Date: Monday, September 24, 2002
Prof.: Dr Jean-Yves Chouinard

Design of Secure Computer Systems CSI4138/CEG4394
 Notes on the Advanced Encryption Standard (AES)

1 Advanced Encryption Standard (AES)

1.1 AES History

In 1997, the National Institute of Standard and Technology (NIST) of United States initiated the development of an Advanced Encryption Standard (AES) to replace the Data Encryption Standard (DES). The objective was to develop with the industry and cryptographic community an encryption algorithm sufficiently powerful to protect government, as well as private sector, information for several years. As for DES, the algorithm should be royalty-free, publicly disclosed.

The AES algorithm was designed as a symmetric block cipher using a minimum of 128 -bit input blocks and supporting 3 key sizes, that is: 128 -bit, 192 -bit and 256 -bit keys.

In August 1998, NIST announced that 15 AES proposals were received for evaluation and comments. After an analysis of the proposed algorithms, NIST announced in April 1999 that five algorithms were retained as finalist algorithms. These were:

1. MARS
2. RC6
3. Rijndael
4. Serpent
5. Twofish

These algorithms were further analyzed in terms of their relative cryptographic strength and ease of implementation. In October 2000, NIST announced that the Rijndael algorithm was selected for the new AES standard. The algorithm is presently under further review, that is validation testing, and it is expected that the AES algorithm be completed for this summer. In February 2001, the NIST delivered a draft Federal Information Processing Standards (FIPS) for the specification of the Advanced Encryption Standard. On November 26, 2001, NIST announced the final specification of the Advanced Encryption Standard (FIPS PUB 197) [NIS01].

1.2 Rijndael Block Cipher Algorithm

Mathematical Background

In the AES algorithm, the operations, such as the addition and the multiplication, are performed on bytes over a finite field, the Galois Field $\operatorname{GF}\left(2^{8}\right)$.

Addition

The addition between two elements, or bytes, from the finite field is achieved by the addition modulo 2 of the corresponding bits in the representation of the bytes. The addition of the bytes $A=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right)$ and $B=\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}\right)$ gives $C=A+B$ with $C=$ $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right)$ where $c_{i}=a_{i} \oplus b_{i}$ for $1<i<8$. The finite field elements can also be represented in polynomial form. For instance, the sum of $A=73_{16}$ and $B=4 E_{16}$ (in hexadecimal notation) is obtained as:

$$
\begin{aligned}
73_{16}+4 E_{16} & =3 D_{16} \quad \text { (hexadecimal notation) } \\
01110011_{2} \oplus 01001110_{2} & =00111101_{2} \quad \text { (binary notation) } \\
\left(x^{6}+x^{5}+x^{4}+x+1\right)+\left(x^{6}+x^{3}+x^{2}+x\right) & =\left(x^{5}+x^{4}+x^{3}+x^{2}+1\right)
\end{aligned}
$$

in polynomial notation.

Multiplication

As for the multiplication operation, it is also done over the Galois Field GF $\left(2^{8}\right)$ and is obtained by the multiplication of the two elements polynomials and then reduced modulo an irreductible polynomial $m(x)$, which is equivalent to a prime number in the standard numbering system. As a prime number, the irreductible polynomial as only two divisors: 1 and itself, $m(x)$. For AES, this irreductible polynomial is $m(x)=\left(x^{8}+x^{4}+x^{3}+x+1\right)$.

Let, for example, $A=C 3_{16}$ and $B=85_{16}$, that is, $a(x)=\left(x^{7}+x^{6}+x+1\right)$ and $b(x)=\left(x^{7}+x^{2}+1\right)$. Then $C=A \cdot B$ is given by:

