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Language Concepts
Language Concepts is a Manchester-based startup dedicated to improving thequality of software by
providing tools which manage and reduce the complexity of the software engineering process. Building on
experience in CASE and MetaCASE, the company will focus on solutions which address ther eality of
development in the field, providing a range of tools, components and IDE extensions which tackle problems
which organisations face at different stages of the Capability Maturity Model. Our aim is to create software
written “by developers for developers”, working to solve the pressing practical problems developers face
today.

Most software engineering today occurs within the lower end of the CMM; the phrase “hack and test” is all
too familiar to those who have worked in the industry. Typically, the response of CASE tool vendors to this
position is to extol the benefits of a more structured and disciplined approach. Only a few companies,
however, are in a position to listen, so that CASE tools, and the good practices they carry with them, have
had limited acceptance.

Language Concepts will address this problem by providing tools which integrate seamlessly with existing
popular IDE’s such as Symantec Visual Café and Microsoft Developer Studio. These tools will provide
pattern-based generation capabilities which will improve developer productivity by eliminating the need to
write formulaic code, and software analysis and visualisation tools which will allow developers to take a
more abstract view of their code without introducing any barriers to rapid development.

Where possible Language Concepts’ tools will not introduce additional learning requirements on developers.
Using the very latest user interface technologies, they will instead offer all the information needed to make
best use of them as they are used. In fact, many of the planned tools exist solely to reduce the learning burden
developers face by capturing knowledge of sophisticated design patterns and specialist system APIs, so that
developers can be up and running quickly with new approaches and technologies.

Language Concepts will also provide integrated project management tools which give software managers –
particularly those facing the special challenges of working with small, multi-project teams – the very best
information they need to deliver a quality product on time and within budget. We are committed to the
exploitation of the Internet, and will use Internet technologies such as XML, XSLT, HTML and HTTP
wherever possible, creating products which are inherently connected and open.

Language Concepts is currently seeking investors and technology partners. For more information contact
Paul Dundon at concepts@pdundon.dircon.co.uk.



Build your own CASE tool!
MetaEdit+® allows you to build your own CASE tool - without having to write a single line of code. The
object-oriented method modelling along with an extensive library of reusable method components makes
CASE tool development fast, real-time and cost-effective.

"MetaEdit+ provides a quick yet powerful way to implement CASE tool support for your own
methods. Custom modelling tools can be developed in a few hours," Aarno Kansikas, ICL.

MetaEdit+ provides simple yet powerful tools for method development. These tools allow you to define the
concepts, their properties, symbols, dialogs, links to other method concepts, associated rules and generators.
Method development is fast with easy-to-use form based method specification tools, drawing tools and
interface painters. As soon as you define a method, or even a partial prototype, you can start to use it in
MetaEdit+.
The created CASE tool supports your visual modelling languages, code generators, document generation and
links to your application development environment (component library, simulators etc.). And this is no
lightweight drawing tool: it’s a full-blooded multi-user, multi-project CASE environment, running on all
major platforms (Windows95/98/NT, Linux 5.2/6.X, Solaris 2, HP-UX). It has diagram, matrix and table
editors, several browsers, component selection and reuse tools. It offers instant documentation of your
designs to desktop publishing and the web.

"By implementing our own methods into MetaEdit+ we have obtained a flexible development
environment which fits our needs", David Narraway, Nokia Mobile Phones.

Even as you use your method, you can make changes to it. Existing models are automatically updated to
reflect the changes you make. You can further extend your method by defining how code is generated from
it, adding model analysis and checking reports, and automating linkages to external programs — compilers,
simulators, documentation publishing tools etc.
MetaEdit+ is tried and proven technology. It has been applied to build hundreds of visual modelling editors
with their model analysis tools, code generators, and document generators. Many of these are supplied with
MetaEdit+, making its method support the largest in the market. All these method components can be
modified or reused in your own methods!
Let’s build better CASE tools! Download an evaluation version of MetaEdit+ from www.metacase.com

 MetaCase Consulting
Ylistönmäentie 31 Tel +358-14-4451 400
FIN-40500 Jyväskylä, Finland Fax +358-14-4451 405
http://www.metacase.com E-mail: info@metacase.com
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Forward

Welcome to the Second International Symposium on Constructing Software Engineering Tools
(CoSET2000).  I hope you enjoy attending the symposium and I trust that you will find the
presentations and discussions stimulating.  This symposium has been co-located with the 22nd
International Conference on Software Engineering (ICSE2000) in Limerick, Ireland, 5-11 June 2000.
The inaugural CoSET symposium was held at ICSE'99 in Los Angeles, May 1999 [1].  This event
received 25 submissions from authors representing 12 different countries, and 16 of these papers were
selected for publication in the symposium proceedings [2].  A selection of papers from CoSET'99
were subsequently republished in a special issue of the Journal of Information and Software
Technology that appeared in January 2000 [3].

CoSET2000 continues the investigation of themes and issues explored in CoSET'99, including:
 specification and generation techniques
 interchange formats and tool API's
 forward and re-/reverse- engineering tools
 tool evaluation, usability issues, and cognitive support
 tools for tool builders
 and languages, frameworks, and component-based development.
 

The symposium is based around the participants' experience reports of constructing their software
engineering tools.  The purpose of the symposium is to bring together an international audience of
researchers and practitioners with similar interests and experience, to exchange ideas, and to learn
about different technologies and techniques for software engineering tool development.  The
symposium focuses principally on practical software engineering issues encountered by tool
developers.

For CoSET2000 we requested two categories of symposium submission:
 short papers, of typically 2000-4000 words;
 full papers, of 5000-6000 words plus figures/tables.

The Call for Papers generated 34 submissions of which 14 were accepted from authors representing 9
different countries.  Papers in both categories of submission were fully refereed by the international
programme committee.  The accepted short and full papers are published in the Symposium
Proceedings.  The symposium organisers will select the most promising full papers for submission to
IEEE Software for possible publication after a further process of peer review.

A successful symposium is the result of the efforts of many people, and I would like to thank all those
who made this symposium possible.  In particular, thanks to our referees and to our sponsors.  Also
thanks to the symposium participants for their attendance and interest in software engineering tool
construction.

Jonathan Gray
CoSET2000, Symposium Chair

jpgray@computer.org

[1] Gray J.P., Scott L., Liu A., Harvey J.  CoSET'99 Workshop Summary in Proc. ICSE'99, Los Angeles, USA, 16-22 May
1999, ACM (1999), 707-708

[2] Gray J.P., Scott L., Liu A., Harvey J. (eds)  Proceedings of the First International Symposium on Constructing Software
Engineering Tools (CoSET'99), Los Angeles, USA, 16-22 May 1999, University of South Australia (1999) ISBN 0
86803 629 3.

[3] Special Issue on Constructing Software Engineering Tools.  Information and Software Technology, Vol 42, Number 2,
25 January 2000, 71-158
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Secrets from the Monster:
Extracting Mozilla’s Software Architecture

Michael W. Godfrey and Eric H. S. Lee
Software Architecture Group (SWAG)

Department of Computer Science, University of Waterloo
Waterloo, Ontario, N2L 3G1, CANADA

email: fmigod,ehsleeg@plg.uwaterloo.ca

ABSTRACT
As large systems evolve, their architectural integrity tends
to decay. Reverse engineering tools, such as PBS [7, 19],
Rigi [15], and Acacia [5], can be used to acquire an under-
standing of a system’s “as-built” architecture and in so do-
ing regain control over the system. A problem that has im-
peded the widespread adoption of reverse engineering tools
is the tight coupling of their subtools, including source code
“fact” extractors, visualization engines, and querying mech-
anisms; this coupling has made it difficult, for example, for
users to employ alternative extractors that might have differ-
ent strengths or understand different source languages.

The TAXFORM project has sought to investigate how differ-
ent reverse engineering tools can be integrated into a single
framework by providing mappings to and from common data
schemas for program “facts” [2]. In this paper, we describe
how we successfully integrated the Acacia C and C++ fact
extractors into the PBS system, and how we were then able
to create software architecture models for two large software
systems: the Mozilla web browser (over two million lines of
C++ and C) and the VIM text editor (over 160,000 lines of
C).

