitution box, each input bit bi = 0 half of the
time, and bi = 1 the other half. In other words, we can say that each of the 6 input bits equals 0
with a probability p = 1

2 and each of the 4 output bits is equal to 0 with p = 1
2 .

However, one can infer the actual input to a substitution box if it is possible to exploit the
relationship between its inputs and outputs. For instance, if we observe the 4 bits c1, c2, c3, and c4
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at the output of a substitution box Sk, and add them together modulo-2, then for the 64 different
input vectors b1, b2, b3, b4, b5, and b6, the result will be c1 ⊕ c2 ⊕ c3 ⊕ c4 = 0 half of the time (32
times) and c1 ⊕ c2 ⊕ c3 ⊕ c4 = 1 the remaining 32 times (each of the 16 output values, or vectors,
appearing 4 times in a given substitution table.

It has been observed that the input-output relationship of the substitution boxes is not always
unbiased. For instance, DES substitution box S5 is the most biased of the substitution boxes and
this can be exploited to deduct the key.

Table 10 shows the relationships between the 6-bit input b25, b26, b27, b28, b29, and b30 and the
4-bit output c17, c18, c19, and c20 inside substitution box S5. From Table 10, one can observe that
even if input bit b26 = 0 half of the time, i.e., with a probability p = 1

2 , and that the modulo-2
addition c1 ⊕ c2 ⊕ c3 ⊕ c4 = 0 also with p = 1

2 , the following equality:

b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

is true only 12 times out of 64, or assuming equiprobable inputs, with a probability p = 12
64 = 3

16 .
These 12 occurrences are indicated in the last column of Table 10. The observation that the
probability of occurence of b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4 is p = 3

16 instead of the expected probability of
p = 1

2 is used to help breaking DES. Then with a probability p = 3
16 :

b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

a26 ⊕ ki,26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

But since A = E(X) then a26 = x17 (from the expansion function). Similarly, knowing the
mapping of the standard permutation function Y = P (C) we can replace c17, c18, c19, and c20 by
the known ciphertext (one round) values y3, y8, y14, and y25. Therefore, with a probability p = 3

16 ,

ki,26 = a26 ⊕ c1 ⊕ c2 ⊕ c3 ⊕ c4

ki,26 = a26 ⊕ c17 ⊕ c18 ⊕ c19 ⊕ c20

ki,26 = x17 ⊕ y3 ⊕ y8 ⊕ y14 ⊕ y25

since the one-round plaintext X and ciphertext Y pair are known this provides a clue that the subkey
bit ki,26 is the complement of the plaintext and ciphertext bits function x17 ⊕ y3 ⊕ y8 ⊕ y14 ⊕ y25.

This one-round analysis has to be generalized to the 16 rounds of DES. This is possible, because
the contents of the right register at the second iteration is a function of the results of the first
iteration.

Linear cryptanalysis of DES is still not practical since it requires 247 known plaintext-ciphertext
pairs for solving a single key bit (out of the 56). A second key bit can be obtained by reversing the
plaintext and ciphertext.

It has been shown [Sch96] that using a linear approximation of a 14 round DES and estimating
(guessing) the 6 subkeys bits: ki,25, ki,26, ki,27, ki,28, ki,29, ki,30, corresponding to the 6 input bits of
substitution box S5, for rounds 2 and 14. This is equivalent to performing 212 linear cryptanalysis
in parallel but does provides a total of 26 key bits! This reduces the key space search from 256 in
an exhaustive search to a very small key space of only 230 = 1, 073, 741, 824.

18



Table 10: Input output relationships of substitution box S5 (beginning).

