
A. Petrenko and A. Ulrich (Eds.): FATES 2003, LNCS 2931, pp. 178–191, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Automatic Generation of Test Purposes
for Testing Distributed Systems

Olaf Henniger1, Miao Lu2, and Hasan Ural2

1 Fraunhofer Institute Secure Telecooperation,
Rheinstr. 75, 64295 Darmstadt, Germany
henniger@sit.fraunhofer.de

2 School of Information Technology and Engineering, University of Ottawa,
Ottawa, Ontario, K1N 6N5, Canada

{mlu,ural}@site.uottawa.ca

Abstract. In this paper, we present an algorithm for generating test purpose de-
scriptions in form of MSC’s from a given labeled event structure that represents
the behavior of a system of asynchronously communicating extended finite
state machines. The labeled event structure is a non-interleaving behavior
model describing the behavior of a system in terms of the partial ordering of
events.

1 Introduction

For testing whether the behavior of an implementation conforms to its designated
behavior, test cases are to be generated from the specification describing the desig-
nated behavior. The behavior of a distributed system can be specified e.g. using a sys-
tem of asynchronously communicating state machines. This model forms the basis
e.g. of the standardized formal description technique SDL [1]. A system of communi-
cating state machines implicitly describes all, possibly non-deterministic, sequences
of inputs and outputs that constitute the designated behavior. Since the number and
length of these sequences are infinite in general, it is impossible to test each and
every possible behavior and we face the problem to select a set of meaningful test
cases, i.e. a test suite, that allows to discover as many implementation errors as pos-
sible at an acceptable cost. This forms the main problem in generating conformance
test suites.

Each test case in a test suite specifies the actions required to achieve a specific test
purpose. The test purpose in each case is to check a particular requirement implied by
the given specification [2]. A test purpose can be expressed e.g. by prose text or by a
message sequence chart (MSC) describing the behavior to be checked. MSC’s are a
standardized description technique for the graphical representation of the temporal
ordering of interactions between components of a distributed system [3].

The existing methods for test generation from formal specifications can be roughly
classified into methods with explicit test purposes and methods with implicit test pur-
poses. Methods with explicit test purposes require information about the test purposes

Automatic Generation of Test Purposes for Testing Distributed Systems 179

as input in addition to the specification. These methods offer much flexibility to the
test designer and ensure that only executable test cases are generated. However, they
require considerable manual efforts to define appropriate test purposes and do not
guarantee systematic test coverage. Methods with implicit test purposes provide test
cases for test purposes that they tacitly assume. These methods generally guarantee a
complete test coverage w.r.t. the implicit test purposes. However, most of them are
applicable only to restricted classes of specifications, e.g. to specifications containing
a single state machine, and they may result in very large test suites.

Since practically relevant system specifications may be voluminous and compli-
cated, a manual generation and maintenance of test purposes and test cases is too
time-consuming and error-prone. It is therefore highly desirable to have test genera-
tion methods with implicit test purposes or at least methods for the automatic genera-
tion of test purposes. Only few test generation tools, like Autolink [4] in the Telelogic
Tau toolset and TestComposer [5] in the Telelogic ObjectGeode toolset are applicable
to complex multi-process SDL specifications of a realistic size. These two tools are
based on interleaving models for the behavior of the specified system. This entails
that the same behavior may be represented by different paths of the reachability
graph, which differ only in the order of execution of concurrent actions.

Our approach uses a non-interleaving model (labeled event structure) to alleviate
the state-space explosion problem. In [6], an algorithm for transforming a system of
asynchronously communicating state machines into a labeled event structure is given
and a method with implicit test purposes for generating test cases in Concurrent
TTCN from a labeled event structure is proposed. To combine the advantages of
methods with implicit test purposes with those of methods with explicit test purposes,
this paper aims at the automatic generation of test purposes from labeled event struc-
tures. From a labeled event structure, test purpose descriptions are generated in form
of MSC’s by interpreting the parallel paths of the labeled event structure as MSC’s.
These MSC’s can serve as input for test generation tools with explicit test purposes,
preferably if those support test generation for distributed testers, as proposed in [7, 8].

