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Abstract  

 

Modern haptic technology allows users to receive 

realistic kinesthetic and tactile cues in a computer 

generated environment.  When applied to video games, 

it gives players a higher sense of immersion as well as 

new and interesting ways to interact with the game 

environment.  In this paper, we present a game which 

acts as an experimental framework for assessing haptic 

effects in 3D games.  In HaptiCast, players assume the 

role of a wizard with an arsenal of haptically-enabled 

wands which they may use to interact with the game 

world.    We discuss the integration of haptic feedback 

in this first-person shooter style video game that uses a 

“vanilla” 3D game engine. The haptic rendering 

algorithms and effects used in our approach are 

presented, along with some non-haptic features which 

enhance this modality. 
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1 Introduction 

Haptics refers to technology which stimulates the user’s 

sense of touch.  Users are able to literally touch and feel 

characteristics about computer generated objects such as 

texture, roughness, viscosity, elasticity, and many other 

characteristics.  The human tactile and kinesthetic 

senses are stimulated through computer controlled 

forces which convey to the user a sense of natural feel 

about a virtual or remote environment. 

The applications of haptic technology are widespread. 

For instance, in combination with a visual display, 

haptics technology may be used to train people for tasks 

requiring hand-eye coordination, such as surgery or ship 

docking maneuvers.  Haptics may also be used for 

entertainment applications, such as video games.  

Players feel the physical properties of in-game objects, 

adding an extra level of interaction that traditional 

interface devices do not offer.   

 

Currently, there is a variety of haptic interfaces 

available.  Some devices, such as the Logitech 

Rumblepad or Microsoft Wingman, offer 2 degrees-of-

freedom (DOF) interactivity and display simple haptic 

effects to the user— open-loop vibrotactile feedback, 

predefined force feedback signals. More sophisticated 

devices, such as the Phantom Omni and Novint Falcon, 

offer a higher level of interactivity by providing 6 DOF 

input and 3 DOF feedback to the user.   

 

 

1.1  Haptics in Gaming 

There are many games currently take advantage of the 

haptic effects offered by mainstream haptic device. For 



example, in a car racing game, players may feel 

vibrations in their joysticks or steering wheels as they 

drive over a rough section of road. Or players of an 

action game may feel a rumble from their mouse as 

rockets shoot past their heads. While these devices can 

increase the level of immersion experienced by the user, 

we feel their use in games is often trivial or poorly 

planned.  Granted, these devices cannot offer the level 

of interaction which is offered by modern haptic 

devices, but this is something which we believe will 

soon change. 

Nintendo’s president, Satoru Iwata, highlighted in his 

keynote speech at the GDC 2006 [15] that there is a 

cultural need for innovative entertainment; a need to 

revolutionize electronic gaming. The upcoming release 

of Nintendo’s new game console, Wii [13], shows an 

attempt to satisfy the need for innovative gameplay and 

enhanced immersive gaming experiences.  We believe 

that in the near future, haptic devices will become more 

accessible to the average computer and console user and 

will play an important role in providing innovative 

forms of entertainment. This trend is heralded by the 

announced release of devices such as Novint’s Falcon, 

which has an affordable target, even for mainstream 

consumers.  Opportunities are arising for developers to 

invest in haptic applications and gaming titles.  

As suggested by Chang [1], haptic technology will 

become an integral part of the game design process and 

require creative planning in order to take full advantage 

of this bi-directional modality. Gamer habits may 

change too in order to incorporate their sense of touch, 

which gives them more complex interaction with the 

game environment. 

In Section 2 of this paper we discuss projects similar to 

this one.  In Section 3 we present a description of our 

game, as well as haptic effects and rendering techniques 

used by our game. We also present some other methods 

of interaction which may be combined with haptic 

interfaces. The results of user trials are presented in 

Section 4, and possible future improvements to the 

project are presented in Section 5.  This paper concludes 

in Section 6. 

 

2 Related Work 

The amount of literature regarding haptic technology 

and rendering has increased substantially in recent 

years.  A description of our rendering technique is given 

in Section 3.  For a more complete background on haptic 

rendering and haptics in general can be found in other 

articles ([4], [5], [6], [14]). 