6-bit input 4-bit output
b1 b2 b3 b4 b5 b6 output c1 c2 c3 c4 test

b25 b26 b27 b28 b29 b30 c17 c18 c19 c20

0 0 0 0 0 0 2 0 0 1 0
0 0 0 0 0 1 14 1 1 1 0
0 0 0 0 1 0 12 1 1 0 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 0 0 0 1 1 11 1 0 1 1
0 0 0 1 0 0 4 0 1 0 0
0 0 0 1 0 1 2 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
0 0 0 1 1 1 12 1 1 0 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 0 1 0 0 0 7 0 1 1 1
0 0 1 0 0 1 4 0 1 0 0
0 0 1 0 1 0 10 1 0 1 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 0 1 0 1 1 7 0 1 1 1
0 0 1 1 0 0 11 1 0 1 1
0 0 1 1 0 1 13 1 1 0 1
0 0 1 1 1 0 6 0 1 1 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 0 1 1 1 1 1 0 0 0 1
0 1 0 0 0 0 8 1 0 0 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 1 0 0 0 1 5 0 1 0 1
0 1 0 0 1 0 5 0 1 0 1
0 1 0 0 1 1 0 0 0 0 0
0 1 0 1 0 0 3 0 0 1 1
0 1 0 1 0 1 15 1 1 1 1
0 1 0 1 1 0 15 1 1 1 1
0 1 0 1 1 1 10 1 0 1 0
0 1 1 0 0 0 13 1 1 0 1 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 1 1 0 0 1 3 0 0 1 1
0 1 1 0 1 0 0 0 0 0 0
0 1 1 0 1 1 9 1 0 0 1
0 1 1 1 0 0 14 1 1 1 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 1 1 1 0 1 8 1 0 0 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

0 1 1 1 1 0 9 1 0 0 1
0 1 1 1 1 1 6 0 1 1 0
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Table 11: Input output relationships of substitution box S5 (end).

6-bit input 4-bit output
b1 b2 b3 b4 b5 b6 output c1 c2 c3 c4 test

b25 b26 b27 b28 b29 b30 c17 c18 c19 c20

1 0 0 0 0 0 4 0 1 0 0
1 0 0 0 0 1 11 1 0 1 1
1 0 0 0 1 0 2 0 0 1 0
1 0 0 0 1 1 8 1 0 0 0
1 0 0 1 0 0 1 0 0 0 1
1 0 0 1 0 1 12 1 1 0 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

1 0 0 1 1 0 11 1 0 1 1
1 0 0 1 1 1 7 0 1 1 1
1 0 1 0 0 0 10 1 0 1 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

1 0 1 0 0 1 1 0 0 0 1
1 0 1 0 1 0 13 1 1 0 1
1 0 1 0 1 1 14 1 1 1 0
1 0 1 1 0 0 7 0 1 1 1
1 0 1 1 0 1 2 0 0 1 0
1 0 1 1 1 0 8 1 0 0 0
1 0 1 1 1 1 13 1 1 0 1
1 1 0 0 0 0 15 1 1 1 1
1 1 0 0 0 1 6 0 1 1 0
1 1 0 0 1 0 9 1 0 0 1
1 1 0 0 1 1 15 1 1 1 1
1 1 0 1 0 0 12 1 1 0 0
1 1 0 1 0 1 0 0 0 0 0
1 1 0 1 1 0 5 0 1 0 1
1 1 0 1 1 1 9 1 0 0 1
1 1 1 0 0 0 6 0 1 1 0
1 1 1 0 0 1 10 1 0 1 0
1 1 1 0 1 0 3 0 0 1 1
1 1 1 0 1 1 4 0 1 0 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 1 5 0 1 0 1
1 1 1 1 1 0 14 1 1 1 0 b26 = c1 ⊕ c2 ⊕ c3 ⊕ c4

1 1 1 1 1 1 3 0 0 1 1
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Figure 5: Linear approximation of a DES encryption round.
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5 Modes of operation of the Data Encryption Standard (DES)

The Data Encryption Standard (DES) can be implemented into four different modes of operation
[?]: two block cipher modes whereas the plaintext data bits are enciphered as 64-bit data blocks,
as well as two stream cipher modes where the plaintext data bits are encrypted individually.

