
A. Petrenko and A. Ulrich (Eds.): FATES 2003, LNCS 2931, pp. 178–191, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

Automatic Generation of Test Purposes 
for Testing Distributed Systems 

Olaf Henniger1, Miao Lu2, and Hasan Ural2 

1 Fraunhofer Institute Secure Telecooperation, 
Rheinstr. 75, 64295 Darmstadt, Germany 
henniger@sit.fraunhofer.de 

2 School of Information Technology and Engineering, University of Ottawa, 
Ottawa, Ontario, K1N 6N5, Canada 

{mlu,ural}@site.uottawa.ca 

Abstract. In this paper, we present an algorithm for generating test purpose de-
scriptions in form of MSC’s from a given labeled event structure that represents 
the behavior of a system of asynchronously communicating extended finite 
state machines. The labeled event structure is a non-interleaving behavior 
model describing the behavior of a system in terms of the partial ordering of 
events. 

1   Introduction 

For testing whether the behavior of an implementation conforms to its designated 
behavior, test cases are to be generated from the specification describing the desig-
nated behavior. The behavior of a distributed system can be specified e.g. using a sys-
tem of asynchronously communicating state machines. This model forms the basis 
e.g. of the standardized formal description technique SDL [1]. A system of communi-
cating state machines implicitly describes all, possibly non-deterministic, sequences 
of inputs and outputs that constitute the designated behavior. Since the number and 
length of these sequences are infinite in general, it is impossible to test each and 
every possible behavior and we face the problem to select a set of meaningful test 
cases, i.e. a test suite, that allows to discover as many implementation errors as pos-
sible at an acceptable cost. This forms the main problem in generating conformance 
test suites.  

Each test case in a test suite specifies the actions required to achieve a specific test 
purpose. The test purpose in each case is to check a particular requirement implied by 
the given specification [2]. A test purpose can be expressed e.g. by prose text or by a 
message sequence chart (MSC) describing the behavior to be checked. MSC’s are a 
standardized description technique for the graphical representation of the temporal 
ordering of interactions between components of a distributed system [3].  

The existing methods for test generation from formal specifications can be roughly 
classified into methods with explicit test purposes and methods with implicit test pur-
poses. Methods with explicit test purposes require information about the test purposes 
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as input in addition to the specification. These methods offer much flexibility to the 
test designer and ensure that only executable test cases are generated. However, they 
require considerable manual efforts to define appropriate test purposes and do not 
guarantee systematic test coverage. Methods with implicit test purposes provide test 
cases for test purposes that they tacitly assume. These methods generally guarantee a 
complete test coverage w.r.t. the implicit test purposes. However, most of them are 
applicable only to restricted classes of specifications, e.g. to specifications containing 
a single state machine, and they may result in very large test suites.  

Since practically relevant system specifications may be voluminous and compli-
cated, a manual generation and maintenance of test purposes and test cases is too 
time-consuming and error-prone. It is therefore highly desirable to have test genera-
tion methods with implicit test purposes or at least methods for the automatic genera-
tion of test purposes. Only few test generation tools, like Autolink [4] in the Telelogic 
Tau toolset and TestComposer [5] in the Telelogic ObjectGeode toolset are applicable 
to complex multi-process SDL specifications of a realistic size. These two tools are 
based on interleaving models for the behavior of the specified system. This entails 
that the same behavior may be represented by different paths of the reachability 
graph, which differ only in the order of execution of concurrent actions.  

Our approach uses a non-interleaving model (labeled event structure) to alleviate 
the state-space explosion problem. In [6], an algorithm for transforming a system of 
asynchronously communicating state machines into a labeled event structure is given 
and a method with implicit test purposes for generating test cases in Concurrent 
TTCN from a labeled event structure is proposed. To combine the advantages of 
methods with implicit test purposes with those of methods with explicit test purposes, 
this paper aims at the automatic generation of test purposes from labeled event struc-
tures. From a labeled event structure, test purpose descriptions are generated in form 
of MSC’s by interpreting the parallel paths of the labeled event structure as MSC’s. 
These MSC’s can serve as input for test generation tools with explicit test purposes, 
preferably if those support test generation for distributed testers, as proposed in [7, 8].  

The rest of this paper is organized as follows. Section 2 introduces the prerequi-
sites necessary for the proposed approach. Section 3 deals with the generation of test 
purposes from a labeled event structure. Throughout the paper, a simple sliding-
window protocol serves as an example. Section 4 gives a summary and outlook.  