$$
\begin{aligned}
c(x)= & {[a(x) \cdot b(x)] \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right) } \\
c(x)= & {\left[\left(x^{7}+x^{6}+x+1\right) \cdot\left(x^{7}+x^{2}+1\right)\right] \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right) } \\
c(x)= & {\left[\left(x^{14}+x^{13}+x^{8}+x^{7}\right)+\left(x^{9}+x^{8}+x^{3}+x^{2}\right)+\left(x^{7}+x^{6}+x+1\right)\right] \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right) } \\
c(x)= & {\left[\left(x^{14}+x^{13}+x^{9}+x^{6}+x^{3}+x^{2}+x+1\right)\right] \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right) } \\
c(x)= & {\left[\left(x^{6}+x^{5}+x^{2}+x+1\right) \cdot\left(x^{8}+x^{4}+x^{3}+x+1\right)+\left(x^{7}+x^{5}+x^{3}+x^{2}+x\right)\right] } \\
& \bmod \left(x^{8}+x^{4}+x^{3}+x+1\right) \\
c(x)= & \left(x^{7}+x^{5}+x^{3}+x^{2}+x\right)
\end{aligned}
$$

and then $c(x)=\left(x^{7}+x^{5}+x^{3}+x^{2}+x\right)$ or $C=10101110_{2}$ in binary notation or, in hexadecimal notation: $C=A E_{16}$.

Construction of an (extended) Galois Fields

Let p be a prime number. Galois Field $\mathrm{GF}(p)$ is given by the element $\{0\}$ and the $(p-1)$ successive powers:

$$
1, \alpha, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{(p-1)}
$$

Many computer based algorithms operate on extensions of the Galois Field GF(2) which consists of the two binary elements $\{0,1\}$. Reed-Solomon error correction codes and the AES encryption algorithm, which are basically Byte-oriented algorithms, use extended Galois Field such as GF (p^{m}) $=\mathrm{GF}\left(2^{8}\right)=\mathrm{GF}(256)$ that contains 256 distinct elements.

To generate such an extended Galois Field, a primitive polynomial $p(x)$ over $\operatorname{GF}(q)$ is needed. An irreductible polynomial $p(x)$ is a polynomial which cannot be factored into lower degree polynomials in over $\mathrm{GF}(q)$. An irreductible polynomial $p(x)$ of degree m is a primitive polynomial if the smallest positive integer n for which $p(x)$ divides $x^{n}-1$ is $n=p^{m}-1$.

To form the Galois Field, one has to determine a root α of the primitive polynomial $p(x)$, that is $p(\alpha)=0$. For instance, the primitive polynomial $p(x)=x^{4}+x+1$ can be used to form the extended Galois Field $\operatorname{GF}\left(2^{4}\right)=\operatorname{GF}(16)$, that is for $p=2$ and $m=4$. Then the root α of $p(x)$ is:

$$
\begin{array}{r}
p(\alpha)=0 \\
\alpha^{4}+\alpha+1=0
\end{array}
$$

and therefore: $\alpha^{4}=\alpha+1$. Table 1 illustrates how to generate the extended Galois Field GF $\left(2^{4}\right)$ from the primitive polynomial $p(x)$.

Table 4 gives an extended Galois Field $\operatorname{GF}\left(2^{8}\right)$ that can be used for Reed-Solomon error control coding and for AES byte operations. The primitive polynomial $p(x)=x^{8}+x^{4}+x^{3}+x^{2}+1$ is used and the extended Galois Field $\operatorname{GF}\left(2^{8}\right)$ is obtained with the polynomial root: $\alpha^{8}=\alpha^{4}+\alpha^{3}+\alpha^{2}+1$.

Table 1: Galois Field $G F\left(2^{4}\right)=G F(16)$.

element of $G F(16)$	polynomial form				binary form	decimal form
0				0	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	0
1				1	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	1
α			α		$\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$	2
α^{2}		α^{2}			$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	4
α^{3}	α^{3}				10000	8
α^{4}			α	+1	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	3
α^{5}					$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	6
α^{6}	α^{3}	$+\alpha^{2}$			$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$	12
α^{7}	α^{3}		+ α	+1	$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	11
α^{8}		α^{2}		+1	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5
α^{9}	α^{3}		+ α		$\begin{array}{lllll}1 & 0 & 1 & 0\end{array}$	10
α^{10}			+ α	+1	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	7
α^{11}	α^{3}	$+\alpha^{2}$	+ α		$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	14
α^{12}	α^{3}	$+\alpha^{2}$	+ α	+1	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	15
α^{13}	α^{3}	$+\alpha^{2}$		+1	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	13
α^{14}	α^{3}			+1	$\begin{array}{llll}1 & 0 & 0 & 1\end{array}$	9

1.3 Advanced Encryption Standard Algorithm

The Advanced Encryption Standard Algorithm encrypts a 128 -bit plaintext block M into a 128 -bit ciphertext block C using a cipher key K of either 128 bits, 192 bits or 256 bits. The different key lengths employed for AES are refered to: AES-128, AES-192, and AES-256. The algorithm operates on bytes and the block size for the input, output and key are represented by 32-bit words, that is 4 bytes.