Haptic Battle Pong [2], a pong clone with haptic support 

for SensAble Phantom devices, is one of the few 

attempts at introducing modern haptics to gaming.  

Force-feedback is used to haptically display contact 

between a ball and a paddle. However, interaction with 

the game environment is limited since players can feel 

only the transient forces generated as the paddle strikes 

the ball.  

There has also been some other work concerning the 

integration of haptics into a 3D game engine. Nilsson 

and Aamisepp [3] explain the relevance of incorporating 

haptics in a 3D engine and a plug-in for Crystal Space 

[22] was developed to demonstrate this integration 

successfully.  However, haptic interaction in the context 

of 3D gaming was not well explored by this project.  

Other efforts [7] to combine haptic and graphical 

rendering are ambitious, but don’t contain features 

which are desirable for 3D game development.   

Our approach builds on the work discussed in this 

section. By using existing, well-developed game engine 

components—specifically, a scene graph library and 

physics engine – and augmenting them with haptic 

rendering, we create a highly useful haptic game 

development environment which we use to experiment 

with haptic interaction in 3D games—of which a by-

product is an actual game.   The algorithms used for 

haptic rendering are simple, fast, and use the capabilities 

of existing software components.  

 

3 HaptiCast 

 
Figure 1: A screenshot from HaptiCast  

HaptiCast is a multi-player 3D game which places the 

players in a first-person shooter (FPS) death match 

setting.  It is designed to provide fast-paced action and a 

high level of interactivity.  A screenshot of the game is 

shown in Figure 1.   

An important component of HaptiCast is the physics 

engine, which simulates Newtonian physics for all 



objects in the virtual game environment.  Variables such 

as mass, velocity, friction, and external forces all 

contribute to the realism of the game. This component 

provides collision detection and response amongst in-

game objects, allowing character and object control 

using physical dynamics, as well as access to 

information used by haptic rendering algorithms.  The 

physics engine we’ve chosen for the HaptiCast project is 

Newton Game Dynamics [9], which is a small, fast rigid 

body physics engine for development in C/C++.  Every 

object in our game world has a physical representation, 

and therefore is capable of exhibiting realistic physical 

behaviour.  

The scene graph library we’ve chosen for the HaptiCast 

project is Irrlicht [8], which is a fast, cross-platform 3D 

graphic engine that includes features such as Gourad 

shading, z-buffering, dynamic lighting, mesh loaders, 

particle systems, texturing, and many more.  This 

component is responsible for displaying 3D objects on 

the screen, as well as a graphical user interface. 

The supported platform for HaptiCast is Windows 

2000/XP using a Phantom Omni or Desktop [21] device 

from SensAble Technologies.  For good haptic and 

graphical rendering to occur, a Pentium 4 processor and 

hardware 3D graphics processor is recommended.  Due 

to haptic rendering and synchronization constraints, 

players must currently use the same machine in order to 

compete against each other. 

 

3.1  Haptic Wands 

In our game, the player interacts with the game world 

using a series of wands.  When the player uses a wand, a 

spell is cast which displays a haptic effect and offers a 

different way of interacting with the game environment.  

Figure 2 shows a selection of wands whose haptic 

effects are discussed in the next section. 

 

 
  

 

Figure 2: The haptic wands (from left to right): lift/swing, 

blast, bolt, lob 

The haptic rendering of each wand is synchronized with 

the time-step updates of the physics engine.  That is, 

force values at the haptic device are calculated and 

displayed each time the physics engine is updated.  

Since the physics engine simulation controls the position 

and orientation of all objects in the game, there should 

be no discontinuity between what the user sees and what 

the user feels while interacting with the game world. 

 

3.1.1  Lift and Swing wand 

The lift wand uses the most complex haptic rendering of 

all the wands. This wand, named because its intended 

function is to allow the player to pickup and lift objects 

in the environment, display the weight, momentum, and 

contact forces to the player. It allows any object in the 

environment to become a haptic probe, with smaller 

objects able to display finer details about the 

environment.  Players may also manipulate objects so as 

to block oncoming projectiles or crush their opponents.  