The rest of this paper is organized as follows. Section 2 introduces the prerequi-
sites necessary for the proposed approach. Section 3 deals with the generation of test
purposes from a labeled event structure. Throughout the paper, a simple sliding-
window protocol serves as an example. Section 4 gives a summary and outlook.

2 Preliminaries

2.1 Communicating State Machines

A system of asynchronously communicating state machines is an obvious semantic
model for specifications in SDL. Therefore, they form the starting point for our ap-
proach.

A system of asynchronously communicating state machines is composed of a set of
state machines and a set of perfect (i.e. without loss or reordering of messages) FIFO
queues that connect the state machines with each other and with their environment.

180 Olaf Henniger, Miao Lu, and Hasan Ural

We consider each state machine as an extended finite state machine (EFSM) with-
out enabling conditions for transitions. In general, an EFSM is a finite state machine
extended by additional variables that may be used in enabling conditions for transi-
tions, in calculations to be carried out during the execution of transitions, or for repre-
senting message parameters. An EFSM with enabling conditions can be transformed
into an equivalent one without enabling conditions if the variables influencing the
executability of transitions take on only a finite number of discrete values. An algo-
rithm for this transformation is given in [9, 6]. This condition is not unduly restricting
the class of specifications for which the algorithm for generating test purposes is
applicable since it is a common practice for a test designer to determine the context
by assigning values to control variables and to parameters of input messages.

We do not require that the EFSM’s form a closed system, but allow open inter-
faces to the environment. To limit the complexity imposed by the environment, the
following assumption is made. The environment is assumed to put a message into a
queue if and only if the associated EFSM is ready to consume it. Hence, a transition
with a trigger input (excited by a message from the environment) is assumed always
to be enabled as soon as the EFSM reaches the start state of that transition. This as-
sumption is common practice in test generation for conformance testing, which is, in
contrast to robustness testing, confined to the behavior foreseen in the specification.

Let QMm ,= be a system of asynchronously communicating EFSM’s composed

of a set of EFSM’s { }nmmM ,,1 �= and a set of message queues { }rqqQ ,,1 �= .

A global state of m is an ()rn + -tuple ()
rn qqmm ccssg ,,,,,

11
��= consisting of the

states
nmm ss ,,

1
� of the EFSM’s nmm ,,1 � and the contents

rqq cc ,,
1
� of the queues

rqq ,,1 � .

Fig. 1 shows a system of asynchronously communicating EFSM’s modeling a sim-
ple sliding-window protocol. The EFSM’s t, r, and m model the transmitter and re-
ceiver protocol entities and the transmission medium, respectively. To facilitate de-

m

r

t

t?m.mdatindAK(data)/-

t?m.mdatindAK(data)/
t!*.senableind

t?*.sdatreq(updu)/
t!m.mdatreqDT(updu)

t?*.sdatreq(updu)/
t!m.mdatreqDT(updu),

t!*.sdisableind

ready0

ready1

ready2

r?m.mdatindDT(data)/
r!*.sdatind(data),

r!m.mdatreqAK(-)
ready

m?t.mdatreqDT(data)/
m!r.mdatindDT(data)

m?r.mdatreqAK(data)/
m!t.mdatindAK(data)

ready

senableind,
sdisableindsdatreq

sdatind

mdatindAKmdatreqDT mdatindDTmdatreqAK

Fig. 1. Example of a system of asynchronously communicating EFSM’s

Automatic Generation of Test Purposes for Testing Distributed Systems 181

nominating the location of actions, we denote input and output actions in the form
loc (“?” | “!”) rem “.” msg [“(” par {“,” par} “)”] where loc denotes the EFSM where
the action is located, “?” indicates an input action (receiving msg), “!” indicates an
output action (sending msg), rem is the name of the remote EFSM sending msg (in
case of an input action) or receiving msg (in case of an output action), msg is a mes-
sage, and par is a message parameter. “*” stands for the environment.