The AES algorithm performs a number N_{r} of cryptographic rounds depending on the actual key length used as indicated in Table 2 for AES-128, AES-192 and AES-256.

Table 2: Number of cryptographic rounds N_{r} for AES encryption.

AES algorithm	Input/output length N_{b}	Key length N_{k}	Number of rounds N_{r}
AES-128	4 words	4 words	10 rounds
AES-192	4 words	6 words	12 rounds
AES-256	4 words	8 words	14 rounds

Each round consists of four byte-oriented cryptographic transformations:

1. Byte Substitution
2. Shifting rows of the State Array
3. Mixing data within a column of the State Array
4. Round Key addition to the State Array
```
    Cipher(byte in[4 * Nb],
byte out[4 * Nb], word w[Nb * (Nr + 1)])
begin byte state[4,Nb] state = in AddRoundKey(state, w)
for round = 1 step 1 to Nr - 1 SubBytes(state) ShiftRows(state)
MixColumns(state) AddRoundKey(state, w + round * Nb) end for
SubBytes(state) ShiftRows(state) AddRoundKey(state, w + Nr * Nb)
out = state end
```

(Source: AES draft specification: http://csrc.nist.gov/encryption/aes/.)

Byte Substitution: SubBytes() transformation

The first AES transformation is a non linear byte substitution transformation called SubBytes() transformation. It operates independently on each byte. It first computes the multiplicative inverse in the finite Galois Field $\operatorname{GF}\left(2^{8}\right)$. It then applies an affine transformation on the multiplicative inverse:

$$
\left[\begin{array}{l}
b_{0}^{\prime} \\
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
b_{4}^{\prime} \\
b_{5}^{\prime} \\
b_{6}^{\prime} \\
b_{7}^{\prime}
\end{array}\right]=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right]
$$

where b_{i} represents the $i^{\text {th }}$ bit of byte b.

Shifting rows of the State Array: ShiftRows() transformation

The next transformation of the AES cipher consits in shifting the rows of the State array. The amount of shifting shift $\left(r, N_{b}\right)$ depends on the row number r. The input (plaintext) and output (ciphertext) blocks are 128 bit-blocks or consist of $N_{b}=432$-bit words.

The ShiftRows() transformation can be expressed as:

$$
s_{r, c}^{\prime}=s_{r,\left(c+s h i f t\left(r, N_{b}\right)\right)} \bmod N_{b}
$$

where $0 \leq c<N_{b}$. For the first row, there is no row shifting, that is: $\operatorname{shift}\left(0, N_{b}=4\right)=0$. For the remaining rows the amount of shifting depend on the row number:

$$
\begin{aligned}
\operatorname{shift}(0,4) & =0 \\
\operatorname{shift}(1,4) & =1 \\
\operatorname{shift}(2,4) & =2 \\
\operatorname{shift}(3,4) & =3
\end{aligned}
$$

Mixing data within a column of the State Array: MixColumns() transformation

The MixColumns () transformation is used to Mix the data within a single column of the State matrix. The columns are represented as polynomials over the Galois Field GF $\left(2^{8}\right)$. The output of the MixColumns () transformation $s^{\prime}(x)$ is given by the multiplication of the input column $s(x)$ with the polynomial $a(x)$ and reduced modulo $\left(x^{4}+1\right)$:

$$
s^{\prime}(x)=a(x) \otimes s(x) \bmod \left(x^{4}+1\right)
$$

where $a(x)=03_{16} x^{3}+01_{16} x^{2}+01_{16} x+02_{16}$. In matrix form, this column mixing transformation can be represented as:

$$
\left[\begin{array}{l}
s_{0, c}^{\prime} \\
s_{1, c}^{\prime} \\
s_{2, c}^{\prime} \\
s_{3, c}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
02_{16} & 03_{16} & 01_{16} & 01_{16} \\
01_{16} & 02_{16} & 03_{16} & 01_{16} \\
01_{16} & 01_{16} & 02_{16} & 03_{16} \\
03_{16} & 01_{16} & 01_{16} & 02_{16}
\end{array}\right]\left[\begin{array}{c}
s_{0, c} \\
s_{1, c} \\
s_{2, c} \\
s_{3, c}
\end{array}\right] \quad \text { where } 0 \leq c<N_{b}
$$

