
Automated recovery of protocol designs from execution histories

Jessica Chen
School of Computer Science
University of Windsor

401 Sunset Avenue, Windsor, Canada

Hasan Ural
School of Information Technology and Engineering

University of Ottawa
150 Louis Pasteur, Ottawa, Canada

ABSTRACT

Reverse engineering in distributed systems is an essen-
tial activity to recover the designs of large and complex
distributed systems that evolve often without proper docu-
mentation. In this paper, we present our result in obtaining
deadlock-free designs of communication protocols from
the observations of the executions of existing systems.

Keyword: Reverse Engineering, Communicating Finite
State Machine, Deadlock, Communication Protocols.

1. INTRODUCTION

Software designs are helpful not only for implement-
ing software systems, but also for software maintenance,
e.g. to detect and eliminate errors in a system, to extend
the capability of a system, or to adapt a system to differ-
ent operating environments. Moreover, the developers of
a new software system whose functionality contains some
of the functionality of an existing system can benefit by
using the related part of the design of the existing system.
However, up-to-date or complete designs of many exist-
ing systems may not always be available. This is due to
many reasons, e.g. the system may have been poorly doc-
umented or the documentation may be either out-of-date
or incomplete; the original developers of the system may
not be available; or there may be no one who is intimately
familiar with the details of the design of the system.
One of the aims of the reverse engineering [4, 8] is to

construct the design of an existing system from its imple-
mentation. In this paper, we consider the reverse engi-
neering of designs of existing distributed systems, in par-
ticular, communication protocols from their implementa-
tions. A communication protocol will be modeled by a
fixed number of processes communicatingwith each other
by sending and receiving messages over error-free sim-
plex channels. Each process is a protocol entity which is
modeled as a communicating finite state machine [2, 3]
(CFSM for short), and each error-free simplex channel is
represented by an unbounded FIFO queue.
The implementation of an existing system from which

This work is partially supported by The Natural Sciences and Engi-
neering Research Council of Canada under grant numbers STR 0149338,
OGP 0000976, and OGP 0209774.

it is desired to obtain its design may be either source code
or executable code. In the case when the source code is
used as the input to the reverse engineering process, one
can obtain the design by analysing the source code. In this
paper, we present our work for the case when the obser-
vations of the executions of the executable code are used
for obtaining the design of a communication protocol: we
start from a given set of observations of the communica-
tions among a set of processes, and construct the design of
the communication protocol from this set of observations.

Earlier work on the automated construction of designs
is focused on the synthesis of designs based on some rep-
resentation of (partial) requirements [5, 7, 9, 13, among
others] or partial designs [15, among others]. These meth-
ods relate to the (forward) engineering of the systems
rather than their reverse engineering. Among synthesis
methods that relate to the reverse engineering are those
that consider a given set of observations of an existing im-
plementation [11, 12]. However, these methods start with
observations of individual components of the existing sys-
tem, rearrange events due to some timing considerations,
and then utilize a synthesis algorithm. In this paper, we
cast the problem of the automated construction of designs
in a formal setting, characterize a given set of observations
of the implementation of a system, and demonstrate the
relationship between the design constructed by our pro-
posedmethod to the presumed design implied by the given
set of observations.

The designs obtained from the requirements through a
manual process usually contain errors such as deadlocks.
Similarly, the designs obtained through an automated pro-
cess may also contain these types of errors [15]. There-
fore, either a manual intervention is needed to eliminate
the errors [15], or the automated identification of all er-
rors need to be carried out via some formal analysis [6,
10, 15] on the constructed design. In this paper, we show
that determinization of the constructed design not only re-
duces the number of states in the component CFSMs but
also can reduce some deadlocks. Yet it is not always possi-
ble to eliminate all the deadlocks only by determinization.
Hence, we propose a technique for the automated dead-
lock elimination. This technique is based on using some
additional observations that are implied by the given set
of observations and thus preserves the semantics of the
system viewed by an external observer.

The rest of the paper is organized as follows: Section
2 introduces the terminology and notation used through-
out the paper. In Section 3, we show the construction of
the design of a system from a given set of observations.
Section 4 addresses the issue of minimization of the con-
structed designs with possible determinization applied. In
Section 5, we present a technique to obtain deadlock-free
designs by utilizing the additional (implied) observations.
We give our concluding remarks in the last section.