The example protocol provides the service to transmit data from a user on the
transmitter side to a user on the receiver side while protecting the receiver against
overload by attending to acknowledgements. If the number of messages for which the
acknowledgement is outstanding (the window size) reaches its maximum (2 for sim-
plicity), the protocol entity on the transmitter side indicates to the user that no more
messages can be transmitted for the time being. When the protocol entity on the
transmitter side receives an acknowledgement, then the number of messages for
which the acknowledgement is outstanding is decremented and new messages can be
transmitted again. The transmission medium is reliable and does not lose, corrupt,
add, or reorder messages.

2.2 Labeled Event Structures

Definitions. For generating test purposes, we would like to have a model that explic-
itly describes the behavior of a distributed system in terms of the order of events. A
labeled event structure fulfils this requirement. A system of asynchronously commu-
nicating EFSM’s can be “unfolded” into a labeled event structure. In a labeled event
structure concurrent events are not linearized as in a reachability tree, but lined up
side by side without order relation. Event structures were introduced in [10] as being
like acyclic Petri nets without backward branching and with the places removed.

A basic element of labeled event structures are actions. The same action can occur
various times in a system run, each time forming a new, distinguishable event. The
actions in the labeled event structures correspond to actions in the underlying systems
of asynchronously communicating EFSM’s: they model the inputs and outputs, calcu-
lations in the context variables, and the setting, resetting and expiration of timers.

A labeled event structure over a set of actions A is a quadruple lE ,#,,� where

• E is a finite set of events;
• EE ×⊆� is a partial order relation in E , called causality relation, such that for

all Ee ∈ the set { }eeEe �′∈′ is finite (i.e., the number of causal predecessors of
any event is finite);

• EE ×⊆# is an irreflexive and symmetric relation in E , called conflict relation,
such that ()()eeeeeeEeee ′′⇒′′′∧′∈′′′∀ ##,, � (i.e., conflicts are inherited: if an
event e is in conflict to some event e′ , then it is also in conflict to all causal suc-
cessors of e′);

• AEl →: is a labeling function assigning an action to each event.
ee ′� means that if the events e and e ′ both happen, then e must happen before

e′ . ee ′# means that the events e and e′ cannot happen both in a single run of the

182 Olaf Henniger, Miao Lu, and Hasan Ural

system. If two events are neither causally related nor in conflict, then they are concur-
rent to each other and both can occur in any order: either e before e′ , e and e′ at
the same time or e′ before e . All events occurring in the same EFSM are either
causally related or in conflict, but not concurrent to each other.

A labeled event structure is interpreted informally as follows: An event can occur
if all its causal predecessors have occurred and no conflicting event has occurred yet.

Let lEmles ,#,,�= be a labeled event structure and EC ⊆ be a subset of
events of lesm . C is causally closed if ()CeeeEeCe ∈′⇒′∈′∀∈∀ � . C is conflict-
free if ()()eeCee ′¬∈′∀ #, . C is a configuration of lesm if it is causally closed and
conflict-free. That means, a configuration is a set of events that have occurred by
some stage in executing a labeled event structure. The necessary configuration []e of
an event Ee ∈ of a labeled event structure lesm is the subset of events that includes
e and all causal predecessors of e, but not any other events, i.e. [] { }eeEee �′∈′= . All
events that have to occur prior to an event e belong to the necessary configuration of
e. Events that are concurrent to e do not belong to the necessary configuration of e.

Each configuration of a labeled event structure constructed from a system of asyn-
chronously communicating EFSM’s corresponds to a global state of the system. The
final state ()Cgs of a configuration of a labeled event structure constructed from a
system of asynchronously communicating EFSM’s m is the global state of m reached
after all events Ce∈ , but no other events have occurred.