Keywords
Interchange formats, reverse engineering, software
architecture.

1 INTRODUCTION
Large software systems must evolve or they risk losing mar-
ket share to competitors [11]. However, the architectural in-
tegrity of such systems often decays over time as new fea-
tures are added, defects are fixed, performance is tuned, and
support for new platforms is added [18, 22]. Reverse en-
gineering tools such as PBS [7, 19], Rigi [15], and Acacia
[5], can be used by developers to regain an understanding
of the “as-built” software architecture of a system, and to
reconcile it with the “conceptual” or intended software ar-

chitecture [9]. However, most such tools are comprised of
tightly coupled subcomponents, such as source code “fact”
extractors and visualization engines. This tight coupling has
impeded the widespread adoption of such tools, as it is dif-
ficult for users to substitute alternative subtools that might
have different strengths or model different source code lan-
guages.

The TAXFORM (Tuple Attribute eXhange FORMat) project
has sought to investigate how different subtools can inte-
grated into a single framework by providing mappings to and
from common data schemas for program “facts”. Previous
work has included the design of generic schemas for proce-
dural and object-oriented programming languages, an explo-
ration of problematic issues in representing and translating
facts about programs, and some preliminary experiments in
using the Acacia and Rigi extractors as “front-ends” to the
PBS system [2].

Our primary motivation for the work described in this paper
was the desire to create software architecture models of the
Mozilla web browser [14]. Mozilla is written using a com-
bination of C++ and C; however, the extractor for the PBS
system,cfx, does not support the C++ language, and fur-
thermore we found that it was unable to process much of the
portion of Mozilla that is written in C. In this paper, we de-
scribe how we created a systematic translation mechanism to
allow the integration of the Acacia fact extractors for C and
C++ into the PBS system, and how we subsequently used
the translators to create software architecture models for two
large software systems: Mozilla (over two million lines of
C++ and C code) and the VIM text editor [23] (over 160,000
lines of C code).

2 THE PBS AND ACACIA SYSTEMS
The work we describe here involves the PBS [7, 19] and Aca-
cia [5] reverse engineering systems. The Acacia system pro-
vides facilities for extracting and visualizing low-level facts
about systems written in C and C++, but it provides little au-
tomated support for creating high-level views of a system’s
software architecture. Acacia includes two fact extractors:
CCia which can be configured to process C++ or C code,
and the older extractorcia which extracts less information
and works only with the C language but which we found to
be more robust when applied to some C systems. The re-



sults of the extractions are stored in textual databases which
can be queried at the command line or by using the CIAO
visualization tool.

We have chosen to base our work around the PBS system
as we have extensive experience with it, and because it pro-
vides rich support for the creation and querying of high-level
views of software systems. PBS includes a special “rela-
tional calculator” language calledgrok that allows users to
create customized views quickly and easily [19]. Extracted
“facts” about a system are stored using a generic schema lan-
guage called TA (Tuple Attribute); a user may define desired
abstract relations on these facts, which thegrok interpreter
then processes, by performing the appropriate relational cal-
culations, to create high level architectural views of the sys-
tem. In this way, a user can create structured and multi-
layered views of the system’s software architecture which
can be navigated and queried by the PBS visualization tool.

We decided to adapt the C and C++ extractors from the Aca-
cia system for use within PBS for several reasons. Our pri-
mary motivation was the desire to create software architec-
ture models of systems written in C++ without having to cre-
ate a customized C++ fact extractor.1 The Acacia C++ ex-
tractor,CCia, performs a detailed extraction of entities and
relationships of C++ code2, and it uses a production-quality
front end.3 Second, the fact extractor for PBS,cfx, supports
only the C language and has been found to be fairly fragile;
we hoped to gain an alternative extractor for the C language,
and also evaluate the relative quality of each extractor.4 And
finally, we wished to explore the practical problems in trans-
lating “facts” extracted by one system for use with a different
system.

3 TRANSLATING ACACIA OUTPUT INTO TA
We decomposed the task of creating a translation mechanism
from Acacia into TA (PBS’s format) into two stages. First,
we adapted Acacia’s C language extractors for use as drop-in
replacements for PBS’s C extractor, and then we built on this
experience to create a mechanism for translatingCCia out-
put of C++ code into PBS. This second step also involved the
creation of newgrok scripts for modelling and visualizing
object-oriented systems in PBS.

The PBS extractorcfx generates an intermediate format that
is used by another tool,fbgen, to generate textual tuples (in

1Creating a correct and robust parser for C++ is known to be a difficult
problem due to the language’s inherent complexity. By comparison, a high-
quality fact extractor for the Java language was created by a member of our
group in only a few days [4].

2We also briefly considered using two other C++ extractors: Gen++ [6]
and Datrix [10]. Anecdotal evidence suggested that the Gen++ tool was
relatively fragile and hard to configure, and we found that while Datrix ex-
tracts finely grained entity-level information, it does not resolve relationship
references beyond the “name-level” [2].

3CCia is built around the Edison Design Group (EDG) C++ front end,
a commercial product.

4Murphy [16] and Armstrong [1] have performed comparative analyses
of several extractors.

TA format) that describe attributes of the program entities
(e.g., files, functions, variables, macros) and their interrela-
tionships (e.g., containment, function calls, variable refer-
ences, macro uses). For example, the following TA facts are
taken from an extraction of the source code for version 3.0
of thectags system:

funcdcl read.h fileClose
funcdef read.c fileClose
funcdcl main.h getFileSize
funcdef main.c getFileSize
linkcall fileClose getFileSize

These TA facts assert thatfileClose andgetFileSize
are C functions declared inread.h / main.h respectively,
defined inread.c / main.c respectively, and that there
is a call fromfileClose to getFileSize that must be
resolved by the linker. The resolution of which function calls
which other function and what these relationships mean at
the file and subsystem level is performed subsequent to the
extraction by a set ofgrok scripts.

Acacia extraction output is stored in two semi-colon delim-
ited plain-text databases, one for entities and one for rela-
tionships. Each entity is assigned a unique identifier (UID)
by the extractor.5 A typical entry in the entity database in-
cludes the entity’s name, its UID, the UID of the contain-
ing file, its visibility, its signature/datatype (if appropriate),
and whether the entity is a declaration or a definition (if the
entity is a function or variable). Resolution of relationship
information (e.g., “which functionf is being called by func-
tiong?”) is performed by the extractor; a typical relationship
database entry lists the details of each entity involved in the
relationship (including the UIDs) together with attributes of
the relationship (e.g., two functions may be “friends”, or one
may call the other, or one may be a template instantiation of
the other).

While the Acacia and PBS fact extractors perform similar
tasks and are used in similar ways, there were a number of
semantic discontinuities that had to be addressed. In particu-
lar, the idea of what an entity is (e.g., is function declaration
a distinct entity from a like-named function definition?) and
how entities involved in relationships are resolved (e.g., if
f callsg, doesf call the declaration or the definition ofg,
and is there also a relationship between their respective con-
taining files?) were incompatible. For example, unlike PBS,
Acacia considers declarations and definitions to be distinct
entities, and they are given distinct UIDs. Also, the function
call relationship described above in TA would be modelled
by Acacia as a relationship between the functiondefinitions
in the “dot-c” files. This is subtly different from the PBS as-
sumption and required “unfolding” some of the relationships
extracted by Acacia in the conversion scripts.

5cia uses a simple counter to implement UIDs whileCCia generates an
eight digit hexadecimal UID using an an attribute-based hashing function.



There were two major steps in the conversion process. First,
simple textual queries were made of the entity and relation-
ship databases, and processed throughawk andperl scripts
to generate TA. Then, agrok script was used to change the
semantic model of the facts to what the PBS tool was expect-
ing.

We now discuss our experience in using these translation
mechanisms on the VIM and Mozilla systems.