2. PRELIMINARIES

Definition 2.1 A communicating finite state machine is a
quadruple where is a finite set of states
and is the initial state; is a finite set of mes-
sages; is a set of
transitions.

A transition of a process, also denoted as
, has the intuition that the process changes its state

from to by event . We use to denote the event
of sending message , and the event of receiving
message . Moveover, we will use to denote the set
of events of sending/receiving messages in , i.e.

, and we use to range over it.
In a protocol, we use binary relation to denote the

existence of a simplex channel from process to process
, and we use to denote all messages that can be put
onto it. For convenience, we assume that the messages in
different channels are all distinct.

Definition 2.2 A communication protocol is a triple
where

1. for ;

2. with if
;

3. ,
is a set of CF-

SMs.

The (global) state of a protocol is composed of a (local)
state of each process and a content of each channel. The
evolution of a protocol is described in terms of the transi-
tions from one (global) state to another. Such transitions
are built up on the basis of the transitions of each process,
taking into account their effects on the contents of related
channels. We use a (possibly empty) string of messages
to denote the content of a channel. We use to denote
the length of a string and () to denote the th
element of .
Initially, each process is in its initial state, and all chan-

nels are empty, denoted by empty string . Thus, the initial
(global) state is the state where all processes are in their
initial states, and all channels are empty.

Definition 2.3 The network N of protocol
is a

quadruple , where

1. ;

2. ;

3. ; (i.e., initial global
state)

4. is the set of transitions.

Definition 2.4 Let be a network of
protocol . A state is called reachable if or
for some , s.t.

and for .

We will use to denote the reachable global state space
of a protocol . Clearly, of of of . More-
over, let be a reachable state, we will use the following
notations:

if s.t. for
;

where if ;

/ where if .

A deadlock is a reachable global state where all chan-
nels are empty and no process can send a message. In
this paper, we consider deadlock states. We will use er-
ror state for a shorthand of deadlock state. We will call a
protocol or its design error-free if none of the states in its
reachable global state space is an error state.

3. CONSTRUCTING DESIGNS

By monitoring the behavior of the implementation of
a protocol during its execution, we can observe (or de-
duce) a (possibly infinite) sequence of events (i.e., trans-
mission or reception of messages), ordered according to
their time of occurrences. The global observations reflect
the functionality of a communication protocol in terms of
sequences of events that occur during the execution of the
protocol. We assume that the functionality of the imple-
mentation is periodic, i.e. global observations start from,
and end at the initial global state. We also assume that
the executions are monitored by someone who is famil-
iar with the functinality of the implementation, so that the
periodicity can be recognized.

Definition 3.1 A global observation is a sequence of
events of a protocol that starts from and ends at the ini-
tial global state without crossing over the initial state of
any of the component processes.

Given a global observation , we can derive ,
the projection of on process :

for

for
or

for

Here we use to denote the observation of the event
that process receives message from process , and

the observation of the event that process sends
message to process . reflects the sequence
of events within the global observation that are related to
process . It can be shown that for any global observation
and for any , starts from and ends at the initial
state of process without going over the initial state of
process .
Note that is analogous to a unilogue [14]

of process in the presumed design. Moreover, when
the number of the processes in the protocol is two,

is in fact, a duologue [14] in the
presumed design, and is simply an occurrence (i.e., suc-
cessful execution) of this duologue. Furthermore, when
the number of processes in the protocol is greater than
two, is a multilogue [1] in
the presumed design.
Consequently, given a nonempty set

of global observations, we have set
of unilogues over for process :

We shall construct the protocol design starting from a
given set of global observations. Without loss of general-
ity, we will asume that the given set of observations does
not contain empty strings. Suppose that an implemeta-
tion of a protocol , consisting of n processes, and a
set of global observations of this implementation are
given. Let denote the error-free presumed design
that is implied by the given set of global observations
and denote the set of all occurrences (i.e., suc-
cessful executions) of multilogues in . Then the prob-
lem that will be studied in this paper is to derive a con-
structed design such that is error-free and

. For a solution of this
problem, we use of unilogues over for pro-
cess , for , to construct the CFSM of process
.