The teaser for this paper shows the lift wand in action, 

as a player controls a haptic device in order to suspend a 

table over a gap in the floor. 

A player selects an object by moving close to it, 

pointing at it with the wand, and holding the button on 

the haptic device.  The player can immediately feel the 

haptic feedback of forces affecting the object.   

The rendering algorithm used by this wand is similar to 

existing techniques [5] which use a penalty-based 

rendering technique.  A distance vector from the center 

of the selected object to the virtual position of the haptic 

interface point (HIP) is used to calculate a spring force 

which is then displayed at the haptic interface.  The 

equation used to generate the force displayed at the 

haptic device is calculated as: 

k)P(PQQF objHIPplayerhaptichaptic ⋅−××=  

where Fhaptic is the force to display at the haptic device, 

Qplayer is the transformation of a point in the global 

frame to player frame, Qhaptic is the transformation of a 

point in the player frame to haptic device frame, Pobj is 

the current position of the selected object, and k is a 

scalar which controls stiffness. PHIP, which is the haptic 

interface’s position in the virtual game world, is 

calculated as: 

)]P(PQ[PQPP haptichaptic
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where Pplayer is the current position of the player, P
0

obj is 

the starting position of the object (when the object is 

picked up), Phaptic is the current position of the haptic 

device, and P
0

haptic is the starting position of the haptic 

device.  Using this rendering equation, haptic forces are 

always rendered from the player’s viewpoint, which we 

find is more intuitive for the player. 



As indicated by the rendering equation, the first step of 

the algorithm is to calculate the position of the HIP 

relative to the position of the selected object.  Initially, 

these two positions are the same, but as the player 

manipulates the haptic device the object tries to “keep 

up”.  A force is rendered at the haptic device which is 

directly proportional to the vector (times the stiffness 

scalar) between the selected object and the position of 

the HIP. A scaled version of this force is also applied to 

the object so that it moves towards the HIP’s position in 

the game world.  Imagine that the player is dragging the 

object through space using a virtual spring, with one end 

attached to the HIP and the other to the selected object.  

A free-body diagram explaining this interaction is 

shown in Figure 3.   

 

 
Figure 3: An illustration of the lift wand rendering algorithm. 

In the figure, the HIP’s position has penetrated a static 

obstacle. Since the selected object cannot move to the 

HIP’s position, a spring force is displayed at haptic 

device and the user can feel a collision response. 

A benefit of using a spring force (based on Hooke’s 

spring law) to move and direct the selected object is that 

the physics engine should keep objects from penetrating 

by performing collision detection and response. 

Instability only becomes an issue if the spring force 

becomes unusually large, or if the simulation time step 

is too large.  Special precautions need to be taken so that 

such cases never arise.  The algorithm doesn’t directly 

alter the position of the object since this would override 

any collision detection and response performed by the 

physics engine.   

Another benefit of using forces to move and direct the 

selected object is that the user feels “drag” when they 

move heavier objects, which is a direct result of 

Newton’s second law.  While this feature is not wholly 

physically accurate, it does provide interesting feedback 

to the user. 

If the physics engine is also capable of simulating 

frictional forces between objects in contact, these forces 

are indirectly displayed to the user.  “Sticking” occurs 

when the selected object is in contact with another 

object and the HIP is moved so as to slide the selected 

object along its surface.  Very high frictional coefficient 

values result in the object rolling across the surface, 

whereas low values result in no observable sticking or 

frictional force. 

The player also has the option of enabling display of 

other forces at the haptic device.  Scaled versions of 

gravity and impulse forces due to collision that affect 

the selected object may also be included in the rendering 

equation. This allows the user to feel the weight of the 

object as well as the impact of the object hitting an 

obstacle.  These forces are calculated for us by the 

physics engine.  

The swing wand is similar to the lift wand, but some of 

the forces generated during haptic rendering also affect 

the player’s in-game character. The intended function of 

this wand is to allow the player to latch onto static 

objects in the environment and swing, or be suspended 

in midair, by using the spring forces to direct their 

movement. 