4 EXTRACTING VIM’S SOFTWARE
ARCHITECTURE

Our first two example systems written in C that we tried out
were the VIM text editor (150,000 lines of code) and its com-
panion toolctags (12,000 lines of code). The source code
for VIM made CCia crash; we discovered thatCCia was
less robust thancia when applied to some C systems that
used non-ANSI conventions. Consequently, we also added
support for the oldercia extractor, although it extracts less
information and with a different output format thanCCia.

The fact extraction and conversion ofctags was straight-
forward, although it revealed some internal problems with
theCCia extractor. We found that theCCia extractor some-
times created multiple UIDs for the same entity. While this
might seem benign, it proved to be troublesome; when a
function declaration had multiple UIDs, some relations were
resolved incorrectly. Once we discovered this problem, we
were able to work around it by discarding theCCia UIDs
and using our own “name mangling” convention within a
grok script to work out entity resolutions correctly. In so do-
ing, we found our results still differed from thecfx extrac-
tion, we discovered several subtle bugs in how PBS performs
“linking” (entity resolution) that have since been fixed.

Results for VIM
We performed a full extraction on version 5.6 of the VIM
editor using bothcfx andcia, and then we translated the
cia facts into TA format using our scripts. Thecia extrac-
tion was faster, but when combined with the translation time,
the total was slightly more than that for thecfx extraction.
The total time for both approaches was slightly faster than a
full compile of the system.6

The full distribution of version 5.6 of VIM, which includes
the companion utilityctags, comprises over 163,000 lines
of C code (including comments and blank lines). The break-
down of the distribution into header files (.h and.pro files)
and implementation files (.c files) is shown below:

6On a Sparc running Solaris 2.6 with four 300MHz processors and 1
gigabyte of memory, thecfx extraction took 4:27 minutes, thecia extrac-
tion took 1:52 minutes, the translation of thecia output to TA took 3:20
minutes, and a full compile of VIM took 6:29 minutes.

File type Total # of files Total KLOC
.h 35 8,051

.pro 47 1,316
.c 67 154,360

TOTAL 149 163,727

Unlike Mozilla, almost all of the source code files are in-
cluded in a typical compile. We found that the breakdown
of the system into source files was primarily based on func-
tionality and features; while VIM can be compiled to run on
a variety of platforms, most of the platform-specific code is
distributed throughout the various source files.

We found that acfx extraction of VIM (ignoringctags)
produced over 43,000 “facts”.7 Performing a analogous ex-
traction usingcia plus our translation scripts produced over
51,000 facts. Comparing the two extractions in detail, we
found several notable differences:

� cia (andCCia) perform macro expansion to extract
more detailed relationship information. For example,
if a functionf calls a macrom that in turn expands to
a call to a functiong, then both Acacia extractors will
record thatf uses macrom and thatf calls functiong.
cfx does not perform this level of analysis. This was
the primary source of “extra” facts extracted bycia.

� We added some extra detail thatcia extracts butcfx
does not model, including references to library vari-
ables, such asctype anderrno.

� cia does a more accurate extraction of function call in-
formation thancfx. We found thatcfxmissed a num-
ber of straightforward function calls thatcia found.

� A fairly common programming convention in C is to
define a macro namedEXTERN that precedes function
and variable declarations in “.h” files. This macro ex-
pands to the keywordextern in all implementation
files that use (but do not define) the entity, and expands
to the empty string in the implementation file that de-
fines the entity. We found thatcfx was able to model
this convention correctly, but thatCCia did not.

In summary, we found that we were able to successfully
adaptcia andCCia into high quality C extractors for the
PBS system with performance similar to that of the native
PBS C extractor. With the exception of theEXTERN prob-
lem, we were able to adjust for all of the semantic inconsis-
tencies and other problems usinggrok scripts.

Observations about VIM
Figure 1 shows a top level view of the software architecture
model for VIM. This model was created using a variety of

7A total of 30 kinds of facts were extracted for the C language model,
includingfuncdef, usemacro, andinclude. Precise details of the
schemas for entities and relationships extracted bycfx can be found else-
where [2, 7, 19].
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Figure 1: Top level view of the extracted architecture of VIM as shown by the PBS viewer. Folder icons denote subsystems, and
arrows denote function calls between subsystem members (some calls are elided and are shown as arrow stubs). The subsystems
are described briefly in Fig. 2.

Subsystem name # of contained Total KLOC Description
source files

Command 29 55 User command processing
File 16 20 File I/O and buffer manipulation
Lang Interface 9 6 Interface to prog. langs. (e.g., Perl, Python, tcl)
Global 15 5 Contains global variables, data structures defs,etc.
GUI 21 33 User interface code
Terminal 4 5 Mappings for kbd/mouse
Utility 10 14 Implements regexps, message routines,etc.
Ctags 36 18 VIM’s companion tool
Stdlib 303 72 Systeminclude files (i.e., not part of distribution)
TOTAL (all) 443 228

(ignoring Stdlib) 140 156

Figure 2: The major subsystems in our architectural model of VIM version 5.6, as shown in Fig. 1. This model includes only
the code that was used during a typical compile of VIM for the Linux operating system running on an Intel 686 processor.



knowledge sources including the system documentation, do-
main knowledge about text editors, a detailed examination of
source code, and the authors’ extensive experience in using
VIM.

It is not our intention to discuss VIM’s software architec-
ture in detail in this paper, as we do so elsewhere [22]; how-
ever, we do note some general observations. First, we dis-
covered that VIM has been implemented using a repository-
style software architecture [20]. The data structures that im-
plement the buffer being edited are globally accessible vari-
ables defined within theGlobals subsystem; this explains
why there are no function call arrows going into or out of
theGlobals subsystem in Fig. 1.

Another result that we found to be surprising was that the
Utility subsystem had functional dependencies on other sub-
systems. Upon closer examination, we found that most
of these unexpected dependencies were contributed by two
large filesmisc1.c andmisc2.c comprising over 5700
LOC and 2400 LOC respectively. As their names sug-
gest, they contain a variety of unrelated functions; we found
comments within the code such as”Various functions” and
”functions that didn’t seem to fit elsewhere” that confirmed
our hypothesis. Our subsequent “repair” of VIM’s architec-
ture resulted in moving many of these functions to other files
in other subsystems [22].

5 EXTRACTING MOZILLA’S SOFTWARE
ARCHITECTURE

We next considered how to create a software architecture
model of the Mozilla web browser using the Acacia extrac-
tor and the PBS system. Mozilla is the “open source” sub-
set of the Netscape browser [14, 17]. It is a huge, multi-
function, multiplatform system comprising over two million
lines of C++ and C code in the release version we examined
(Milestone-9 or “M9”).

We rewrote our translation scripts to use an object-oriented
language schema; the schemas we created comprised 71
kinds of facts (compared to 24 for the procedural C model)
[12]. We created additional infrastructure for the PBS sys-
tem to be able to create and navigate through software ar-
chitecture models of object-oriented systems, which con-
sisted mostly ofgrok scripts and data files used by the PBS
viewer.

The biggest challenge in creating these scripts was in dis-
tinguishing between entities that might have the same name.
In C, “name collisions” between globally visible entities are
fairly rare, but in C++ they are much more common due to
overloading, polymorphism, use of templatesetc. We used
a more complex “name mangling” scheme than we had used
with the C scripts; we did not use Acacia’s UIDs since, as
mentioned above,CCia sometimes generated spurious extra
UIDs for some entities.