The construction of a labeled event structure from a system of asynchronously
communicating EFSM’s can be cut off at different points, leading to different event
structures. The labeled event structure obtained by unfolding a system of asynchro-
nously communicating EFSM’s as much as possible is referred to as the labeled event
structure of the system. Only a complete prefix of the labeled event structure of a
system of asynchronously communicating EFSM’s is constructed in our approach. A
prefix of the labeled event structure lE ,#,,� is a labeled event structure

lE ′′′′ ,#,,� induced by a causally closed subset of events EE ⊆′ . A prefix of the
labeled event structure of a system of asynchronously communicating EFSM’s is
complete if it contains a configuration C for each reachable global state g of the
system such that
• ()Cgsg = , i.e., g is represented by C , and

• for each transition gg ′ → ωµ / enabled in g with pννω �1= , the prefix con-
tains a configuration }{ ,,, 1 peeeCC �∪=′ with Ceee p ∉,,, 1 � and () µ=el ,
() 11 ν=el , � , () ppel ν= .

A maximal configuration is a configuration to which no more events of the com-
plete prefix of the labeled event structure can be added. An event e is a maximal event
of a configuration C if there does not exist any Ce ∈′ with ee ′� .

Graphical Representation. A labeled event structure is represented as a graph where
vertices represent events, directed edges lead to the immediate causal successors of an
event, and undirected dashed edges connect events in immediate conflict. Next to an
event e its label l(e) is indicated. The graph of a labeled event structure is cycle-free.
The set of events occurring in the same EFSM induces a subgraph that is a directed
tree. We draw the subgraphs for the parallel EFSM’s with their edges in parallel.

Automatic Generation of Test Purposes for Testing Distributed Systems 183

Fig. 2 shows a complete prefix of the labeled event structure of the system of
asynchronously communicating EFSM’s in Fig. 1. The complete prefix is annotated
with the global states at cut-off points and at recursion points. The prefix may be
expanded by appending the sub-structures starting with the corresponding global
states to the cut-off points.

Construction of a Labeled Event Structure. The algorithm for unfolding systems
of asynchronously communicating state machines into labeled event structures re-
sembles the reduced reachability analysis from [11, 12], yet the results are taken
down in the form of event structures. These reduced reachability algorithms aim at
alleviating the state explosion problem and yield reduced reachability trees whose
nodes represent only certain reachable global states and whose directed edges repre-
sent sets of transitions concurrently executable in a certain global state. Intermediate
global states reached while executing a set of concurrent transitions are not explicitly
represented.

For finding cut-off points suitable for a complete prefix of the labeled event struc-
ture, [6] takes up an approach for coping with the state explosion problem in analyz-
ing Petri nets with finite state space [13, 14]. The main idea can be outlined as fol-

m?r.mdatreqAK(data)

m!t.mdatindAK(data)

t?m.mdatindAK(data)

t?*.sdatreq(updu)

t!m.mdatreqDT(updu)

m?t.mdatreqDT(data)

m!r.mdatindDT(data)

r?m.mdatindDT(data)

r!*.sdatind(data)

r!m.mdatreqAK(-)

m?r.mdatreqAK(data)

m!t.mdatindAK(data)

t?m.mdatindAK(data)

t?*.sdatreq(updu)

t!m.mdatreqDT(updu)

m?t.mdatreqDT(data)

m!r.mdatindDT(data)

r?m.mdatindDT(data)

r!*.sdatind(data)

r!m.mdatreqAK(-)

t!*.sdisableind

t!*.senableind
m?r.mdatreqAK(data)

m!t.mdatindAK(data)

t?m.mdatindAK(data)

t!*.senableind

m?t.mdatreqDT(data)

m!r.mdatindDT(data)

r?m.mdatindDT(data)

r!*.sdatind(data)

r!m.mdatreqAK(-)

m?r.mdatreqAK(data)

m!t.mdatindAK(data)

t!m.mdatreqDT(updu)

t!*.sdisableind

t?*.sdatreq(updu)

m?t.mdatreqDT(data)

m!r.mdatindDT(data)

τ

τ

g0

g0

g5

g5

g8

g8

g9

g9

Fig. 2. A complete prefix of the labeled event structure for the example from Fig. 1