Definition 3.2 Given a set
() of unilogues over for process , where
for . The observation generated CFSM over

is where

1. ;

r0

-x +z-y

r1

T1

t0

t1

+x +y -z

T2

Figure 1. A presumed design

r2r1

T1

r0
-x

+z+z

-y

T2

t0

t1 t2

+x

-z -z

+y

Figure 2. A constructed design from
global observations

2. is the initial state;

3.

4. is the least relation satisfying:

(a) for ;

(b) for
;

(c) for ;

(d) for .

Let be a set of channels among processes, a
set of legal messages exchanged over the channels in ,
and a given set of global observations. In the follow-
ing, we use to denote the constructed design

where for , is the obser-
vation generated CFSM over .

Example 3.1 Consider a protocol with two processes
and and two channels between them. Let the given set
of global observations obtained from the implementation
of the protocol be:

,

Figure 1 and Figure 2 show the presumed design
and the constructed design , respectively. Here,
and in are the CFSMs over and

respectively.

T1

r0

r2

-x

r1

r4

-y +z

+z
-y

T2

t0

t1

t4t2

+x

+y -z

-z +y

Figure 3. A presumed design

r1

r2

r0

-x

T1

-x

r3

r4

-y +z

+z -y

t1

t2

t3

t4

t0

+x +x

T2

+y -z

-z +y

Figure 4. A constructed design

Like the designs constructed by a manual process from
the requirements, the designs constructed through an auto-
mated process from a given set of observations may con-
tain design errors. Within this context, it is important to
note that may contain errors even if is
error-free. There are two sources that cause the errors in

: the nondeterminism of and the incom-
pleteness of the given set of global observations. The
example below shows a typical instance where the errors
in come from the nondeterminism of the CFSMs
in .

Example 3.2 Consider a protocol with two processes
and and two channels between them. Figure 3 shows
the presumed design of this protocol. From the existing
implementation of this protocol, suppose that we obtained

The constructed design shown in Figure 4 contains a dead-
lock: If sends to entering state , and re-
ceives this message and enters state then the global state
reached is a deadlock state. By eliminating
the non-determinism in the CFSMs of the constructed de-
sign, we obtain the protocol in Figure 3 which is deadlock
free.

In the following, we discuss the situation when the
error-freeness in the presumed design implies the error-

freeness in the constructed design. As we have mentioned,
there are two sources which cause the presence of errors
in the constructed design even if the presumed design is
error-free: nondeterminism and incompleteness of obser-
vations. The latter can cause the errors in the constructed
design only when there are collisions in the presumed de-
sign. Here, collision means that two processes may send
messages concurrently. Some applications, typically the
Client/Server models, are without collisions. Below, we
show that, if the presumed design is free from collision,
i.e. at each global state, there is only one process that is
able to send messages, then the constructed design is free
from errors as long as it is deterministic.
Let be a sequence of events. The negation of , de-

noted by , is defined as below:

It can be shown that if is error-free and free from
collisions, and the constructed design is deter-
ministic, then is free from errors. When
is not free from collisions, it is possible that the presumed
design is error-freewhile the deterministic constructed de-
sign contains errors. That is, let be a deterministic
constructed design. If is error-free while
contains an error state, then (1) there exists a unilogue
which belongs to a process of but not in the same
process of ; (2) there exists an execution sequence
which can be obtained from but which does not
belong to .

4. MINIMIZING DESIGNS

In this section, we introduce three algorithms to im-
prove this originally constructed design in terms of reduc-
ing the number of states of its CFSMs and in terms of
reducing (or if possible, eliminating) the deadlock states.
We will use constructed design for either or any
design derived from it by applying algorithms introduced
in this paper.
Algorithm A is the determinization of the CFSMs.

