Digital Signatures and Message Authentication Codes

Message Authentication
Conventional Encryption

The use of conventional (secret key) encryption algorithms such as the Data Encryption Standard,
provides confidentiality as well as authentication of a message M since only the sender and the
intended recipient can decrypt the ciphertext C' with the secret key K as shown in Fig. 1.
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Figure 1: Conventional secret encryption.

Public-key Encryption

With public-key encryption like the RSA algorithm, user A, Alice, can provide confidentiality (see
Fig. 2) using Bob’s public-key K p, authentication and signature (Fig. 3) using her own private key
k4, or both, that is, confidentiality, authentication and signature of a message M (Fig. 4) using
Alice’s private key k4 and Bob’s public-key Kp.
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Figure 2: Public-key encryption (confidentiality).
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Figure 3: Public-key encryption (authenticity).
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Figure 4: Public-key encryption (confidentiality, authenticity, and signature).



Hash Functions

A hash function H(zx) is a one-way function (many-to-one mapping function) which produces a
fixed length vector from an input block z of arbitrary length. In other words, the function H(x)
can be applied to a block of data of any size and generate a fixed-length output.

For a given input z, it should be relatively easy to compute the hash function h = H(z), but
given the hash value h it must be computationally infeasible to find z, hence the term one-way
function.

A good hash algorithm should provide weak collison resistance, that is for a given input z it
should be computationally infeasible to find another block y # x such that H(y) = H(z).

A hash algorithm should also ensure strong collison resistance: it should be computationally
infeasible to find any pair (z,y) such that H(y) = H(z), this is to prevent a type of attack on hash
function known as birthday paradox attack.

Simple Hash Functions

The simplest hash function that can be designed is probably a function where an input x is de-
composed into L blocks of n bits. If the length of the input x is not exactly a multiple of n, then
stuffing bits are appended at the end of the input vector to make its length of multiple of n. The
hash function here consists simply into adding modulo 2 the nth bit of each block:
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This simple hash function does provide a hash output h = H (z) of length n as desired. However,
with this simple hash algorithm it is very easy to find another input y which will produce the same
hash output H(y) = H(x), making it vulnerable to collison.



Birthday Paradox Attack

The birthday paradox can be stated as follows: given an integer random variable X uniformly
distributed between 1 and n, that is: p(z;) = 2 for i = 1,n, and a selection of k instances (or
outcomes) of that random variable X, waht is the probability P(n,k) that there is at least one
duplicate?

For instance, given an ELG-5373 class with k& students (e.g. k = 12) what is the probability
that two students have the same birthday, assuming that the n = 365 birthdays are uniformly
distributed over the year, i.e. with a probability of 3—235?

The probability of Q(n, k) of having no duplicates is easier to determine. For a given k there

are:

N(no duplicates) nxn—1)x...x(n—k+1)= (=]
ways to obtain no duplicates with k elements taken from the set of n elements.
If we now consider the total number of ways to pick k elements out of n without the condition
of having no duplicates, then:
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and the probability of no duplicates Q(n, k) is given by:
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The probability P(n, k) of having at least one duplicate is then:

P(n,k) = 1-Q(n,k)
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However, for x > 0, we have that (1 —z) < e~ as illustrated on Figure 5.
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Figure 5: Inequality: 1 —z < e™*, for z > 0.

The probability P(n, k) can be expressed as:

Pk = 1-[(1-2) (1= 2) s (12520

P(n,k) = 1- {(67%) X (e’%) X ... X (e*%)}
Pnk) > 1—e latat+57]
P(n,k) > 1-— ef[kxgrl)}



Example 1 (Birthday paradoz (n = 365))):

For this first example, we want to determine the number k of people in a room such that we
have a probability of 50% to find two persons having the same birthday. We assume here that there
are n = 365 days per year. We want to determine the minimum number of persons k£ such that

P(n,k) = 3. We know that:
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Taking the natural logarithm on both sides of the inequality leads to:
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Therefore, for n = 365 days, the minimum number of persons is k > /2 x 365 x In(2) or k >
22.4944 as hown on Figure 6. With & = 23 persons in a room, the probability of finding two
persons having the same birthday is greater than 50%. With, k = 23, this probability P(n, k) is:
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Figure 6: Birthday paradox: probability of finding two persons out of k£ having the same birthday
(strong collision).

Example 2 (Birthday parador (n = 2'%%)):

Consider now the probability of finding two different 128-bit vectors, x and y such that their
hash values are equal, i.e., H(z) = H(y). This is the problem of strong collision of any pair (z,y)
into the same hash value.

The number of different vectors y to achieve equality in an exhaustive brute-force attack would
be k < /2 x 2128 xIn(2), that is: k = 264 x /2 xIn(2) = 1.1774 x 2% or equivalently k =
2.1719 x 10%9.