• Block cipher modes:

– Electronic Codebook Mode (ECB)

– Cipher Block Chaining Mode (CBC)

• Stream cipher modes:

– Output Feedback Mode (OFB)

– Cipher Feedback Mode (CFB)

Note that the two stream cipher modes of operation of DES can be used to encrypted plaintext
data sub-blocks of s bits (i.e. 1 ≤ s ≤ 64) instead of individual bits, such as sub-blocks of 8 bits
(s = 8), for instance.

5.1 Electronic Codebook Mode (ECB):

The simplest method of implementing the Data Encryption Standard is the Electronic Codebook
Mode. For the Electronic Codebook Mode, or in short ECB mode, the plaintext message stream
M is broken into blocks of 64 bits and then encrypted using DES algorithm with key K:

message stream: M = m1, . . . , m64︸ ︷︷ ︸
block M1

,m65, . . . , m128︸ ︷︷ ︸
block M2

,m129, . . .

Each 64-bit plaintext block Mi will result into a 64-bit ciphertext block Ci:

Ci = DESK(Mi)

and the decryption is done by applying the inverse transformation DES−1
K (•)with the same en-

cryption key K:
Mi = DES−1

K (Ci) = DES−1
K [DESK(Mi)]

However, there is a weakness with the Electronic Codebook Mode: for the same encryption key
K, 2 identical “slices” of plaintext, that is Mi = Mj will result in two identical ciphertext “slices”
Ci = Cj .

5.2 Cipher Block Chaining Mode (CBC):

The Cipher Block Chaining Mode of operation of the Data Encryption Standard can be used to
prevent the repetition of such ciphertext “slices”. For the Cipher Block Chaining Mode, the 64-bit
ciphertext block Ci is a function of both the 64-bit input block Mi as well as the previous 64-bit
ciphertext block Ci−1. The encryption transformation is given by:

Ci = DESK(Mi ⊕ Ci−1)
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where C0 is an arbitrary (and secret) 64-bit initialization vector (sometimes referred to as IV ). The
decipherment is performed by applying the decryption transformation DES−1

K (•) to the present
ciphertext block Ci, and then, by adding (modulo-2) the previous decrypted cipher block Ci−1:

Mi = DES−1
K (Ci)⊕ Ci−1

= DES−1
K [DESK(Mi ⊕ Ci−1)]⊕ Ci−1

= Mi ⊕ Ci−1 ⊕ Ci−1

= Mi

Using Cipher Block Chaining Mode, a plaintext block Mi will be enciphered differently depend-
ing on the previous ciphertext block Ci−1 which in turn, depend on the previous plaintext block
Mi−1 and the preceding cipher block Ci−2, and so on.

For both Electronic Codebook Mode and Cipher Block Chaining Mode, a single channel error
in the communication channel will results in many errors after decryption: this is due to the
diffusion nature of the Data Encryption Standard algorithm (on the average, a single bit change
in the received ciphertext block Ci leads to about 32 bits in error after applying the decryption
transformation DES−1

K (Ci).

5.3 Stream Cipher Modes of Operation of DES

The Data Encryption Standard algorithm can also be implemented as stream cipher modes, en-
crypting plaintext data bits one by one (or more generally s plaintext data bits into s ciphertext
data bits). Here we will consider only the case where s = 1.

The two stream cipher modes of DES are: Cipher Feedback Mode and Output Feedback Mode.
In both cases, the plaintext data bits m1, . . . ,mi, . . . are encrypted individually one by one by
adding modulo-2 a secret sequence k1, . . . , ki, . . .:

ci = mi ⊕ ki

and the decryption transformation consists in adding once more the same binary sequence k1, . . .,
ki, . . .:

mi = ci ⊕ ki

= (mi ⊕ ki)⊕ ki

= mi

An advantage of stream cipher modes over block cipher modes is that encryption and decryption
transformation can begin without having to wait for a complete 64-bit block. Also each plaintext
symbol (and ciphertext symbol) can be encrypted and decrypted as they are entered for transmission
in the communication link.