Note that in the CFSMs in , except for the ini-
tial state, each state has exactly one incoming edge. We
call this kind of CFSM tree-likeCFSM. This algorithm ap-
plies only to these tree-like structures. It is easy to see that
it takes time to apply AlgorithmA to a CFSM
in . Here is the number of states in , and is
the maximum number of outgoing edges from the states in
. In the following, we use to denote the protocol

derived from by applyingAlgorithmA. By applyingAl-
gorithm A to a constructed design with tree-like CFSMs,
we do not introduce new unilogues into any of the CFSMs
in , thus we do not change the set of occurrences
of the multilogues. Thus, we have (1)

for any protocol which contains only tree-like
CFSMs; (2) .
As we have mentioned, Algorithm A can help remov-

ing error states. An example is that the reachable global
state space of the protocol in Figure 4 contains a dead-
lock state . By applying Algorithm A to the
CFSMs, we obtain the protocol in Figure 3 which is dead-
lock free.
While Algorithm A sometimes help reducing error

states, it does not introduce new errors to tree-like con-
structed designs.
The Algorithm B reduces the number of states in the

constructed design but, can only apply to the so-called
mono-historic CFSMs as defined below.
Let denote the sequence of all the events of re-

ceiving messages in in the same order, and the
sequence of all the events of sending messages in in the
same order. I.e.

Definition 4.1 A CFSM is called mono-historic if for
any non-initial state in , and for any sequence of events
between and (without passing twice), and

are unique.

In a mono-historic CFSM, we use and
to denote the sequences of sending and receiving events
respectively from to (without passing twice). Let
be the number of states in the CFSM, be the maximum
number of states -step reachable from for all .
Then we need to compare pair of states since
we compare only those sates that have same number of
steps from . Each comparison takes constant time, so
the total cost of running this algorithm is .
The CFSMs in are obviously mono-historic,

so we can apply Algorithm B to them. It is easy to see
that, Algorithm B is more general than Algorithm A when
we consider mono-historic CFSMs. We will use
to denote the protocol derived from by applying Algo-
rithm B.

Example 4.1 Again, suppose we have two processes
and and two channels between them. Let

Figure 5 and 6 shows the and re-
spectively.

T2

-y +x

+x
-y

+z

+z

-u
+v+v -u

t0

t1 t5

t2

t3

t6

t7t4

-y

T1

+y

+y

r7r4

r3

r0

-v +u

-x

-z

r1

r2

+u
-v

-z

-x

r5

r6

+y

Figure 5. A presumed design

r0

-v

-x

+u-v +u

T1

r2

r3

r4 r7

r5

r6

-z+y

+y-z

t0

-y +x

+x -y

+z

-u +v
+v -u

T2

t1

t2

t5

t3

t4 t7

Figure 6. A constructed design by applying
Algorithm B

Unlike Algorithm A, Algorithm B may introduce new
execution sequences to the constructed design. That is,
in general, . This is
because, by merging two states according to Algorithm B,
we may add new unilogues.
It is observed that we may reduce the number of states

in in addition to the reduction obtained by Algo-
rithm A, i.e. . To apply Algorithm C to a
CFSM in , we need to consider each pair

of states in , and compare each outgoing edge
from with each outgoing edge from . So totally it
takes time to apply Algorithm C to . Here
is the number of states in , and is the maximumnumber
of outgoing edges from the states in .
In the following, we use to denote the protocol

derived from by applying Algorithm C.
Similar as Algorithm A, Algorithm C can be applied

to the constructed design without introducing new execu-
tion sequences. That is, (1) ; (2)

. Thus, Algo-
rithm C does not contribute to the removal of any error,
nor does it introduce new errors to the constructed design.

r0

r1

r2

r3

-x

r4

r5

T1

+y

+z

-u

-u +z+y

t0

t1

t2

t3

T2

t4

t5

t6

+x

-y

+u -z

-y

-z

+x+u

Figure 7. A constructed design with a dead-
lock state

5. ELIMINATING ERRORS

If the presumed design is not free from collisions, the
constructed design derived by applying the above algo-
rithms may still contain errors. Figure 7 shows a con-
structed design with the Algorithms A and C no more ap-
plicable. It can be easily seen that the reachable global
state space of this protocol contains a deadlock state i.e.,

. According to what we have discussed so far,
since Algorithm A has been applied, such errors can only
come from the incompleteness of the observations. So we
need to execute the implementation again to collect more
global observations.
Alternatively, we can also provide some algorithms to

modify the constructed design. Rather than the previous
three algorithms which mainly intend to reduce the num-
ber of states in the constructed design, here we would like
to have some algorithms to eliminate the errors.
AlgorithmD uses the negation of the derived unilogues

to eliminate the deadlocks in the constructed design.
It can only apply to two-process protocols with mono-
historic CFSMs. Note that , and

contain only mono-historic CFSMs.
We will use to denote the protocol obtained

from by applying Algorithm D.