Initial attempts at fact extraction led us to rewrite our trans-

lation scripts yet again, as we found the performance to be
unacceptable; our approach with VIM has been to use sim-
ple mindedawk scripts to transliterate the Acacia facts into
TA using a series of queries, and then perform “intelligent”
translation usinggrok. We found we had to read the en-
tire Acacia databases into a large associative array and then
generate the “naive” TA facts in one go.8

Results for Mozilla
As mentioned above, Mozilla release M9 consists of over
two million lines of C++ and C code. The source distribution
of C and C++ header and implementation files breaks down
as shown below:

File type Total # of files Total KLOC
.h 4,531 610
.c 811 434

.cpp 2,079 1,043
TOTAL 7,421 2,087

Total KLOC denotes thousands of lines of source code in-
cluding comments and blank lines. This count includes all
source files for all supported platforms in the source dis-
tribution, but does not include header files that are gener-
ated automatically during a system build. Using the util-
ity ctags, we calculated that there are over 2,500 classes,
33,000 class methods, 18,000 class/struct/union data mem-
bers, 11,000 global (“extern”) functions, and 3,500 global
(“extern”) variables in the source code contained in the
tar file distribution.

Because Mozilla is multiplatform, a large part of its dis-
tributed code base consists of parallel sets of platform-
specific implementation files [8]. In order to perform an
analysis of the relationships within a typical instantiation of
Mozilla, it made sense to construct an architectural view of
one build of the system. We therefore compiled Mozilla for
Linux, and found that it processed 192 of the 811 “.c” files
and 1319 of the 2079 “.cpp” files. We then used a trace of
the build process to decide which files to extract facts from.

We used the C++ option of theCCia extractor for both the
C++ and the C portions of Mozilla. We had considered us-
ing theCCia’s C extraction option for the C code, but we
decided that it would be too awkward to generate two sets
of databases with different schemas and different translation
mechanisms that then had to be reconciled into a coherent
whole. The use of the C++ option required some manual ad-
justing of the C code to account for the stronger type check-
ing rules of C++; in particular, many C implementation files
were edited to add explicit type casting (this approach did
not work so easily for macros that take parameters). Addi-
tionally, we discovered that the commercial front end used
by CCia did not recognize thestatic const construct
of C++.

8Godfrey wrote the original C translation scripts inawk; Lee reimple-
mented them for C++ usingperl.
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Figure 3: Top level view of the extracted architecture of Mozilla as shown by the PBS viewer. Folder icons denote subsystems,
and arrows denote function calls between subsystem members (some calls are elided and are shown as arrow stubs). The
subsystems are described briefly in Fig. 4.

Subsystem name # of contained # of contained Total KLOC Description
subsystems source files

HTMLPres 47 1,401 484 HTML layout engine
HTMLParser 8 93 42 HTML parser
ImageLib 5 48 15 Image processing library
JavaScript 4 134 47 JavaScript engine
Network 13 142 31 Networking code
StdLib 12 250 45 Systeminclude files (i.e., “.h” files)
Tools 47 791 269 Major subtools (e.g., mail and news readers)
UserInterface 32 378 147 User interface code (widgets,etc.)
Utility 4 60 35 Programming utilities (e.g., string libraries)
nsprpub 5 123 51 Platform independent layer
xpcom 23 224 63 Cross platform COM-like interface
TOTAL 200 3,650 1,229

Figure 4: The major subsystems in our architectural model of Mozilla release M9, as shown in Fig. 3. This model includes only
the code that was used during a typical compile of Mozilla for the Linux operating system running on an Intel 686 processor.
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Figure 5: View of the Protocol subsystem of Mozilla (a member of the top-level Network subsystem) as shown by the PBS
viewer. Folder icons denote subsystems, document icons denote source files, and arrows denote function calls.

The manual adjustment of code was laborious and time con-
suming. Eventually, we decided that 23 of the 1511 files
were too difficult to fix without an enormous effort in re-
structuring and program understanding. However, we note
that we still managed to process more than 98% of the files
in the system.

A full source build of Mozilla M9 on a dual processor
Pentium-III 450 MHz system with 512 megabytes of RAM
running Redhat Linux 6.1 took 35 minutes. TheCCia ex-
traction took three and a half hours, and the translation into
TA using our scripts took another three hours on the same
system. The extraction generated over 990,000 facts, taking
up over 133 megabytes of disk space (uncompressed). We
note that the total extraction time is still much less than the
amount of time we spent editing the source code so that the
extractor would be able to process it.

Observations About Mozilla
We created the subsystem hierarchy of our software archi-
tecture model based on several sources of information, in-
cluding the source directory structure, examining the ex-
tracted facts, the use of an automated subsystem clustering
tool [19], reading through the source code and documenta-
tion, and browsing the Mozilla website [14]. Our architec-
ture model contains 11 top-level subsystems, as shown in
Fig. 3 and Fig. 4; of these, the largest were concerned with
HTML layout, the implementation of subtools such as the

mail and news readers, and user interface code. Figure 5
shows a typical intra-subsystem view as shown by the PBS
viewer/navigator.9

As with VIM, we do not discuss Mozilla’s software archi-
tecture in detail in this paper, as we do so elsewhere [13];
however, we also note some general observations. First, our
in-depth examination of Mozilla leads us to conclude that ei-
ther its architecture has decayed significantly in its relatively
short lifetime, or it was not carefully architected in the first
place. For example, the top-level view of Mozilla’s architec-
ture resembles a near-complete graph in terms of the depen-
dencies between the different subsystems (Fig. 3 shows the
function call dependencies); while we might reasonably ex-
pect function calls from the user interface subsystem to most
other subsystems, we were surprised to see functional depen-
dencies from the image processing library to the network and
tools subsystems. Overall, we found the architectural coher-
ence of Mozilla to be significantly worse than that of other
large open source systems whose software architectures we
have examined in detail (Linux and VIM) [3, 21, 22].

However, we do not consider these results to be surprising, as
Netscape was among the first generation of web browsers; it
is well known that competition during the “browser wars”

9These figures show only function call relations at the file and subsystem
level; other information can also be shown by the viewer, such as variable
references and class inheritance. Additionally, the architecture views can be
navigated hierarchically as well as queried.



has been intense. Netscape and its main competitor, Mi-
crosoft’s Internet Explorer, have evolved extremely rapidly
over the last few years, leading not only to an abundance of
new features, but also to a very large number of “bugfix” re-
leases and a notorious reputation for unreliability. Mozilla
seems to be a telling example of Lehman’s laws of software
evolution, which state that a useful software system must un-
dergo continual and timely change or it risks losing market
share [11].

6 SUMMARY
In this paper, we have described our experiences in extend-
ing the work of the TAXFORM project [2]. We have created
automated mechanisms for converting the output of Acacia’s
C and C++ extractors into generalized textual schemas for
procedural and object-oriented languages using the TA nota-
tion. We also described our experiences in using these mech-
anisms in the creation of software architecture models for
two large software systems: the Mozilla web browser (over
two million lines of C++ and C code) and the VIM text editor
(over 160,000 lines of C code).

We have undertaken this work for several reasons: to inves-
tigate the practical issues involved in transforming extracted
data between abstract schemas; to allow the creation of nav-
igable high-level software architecture models for systems
written in C++; and to explore the relative differences be-
tween the two reverse engineering systems. We found that
we were able to successfully adapt the Acacia extractors for
use in the PBS system, and that the conversion of extracted
facts is straightforward once a suitable translation mecha-
nism is in place. We note that, as observed by others [1, 16],
the robustness of the extractors and quality of the extracted
facts varies between tools, and that it is sometimes necessary
to “tweak” the source code of the system being examined in
order to get the extractor to process it correctly. Finally, we
consider that this work represents a significant data point in
the quest for seamless data exchange between reverse engi-
neering environments.
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Abstract

Surprising as it may seem, many of the early adopters
of the object-oriented paradigm already face a number
of problems typically encountered in large-scale legacy
systems. The reengineering of those systems often poses
problems because of the considerable size and complexity
of such systems. In the context of the FAMOOS project we
have developed a language independent environment called
Moose which can deal with that complexity. This paper
describes the architecture of Moose, the tools which have
been developed around it and the industrial experiences we
have obtained.

Keywords: Reengineering, Reverse Engineering, Refac-
toring, Software Metrics, Object-Oriented Programming

1 Introduction

Legacy systems are not limited to the procedural
paradigm or languages such as COBOL. Although the
object-oriented paradigm promised increased flexibility of
systems and the ease in their evolution, even these systems
get hard to maintain over time and need to be adapted to
new requirements. The goal of the FAMOOSEsprit project
was to support the evolution of such object-oriented legacy
systems towards frameworks [6].