Round Key addition to the State Array: AddRoundKey() transformation

In the AddRoundKey() transformation, the key bits derived from the original Cipher Key by the Key Expansion transformation are added bitwise to the State array. An initial Round Key w_{0}, i.e. for round $=0$, is added prior the first cryptographic round. Then at each round, i.e. for $1 \leq$ round $\leq N_{r}$, a different 32 -bit Round Key w_{i} is added:

$$
\left[s_{0, c}^{\prime}, s_{1, c}^{\prime}, s_{2, c}^{\prime}, s_{3, c}^{\prime}\right]=\left[s_{0, c}, s_{1, c}, s_{2, c}, s_{3, c}\right] \oplus\left[w_{\left(\text {round } \times N_{b}\right)+c}\right] \quad \text { where } 0 \leq c<N_{b} .
$$

AES Key Expansion

The AES algorithm generates from the Cipher Key (128-bit, 192-bit or 256 -bit long) an initial set of $N_{b} 32$-bit words and a $N_{b} 32$-bit for each of the N_{r} rounds, resulting in a total of $N_{b}\left(N_{r}+1\right)$ 32-bit words, $\left\{w_{i}\right\}$, for $0 \leq i<N_{b}\left(N_{r}+1\right)$. The pseudocode for the AES key expansion algorithm is given in the FIPS draft (Web site: http://csrc.nist.gov/encryption/aes/) and reproduced hereafter. Note that this is a draft document and that the final AES specification should be adopted in the summer of 2001.

The function $S u b W \operatorname{ord}()$ applies the substitution transformation of the S-box on a 4 -byte input word to produce a 4 -byte output word.

Function $\operatorname{Rot} W \operatorname{ord}()$ performs a cyclic byte permutation on a 4 -byte (32-bit) word w_{i}.

$$
\operatorname{Rot} W \operatorname{ord}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{2}, a_{3}, a_{0}\right)
$$

AES Key Management

As is the case for DES, the AES is a symmetric block cipher cryptosystem that requires the secure distribution of the secret key between the sender and recipient. Table 3 indicates the length of the public key for the three AES key lengths. This entries in Table 3 show the advantage of using a key exchange scheme based on Elliptic Curve Cryptography (ECC) instead of the RSA algorithm for the same level of security.

Table 3: Required RSA and Elliptic Curve Cryptography (ECC) key lengths for encryption of AES secret keys with equivalent security.

AES algorithm	AES key length	RSA key length	ECC key length
AES-128	128 bits	3,072 bits	283 bits
AES-192	192 bits	$7,680 \mathrm{bits}$	409 bits
AES-256	256 bits	$15,360 \mathrm{bits}$	571 bits

```
    KeyExpansion(byte key[4 *
Nk], word w[Nb * (Nr + 1)], Nk)
begin
    i=0
    while (i < Nk)
        w[i] = word[key[4*i],key[4*i+1],key[4*i+2],key[4*i+3]]
        i = i + 1
    end while
    i = Nk
    while (i < Nb * (Nr + 1))
        word temp = w[i - 1]
        if (i mod Nk = 0)
            temp = SubWord(RotWord(temp)) xor Rcon[i / Nk]
            else if (Nk = 8 and i mod Nk = 4)
            temp = SubWord(temp)
        end if
    w[i] = w[i - Nk] xor temp
    i = i + 1
    end while
end
```

(Source: AES draft specification: http://csrc.nist.gov/encryption/aes/.)