184 Olaf Henniger, Miao Lu, and Hasan Ural

lows: An event is a cut-off event if its necessary configuration has the same final state
as the necessary configuration of another event already contained in the unfolding.
The unfolding can be cut off after these events since all events appended after the cut-
off events would lead to states already covered by the prefix. [13] presents an algo-
rithm for constructing a finite prefix of the unfolding of a Petri net. The prefix is
complete with respect to the reachable markings of the Petri net. As the complete
prefix of the unfolding constructed after [13] is sometimes larger than necessary, [14]
improves the algorithm such that a complete prefix is constructed that is minimal in a
certain sense. The algorithm in [14] is applicable to n-safe Petri nets with 1≥n .

How a testing equivalent labeled event structure or its complete prefix can be con-
structed from a given system of asynchronously communicating state machines is
treated in detail in [6]. The approach is applicable if all state machines of the system
have a finite number of states and all queues of the system are bounded. This is not an
undue restriction as in many cases an unbounded growth of the state space can be
avoided by appropriate design criteria.

3 Test Generation Approach

3.1 Starting Point

Starting point for the generation of test purposes is a complete prefix lesm of the
labeled event structure constructed from a system of asynchronously communicating
EFSM’s m. It forms a semantic model of a given specification of the implementation
under test (IUT) embedded in a test context and hence models the behavior perceiv-
able at the system boundaries during black box testing. The events that involve an
interaction with the environment represent events occurring at points of control and
observation (PCO’s), i.e. at points where a test system may interact with IUT and test
context.

As illustrated in Fig. 2, cut-off points and recursion points of lesm are labeled with
the corresponding global states of the system m in order to characterize the possible
continuations of the behavior.

3.2 Implicit Test Purposes and Test Coverage

As each maximal configuration of a complete prefix of the labeled event structure
represents a significant behavior, it is desirable that a test suite tries to execute each
maximal configuration of the complete prefix at least once. We also regard it as suffi-
cient to execute each maximal configuration of the complete prefix once. This limits
the size of the test suite. At the cut-off points of the complete prefix, behavior that has
been encountered before is repeated anyway. By generating a larger test suite cover-
ing more than the complete prefix, one attains a higher test coverage and a higher
degree of confidence that the IUT will operate free of error when actions are executed
repeatedly. In principle, if the IUT is regarded as a black box, it remains uncertain
whether or not it will operate free of error when the same actions are executed next

Automatic Generation of Test Purposes for Testing Distributed Systems 185

time. Based on knowledge about the inner structure of an implementation (e.g. about
the reliability of the operating system, about the programming language used, etc.),
however, often it is inferred that an implementation will work free of error any num-
ber of times if it does so at least once.

For each maximal configuration of the complete prefix of the labeled event struc-
ture of a system of asynchronously communicating EFSM’s a test case is to be gener-
ated. Its test purpose is to check the behavior described by the corresponding maxi-
mal configuration.

By covering each maximal configuration of the complete prefix, we achieve all-
nodes coverage (or all-events coverage) w.r.t. the complete prefix. We do not neces-
sarily achieve all-transition coverage w.r.t. the underlying system of asynchronously
communicating EFSM’s due to the fact that the EFSM’s may contain transitions that
are never triggered in normal interaction with the other EFSM’s of the system.

3.3 Algorithm for Generating Test Purposes

Overview. The goal is to construct a set of test purpose descriptions in form of
MSC’s from the complete prefix lesm of the labeled event structure of a system of

asynchronously communicating EFSM’s. The generation of test purposes is carried
out in the following steps, which are implemented as a prototype tool [15]:

1. Identify all maximal configurations of the complete prefix;
2. Restrict the maximal configurations to events occurring at the PCO’s;
3. For each restricted maximal configuration, check whether it is included in another

maximal configuration, and if so, eliminate it from the set of maximal configura-
tions;

4. Format the maximal configurations as MSC’s.

Identification of Maximal Configurations. In order to obtain the set of events be-
longing to a maximal configuration, we start from the cut-off points and follow the
causality relation backwards to the roots. First, all the maximal events at a cut-off
point are put into an initially empty event queue and into an initially empty event set.
Loop while the event queue is not empty, get the first event from the queue and put
all its predecessors that have not been put into the event set yet into the event queue
and into the event set. When the loop terminates, all the events belonging to the
maximal configuration have been put into the event set. After a maximal configura-
tion is obtained, it is added to the set of maximal configurations.