During the FAMOOS project we built a tool environ-
ment called MOOSE to reverse engineer and reengineer
object-oriented systems. It consists of a repository to store
models of software systems, and provides query and naviga-
tion facilities. Models consist of entities representing soft-
ware artifacts such as classes, methods, etc. MOOSEhas the
following characteristics:

� It supports reengineering of applications developed in
different object-oriented languages, as its core model

is language independent which, if needed, can becus-
tomized to incorporate language specific features.

� It is extensible. New entities like measurements or
special-purpose relationships can be added to the en-
vironment.

� It supports reengineering by providing facilities for an-
alyzing and storing multiple models, for refactoring
and by providing support for analysis methods such as
metrics and the inference of properties of source code
entities.

� Its implementation being fully object-oriented,
MOOSE provides a complete description of the
meta-model entities in terms of objects that are easily
parameterized and/or extended.

These properties make MOOSE an ideal foundation for
reengineering tools [3].

The outline of this paper is the following: Before pre-
senting the specific aspects of MOOSE, we list the main
characteristics that we expect from a reengineering environ-
ment. After presenting the architecture of MOOSE, we give
an overview of its underlying meta-model and interchange
format. We present how a modelled system can be navi-
gated and queried. Then we show how MOOSE supports
code refactorings. To give a more dynamic perception of
MOOSE we show a typical use in the form of a short sce-
nario. Finally we evaluate the environment regarding the
requirements we previously listed and conclude.

2 Requirements for a Reengineering Envi-
ronment

Based on our experiences and on the requirements re-
ported in the literature [12, 8, 9], these are our main require-
ments for a reengineering environment:

Extensible. An environment for reverse engineering and
reengineering should be extensible in many aspects:



� The meta-model should be able to represent and
manipulate entities other than the ones directly
extracted from the source code (e.g. measure-
ments, associations, relationships, etc.).

� To support reengineering in the context of soft-
ware evolution the environment should be able
to handle several source code models simultane-
ously.

� It should be able to use and combine information
from various sources, for instance the inclusion
of tool-specific information such as run-time in-
formation, metric information, graph layout in-
formation, etc.

� The environment should be able to operate with
external tools like graph drawing tools, diagram-
mers (e.g. Rational Rose) and parsers.

Exploratory. The exploratory nature of reverse engineer-
ing and reengineering demands that a reengineering
environment does not impose rigid sequences of ac-
tivities. The environment should be able to present the
source code entities in many views, both textual and
graphical, in little time. It should be possible to per-
form several types of actions on the views the tools
provide such as zooming, switching between different
abstraction levels, deleting entities from views, group-
ing entities into logical clusters, etc. The environment
should as well provide a way to easily access and query
the entities contained in a model. To minimize the dis-
tance between the representation of an entity and the
actual entity in the source code, an environment should
provide every entity with a direct linkage to its source
code. A secondary requirement in this context is the
possibility to maintain a history of all steps performed
by the reengineer and preferably allow him to return to
earlier states in the reengineering process.

Scalable. As legacy systems tend to be huge, an environ-
ment should be scalable in terms of the number of en-
tities being represented, i.e. at any level of granularity
the environment should provide meaningful informa-
tion. An additional requirement in this context is the
actual performance of such an environment. It should
be possible to handle a legacy system of any size with-
out incurring long latency times.

In addition to these general requirements, the context of our
work [6] forces us to have an environment that is able to
support multiple languages.

3 Architecture

MOOSEuses a layered architecture (see Figure 1). Infor-
mation is transformed from source code into a source code
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Figure 1. Architecture of Moose.

model. The models are based on the FAMIX meta-model
[4, 5] which is described in section 4. The information in
this model, in the form of entities representing the software
artifacts of the target system, can be analyzed, manipulated
and used to trigger code transformations by means of refac-
torings. We will describe the architecture of MOOSEstart-
ing from the bottom.

� Extraction/Import. MOOSE supports multiple lan-
guages. Source code can be imported into the meta-
model in two different ways:

1. In the case of VisualWorks Smalltalk – the
language in which MOOSE is implemented –
sources can be directly extracted via the meta-
model of the SMALLTALK language.

2. For other source languages MOOSE provides
an import interface for CDIF files based on
our FAMIX meta-model. CDIF is an industry-
standard interchange format which enables ex-
changing models via files or streams. Over this
interface MOOSEuses external parsers for source
languages other than SMALLTALK . Currently
C++, JAVA , ADA and other SMALLTALK di-
alects are supported.

� Storage and Tools. The models are stored in mem-
ory. Every model contains entities representing the
software artifacts of the target system. Every entity is
represented by an object, which allows direct interac-
tion and querying of entities, and consequently an easy
way to query and navigate a whole model. MOOSEcan
maintain and access several models in memory at the
same time.

Additionally the core of MOOSEcontains the follow-
ing functionality:

– Operators. Operators can be run on a model
to compute additional information regarding the



software entities. For example, metrics can be
computed and associated with the software enti-
ties, or entities can be annotated with additional
information such as inferred type information,
analysis of the polymorphic calls, etc. Basically
any kind of information can be added to an entity.

– Navigation facilities. On top of the MOOSEcore
we have included querying and navigation sup-
port. This support is discussed in section 5.

– Refactoring Engine. The MOOSE REFAC-
TORING ENGINE defines language-independent
refactorings. The analysis for a code refactoring
is based on model information. The code manip-
ulation which a refactoring entails, is being han-
dled by language-specific front-ends. Section 6
describes the engine in more detail.

� Tools Layer. The functionality which is provided by
MOOSEcan be used by tools. This is represented by
the top layer of figure 1. Some examples of tools based
on MOOSEare described in section 7.

4 A Language Independent Meta-model

MOOSE is based on the FAMIX meta-model [4, 5].
FAMIX provides for a language-independent representa-
tion of object-oriented sources and contains the required
information for the reengineering tasks performed by our
tools. It islanguage independent, because we need to work
with legacy systems in different implementation languages
(C++, JAVA , SMALLTALK , ADA). And it is extensible:
since we cannot know in advance all information that is
needed in future tools, and since for some reengineering
problems tools might need to work with language-specific
information (e.g. to analyse include hierarchies in C++),
we allow for language plug-ins that extend the model with
language-specific features. Next to that, we allow tool plug-
ins to extend the model to store, for instance, analysis re-
sults or layout information for graphs. Figure 2 shows the
core of the FAMIX model. It consists of the main object-
oriented entities, namely Class, Method and Attribute. In
addition there are the associations InheritanceDefinition, In-
vocation and Access. An Invocation represents a Method
calling another Method and an Access represents a Method
accessing an Attribute. These abstractions are needed for
reengineering tasks such as dependency analysis, metrics
computation and reorganisation operations. The complete
model consists of much more information, i.e. more enti-
ties such as functions and formal parameters, and additional
relevant information for every entity. The model does not
contain any source code. The complete specification of the
model can be found in [5].

Figure 2. Core of the FAMIX model.

Information exchange with CDIF

To exchange FAMIX-based information between different
tools we have adopted CDIF [2] . CDIF is an industrial stan-
dard for transferring models created with different tools.
The main reasons for adopting CDIF are, that firstly it is
an industry standard, and secondly it has a standard plain
text encoding which tackles the requirements of convenient
querying and human readability. Next to that the CDIF
framework supports the extensibility we need to define our
model and plug-ins. As shown in Figure 1 we use CDIF to
import FAMIX-based information about systems written in
JAVA , C++ and other languages. The information is pro-
duced by external parsers such as SNiFF+ [15, 16]. Next
to parsers we also have integrations with external environ-
ments such as the Nokia Reengineering Environment [6].

5 Navigation and Querying

One of the challenges when dealing with complex meta-
models is how to support their navigation and facilitate easy
access to specific entities. In the following subsections
we present two different ways of querying and inspecting
source code models in MOOSE.