Example 5.1 Figure 8 shows the protocol derived by ap-
plying Algorithm D on the protocol in Figure 7. Note that
while the protocol in Figure 7 contains a deadlock, the
protocol in Figure 8 is free from errors.

6. CONCLUSIONS AND FINAL REMARKS

We have shown that the determinization and minimiza-
tion of the designs constructed from a given set of exe-
cution histories may not be sufficient to eliminate all the
dedlocks. Thus, we have presented Algorithm D which
can eliminate all the deadlocks in the constructed design.
That is, for any constructed design with only mono-
historic CFSMs, is deadlock-free.

r0

r1

r2

r3

-x

r4

r5

T1

+z

-u

+y-u +z

+y

T2

t4

t5

t6

t7

t3

+u

-y+x

+u +x

-z

-z

t2

+u

t1

t0

-y

-z
-y

Figure 8. A protocol obtained by applying
Algorithm D

Note that the application of Algorithm D adds some
unilogues to the constructed design. These unilogues may
or may not be present in the presumed design. So gener-
ally speaking, Algorithm D may add occurrences of new
multilogues in . These executions may have
never been included in the given set of observations ob-
tained from the implementation of . However, a good
design very often includes the negations of all the uni-
logues of one CFSM into the other CFSM, because a uni-
logue and its negation in two distinct processes usually
reflect one of the correct functionalities of the protocol.

References

[1] N. Arakawa and T. Soneoka. A test case genera-
tion method for concurrent programs. in: Proc. of
IWPTS'91, Leidschendam, The Netherlands, pp.95-
106, 1991.

[2] G. v. Bochmann. Finite state descriptions of com-
munication protocols. Computer Networks, 2: 361–
372, 1978.

[3] D. Brand, and P. Zafiropulo. On communicating fi-
nite state machines. J. ACM, 30(2): 323–342, 1983.

[4] E. Chikofsky, and J. Cross. Reverse Engineering and
design recovery. IEEE Software, 7: 13-17, Jan. 1990.

[5] T.Y. Choi, and R.E. Miller. A decompositionmethod
for the analysis and design of finite state protocols.
ACM SIGOMM'83, pp. 167–176, 1983.

[6] G.J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, 1991.

[7] K. Koskimies, and E. Makinen. Automatic synthe-
sis of state machines from trace diagrams. Software
Practice and Experience, 24(7): 643-658, 1994.

[8] D. Lee and K. Sabnani. Reverse engineering of com-
munication protocols. Proc. of IEEE ICNP'93, pp.
208-216, 1993.

[9] M. Rajagopal, and R.E. Miller. Synthesizing a proto-
col converter from executable protocol traces. IEEE
Trans. on Computers, 40(4): 487-499, 1991.

[10] J. Rubin, and C.H. West. An improved protocol val-
idation technique. Computer Networks and ISDN
Systems, 6: 65-73, 1982.

[11] K. Saleh, and A. Baujarwah. Communications soft-
ware reverse engineering. J. of Information and Soft-
ware Technology, 38: 379-390, 1996.

[12] K. Saleh, R.L. Probert, and I. Manonmani. Recov-
ery of communication protocol design from protocol
execution traces. IEEE ICECCS'96, pp. 265-272,
Montreal, PQ, Oct. 1996.

[13] S. Some, R. Dssouli, and J. Vaucher. From scenar-
ios to timed-automata: Building specifications from
user requirements. APSEC'95, Dec. 1995.

[14] P. Zafiropulo. Protocol validation by duologue-
matrix analysis. IEEE Trans. on Commun., 26(8):
1187–1194, 1978.

[15] P. Zafiropulo, C.H. West, H. Rudin, D.D. Cowan,
and D. Brand. Towards Analying and Synthesizing
Protocols. IEEE Trans. on Commun., 28(4): 651–
660, 1980.