2   Preliminaries 

2.1   Communicating State Machines 

A system of asynchronously communicating state machines is an obvious semantic 
model for specifications in SDL. Therefore, they form the starting point for our ap-
proach.  

A system of asynchronously communicating state machines is composed of a set of 
state machines and a set of perfect (i.e. without loss or reordering of messages) FIFO 
queues that connect the state machines with each other and with their environment.  
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We consider each state machine as an extended finite state machine (EFSM) with-
out enabling conditions for transitions. In general, an EFSM is a finite state machine 
extended by additional variables that may be used in enabling conditions for transi-
tions, in calculations to be carried out during the execution of transitions, or for repre-
senting message parameters. An EFSM with enabling conditions can be transformed 
into an equivalent one without enabling conditions if the variables influencing the 
executability of transitions take on only a finite number of discrete values. An algo-
rithm for this transformation is given in [9, 6]. This condition is not unduly restricting 
the class of specifications for which the algorithm for generating test purposes is 
applicable since it is a common practice for a test designer to determine the context 
by assigning values to control variables and to parameters of input messages. 

We do not require that the EFSM’s form a closed system, but allow open inter-
faces to the environment. To limit the complexity imposed by the environment, the 
following assumption is made. The environment is assumed to put a message into a 
queue if and only if the associated EFSM is ready to consume it. Hence, a transition 
with a trigger input (excited by a message from the environment) is assumed always 
to be enabled as soon as the EFSM reaches the start state of that transition. This as-
sumption is common practice in test generation for conformance testing, which is, in 
contrast to robustness testing, confined to the behavior foreseen in the specification.  

Let QMm ,= be a system of asynchronously communicating EFSM’s composed 

of a set of EFSM’s { }nmmM ,,1 �=  and a set of message queues { }rqqQ ,,1 �= . 

A global state of m is an ( )rn + -tuple ( )
rn qqmm ccssg ,,,,,

11
��=  consisting of the 

states 
nmm ss ,,

1
�  of the EFSM’s nmm ,,1 �  and the contents 

rqq cc ,,
1
�  of the queues 

rqq ,,1 � .  

Fig. 1 shows a system of asynchronously communicating EFSM’s modeling a sim-
ple sliding-window protocol. The EFSM’s t, r, and m model the transmitter and re-
ceiver protocol entities and the transmission medium, respectively. To facilitate de-
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Fig. 1. Example of a system of asynchronously communicating EFSM’s 
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nominating the location of actions, we denote input and output actions in the form 
loc (“?” | “!”) rem “.” msg [“(” par {“,” par} “)”] where loc denotes the EFSM where 
the action is located, “?” indicates an input action (receiving msg), “!” indicates an 
output action (sending msg), rem is the name of the remote EFSM sending msg (in 
case of an input action) or receiving msg (in case of an output action), msg is a mes-
sage, and par is a message parameter. “*” stands for the environment.  

The example protocol provides the service to transmit data from a user on the 
transmitter side to a user on the receiver side while protecting the receiver against 
overload by attending to acknowledgements. If the number of messages for which the 
acknowledgement is outstanding (the window size) reaches its maximum (2 for sim-
plicity), the protocol entity on the transmitter side indicates to the user that no more 
messages can be transmitted for the time being. When the protocol entity on the 
transmitter side receives an acknowledgement, then the number of messages for 
which the acknowledgement is outstanding is decremented and new messages can be 
transmitted again. The transmission medium is reliable and does not lose, corrupt, 
add, or reorder messages.  

2.2   Labeled Event Structures 

Definitions. For generating test purposes, we would like to have a model that explic-
itly describes the behavior of a distributed system in terms of the order of events. A 
labeled event structure fulfils this requirement. A system of asynchronously commu-
nicating EFSM’s can be “unfolded” into a labeled event structure. In a labeled event 
structure concurrent events are not linearized as in a reachability tree, but lined up 
side by side without order relation. Event structures were introduced in [10] as being 
like acyclic Petri nets without backward branching and with the places removed.  

A basic element of labeled event structures are actions. The same action can occur 
various times in a system run, each time forming a new, distinguishable event. The 
actions in the labeled event structures correspond to actions in the underlying systems 
of asynchronously communicating EFSM’s: they model the inputs and outputs, calcu-
lations in the context variables, and the setting, resetting and expiration of timers.  