The identification of all maximal configurations is described in pseudo-code be-
low. mconfi denotes a maximal configuration from the set of all maximal configura-
tions MCONF. cutoffi denotes the set of maximal events at a cut-off point.

lesm .CUTOFF denotes the set of all cut-off points of lesm . pred_queue is the queue
data structure for processing the predecessor events.

MCONF := ∅;
for all cutoffi∈ lesm .CUTOFF do

 mconfi := ∅∅∅∅ ,,, ;
 pred_queue := ∅;

186 Olaf Henniger, Miao Lu, and Hasan Ural

 for all ej∈cutoffi do
 mconfi.E := mconfi.E ∪ ej;
 put(pred_queue, ej);
 endfor;
 while not empty(pred_queue) do
 ev := get(pred_queue);
 for all ej∈ev.predecessors do
 if ej∉mconfi.E then
 mconfi.E := mconfi.E ∪ ej;
 put(pred_queue, ej);
 endif;
 endfor;
 endwhile;
 MCONF := MCONF ∪ mconfi;

endfor;

Restriction to Events at PCO’s. The restriction has to be done because only the
events occurring at the system boundaries can be controlled or observed during black
box testing.

The process of restricting a maximal configuration to events occurring at the
PCO’s consists of checking all events in the maximal configuration and omitting the
events for which the remote communication partner is not the environment. In re-
stricting the maximal configurations, the transitivity of the causality relation has to be
preserved.

Below, the restriction to events occurring at PCO’s is described in pseudo-code.
for all mconfi∈MCONF do

 for all ej∈mconfi.E do
 if (l(ej).rem � “*”) then
 mconfi.E := mconfi.E \ {ej};
 endif;
 endfor;

endfor;

Inclusion Checking. In order to get a minimal set of maximal configurations, each
configuration is checked, after restricting it to the events occurring at the PCO’s,
whether it is included in another configuration in the obtained set of restricted maxi-
mal configurations. If so, it is removed from the set.

Below is pseudo-code for the inclusion checking.
for all mconfi∈MCONF do

 for all mconfj∈MCONF (i � j) do
 if mconfi.E ⊆ mconfj.E then
 MCONF := MCONF \ mconfi;
 endif;
 endfor;

endfor;

Automatic Generation of Test Purposes for Testing Distributed Systems 187

Formatting Maximal Configurations as MSC’s. The test purpose descriptions can
be laid out as process-level MSC’s or as system-level MSC’s.

A maximal configuration of a complete prefix of the labeled event structure of a
system of asynchronously communicating EFSM’s can be straightforwardly inter-
preted as a process-level MSC with one instance for every EFSM associated with a
PCO and one instance for every PCO. This way, the concurrency of different EFSM’s
remains unhidden. Fig. 3 shows a test purpose description for the example in Fig. 1 in
form of a process-level MSC. The interfaces to the environment on transmitter and
receiver side are referred to as PCOt and PCOr, respectively.

On the other hand, test purpose descriptions for Autolink are stored as system-
level MSC’s containing only one instance for the whole system under test and one
instance for every PCO [4]. This way, the concurrency of different components of the
system is hidden. To make the output of our tool applicable as input to Autolink, our
tool also generates system-level MSC’s.

To generate system-level MSC’s, we have to linearize the maximal configurations.
A linearization of a partially ordered event set is a total order on this event set that
contains the partial order. A linearization can be derived from a configuration by add-
ing arbitrary ordering constraints to the partial order of the configuration.