 

3.1.2  Bolt and Blast wand 

These wands do not make use of sophisticated haptic 

rendering, but display novel haptic effects to the user.  A 

recoil effect is felt by the user as projectiles are fired out 

the end of the wand.   With the blast wand, the user can 

feel the haptic force ramp up over time. The magnitude 

of the force is proportional to the energy and speed with 

which a fiery projectile is fired from the wand.  The bolt 

wand displays small, transient forces to the user as 

energy bolts are rapidly fired from the wand.  Users may 

take advantage of the 6 DOF input of the haptic device 

in aiming their wand. 

 

3.1.3  Lob wand 

This wand resembles a slingshot, which gives the user 

an indication as to its functionality.  The lob wand 

allows the user to throw a grenade-like projectile at an 

enemy. The force displayed at the haptic device is 

directly proportional to the force with which the 

projectile will be flung from the wand.  The user 

estimates the distance to their target and pulls the 

slingshot to the appropriate tightness.  

 

 



 

3.2   Gesture Recognition 

Gesture recognition allows a computer to recognize 

human gestures using a mathematical algorithm.  This is 

a non-haptic feature which we are currently 

implementing for HaptiCast.  We feel gesture 

recognition is a necessary progression which will allow 

game developers to take full advantage of the high 

degree-of-freedom input capabilities of modern haptic 

devices. 

The orientation and workspace of the Phantom series of 

haptic devices allow the user to make natural, human 

gestures using a stylus.  The idea of waving a haptic 

stylus through the air in order to cast spells is appealing 

in that it makes the player feel as if they really are a 

wizard.  This is a feature-in-progress, but current results 

look promising.  Simple 2D shape recognition is done 

using a neural network-based recognition engine, using 

an approach similar to others ([10], [11]), whom also 

provide good introductions to neural networks. 

The workspace of the haptic device is separated into 

discrete regions which represent states.  As players 

manipulate their wands, the neural recognition engine is 

fed a sliding window of the most current state 

transitions.  The engine is trained to recognize which 

sequences of state transitions are meaningful within the 

context of the game, and which are not.  Figure 4 shows 

the high-level design of the recognition engine, which 

uses a time-delay neural network (TDNN) to perform 

shape recognition.  Some of the gestures we have 

trained the network to recognize using a haptic device as 

input include clockwise, counter-clockwise circles and 

diagonal strokes.   

For test trials, the TDNN uses 16 input nodes, a hidden 

layer with 24 nodes, and 4 output nodes.  A total of 25 

states were used for the haptic workspace—a 5 by 5 grid 

in the x-y plane.  The z-axis position value of the device 

was disregarded. A sliding window of the 8 most recent 

state transitions was also used.  During experiments, the 

average calculation time for a single recognition was 

less than 10 ms.  A large part of completing this feature 

will be to generate a training set which will enable the 

TDNN to accurately identify a pre-defined set of 

gestures. 

 

3.3 Speech Recognition 

An early prototype of the game included a speech 

recognition feature, and by using a microphone players 

were able to trigger wand functionality by saying a spell 

command phrase. For example, the player could say the 

phrase “fire blast” and a fire ball would shoot from the 

end of his wand. The speech recognition feature 

increased the level of interactivity with the game, 

certainly made the player feel more like a wizard casting 

spells, but was prone to several problems.   Because of 

these problems, this feature was removed. 

 

Figure 4: The gesture recognition engine 
 

False positive recognition was one problem which 

contributed to the eventual removal of the speech 

recognition feature.  This resulted in the incorrect spell 

being cast by the wand (initially command words were 

used to select the spell for a single wand), or a spell 

being cast when the user had spoken no command.   

Delays caused during the speech recognition process 

resulted in awkward user interaction with the game 

environment.  Speech recognition times would vary, but 

usually resulted in 1 or 2 second delay before a wand’s 

functionality was activated.  This was deemed 

unacceptable.  Some speech recognition engines do 

allow a trade-off of speed vs. accuracy. However this 

created more false positive/false negative recognitions. 