5.1 Programming Queries

The fact that the meta-model in MOOSEis fully object-
oriented together with the facilities offered by the Smalltalk
environment, it is simple to directly query a model in
MOOSE. We show two examples. The first query returns
all the methods accessing the attributename of the class
Node.

(MSEModel currentModel
entityWithName: #’Node.name’)

accessedByCollect:
[ :each | MSEModel currentModel

entityWithName: each accessedIn ]

The second query select all the classes that have more than
10 descendants.



MSEModel currentModel allClassesSelect:
[ :each | each hasProperties and:

[ (each hasPropertyNamed: #WNOC) ifTrue:
[(each getNamedPropertyAt: #WNOC) > 10]]]

Note that these queries resemble SQL queries on model in-
formation stored in a database [10]

5.2 Querying using the MOOSEEXPLORER

Reengineering large systems brings up the problem
of how to navigate large amounts of complex informa-
tion. Well-known solutions are code browsers such as the
Smalltalk one, which have been sufficient to support code
browsing, editing and navigating a system by the way of
senders and implementers. However, for reengineering
these approaches are not sufficient because:

� The number of potentially interesting entities and their
interrelationships is too large. A typical system can
have several hundreds of classes which contain in turn
several thousands of methods, etc.

� All entities need to be navigable in auniform way.

– In the context of reengineering no entity is pre-
dominant. For example, attribute accesses can be
extremely important to analysis methods but in
other cases completely irrelevant.

– In presence of an extensible meta-model, the nav-
igation schema should take into account the fact
that new entities and relationships can be added
and should be navigable as well.

MOOSE EXPLORER proposes an uniform way to repre-
sent model information (see figure 3). All entities, relation-
ships and newly added entities can be browsed in the same
way. From top to bottom, the first pane represents a current
set of selected entities. Here we see all the attributes of the
current model. The bottom left pane represents all the possi-
ble ways to access other entities from the currently selected
ones. Here, from the selected attributename of the class
Node the methods that access it are requested. The result-
ing entities are displayed in the right bottom pane and can
then be further browsed. ‘Diving’ into the resulting enti-
ties puts them as the current selection in the top pane again,
which allows for further navigation through the model.

6 Refactoring

The MOOSEREFACTORING ENGINE closes the reengi-
neering circle. While the MOOSEcore provides for a repos-
itory and querying and navigation support, the MOOSE

REFACTORING ENGINE provides support for doing actual
code changes. Refactoring [7] is about making changes to

Figure 3. MOOSE EXPLORER: navigating a
meta-model in an uniform way.

code to improve its structure, simplicity, flexibility, under-
standability or performance [1] without changing the exter-
nal behaviour of the system. The MOOSE REFACTORING

ENGINE provides functionality similar to the Refactoring
Browser [14] for Smalltalk, but for multiple implementa-
tion languages.

The MOOSE REFACTORING ENGINE does virtually all
of the analysis — needed to check the applicability of a
refactoring and to see what exactly has to be changed — us-
ing the language-independent FAMIX model. The language
dependence can be kept on a minimal level, because firstly
the refactorings are very similar for the different languages,
and secondly, FAMIX is designed to capture these common-
alities as much as possible. For instance, FAMIX supports
multiple inheritance, which covers Smalltalk’s single inher-
itance, C++’s multiple inheritance and Java’s classes and
interfaces. Language extensions (see section 4) cover most
of the remaining issues, for instance, to figure out if a class
entity in MOOSErepresents a class or an interface in Java.

Of course, changing the code is language-specific. For
every supported language a component has to be provided
that performs the actual code changes directly on the source
code. Currently the MOOSE REFACTORING ENGINE is
a prototype with language front-ends for Smalltalk and
Java. For Smalltalk we use the Refactoring Browser [14]
to change the code, and for Java we currently use a text-
based approach based on regular expressions. Although the
text-based approach is more powerful than we initially ex-
pected, we plan to move to an abstract syntax tree based
approach in the future.

A set of language-independent refactorings together with



the analysis support of MOOSEitself provides for a power-
ful combination of using analysis to drive (semi-)automated
code improvements. This is illustrated by the scenario in
section 8.

7 Foundation for other tools

MOOSE serves as a foundation for other tools. It acts
as the central repository and provides services such as met-
ric computation and refactorings to the reengineering tools
built on top of MOOSE. At this point in time the following
tools have been developed:

� CODECRAWLER supports reverse engineering through
the combination of metrics and visualization [11, 3]
(see Figure 4). Through simple visualizations which
make extensive use of metrics, it enables the user to
gain insights in large systems in a short time. CODE-
CRAWLER is a tool which works best when we ap-
proach a new system and need quick insights to get
information on how to proceed. CODECRAWLER

has been successfully tested on several industrial case
studies.

� GAUDI [13] combines dynamic with static informa-
tion. It supports an iterative approach creating views
which can be incrementally refined by extending and
refining queries on the repository, while focusing on
dynamic information.

The following tools are currently under development:

� The MOOSE REVEALER is used to detect entities
which fulfill certain properties. At the basic level these
may be abstract classes, empty methods, etc. At a
higher level of complexity it addresses design prob-
lems such as unused attributes or big classes which
could be split by identifying clusters of methods or at-
tributes.

� The MOOSE FINDER is a tool that allows to com-
pose queries based on different criteria like entity type,
properties or relationships, etc. A simple query finds
entities that meet certain conditions. Such a query can
in turn be combined with other queries to express more
complex ones. The MOOSEFINDER is currently being
extended in order to handle multiple models in the con-
text of software evolution.

� The MOOSEDESIGN FILTER can use the meta-model
information to communicate with Rational Rose, in or-
der to generate design views on the code.

Not only does MOOSEserve as the base for all those ap-
plications providing them a number of functionalities like

the metrics framework, the repository also serves as com-
mon interface between those tools.

Except for providing the foundation for our own tools,
MOOSEalso interfaces with external tools. One example is
the Nokia Reengineering Environment [6].

8 Scenario

Figure 4. CODECRAWLER showing an inheri-
tance tree view of a system. The width of
the nodes represents the number of methods,
the height represents the number of instance
variables.

In this section we present a typical scenario of how the
MOOSE environment can be used. It shows three differ-
ent tools based on MOOSE, and their interaction to detect
a problem, analyze it and finally resolve it by changing the
code. Note that the scenario is partly hypothetical in the
sense that the MOOSE REVEALER is in its early stages of
development and that its capabilities are not yet tested in
real world cases.

We start with CODECRAWLER. Figure 4 shows a screen-
shot of this tool. In this case the bigger boxes denote bigger
classes in the inheritance hierarchy. The classes are bigger,
in terms of number of methods (x-axis) and number of at-
tributes (y-axis). In this way CODECRAWLER points us to
possible problems in a software system, as big classes might
imply a wrong distribution of responsibilities. We will fo-
cus on the tall gray class on the right side of the drawing.

In the second phase we use the MOOSE REVEALER to
analyze our possible problem. In this case the MOOSERE-
VEALER finds out that the class can be split in two pieces,
because it finds two groups of methods that have a strong
internal cohesion, but do not really depend on the other
group. The MOOSE REVEALER proposes the user to split
the class in a superclass and a subclass, both with one group
of methods. If the user decides that the proposed solution



is a good idea, he or she can trigger the MOOSE REFAC-
TORING ENGINE to implement the proposed change. The
MOOSEREFACTORING ENGINE initiates a series of refac-
torings: it creates a new superclass, and pulls up the meth-
ods of one of the groups into this new class, while updat-
ing all the references to these methods and checking if the
changes do not have any unwanted effect on the system (the
changes should be behaviour preserving).

The scenario shows how powerful the combination of
metrics, visualization, FAMIX-based analysis and refactor-
ings can be. Of course, not every big class can be nicely
split (and quite often there is a good reason to have a specific
big class). Currently we are researching how far we can get
in finding possible solutions to potential problems. In the
end, however, only the developer can decide if a potential
problem is really a problem and if the proposed solution is
indeed a good and viable solution.