Digital Signatures
Digital Signature Standard

Digital Signature Standard (DSS)

In 1991, the National Institute of Standard and Technology (NIST) in the United States presented
the Digital Signature Standard (DSS). The DSS standard was modified and refined twice in 1993
and 1996. The block diagrams for the Digital Signature Standard message signing and signature
verification are depicted on Figure 7 and Figure 8.

The DSS standard is based on the Digital Signature Algorithm (DSA) which itself uses the
Secure Hash Algorithm (SHA-1) to produce a 160-bit hash value h = H(M) of the message M.
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Figure 7: Digital Signature Standard (DSS): message signing.
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Digital Signature Algorithm (DSA)

The security of the Digital Signature Algorithm (DSA) is based on the computational complexity
to compute discrete logarithms. The original message and signature are M and (r, s) respectively.
H (M) represents the hash of the message M using the Secure Hash Algorithm SHA-1.

Global Public Components: KUg = (p,q,9)

The algorithm requires global public components, identified as the public key of a group KUg, and
consisting of global public components (p, ¢, ¢).

p is a prime number where 2171 < p < 28 for 512 < L < 1024 and where L is a multiple of 64,
i.e. p is a prime number having a length L of 512 to 1024 bits.

A 160-bit prime number ¢ (where 2179 < ¢ < 2160) is chosen such that it is a divisor of (p — 1).

A number g = h(P~1/2 mod p is also chosen where h is any integer with 1 < h < (p — 1) such
that A®=1/2 mod p > 1.

User’s Private and Public Key Pair: (KR4, KUy,)

User A selects a pseudorandom integer x with 0 < = < ¢. This is the private key KR4. He
then computes the corresponding public key KU 4 as: y = ¢ mod p. As we know, although it is
easy to compute y by modular exponentiation it is very difficult to find the private key x from
Y, g, and p: this would require the solution of the discrete logarithm of y with base g modulo p:
x = log,(y) mod p. This ensure the security of the DSA signature algorithm.

User’s Per-Message Secret Number: k&

The user also generates a pseudorandom integer k with 0 < k < q.

Signature of the message

The signature of the message consists in two components: r and s:

r = (g" mod p) mod ¢
s = {k7YH(M) + zr]} mod ¢
Signature = (r,s)

The signature is appended to the message, that is M]||s||r, and sent over the non secure channel.

Message Signature Verification

The message and signature M’||r’||s’ are received, and potentially altered by an attacker in the
unsecure network. The message signature verification is performed as follows:

w = (s)"'modgq
up = [H(M)w] mod q
Jw mod g

UQ:(/
[

”
v = [(¢"*y"?*) mod p] mod ¢
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The signature verification test consists in determining whether v Z /. 1f the vectors v and 7’
match then the DSA digital signature is verified, if not it is rejected.

Digital Signature Algorithm Derivation

In this section, it is shown that if in the DSA signature verification the vectors v and 7’ are equal
then the signature is valid. For this we have to show that v = [(¢"*y"“?) mod p] mod ¢ equals the
received signature component r. We will need intermediate results to prove that indeed v = r if
the signature is valid.

We first show that for any integer t:

t mod q)

¢! mod p = g( mod p

then, using this result, we show that, for non negative integers a and b:

g(a mod g+b mod q) [(a+b) mod ¢]

modp=yg mod p

Then the relationship:

y(rw mod q) (zrw mod q)

modp=yg mod p

is demonstrated. Then we show that, for 0 < k < ¢, where ¢ is a prime number,
{[H(M) + zrjw}] mod g = k

leading to the proof that v = r in the digital signature standard.
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Lemma 1

For any integer ¢, if g = h{(P~1/4 mod p then g mod p = ¢t ™°d 2 mod p.

Proof:

The integer h is chosen such that 1 < h < (p — 1) where p is a prime number, and hence h is
relatively prime to p. By Fermat’s theorem, we know that:

P 'modp = 1

since p is prime. Consider the exponent ng of ¢ modulo p, that is ¢"? mod p, where n is an arbitrary
positive integer. Using the principles of modular arithmetics, one obtains:

g"? mod p
g"? mod p
¢"? mod p
g"? mod p
g"? mod p
g™ mod p

— [h[(p—l)/q} mod p] ™ mod p
= ple=D/dng 104 p
RIP=D] mod p
{h[(p_l)] mod p] " mod P
= [1]" mod p
=1

Now express the arbitrary integer ¢t as ¢ = ng 4+ z where z is also a positive integer such that

0 <z < gq. Then t mod ¢ = z and:

¢¢modp = ¢""* modp
g'modp = [¢"? x g°] mod p
g'modp = [(g"? mod p) x (g° mod p)] mod p
g'modp = [(1) x (¢° mod p)] mod p
¢g'modp = ¢°modp
and, finally:
g" mod p = gt ™49 mod p

QED
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Lemma 2
If @ and b are positive integers, then g(@med ¢tbmod q) 14q p is equal to gl@th) meddl p6q p.