A labeled event structure over a set of actions A  is a quadruple lE ,#,,�  where 

• E  is a finite set of events;  
• EE ×⊆�  is a partial order relation in E , called causality relation, such that for 

all Ee ∈  the set { }eeEe �′∈′  is finite (i.e., the number of causal predecessors of 
any event is finite); 

• EE ×⊆#  is an irreflexive and symmetric relation in E , called conflict relation, 
such that ( )( )eeeeeeEeee ′′⇒′′′∧′∈′′′∀ ##,, �  (i.e., conflicts are inherited: if an 
event e  is in conflict to some event e′ , then it is also in conflict to all causal suc-
cessors of e′ ); 

• AEl →:  is a labeling function assigning an action to each event. 
ee ′�  means that if the events e  and e ′  both happen, then e  must happen before 

e′ . ee ′#  means that the events e  and e′  cannot happen both in a single run of the 



182      Olaf Henniger, Miao Lu, and Hasan Ural 

system. If two events are neither causally related nor in conflict, then they are concur-
rent to each other and both can occur in any order: either e  before e′ , e  and e′  at 
the same time or e′  before e . All events occurring in the same EFSM are either 
causally related or in conflict, but not concurrent to each other.  

A labeled event structure is interpreted informally as follows: An event can occur 
if all its causal predecessors have occurred and no conflicting event has occurred yet.  

Let lEmles ,#,,�=  be a labeled event structure and EC ⊆  be a subset of 
events of lesm . C  is causally closed if ( )CeeeEeCe ∈′⇒′∈′∀∈∀ � . C  is conflict-
free if ( )( )eeCee ′¬∈′∀ #, . C  is a configuration of lesm  if it is causally closed and 
conflict-free. That means, a configuration is a set of events that have occurred by 
some stage in executing a labeled event structure. The necessary configuration [ ]e  of 
an event Ee ∈  of a labeled event structure lesm  is the subset of events that includes 
e and all causal predecessors of e, but not any other events, i.e. [ ] { }eeEee �′∈′= . All 
events that have to occur prior to an event e belong to the necessary configuration of 
e. Events that are concurrent to e do not belong to the necessary configuration of e.  

Each configuration of a labeled event structure constructed from a system of asyn-
chronously communicating EFSM’s corresponds to a global state of the system. The 
final state ( )Cgs  of a configuration of a labeled event structure constructed from a 
system of asynchronously communicating EFSM’s m is the global state of m reached 
after all events Ce∈ , but no other events have occurred. 

The construction of a labeled event structure from a system of asynchronously 
communicating EFSM’s can be cut off at different points, leading to different event 
structures. The labeled event structure obtained by unfolding a system of asynchro-
nously communicating EFSM’s as much as possible is referred to as the labeled event 
structure of the system. Only a complete prefix of the labeled event structure of a 
system of asynchronously communicating EFSM’s is constructed in our approach. A 
prefix of the labeled event structure lE ,#,,�  is a labeled event structure 

lE ′′′′ ,#,,�  induced by a causally closed subset of events EE ⊆′ . A prefix of the 
labeled event structure of a system of asynchronously communicating EFSM’s is 
complete if it contains a configuration C  for each reachable global state g  of the 
system such that  
• ( )Cgsg = , i.e., g  is represented by C , and 

• for each transition gg ′ → ωµ /  enabled in g  with pννω �1= , the prefix con-
tains a configuration }{ ,,, 1 peeeCC �∪=′  with Ceee p ∉,,, 1 �  and ( ) µ=el , 
( ) 11 ν=el , � , ( ) ppel ν= .  

A maximal configuration is a configuration to which no more events of the com-
plete prefix of the labeled event structure can be added. An event e is a maximal event 
of a configuration C if there does not exist any Ce ∈′  with ee ′� .  

Graphical Representation. A labeled event structure is represented as a graph where 
vertices represent events, directed edges lead to the immediate causal successors of an 
event, and undirected dashed edges connect events in immediate conflict. Next to an 
event e its label l(e) is indicated. The graph of a labeled event structure is cycle-free. 
The set of events occurring in the same EFSM induces a subgraph that is a directed 
tree. We draw the subgraphs for the parallel EFSM’s with their edges in parallel.  
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Fig. 2 shows a complete prefix of the labeled event structure of the system of 
asynchronously communicating EFSM’s in Fig. 1. The complete prefix is annotated 
with the global states at cut-off points and at recursion points. The prefix may be 
expanded by appending the sub-structures starting with the corresponding global 
states to the cut-off points.  