The fact that most of the analysis is based on
the language-independent representation of software in
MOOSE, makes the scenario applicable for every language
supported by MOOSEand the MOOSEREFACTORING EN-
GINE.

9 Validation and Evaluation

MOOSEand its tools have been validated in a few indus-
trial experiences. The idea was that members of our team
went to work on the industrial applications in a ’let’s see
what they can tell us about our system’ way. There was
no training of the developers with our tools. The common
point about those experiences was that the subject systems
were of considerable size and that there was a narrow time
constraint for all experiences we describe below:

1. A very large legacy system written in C++. The size
of the system was of 1.2 million lines of code in more
than 2300 classes. We had four days to obtain results.

2. An medium-sized system written in both C++ and
JAVA . The system consisted of about 120,000 lines of
code in about 400 classes. The time frame was again
four days.

3. A large system written in SMALLTALK . The system
consisted of about 600,000 lines of code in more than
2500 classes. This time we had less than three days to
obtain results. Parsing and storing the complete system
took less than 5 minutes on a PC Pentium III 500Hz.

The fact that all the industrial case studies where under ex-
treme time pressure lead us to mainly get an understanding
of the system and produce overviews [3]. We were also able
to point out potential design problems and on the smallest

case study we even had the time to propose a possible re-
design of the system. Taking the time constraints into ac-
count, we obtained very satisfying results. Most of the time,
the (often initially sceptical) developers were surprised to
learn some unknown aspects of their system. On the other
hand, they typically knew already about many problems we
found.

We learnt that, in addition to the views provided by our
tools, code browsing was needed to get a better understand-
ing of specific parts of the applications. Combining metrics,
graphical analysis and code browsing proved to be an suc-
cessful approach to get the results described above. The
obvious conclusion is that tools are necessary but not suffi-
cient.

Memory issues

Up to now we did not have problems regarding the number
of entities we loaded into the code repository. The maxi-
mum number of entities we loaded was around 250,000 in
the third industrial case, which was the limit on the available
computers. Surpassing 300,000 entities made the environ-
ment swap information to the hard disk and back. The code
repository might run into problems with multi-million line
projects. For that reason we have designed the code repos-
itory to support a possible database mapping easily. In that
sense the design of the code repository is more database-
oriented (with, for instance, a global entity manager than
object-oriented.

In addition, the following considerations have to be taken
into account when speaking about memory problems. First,
the amount of available memory on the used computer sys-
tem is, of course, an important factor. Secondly, we have
never even tried to optimize our environment neither in ac-
cess speed nor in memory consumption, because so far we
did not really have problems in these areas. Therefore, there
is some room for improvement, would it be needed in the fu-
ture. A third aspect is that tools that make use of the repos-
itory need some memory of their own as well. For instance,
CODECRAWLER needs to create a lot of additional objects
(representing nodes and edges) for the purpose of visualiza-
tion.

The requirements revisited

In section 2, we listed three properties which a reengineer-
ing environment should possess. We will now list those
properties and discuss how MOOSE evaluates in that con-
text. In section 2 we stated that such an environment should
be:

1. Extensible. The extensibility of MOOSE is inherent
to the extensibility of its meta-model. Its design al-
lows for extensions for language-specific features and



for tool-specific information. We have already built
several tools which use the functionalities offered by
MOOSE.

2. Exploratory. MOOSEis an object-oriented framework
and offers as such a great deal of possible interactions
with the represented entities. We implemented several
ways to handle and manipulate entities contained in a
model, as we have described in the previous sections.

3. Scalable. The industrial case studies presented at the
beginning of this section have proved that MOOSEcan
deal with large systems in a satisfactory way: we have
been able to parse and load large systems in a short
time. Since we keep all entities in memory we have
fast access times to the model itself. So far we have
not encountered memory problems: the largest system
loaded contained more than 250,000 entities and could
still be held completely in memory without any notable
performance penalties.

10 Conclusion and Future Work

In this paper we have presented the MOOSEreengineer-
ing environment. First, we have defined our requirements
for such an environment and afterwards we have introduced
the architecture of MOOSE, its meta-model and the different
tools that are based on it.

The facilities of MOOSEfor storing, querying and nav-
igating information and its extensibility make it an ideal
foundation for other tools, as shown by tools such as GAUDI

and CODECRAWLER. Next to that, the environment has
proven its scalability and usability in an industrial setting.

Future work includes further development of our
MOOSE-based tools, using them to explore in more de-
tail topics such as design extraction, steering of refactor-
ings based on code duplication detection or other kinds of
analysis, and evaluating system evolution. Furthermore, we
are working on providing extended support for fine-grained
analysis by means of composed queries. Next to that, we
plan to introduceclassifications or groupings of entities to
support higher level views of systems.
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Abstract

Typical tools for software maintenance help with searching the code, building models of that code, making
changes to it, and keeping track of the changes. However, since maintenance is a complex process, these tools often
require the maintainer to juggle numerous windows containing different types of information, and to very carefully
manage their work so that nothing is forgotten. In other words, few tools adequately support the process of
managing a maintainerÕs context Ð his or her plans and mental models for solving a problem. In this paper we show
how the TkSee tool facilitates personal work management in software maintenance. It does this using two levels of
hierarchies which provide one-click access to key information, using a single-window interface. TkSee is being
developed by studying maintainers and then providing facilities that address inefficiencies in their work practices.

Keywords: Personal work management, software maintenance, browsing history, searching in source code.
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1. Introduction

The goal of our research is to improve the
productivity of software engineers (SEs) performing
maintenance. To achieve this, we study SEs in the
field, discover potential inefficiencies in their work
practices, design tools to reduce these inefficiencies
and then evaluate the tools to determine their
effectiveness. Our field studies have taken place at a
telecommunications company where SEs are
developing and maintaining a system that is about 18
years old and contains millions of lines of code.

In this paper, we address the issue of personal work
management which encompasses many of the activities
and problems we have observed in our studies. By
personal work management, we mean organizing and
keeping track of the problem-solving context in
addition to software artifacts such as source code and
documentation. The context includes: 1) tasks and
subtasks one is doing or planning; 2) information one is
using to perform these tasks; and 3) oneÕs overall
mental model of the problem, of potential solutions to
the problem, and of the system as a whole.

For the purposes of this paper, we restrict our
attention to situations where SEs are working with the
source code itself to solve maintenance problems.
Several other researchers are also studying maintainers;
for example, Litman et al. [1] look at their mental
models; Boehm-Davis et al. [2] discuss the influence of
program structure on maintenance, while Bendifallah
and Scacchi [3] study general maintenance work
practices. Many other researchers are also conducting

empirical studies into other aspects of the software
engineering process, for example DÕAstous [4] studies
SEs in group meetings.

This paper should be of interest to software tool
developers and researchers as well as the users of those
tools, the SEs themselves. We first describe aspects of
our research methodology in more detail and highlight
some of our findings regarding tasks performed by SEs
as well as problems they face. Then we describe TkSee,
a tool designed explicitly to address these problems in
an integrated way. Finally, we compare TkSee with
certain other software engineering tools.

2. Techniques used to gather data

We have been fortunate to have been able to
perform field studies with a very enthusiastic team of
software developers over a five-year period. During
this period we have conducted several different data-
gathering exercises [5] [6] and also released several
versions of TkSee. Elsewhere [7], we describe our
experiences establishing a solid industry-university
research relationship.

When developing a software tool like TkSee, there
is a temptation in both industry and academia to
implement any new Ôgood ideaÕ as a feature. We have
tried to resist this temptation by making sure we first
gather solid evidence that each feature is really needed.
This is for two reasons: Firstly, we want to follow a
good scientific and engineering methodology Ð basing
our work on solid evidence. Secondly, we want to
develop tools that will be accepted by the users Ð trying



to get users to change their work practices without clear
benefit is a recipe for shelfware.