Proof:
From Lemma 1, we know that ¢ mod p = ¢ ™°d9) mod p. If we set t = a mod ¢ + b mod ¢
then:

g modp = ¢gt™d9 modp
g(a mod g+b mod q) modp = g[(a mod ¢+b mod ¢) mod q] mod p
g(a mod g+b mod gq) modp = g[(a+b) mod q] mod p

by the principle of modular arithmetics. Therefore, for any non negative integers a and b:

(a mod g+b mod q) [(a+b) mod ¢]

g modp=yg mod p

QED

Lemma 3
Let the public key y be defined from the private key x as y = ¢g* mod p. Then

(rw mod q) (zrw mod q)

Y modp=yg mod p

Proof:

](rw mod q)

modp = [¢° modp mod p

z(rwmod q) 1 0q D (modular arithmetics)

[z(rw mod ¢) mod ¢]

modp = g
modp = g mod p (Lemma 1)
g(ﬂfrw mod ¢) 10d D (modular arithmetics)

Then for the public and private key pair y and x:

(rw mod q) (zrw mod q)

Y modp=yg mod p

QED
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Lemma 4

Let k be a randomly chosen integer such that 0 < & < ¢ where ¢ is a prime number. H(M)
is the hash value of the message M, = the private key. The signature components (r,s) are:
r = (¢¥ mod p) mod ¢ and s = {k~'[H(M) + zr]} mod ¢ and w is the multiplicative inverse of s
modulo ¢, i.e. w = s~ mod ¢. Then

{[H(M) + zrjw} mod ¢ = k

Proof:

The signature component s = {k~'[H (M) + zr]} mod ¢ by definition of the DSA. The integer
k is chosen such that 0 < k£ < g and ¢ is a prime number: this implies that any integer k has a
unique multiplicative inverse k~' modulo this prime number ¢q. Thus kk~! mod ¢ = 1.

Now consider the expression ks mod ¢ (product of the signature component s with the random
number k reduced modulo ¢):

ksmodg = k|[{k™'[H(M)+ ar]} mod g| mod g
ksmodq = [k{k™'[H(M)+r]}| mod q

ksmodq = {[(kk™") mod g][(H(M) + 2r) mod g} mod g
ksmod ¢ = [(H(M)+ xr)mod ¢] mod ¢

In the DSA algorithm w is the multiplicative inverse of s modulo ¢, i.e. w = s~ mod ¢ and thus
ws mod ¢ = 1. Then

{[HM) + zrjw} mod ¢ = {[(H(M)+ zr) mod ¢|(w mod ¢)} mod ¢
{[H(M) + zrjw} mod ¢ = {[ks mod ¢](w mod ¢q)} mod ¢

{[H(M) + zrjw} mod ¢ = [(ksw) mod ¢g] mod ¢

{[H(M) 4+ zrjw} mod ¢ = (ksw) mod g

{[H(M) 4 zrjw} mod ¢ = [(kmod ¢q)(sw mod ¢q)] mod ¢

{[H(M) 4+ zrjw} mod ¢ = [(kmod ¢)(1)] mod ¢
{[HM)+zrjw}modq = kmodg=Fk

Thus, for 0 < k < g, where ¢ is prime,

{[H(M) + 27w} mod q = k

QED
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Theorem (Digital Signature Standard)

Let the signature component 7 = (¢* mod p) mod ¢ and the signature verification vector v =
[(g“1y*2) mod p] mod ¢ where u; = [H(M')w] mod ¢ and us = (r')w mod ¢ with w = (s')~! mod
g. Then if the received version of the signed message M’'||r’||s" = M||r||s, that is the original
untampered signed message, then v = r and the signature is validated:

v = [(g"14"2) mod p] mod ¢ = (¢¥ mod p) mod ¢ = r

Proof:
v = [(g"y"*) mod p] mod ¢
v = [(glOnuImed ayre) mod 1) 1aoq p) mod
v o= [(g[H(Mm mod ¢ (arw) mod ) p} modq  (Lemma 3)
I :(g[H(M)w} mod g+ (zrw) mod 7Y mod p} mod g
v o= [(gH Mo moday g p] mod g  (Lemma 2)
v = [(g(H(M)err)w mod ) 1104 p} mod ¢
vo= (gk) mod p] mod ¢ (Lemma 4)
v o= T

Therefore, if the original and received signed messages M]||r||s and M'||r'||s, then:

= [(¢"'y"?) mod p] mod ¢ = (gk mod p) mod g =r

QED
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