Construction of a Labeled Event Structure. The algorithm for unfolding systems 
of asynchronously communicating state machines into labeled event structures re-
sembles the reduced reachability analysis from [11, 12], yet the results are taken 
down in the form of event structures. These reduced reachability algorithms aim at 
alleviating the state explosion problem and yield reduced reachability trees whose 
nodes represent only certain reachable global states and whose directed edges repre-
sent sets of transitions concurrently executable in a certain global state. Intermediate 
global states reached while executing a set of concurrent transitions are not explicitly 
represented.  

For finding cut-off points suitable for a complete prefix of the labeled event struc-
ture, [6] takes up an approach for coping with the state explosion problem in analyz-
ing Petri nets with finite state space [13, 14]. The main idea can be outlined as fol-
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Fig. 2. A complete prefix of the labeled event structure for the example from Fig. 1 



184      Olaf Henniger, Miao Lu, and Hasan Ural 

lows: An event is a cut-off event if its necessary configuration has the same final state 
as the necessary configuration of another event already contained in the unfolding. 
The unfolding can be cut off after these events since all events appended after the cut-
off events would lead to states already covered by the prefix. [13] presents an algo-
rithm for constructing a finite prefix of the unfolding of a Petri net. The prefix is 
complete with respect to the reachable markings of the Petri net. As the complete 
prefix of the unfolding constructed after [13] is sometimes larger than necessary, [14] 
improves the algorithm such that a complete prefix is constructed that is minimal in a 
certain sense. The algorithm in [14] is applicable to n-safe Petri nets with 1≥n . 

How a testing equivalent labeled event structure or its complete prefix can be con-
structed from a given system of asynchronously communicating state machines is 
treated in detail in [6]. The approach is applicable if all state machines of the system 
have a finite number of states and all queues of the system are bounded. This is not an 
undue restriction as in many cases an unbounded growth of the state space can be 
avoided by appropriate design criteria.  

3   Test Generation Approach 

3.1   Starting Point 

Starting point for the generation of test purposes is a complete prefix lesm  of the 
labeled event structure constructed from a system of asynchronously communicating 
EFSM’s m. It forms a semantic model of a given specification of the implementation 
under test (IUT) embedded in a test context and hence models the behavior perceiv-
able at the system boundaries during black box testing. The events that involve an 
interaction with the environment represent events occurring at points of control and 
observation (PCO’s), i.e. at points where a test system may interact with IUT and test 
context.  

As illustrated in Fig. 2, cut-off points and recursion points of lesm  are labeled with 
the corresponding global states of the system m in order to characterize the possible 
continuations of the behavior.  

3.2   Implicit Test Purposes and Test Coverage 

As each maximal configuration of a complete prefix of the labeled event structure 
represents a significant behavior, it is desirable that a test suite tries to execute each 
maximal configuration of the complete prefix at least once. We also regard it as suffi-
cient to execute each maximal configuration of the complete prefix once. This limits 
the size of the test suite. At the cut-off points of the complete prefix, behavior that has 
been encountered before is repeated anyway. By generating a larger test suite cover-
ing more than the complete prefix, one attains a higher test coverage and a higher 
degree of confidence that the IUT will operate free of error when actions are executed 
repeatedly. In principle, if the IUT is regarded as a black box, it remains uncertain 
whether or not it will operate free of error when the same actions are executed next 



Automatic Generation of Test Purposes for Testing Distributed Systems      185 

time. Based on knowledge about the inner structure of an implementation (e.g. about 
the reliability of the operating system, about the programming language used, etc.), 
however, often it is inferred that an implementation will work free of error any num-
ber of times if it does so at least once.  

For each maximal configuration of the complete prefix of the labeled event struc-
ture of a system of asynchronously communicating EFSM’s a test case is to be gener-
ated. Its test purpose is to check the behavior described by the corresponding maxi-
mal configuration.  

By covering each maximal configuration of the complete prefix, we achieve all-
nodes coverage (or all-events coverage) w.r.t. the complete prefix. We do not neces-
sarily achieve all-transition coverage w.r.t. the underlying system of asynchronously 
communicating EFSM’s due to the fact that the EFSM’s may contain transitions that 
are never triggered in normal interaction with the other EFSM’s of the system. 