Table 4: Galois Field $G F\left(2^{8}\right)=G F(256)$.

element of $G F(256)$	polynomial form	binary form	decimal form
0	0	00000000	0
1	1	00000001	1
α	α	00000010	2
α^{2}	α^{2}	00000100	4
α^{3}	α^{3}	00001000	8
α^{4}	α^{4}	00010000	16
α^{5}	α^{5}	00100000	32
α^{6}	α^{6}	01000000	64
α^{7}	α^{7}	10000000	128
α^{8}	$\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	00011101	29
α^{9}	$\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha$	00111010	58
α^{10}	$\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}$	01110100	116
α^{11}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3}$	11101000	232
α^{12}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3}+\alpha^{2} \quad+1$	11001101	205
α^{13}	$\alpha^{7} \quad+\alpha^{2}+\alpha+1$	10000111	135
α^{14}	$\alpha^{4} \quad+\alpha+1$	00010011	19
α^{15}	$\alpha^{5} \quad+\alpha^{2}+\alpha$	00100110	38
α^{16}	$\alpha^{6} \quad+\alpha^{3}+\alpha^{2}$	01001100	76
α^{17}	$\alpha^{7} \quad+\alpha^{4}+\alpha^{3}$	10011000	152
α^{18}	$\alpha^{5} \quad+\alpha^{3}+\alpha^{2} \quad+1$	00101101	45
α^{19}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3} \quad+\alpha$	01011010	90
α^{20}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}$	10110100	180
α^{21}	$\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2} \quad+1$	01110101	117
α^{22}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3} \quad+\alpha$	11101010	234
α^{23}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3} \quad+1$	11001001	201
α^{24}	$\alpha^{7} \quad+\alpha^{3}+\alpha^{2}+\alpha+1$	10001111	143
α^{25}	$\alpha+1$	00000011	3
α^{26}	$\alpha^{2}+\alpha$	00000110	6
α^{27}	$\alpha^{3}+\alpha^{2}$	00001100	12
α^{28}	$\alpha^{4}+\alpha^{3}$	00011000	24
α^{29}	$\alpha^{5}+\alpha^{4}$	00110000	48
α^{30}	$\alpha^{6}+\alpha^{5}$	01100000	96
α^{31}	$\alpha^{7}+\alpha^{6}$	11000000	192

element of $G F(256)$	polynomial form	binary form	decimal form
α^{32}	$\alpha^{7} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	10011101	157
α^{33}	$\alpha^{5} \quad+\alpha^{2}+\alpha+1$	00100111	39
α^{34}	$\alpha^{6} \quad+\alpha^{3}+\alpha^{2}+\alpha$	01001110	78
α^{35}	$\alpha^{7} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}$	10011100	156
α^{36}	$\alpha^{5} \quad+\alpha^{2} \quad+1$	00100101	37
α^{37}	$\alpha^{6} \quad+\alpha^{3} \quad+\alpha$	01001010	74
α^{38}	$\alpha^{7} \quad+\alpha^{4} \quad+\alpha^{2}$	10010100	148
α^{39}	$\alpha^{5}+\alpha^{4} \quad+\alpha^{2} \quad+1$	00110101	53
α^{40}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3} \quad+\alpha$	01101010	106
α^{41}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4} \quad+\alpha^{2}$	11010100	212
α^{42}	$\alpha^{7}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2} \quad+1$	10110101	181
α^{43}	$\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha+1$	01110111	119
α^{44}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha$	11101110	238
α^{45}	$\alpha^{7}+\alpha^{6} \quad+1$	11000001	193
α^{46}	$\alpha^{7} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	10011111	159
α^{47}	$\alpha^{5} \quad+\alpha+1$	00100011	35
α^{48}	$\alpha^{6} \quad+\alpha^{2}+\alpha$	01000110	70
α^{49}	$\alpha^{7} \quad+\alpha^{3}+\alpha^{2}$	10001100	140
α^{50}	$\alpha^{2}+1$	00000101	5
α^{51}	$\alpha^{3} \quad+\alpha$	00001010	10
α^{52}	$\alpha^{4} \quad+\alpha^{2}$	00010100	20
α^{53}	$\alpha^{5} \quad+\alpha^{3}$	00101000	40
α^{54}	$\alpha^{6} \quad+\alpha^{4}$	01010000	80
α^{55}	$\alpha^{7} \quad+\alpha^{5}$	10100000	160
α^{56}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	01011101	93
α^{57}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha$	10111010	186
α^{58}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3} \quad+1$	01101001	105
α^{59}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4} \quad+\alpha$	11010010	210
α^{60}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+1$	10111001	185
α^{61}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha+1$	01101111	111
α^{62}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	11011110	222
α^{63}	$\alpha^{7}+\alpha^{5} \quad+1$	10100001	161