Perhaps the biggest reason for removal of the speech 

recognition feature is that during test trials (see Section 

4), many users felt uncomfortable speaking aloud the 

command words which cast spells. 

 

4 Game Description and Results 

After using HaptiCast, there is no doubt that the 

integration of haptics into the game increases its realism, 

the level of immersion felt by the user, as well as the 

entertainment value of the game. 



Each player is given a set of wands, as described in 

Section 3, which they may use to interact with the game 

environment and to battle their opponent.  Players start 

with a certain amount of health which may decrease if 

the player is hit by a wand projectile (e.g., from the bolt 

and blast wand), is hit by an object, or falls from a high 

enough height.  A player may increase their health by 

running into power-ups scattered throughout the level.  

When a player’s health reaches zero, they die and are 

resurrected at a starting point. 

Each wand, too, is given a certain amount of energy 

which is used to supply power to the wand.  When a 

wand’s energy reaches zero, the player may no longer 

use that wand until its energy is replenished.  A wand’s 

energy may be replenished by running into the 

appropriate power-up. 

An early version of the game was showcased during a 

course project presentation and at the University of 

Ottawa Engineering open house.  At each event 

students, alumni, faculty and their families provided us 

with feedback about the game.  Some of them were 

eager to play our game and we got very useful feedback 

from their experiences. 

Adult players showed a tendency to be reluctant to say 

out loud the words to cast a spell, which lowered the 

player’s motivation to fully immerse themselves into the 

role of a wizard, as well as defeating the purpose of 

integrating speech recognition into the game.  The 

quality of speech recognition also varied, depending on 

the user’s pitch, speed, and accent while speaking.  This 

influenced us to change our game design and re-evaluate 

the speech recognition feature (also discussed in Section 

3).   

Children seemed to be more haphazard in exploring the 

game and made creative use of the magic spells. 

However, they had a larger learning curve and needed 

instruction while handling the haptic device. Adults 

supervised the session and children were instructed to 

firmly grasp the wand while lifting heavy objects.  Both 

children and adults expressed awkwardness when 

initially using the haptic device, but most became more 

agile in their use of the Phantom stylus once they had 

some practice.   

The recommended haptic update rate of 1000 Hz [5] 

was not achieved in trials of HaptiCast.  However, frame 

rates of more than 60 fps (frames per second) were 

common. Though high update rates were not possible 

for the haptic rendering, there were no observable 

discontinuities or instability.  

 

 

5 Future Work 

A next step for the HaptiCast playground is to integrate 

haptic texture rendering into the game world.  Bump 

maps have been shown as a suitable method to render 

tactile surface features of objects in a haptic virtual 

environment world [20].  The benefit of using a bump 

map or height field is that many 3D graphic drivers also 

support rendering of these textures.   

Other approaches for haptic texturing use stochastic 

statistically-based models [17], spectral analysis [18], 

and virtual springs to render the roughness of a surface 

[19].  The suitability of each method for use in 3D video 

game needs investigation. 

Another intended feature is the integration of network 

play into the game.  This would allow multiple players 

to play HaptiCast using a LAN or Internet configuration.  

However, due to the highly interactive nature of the 

game, special consideration needs to be taken in order 

for stable, high-quality haptic rendering to occur.  As 

previous work indicates [16], network latency is a 

source of instability and discontinuity in haptic 

rendering across a network.  The physical simulation of 

the game world, too, must be synchronized across all 

network nodes. 

 

6 Conclusion 

From the test trials and user feedback we’ve received, 

HaptiCast promises to be a suitable test bed for 

experimenting with haptic interaction and effects in 3D 

games.  The wands described in Section 3 contribute 

significantly to the immersion and entertainment value 

of the game, yet other methods of interaction using 

haptic interfaces are to be explored.  Our contribution 

will be to develop these interaction techniques and to 

report on them to the game development and haptic 

communities. For this purpose, an open source project 

has been created for HaptiCast and may be found online 

[23]. 
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