5.4 Output Feedback Mode (OFB):

The implementation of the DES Output Feedback Mode is very similar to the Cipher Feedback
Mode of operation except that the 64-bit register is not fed by the previous ciphertext data bits
c1, . . . , ci, . . . but instead by the binary sequence at the output of the DES encryption box.
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Note that for the Output Feedback Mode, there is no error propagation since for this stream
cipher mode, the content of the 64-bit register at the receiving end (used for DES decryption)
generates a random sequence which is no longer a function of the received (and possibly corrupted)
ciphertext bits from the transmission channel.

5.5 Cipher Feedback Mode (CFB):

The implementation of the DES Cipher Feedback Mode is very similar to the Output Feedback
Mode of operation except that the 64-bit register is fed by the previous ciphertext data bits
c1, . . . , ci, . . . instead of the binary sequence at the output of the DES encryption box. In the
Cipher Feedback Mode, each ciphertext bit (i.e. ci−1, ci−2, . . .) is fed back to a 64-bit register one
at the time. One bit of the resulting ciphertext ki is then added modulo-2 with the incoming
message bit to give the cipher bit ci, which is sent through the communication link.

The error propagation behavior of the Cipher Feedback Modemode of operation is very similar
to that of the Cipher Block Chaining Mode, since in both cases a single channel transmission error
will affect a ciphertext bit as well as about half of 64-bit (this time in the 64-bit shift register in
the decryption box).
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6 Multiple DES encryption

As we have seen, the Data Encryption Standard is vulnerable to a brute force cryptanalysis attack
by performing an exhaustive key space search. Multiple DES encipherment provide additionnal
cryptographic strength to DES by using more than a single key. In this section, we will see how
to protect information using double DES and triple DES (subsections 6.1 and 6.2 respectively)
enciphering.

6.1 Double DES encryption

Double DES encryption of a plaintext message M is achieved by applying the DES encryption
transformation on the message with 56-bit key K1 and then applying DES encryption on the
resulting 64-bit block with a second 56-bit key K2. The decryption of a ciphertext C from a
double DES is obtained by applying the DES decryption transformation twice using first the last
encryption key, i.e., K2, and then the first one, K1. Figure 10 illustrates the double DES encryption
and decryption processes.
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Figure 10: Double DES encryption and decryption.

C = DESK2 [DESK1(M)] (double DES encryption)

M = DES−1
K1

[
DES−1

K2
(C)

]
(double DES decryption)

Although there are 256 choices for key K1 and 256 choices for key K2 which lead to an overall
choice of 2112 pairs of keys (K1,K2), the cryptographic strength fo double DES is not as dramatically
increased as it may appear.
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Double DES is prone to what is refered to as a meet-in-the-middle attack. This type of known-
plaintext attack was first presented by Diffie and Hellmann [DH77] and requires essentially two
known plaintext-ciphertext pairs: (M1, C1) and (M2, C2) each pair obtained with the same double
DES key pair (K1,K2):

C1 = DESK2 [DESK1(M1)] and
C2 = DESK2 [DESK1(M2)]

The attack consists in computing, sorting by increasing value and recording in a table the 256

encrypted 64-bit blocks {Xi} obtained with all the possible keys on the known plaintext M1.

Xi = DESKi(M1) for 1 ≤ i ≤ 256

The next step consists of using the second key, K2, to compute the 256 different 64-bit decryption
blocks {Yj}j=1,...,256 using the known ciphertext C1 (from the known (M1, C1) plaintext-ciphertext
pair):

Yj = DES−1
Kj

(C1) for 1 ≤ j ≤ 256

For each decryption, the value of Yj is compared with the table of sorted solutions {Xi}i=1,...,256 .
Since

C1 = DESK2 [DESK1(M1)]

then there are values of Xi = DESKi(M1) that match Yj = DES−1
Kj

(C1) and, out of these, one
of them which is the desired solution. However, there are 2112 ways to choose the (K1, K2) pair
of double DES keys but the double DES ciphertext can take only one of the 264 values of the
ciphertext space. Therefore, there are, on average, 2112

264 = 248 pairs of keys (K1, K2) which will
produce to the known ciphertext C1 from the corresponding known plaintext M1.