element of $G F(256)$	polynomial form	binary form	decimal form
α^{64}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	01011111	95
α^{65}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	10111110	190
α^{66}	$\alpha^{6}+\alpha^{5}+1$	01100001	97
α^{67}	$\alpha^{7}+\alpha^{6} \quad+\alpha$	11000010	194
α^{68}	$\alpha^{7} \quad+\alpha^{4}+\alpha^{3} \quad+1$	10011001	153
α^{69}	$\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha+1$	00101111	47
α^{70}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	01011110	94
α^{71}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}$	10111100	188
α^{72}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{2}+1$	01100101	101
α^{73}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3} \quad+\alpha$	11001010	202
α^{74}	$\alpha^{7} \quad+\alpha^{3} \quad+1$	10001001	137
α^{75}	$\alpha^{3}+\alpha^{2}+\alpha+1$	00001111	15
α^{76}	$\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	00011110	30
α^{77}	$\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}$	00111100	60
α^{78}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}$	01111000	120
α^{79}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}$	11110000	240
α^{80}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	11111101	253
α^{81}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{2}+\alpha+1$	11100111	231
α^{82}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4} \quad+\alpha+1$	11010011	211
α^{83}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	10111011	187
α^{84}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3} \quad+\alpha+1$	01101011	107
α^{85}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4} \quad+\alpha^{2}+\alpha$	11010110	214
α^{86}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4} \quad+1$	10110001	177
α^{87}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	01111111	127
α^{88}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	11111110	254
α^{89}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+1$	11100001	225
α^{90}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	11011111	223
α^{91}	$\alpha^{7} \quad+\alpha^{5} \quad+\alpha+1$	10100011	163
α^{92}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	01011011	91
α^{93}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha$	10110110	182
α^{94}	$\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+1$	01110001	113
α^{95}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha$	11100010	226

element of $G F(256)$	polynomial form	binary form	decimal form
α^{96}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3} \quad+1$	11011001	217
α^{97}	$\alpha^{7} \quad+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha+1$	10101111	175
α^{98}	$\alpha^{6} \quad+\alpha+1$	01000011	67
α^{99}	$\alpha^{7} \quad+\alpha^{2}+\alpha$	10000110	134
α^{100}	$\alpha^{4} \quad+1$	00010001	17
α^{101}	$\alpha^{5} \quad+\alpha$	00100010	34
α^{102}	$\alpha^{6} \quad+\alpha^{2}$	01000100	68
α^{103}	$\alpha^{7} \quad+\alpha^{3}$	10001000	136
α^{104}	$\alpha^{3}+\alpha^{2} \quad+1$	00001101	13
α^{105}	$\alpha^{4}+\alpha^{3} \quad+\alpha$	00011010	26
α^{106}	$\alpha^{5}+\alpha^{4} \quad+\alpha^{2}$	00110100	52
α^{107}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3}$	01101000	104
α^{108}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}$	11010000	208
α^{109}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	10111101	189
α^{110}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{2}+\alpha+1$	01100111	103
α^{111}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3}+\alpha^{2}+\alpha$	11001110	206
α^{112}	$\alpha^{7} \quad+1$	10000001	129
α^{113}	$\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	00011111	31
α^{114}	$\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	00111110	62
α^{115}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}$	01111100	124
α^{116}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}$	11111000	248
α^{117}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2} \quad+1$	11101101	237
α^{118}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{2}+\alpha+1$	11000111	199
α^{119}	$\alpha^{7} \quad+\alpha^{4} \quad+\alpha+1$	10010011	147
α^{120}	$\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	00111011	59
α^{121}	$\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha$	01110110	118
α^{122}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}$	11101100	236
α^{123}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{2}+1$	11000101	197
α^{124}	$\alpha^{7} \quad+\alpha^{4} \quad+\alpha^{2}+\alpha+1$	10010111	151
α^{125}	$\alpha^{5}+\alpha^{4} \quad+\alpha+1$	00110011	51
α^{126}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{2}+\alpha$	01100110	102
α^{127}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3}+\alpha^{2}$	11001100	204