3.3   Algorithm for Generating Test Purposes  

Overview. The goal is to construct a set of test purpose descriptions in form of 
MSC’s from the complete prefix lesm  of the labeled event structure of a system of 

asynchronously communicating EFSM’s. The generation of test purposes is carried 
out in the following steps, which are implemented as a prototype tool [15]:  

1. Identify all maximal configurations of the complete prefix;  
2. Restrict the maximal configurations to events occurring at the PCO’s; 
3. For each restricted maximal configuration, check whether it is included in another 

maximal configuration, and if so, eliminate it from the set of maximal configura-
tions;  

4. Format the maximal configurations as MSC’s.  

Identification of Maximal Configurations. In order to obtain the set of events be-
longing to a maximal configuration, we start from the cut-off points and follow the 
causality relation backwards to the roots. First, all the maximal events at a cut-off 
point are put into an initially empty event queue and into an initially empty event set. 
Loop while the event queue is not empty, get the first event from the queue and put 
all its predecessors that have not been put into the event set yet into the event queue 
and into the event set. When the loop terminates, all the events belonging to the 
maximal configuration have been put into the event set. After a maximal configura-
tion is obtained, it is added to the set of maximal configurations.  

The identification of all maximal configurations is described in pseudo-code be-
low. mconfi denotes a maximal configuration from the set of all maximal configura-
tions MCONF. cutoffi denotes the set of maximal events at a cut-off point. 

lesm .CUTOFF denotes the set of all cut-off points of lesm . pred_queue is the queue 
data structure for processing the predecessor events.  

MCONF := ∅; 
for all cutoffi∈  lesm .CUTOFF do 

 mconfi := ∅∅∅∅ ,,, ; 
 pred_queue := ∅; 
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 for all ej∈cutoffi do 
  mconfi.E := mconfi.E ∪ ej; 
  put(pred_queue, ej); 
 endfor; 
 while not empty(pred_queue) do 
  ev := get(pred_queue); 
  for all ej∈ev.predecessors do 
   if ej∉mconfi.E then 
    mconfi.E := mconfi.E ∪ ej; 
    put(pred_queue, ej); 
   endif; 
  endfor; 
 endwhile; 
 MCONF := MCONF ∪ mconfi; 

endfor; 

Restriction to Events at PCO’s. The restriction has to be done because only the 
events occurring at the system boundaries can be controlled or observed during black 
box testing.  

The process of restricting a maximal configuration to events occurring at the 
PCO’s consists of checking all events in the maximal configuration and omitting the 
events for which the remote communication partner is not the environment. In re-
stricting the maximal configurations, the transitivity of the causality relation has to be 
preserved.  

Below, the restriction to events occurring at PCO’s is described in pseudo-code.  
for all mconfi∈MCONF do 

 for all ej∈mconfi.E do 
  if (l(ej).rem � “*”) then 
   mconfi.E := mconfi.E \ {ej}; 
  endif; 
 endfor; 

endfor; 

Inclusion Checking. In order to get a minimal set of maximal configurations, each 
configuration is checked, after restricting it to the events occurring at the PCO’s, 
whether it is included in another configuration in the obtained set of restricted maxi-
mal configurations. If so, it is removed from the set.  

Below is pseudo-code for the inclusion checking.  
for all mconfi∈MCONF do 

 for all mconfj∈MCONF (i � j) do 
  if mconfi.E ⊆ mconfj.E then 
   MCONF := MCONF \ mconfi; 
  endif; 
 endfor; 

endfor; 
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Formatting Maximal Configurations as MSC’s. The test purpose descriptions can 
be laid out as process-level MSC’s or as system-level MSC’s.  

A maximal configuration of a complete prefix of the labeled event structure of a 
system of asynchronously communicating EFSM’s can be straightforwardly inter-
preted as a process-level MSC with one instance for every EFSM associated with a 
PCO and one instance for every PCO. This way, the concurrency of different EFSM’s 
remains unhidden. Fig. 3 shows a test purpose description for the example in Fig. 1 in 
form of a process-level MSC. The interfaces to the environment on transmitter and 
receiver side are referred to as PCOt and PCOr, respectively.  

On the other hand, test purpose descriptions for Autolink are stored as system-
level MSC’s containing only one instance for the whole system under test and one 
instance for every PCO [4]. This way, the concurrency of different components of the 
system is hidden. To make the output of our tool applicable as input to Autolink, our 
tool also generates system-level MSC’s. 

To generate system-level MSC’s, we have to linearize the maximal configurations. 
A linearization of a partially ordered event set is a total order on this event set that 
contains the partial order. A linearization can be derived from a configuration by add-
ing arbitrary ordering constraints to the partial order of the configuration.  