Now, using the second known plaintext-ciphertext pair (M2, C2), the cryptanalyst can encrypt
M2 with the suspected key pair DESKj [DESKi(M2)] and compare the result with the known
ciphertext C2. If indeed C2 = DESKj [DESKi(M2)] then the cryptanalyst is pretty sure that the
actual key pair is (Ki,Kj) = (K1,K2) and that he, or she, has broken the double DES. In fact, the
probability of succeeding twice matching Xi and Yj with the same pair (Ki,Kj) wrongfully (that
is, when (Ki,Kj) 6= (K1,K2)) is very unlikely: the probability of a false solution is

pfalse =
2112

264 × 264
= 2−16

Note that each time a new plaintext-ciphertext pair is used the calculations of Xi and Yj requires
the storage of 256 = 7.20576 × 1016 DES enciphered blocks of 64 bits each, or 5.76461 × 1017

bytes. This means that breaking double DES with two pairs of plaintext-ciphertext requires the
precomputation of 256 encryptions of Xi = DESKi(M) for each pair, or about 257 encryptions.
The decryptions Yj = DES−1

Kj
(C) are done simultaneously.

The cryptanalyst may want more assurance about the results of the meet-in-the-middle attack.
Using a third known plaintext-ciphertext pair, say (M3, C3), he can reduce the probability of false
double DES breaking to:

pfalse =
2112

264 × 264 × 264
= 2−80
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6.2 Triple DES encryption

6.2.1 Triple DES encryption with 2 keys

To prevent a meet-in-the-middle type of attack, a third DES encryption box may be used in cascade
with two distinct keys K1 and K2 as shown in figure 11. Triple DES encryption and decryption
using two different keys are performed as:

C = DESK1

{
DES−1

K2
[DESK1(M)]

}
(triple DES encryption)

M = DES−1
K1

{
DESK2

[
DES−1

K1
(C)

]}
(triple DES decryption)
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Figure 11: Triple DES encryption and decryption using 2 keys.

The second encryption box is really a DES decryption box: this arrangement is used to allow
triple DES to be used as single DES but has no effect on the cryptographic strength of triple
DES. It is possible to use triple DES encryption to communicate with a single key DES user, as a
conventional single DES, by setting the two keys equal to K = K1 = K2.

Since the second transformation is in fact a decryption transformation (that is, with the reverse
order of the sequence of sixteen 48-bit subkeys), the cascade of encryption and decryption using the
same key K: DES−1

K [DESK(M)] is simply M and applying DES encryption once more provides
the desired single DES encrypted cryptogram C = DESK(M). The cryptogram C can then be
decrypted using the conventional single DES: DES−1

K (C).

C = DESK

{
DES−1

K [DESK(M)]
}

(triple DES encryption)
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C = DESK(M)
M = DES−1

K (C) (single DES decryption)

6.2.2 Triple DES encryption with 3 keys

Even if there is no known method to break triple DES with two different keys, some still prefer to
use triple DES encryption with three different keys (see 12 below). The plaintext encryption and
ciphertext decryption are then obtained as:

C = DESK3

{
DES−1

K2
[DESK1(M)]

}
(triple DES encryption)

M = DES−1
K1

{
DESK2

[
DES−1

K3
(C)

]}
(triple DES decryption)

Since three different 56-bit keys are used, that is K1, K2 and K3, this requires a total of 168 key
bits. Once again, it is possible to use triple DES encryption to encrypt single DES cryptograms.
This time it is done by simply repeating the same key 3 times: K = K1 = K2 = K3.
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Figure 12: Triple DES encryption and decryption with 3 different keys.

There is no practically feasible attacks on triple DES. It is estimated [Cop94] that an exhaustive
search will require about 2112 = 5.1923× 1033 computations!

Triple DES with this configuration is used on some Internet communications to ensure secure
transfer of information over a computer communication network.
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