element of GF(256)	polynomial form	binary form	decimal form
α^{160}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{2}+\alpha$	11100110	230
α^{161}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4} \quad+1$	11010001	209
α^{162}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	10111111	191
α^{163}	$\alpha^{6}+\alpha^{5} \quad+\alpha+1$	01100011	99
α^{164}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{2}+\alpha$	11000110	198
α^{165}	$\alpha^{7}+\alpha^{4} \quad+1$	10010001	145
α^{166}	$\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	00111111	63
α^{167}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha$	01111110	126
α^{168}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}$	11111100	252
α^{169}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{2}+1$	11100101	229
α^{170}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4} \quad+\alpha^{2}+\alpha+1$	11010111	215
α^{171}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4} \quad+\alpha+1$	10110011	179
α^{172}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	01111011	123
α^{173}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha$	11110110	246
α^{174}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+1$	11110001	241
α^{175}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha+1$	11111111	255
α^{176}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha+1$	11100011	227
α^{177}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	11011011	219
α^{178}	$\alpha^{7}+\alpha^{5} \quad+\alpha^{3} \quad+\alpha+1$	10101011	171
α^{179}	$\alpha^{6} \quad+\alpha^{3} \quad+\alpha+1$	01001011	75
α^{180}	$\alpha^{7} \quad+\alpha^{4} \quad+\alpha^{2}+\alpha$	10010110	150
α^{181}	$\alpha^{5}+\alpha^{4} \quad+1$	00110001	49
α^{182}	$\alpha^{6}+\alpha^{5}+\quad+\alpha$	01100010	98
α^{183}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{2}$	11000100	196
α^{184}	$\alpha^{7} \quad+\alpha^{4} \quad+\alpha^{2} \quad+1$	10010101	149
α^{185}	$\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha+1$	00110111	55
α^{186}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha$	01101110	110
α^{187}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2}$	11011100	220
α^{188}	$\alpha^{7}+\alpha^{5} \quad+\alpha^{2}+1$	10100101	165
α^{189}	$\alpha^{6} \quad+\alpha^{4} \quad+\alpha^{2}+\alpha+1$	01010111	87
α^{190}	$\alpha^{7} \quad+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha$	10101110	174
α^{191}	$\alpha^{6} \quad+1$	01000001	65

element of $G F(256)$	polynomial form	binary form	decimal form
α^{192}	$\alpha^{7} \quad+\alpha$	10000010	130
α^{193}	$\alpha^{4}+\alpha^{3} \quad+1$	00011001	25
α^{194}	$\alpha^{5}+\alpha^{4} \quad+\alpha$	00110010	50
α^{195}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{2}$	01100100	100
α^{196}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3}$	11001000	200
α^{197}	$\alpha^{7} \quad+\alpha^{3}+\alpha^{2} \quad+1$	10001101	141
α^{198}	$\alpha^{2}+\alpha+1$	00000111	7
α^{199}	$\alpha^{3}+\alpha^{2}+\alpha$	00001110	14
α^{200}	$\alpha^{4}+\alpha^{3}+\alpha^{2}$	00011100	28
α^{201}	$\alpha^{5}+\alpha^{4}+\alpha^{3}$	00111000	56
α^{202}	$\alpha^{6}+\alpha^{5}+\alpha^{4}$	01110000	112
α^{203}	$\alpha^{7}+\alpha^{6}+\alpha^{5}$	11100000	224
α^{204}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	11011101	221
α^{205}	$\alpha^{7} \quad+\alpha^{5} \quad+\alpha^{2}+\alpha+1$	10100111	167
α^{206}	$\alpha^{6} \quad+\alpha^{4} \quad+\alpha+1$	01010011	83
α^{207}	$\alpha^{7}+\alpha^{5} \quad+\alpha^{2}+\alpha$	10100110	166
α^{208}	$\alpha^{6} \quad+\alpha^{4} \quad+1$	01010001	81
α^{209}	$\alpha^{7}+\alpha^{5} \quad+\alpha$	10100010	162
α^{210}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3} \quad+1$	01011001	89
α^{211}	$\alpha^{7}+\alpha^{5}+\alpha^{4} \quad+\alpha$	10110010	178
α^{212}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+1$	01111001	121
α^{213}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha$	11110010	242
α^{214}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+1$	11111001	249
α^{215}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}+\alpha+1$	11101111	239
α^{216}	$\alpha^{7}+\alpha^{6} \quad+\alpha+1$	11000011	195
α^{217}	$\alpha^{7} \quad+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	10011011	155
α^{218}	$\alpha^{5} \quad+\alpha^{3} \quad+\alpha+1$	00101011	43
α^{219}	$\alpha^{6} \quad+\alpha^{4} \quad+\alpha^{2}+\alpha$	01010110	86
α^{220}	$\alpha^{7} \quad+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}$	10101100	172
α^{221}	$\alpha^{6} \quad+\alpha^{2} \quad+1$	01000101	69
α^{222}	$\alpha^{7} \quad+\alpha^{3} \quad+\alpha$	10001010	138
α^{223}	$\alpha^{3} \quad+1$	00001001	9