In order to get a linearization for a maximal configuration restricted to the PCO’s,
first, all the events in the maximal configuration are put into an initially empty event
queue. Loop while the event queue is not empty, get the first event from the queue,
check whether all its predecessor events are already included in the linearization. If
so, add the event to the linearization. The first event added to the linearization will be
an initial event without any predecessor. If not yet all predecessor events are in the
linearization, put the event again into the event queue.

The linearization of maximal configurations is described in pseudo-code below.
mconfi.seq denotes the linearization of a maximal configuration. e_queue is the queue
data structure for processing the events.

for all mconfi∈MCONF do
 mconfi.seq := ∅;
 e_queue := ∅;
 for all ej∈mconfi.E do
 put(e_queue, ej);
 endfor;
 while not empty(e_queue) do
 ev := get(e_queue);
 if (ev.predecessors ⊆ mconfi.seq) then
 mconfi.seq := concatenate(mconfi.seq, ev);
 else put(e_queue, ev);
 endif;
 endwhile;

endfor;

Fig. 4 shows a test purpose description for the example in Fig. 1 in form of a sys-
tem-level MSC.

188 Olaf Henniger, Miao Lu, and Hasan Ural

3.4 Data Flow Aspects

The complete prefix of the labeled event structure constructed from a set of asynchro-
nously communicating EFSM’s without enabling conditions for transitions may con-
tain variables that are used for representing message parameters, for buffering values,
or for calculations to be carried out during the execution of transitions. It does not
contain enabling conditions for the occurrence of events. Therefore, the occurrence of
each configuration in the complete prefix is feasible.

Some data flow oriented test selection criteria that have been introduced for speci-
fications represented by directed graphs can be transferred to labeled event structures.
These criteria establish associations between definitions and uses of variables. Such
associations are identified by tracking variables through the specification, following
them as they are modified, until they are ultimately used in outputs or to compute val-
ues for other variables. The criteria require that each of these associations be exam-
ined at least once during testing. The intuition behind the selection of tests based on
the coverage of data flow associations is that faults in a system may lead to incorrect
values and, as a result of propagation through computations, an error may show up at
the system’s output.

The all-uses coverage criterion is satisfied w.r.t. the complete prefix of the labeled
event structure if for each variable defined in the complete prefix each subsequent use
of that variable (i.e., each def-use pair) is covered by at least one test. Even if there
are no definitions without subsequent use within the underlying system of asynchro-
nously communicating EFSM’s, not necessarily all variables defined within the com-
plete prefix of the labeled event structure are used within the complete prefix. To
achieve full all-uses coverage, our tool appends sub-structures of the complete prefix
to the cut-off points whenever necessary and possible for covering definitions without
use within the complete prefix.

4 Summary and Outlook

The approach introduced in this paper generates test purpose descriptions in form of
MSC’s from a non-interleaving model, viz. from a complete prefix of the labeled
event structure constructed from a system of asynchronously communicating
EFSM’s.

This model alleviates the state-explosion problem and preserves true concurrency.
The size of the resulting test suite is restricted in a suitable way. The approach is
applicable to a large class of specifications. The executability of the test cases is en-
sured.

A prototype tool implementing the approach described in this paper is available
[15]. Its input is generated by the prototype tool for constructing a complete prefix of
the labeled event structure from a generalized model of asynchronously communi-
cating state machines [6]. Together with the corresponding system specification, the
output of the test purpose tool is intended as input for test generation tools that take
explicit descriptions of test purposes as input.

Automatic Generation of Test Purposes for Testing Distributed Systems 189

PCOt t r

sdatreq(updu)

sdatind(data)sdatreq(updu)

sdisableind sdatind(data)

senableind

sdatreq(updu)

sdisableind

PCOr

Fig. 3. A test purpose description as process-level MSC

PCOt IUT PCOr

sdatreq(updu)

sdatind(data)

sdatreq(updu)

sdisableind

sdatind(data)

senableind

sdatreq(updu)

sdisableind

Fig. 4. A test purpose description as system-level MSC

190 Olaf Henniger, Miao Lu, and Hasan Ural

As an alternative to the textual and tabular presentation formats, the new version of
TTCN (TTCN-3) [16] allows describing tests in a graphical presentation format
based on a subset of MSC’s. The MSC’s generated by our tool describe only the
desired behavior to be checked in a test case. Therefore, the generated MSC’s are
used as test purpose descriptions. MSC’s for defining test cases have to describe the
behavior of the test components interacting with IUT and test context via the PCO’s
and to cover possible behavior alternatives, which would lead to inconclusive or fail
verdicts. The verdicts have to be included in a test case as well. The direct generation
of MSC test cases from a labeled event structure is an area of future work.