In order to get a linearization for a maximal configuration restricted to the PCO’s, 
first, all the events in the maximal configuration are put into an initially empty event 
queue. Loop while the event queue is not empty, get the first event from the queue, 
check whether all its predecessor events are already included in the linearization. If 
so, add the event to the linearization. The first event added to the linearization will be 
an initial event without any predecessor. If not yet all predecessor events are in the 
linearization, put the event again into the event queue.  

The linearization of maximal configurations is described in pseudo-code below. 
mconfi.seq denotes the linearization of a maximal configuration. e_queue is the queue 
data structure for processing the events.  

for all mconfi∈MCONF do 
 mconfi.seq := ∅; 
 e_queue := ∅; 
 for all ej∈mconfi.E do 
  put(e_queue, ej); 
 endfor; 
 while not empty(e_queue) do 
  ev := get(e_queue); 
  if (ev.predecessors ⊆  mconfi.seq) then 
   mconfi.seq := concatenate(mconfi.seq, ev); 
  else put(e_queue, ev); 
  endif; 
 endwhile; 

endfor; 

Fig. 4 shows a test purpose description for the example in Fig. 1 in form of a sys-
tem-level MSC.  
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3.4   Data Flow Aspects 

The complete prefix of the labeled event structure constructed from a set of asynchro-
nously communicating EFSM’s without enabling conditions for transitions may con-
tain variables that are used for representing message parameters, for buffering values, 
or for calculations to be carried out during the execution of transitions. It does not 
contain enabling conditions for the occurrence of events. Therefore, the occurrence of 
each configuration in the complete prefix is feasible.  

Some data flow oriented test selection criteria that have been introduced for speci-
fications represented by directed graphs can be transferred to labeled event structures. 
These criteria establish associations between definitions and uses of variables. Such 
associations are identified by tracking variables through the specification, following 
them as they are modified, until they are ultimately used in outputs or to compute val-
ues for other variables. The criteria require that each of these associations be exam-
ined at least once during testing. The intuition behind the selection of tests based on 
the coverage of data flow associations is that faults in a system may lead to incorrect 
values and, as a result of propagation through computations, an error may show up at 
the system’s output.  

The all-uses coverage criterion is satisfied w.r.t. the complete prefix of the labeled 
event structure if for each variable defined in the complete prefix each subsequent use 
of that variable (i.e., each def-use pair) is covered by at least one test. Even if there 
are no definitions without subsequent use within the underlying system of asynchro-
nously communicating EFSM’s, not necessarily all variables defined within the com-
plete prefix of the labeled event structure are used within the complete prefix. To 
achieve full all-uses coverage, our tool appends sub-structures of the complete prefix 
to the cut-off points whenever necessary and possible for covering definitions without 
use within the complete prefix.  

4   Summary and Outlook 

The approach introduced in this paper generates test purpose descriptions in form of 
MSC’s from a non-interleaving model, viz. from a complete prefix of the labeled 
event structure constructed from a system of asynchronously communicating 
EFSM’s. 

This model alleviates the state-explosion problem and preserves true concurrency. 
The size of the resulting test suite is restricted in a suitable way. The approach is 
applicable to a large class of specifications. The executability of the test cases is en-
sured.  

A prototype tool implementing the approach described in this paper is available 
[15]. Its input is generated by the prototype tool for constructing a complete prefix of 
the labeled event structure from a generalized model of asynchronously communi-
cating state machines [6]. Together with the corresponding system specification, the 
output of the test purpose tool is intended as input for test generation tools that take 
explicit descriptions of test purposes as input. 
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Fig. 3. A test purpose description as process-level MSC 
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Fig. 4. A test purpose description as system-level MSC 
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As an alternative to the textual and tabular presentation formats, the new version of 
TTCN (TTCN-3) [16] allows describing tests in a graphical presentation format 
based on a subset of MSC’s. The MSC’s generated by our tool describe only the 
desired behavior to be checked in a test case. Therefore, the generated MSC’s are 
used as test purpose descriptions. MSC’s for defining test cases have to describe the 
behavior of the test components interacting with IUT and test context via the PCO’s 
and to cover possible behavior alternatives, which would lead to inconclusive or fail 
verdicts. The verdicts have to be included in a test case as well. The direct generation 
of MSC test cases from a labeled event structure is an area of future work.  
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