element of $G F(256)$	polynomial form	binary form	decimal form
α^{224}	$\alpha^{4} \quad+\alpha$	00010010	18
α^{225}	$\alpha^{5} \quad+\alpha^{2}$	00100100	36
α^{226}	$\alpha^{6} \quad+\alpha^{3}$	01001000	72
α^{227}	$\alpha^{7} \quad+\alpha^{4}$	10010000	144
α^{228}	$\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	00111101	61
α^{229}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha$	01111010	122
α^{230}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}$	11110100	244
α^{231}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2} \quad+1$	11110101	245
α^{232}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha+1$	11110111	247
α^{233}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4} \quad+\alpha+1$	11110011	243
α^{234}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha+1$	11111011	251
α^{235}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3} \quad+\alpha+1$	11101011	235
α^{236}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3} \quad+\alpha+1$	11001011	203
α^{237}	$\alpha^{7} \quad+\alpha^{3} \quad+\alpha+1$	10001011	139
α^{238}	$\alpha^{3} \quad+\alpha+1$	00001011	11
α^{239}	$\alpha^{4} \quad+\alpha^{2}+\alpha$	00010110	22
α^{240}	$\alpha^{5} \quad+\alpha^{3}+\alpha^{2}$	00101100	44
α^{241}	$\alpha^{6} \quad+\alpha^{4}+\alpha^{3}$	01011000	88
α^{242}	$\alpha^{7} \quad+\alpha^{5}+\alpha^{4}$	10110000	176
α^{243}	$\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3}+\alpha^{2} \quad+1$	01111101	125
α^{244}	$\alpha^{7}+\alpha^{6}+\alpha^{5}+\alpha^{4}+\alpha^{3} \quad+\alpha$	11111010	250
α^{245}	$\alpha^{7}+\alpha^{6}+\alpha^{5} \quad+\alpha^{3} \quad+1$	11101001	233
α^{246}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{3}+\alpha^{2}+\alpha+1$	11001111	207
α^{247}	$\alpha^{7} \quad+\alpha+1$	10000011	131
α^{248}	$\alpha^{4}+\alpha^{3} \quad+\alpha+1$	00011011	27
α^{249}	$\alpha^{5}+\alpha^{4} \quad+\alpha^{2}+\alpha$	00110110	54
α^{250}	$\alpha^{6}+\alpha^{5} \quad+\alpha^{3}+\alpha^{2}$	01101100	108
α^{251}	$\alpha^{7}+\alpha^{6} \quad+\alpha^{4}+\alpha^{3}$	11011000	216
α^{252}	$\alpha^{7} \quad+\alpha^{5} \quad+\alpha^{3}+\alpha^{2} \quad+1$	10101101	173
α^{253}	$\alpha^{6} \quad+\alpha^{2}+\alpha+1$	01000111	71
α^{254}	$\alpha^{7} \quad+\alpha^{3}+\alpha^{2}+\alpha$	10001110	142

References

[NIS01] NIST. Data Encryption Standard (AES). Technical Report FIPS PUB 197, National Institute of Standards and Technology, Washington DC, November 2001.