Acknowledgements

This work is supported in part by the Natural Sciences and Engineering Research
Council of Canada.

References

1. Specification and Description Language (SDL-2000), ITU-T Recommendation Z.100,
1999

2. Information technology – Open Systems Interconnection – Conformance testing method-
ology and framework – Part 1: General concepts, International Standard ISO/IEC 9646-1,
2nd edition, 1994

3. Message Sequence Chart (MSC), ITU-T Recommendation Z.120, 1999
4. B. Koch, J. Grabowski, D. Hogrefe, M. Schmitt, “Autolink – a tool for automatic test gen-

eration from SDL specifications”, in Proc. of the 2nd IEEE Workshop on Industrial
Strength Formal Specification Techniques, Boca Raton, Florida, USA, 1998

5. Kerbrat, T. Jéron, and R. Groz, “Automated test generation from SDL specifications”, in
[17], pp. 135–151

6. O. Henniger, “Test generation from specifications in Estelle and SDL”, Ph.D. thesis (in
German), Brandenburg Technical University of Cottbus, Germany, 2002, Shaker Verlag

7. J. Grabowski, B. Koch, M. Schmitt, D. Hogrefe, “SDL and MSC based test generation for
distributed test architectures”, in [17], pp. 389–404

8. C. Jard, “Synthesis of distributed testers from true-concurrency models of reactive sys-
tems”, Information and Software Technology 45, pp. 805–814, 2003

9. O. Henniger, A. Ulrich, H. König, “Transformation of Estelle modules aiming at test case
generation”, in A. Cavalli, and S. Budkowski (eds.), Proc. of IWPTS’95, Evry, France,
1995, pp. 36–51

10. M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event structures and domains, Part I”,
Theoretical Computer Science 13, 1981, pp. 85–108

11. M. Itoh and H. Ichikawa, “Protocol verification algorithm using reduced reachability
analysis”, Transactions of the IECE of Japan E 66 (2), pp. 88–93, 1983

12. N. Arakawa and T. Soneoka, “A test case generation method for concurrent programs”, in
J. Kroon, R.J. Heijink, E. Brinksma (eds.), Proc. of IWPTS’91, Leidschendam, The Neth-
erlands, 1991, pp. 95–106

Automatic Generation of Test Purposes for Testing Distributed Systems 191

13. K.L. McMillan, “A technique of state space search based on unfolding”, Formal Methods
in System Design 6 (1), 1995

14. J. Esparza, S. Römer, and W. Vogler, “An improvement of McMillan’s unfolding algo-
rithm”, Formal Methods in System Design 20 (3), pp. 285–310, 2002

15. M. Lu, “Generation of tests from labeled event structures”, M.Sc. thesis, University of Ot-
tawa, Canada, May 2003

16. Methods for Testing and Specification; The Testing and Test Control Notation Version 3;
Part 3: TTCN-3 Graphical Presentation Format (GFT), ETSI Standard ETSI ES 201 873-3,
February 2003

17. R. Dssouli, G.v. Bochmann, and Y. Lahav (eds.), Proc. of the 9th SDL Forum, Montréal,
Québec, Canada, 1999

	1 Introduction
	2 Preliminaries
	2.1 Communicating State Machines
	2.2 Labeled Event Structures

	3 Test Generation Approach
	3.1 Starting Point
	3.2 Implicit Test Purposes and Test Coverage
	3.3 Algorithm for Generating Test Purposes
	3.4 Data Flow Aspects

	4 Summary and Outlook
	References