We have used the following techniques to gather
our evidence:
¥ Interviews
¥ Surveys
¥ Asking the SEs to draw diagrams of their mental

models
¥ Simple observation
¥ Synchronized shadowing (systematic note-taking

using laptop computers)
¥ Logging of tool use
¥ Heuristic evaluation of usability.
¥ Videotaped evaluation of tool use

The first six techniques are part of the repertoire of
empirical studies and can be used before the tool is
developed as well as afterwards. The latter two
techniques are most commonly used in the human-
computer interaction community, but are also excellent
for refining knowledge about what aspects of tools
work and what aspects do not [8] [9].

TkSee has undergone numerous changes in
response to data from these studies. It has been
continuously used since 1996 by various SEs, several
of whom use it on an everyday basis. It is mostly used
by new employees who have joined the group since it
was first deployed and has, according to the company
[7], substantially reduced the total time required for
these new employees to become productive.

3. Some observations from our field studies

During our fieldwork, we have studied SEs working
primarily in a UnixÔ environment; they use Emacs and
other Unix tools, especially grep and certain in-house
facilities. We have also observed people using TkSee
itself and some competing products (e.g. Source
NavigatorÔ [10]).

Several important results have arisen from our field
studies:

Firstly, we observe that the most important single
class of activity performed by SEs is searching:
Software engineers search in several ways for many
kinds of search targets. Searches are either global, i.e.
searching the entire system using a tool such as ÔgrepÕ;
or local, i.e. searching within a file. The information
sought  includes the definitions of entities and the uses
of entities. The entities include variables, types,
routines or files and the seeker might be interested in
either specific lines of code or merely the modules
containing definitions or uses. The seeker might
already know the name of the entity being sought, or
may have to make an educated guess as to what its
name might be.

Secondly, we note that considerable time is spent
manipulating the results of searches; such
manipulations include:

¥ Copying the name of something found from one
tool or subtool and pasting it into another.

¥ Keeping lists of search results which can act as Ôto-
doÕ lists; either  of entities to be changed in some
way, or issues to investigate further. These lists are
often kept on paper or in simple text files. Not all of
the subtask lists come from search results, but many
do.

¥ Developing miniature mental models of the
problem at hand, using the search results as
evidence. These mental models can be architectural
(e.g. describing what connects to what), or represent
control flow or data flow. They are normally local
in scope Ð little attempt is generally made to
understand the system at a high level.

Thirdly, we note considerable context switching on
the part of the software engineers. Context switches are
of two types, interruptions and drilling-down. In both
cases, the SEs temporarily suspend the current task and
must resume it later, recalling their mental models and
lists of intended subtasks. Interruptions occur when the
SE must attend a meeting, go to lunch, answer the
phone or stop work for the day. Drilling down occurs
when the SE notices a subproblem that must be solved.

In all three tasks described above, we have noted
various inefficiencies and difficulties. We describe
these in the next section.

4. Difficulties faced when searching and keeping
track of work

When studying SEs, we notice the following key
classes of problems they face Ð all of these relate to not
having fast enough access to desired information:

4.1 Consuming energy and time by having to switch
among too many windows  and/or tools

SEs who use Unix tools often have to jump from
tool to tool Ð for example it is common for SEs to run
different grep sessions in different shells, and to have
several text editor sessions and other tools open. Some
commercial program comprehension tools require the
user to open many windows in normal use. This
jumping from window to window can be time
consuming and it requires mental energy to remember
where everything is located. Users of Emacs are partly
able to conquer this problem by using various ÔbuffersÕ
available in that tool, however they still have to switch
among buffers to access different types of data.

4.2 Losing information previously found

As noted earlier, our observational data show that
searching is one of the key activities performed by SEs.
However, we see many instances where SEs perform



the same search repeatedly since there are few facilities
for storing their results.

Some SEs save search results by writing them on
paper (a clear inefficiency), others use Emacs buffers
or separate files. However, neither of these solutions is
entirely satisfactory due to the overhead of doing the
saving, and then finding the data again later. In
otherwise oneÕs ability to organize the results is weak.

4.3 Losing track of what they have to do and their
mental models

The SEs constantly form and refine plans and
models, often based on search results. Since the SEs
have to frequently switch contexts, they then have to
recall their plans and models upon returning to an
earlier context Ð this proves somewhat error-prone and
certainly is time-consuming.

5. An overview of TkSee

In this section we first describe the functions of
TkSee; then we describe how TkSee attempts to
overcome the problems described above.

We will focus on the user interface of TkSee; other
aspects of the design of TkSee are described in [11].

5.1 The panes in the TkSee window

Figure 1 shows a high-level view of TkSeeÕs main
window; Figure 2 is a screen dump of an active session.
All the activity in TkSee occurs in this one window,
plus a few pop-up dialog boxes. The main window
contains three panes which can be resized: The
information pane, the exploration pane and the history
pane.

The information pane, on the right of the TkSee
window, can contain virtually any type of information
Ð TkSee is designed to allow new subtools to be
integrated such that they display their output in this
pane. Typical types of information displayed in the
pane are files, information about the use of variables
and types, as well as data about problem reports from a
configuration management system. When a file is
displayed, a routine or specific line of code within that
file can be highlighted; also, the code can be displayed
statically or else be actively debugged. In the latter
case, there are pointers to the currently executing
statement and to breakpoints.

Many operations are available in the information
pane, including the ability to select any text and search
for the selected text either locally within the pane, or
globally. Global searches place the results in the
exploration pane. If the information pane contains an
active debugging session, then TkSee makes available
standard debugging operations such as setting
breakpoints  and stepping through the code.

The exploration pane contains a graph whose nodes
are the types of information that can be displayed in the
information pane, and whose arcs are the relationships
between these types of information. Selecting a node
causes corresponding information to appear in the
information pane. Typical arcs include  the ÔcallsÕ,
ÔdefinesÕ, Ôrefers toÕ and ÔincludesÕ relationships. The
user initiates an exploration by performing a global
search, extracting a subset of nodes from another
exploration, or starting to debug a program. Once some
nodes are selected, various queries cause new arcs and
nodes to appear; the user can also delete nodes that are
not of interest. The exploration graph is generally a true
hierarchy, so the standard appearance of the nodes is in
the form of an indented list (we plan to add a graphical
node-and-arc alternative in a future release).

An exploration pane thus serves as the userÕs
personal ÔsandboxÕ for manipulating search results and
building a mental model that helps with his or her
current subtask.

The history pane contains a hierarchy with one
node for each exploration. Selecting a history node
replaces the contents of the exploration pane, and
consequently also replaces the contents of the
information pane. A new history node is added
whenever an exploration is initiated as described
above. The user can rename any exploration if they
wish so they can remember its purpose Ð e.g. it might
represent a particular mental model, or a significant list
of things to do for a task.

History nodes (explorations) are only deleted at the
explicit request of the user. If the user reverts to an
earlier exploration (i.e. he or she returns to an earlier
subtask), new history nodes will be considered
subnodes of that earlier exploration. The history pane
thus forms a hierarchy.

History
pane

Exploration
pane

Information
pane

selecting
here ...

... causes
redisplay

here

.... and
redisplay here

selecting
here ...

... causes 
display
here

Figure 1: The three main panes in TkSee and the effect
of selecting an item in each pane.



Figure 2: An example screen dump of TkSee. The exploration (left) shows some files (with Ô.pasÕ extension), some
routines (ÔRÕ icon) and variables (ÔVÕ icon) in these files at one level of indentation; a problem report (ÔPÕ icon)
related to the file, and a selected line of code resulting from a grep search in a routine (binoculars icon). The source
code for the selected routine is displayed in the information pane at the right. The top-left history pane shows the
current task, highlighted by the ÔeÕ icon.

5.2 The twin hierarchies of TkSee

It is a central hypothesis of the design of TkSee that
personal work management can be improved by
making the exploration and history panes appear as
hierarchies. Alternative presentations of these types of
information in other tools include separate windows,
separate subwindows, or simple lists.

TkSee explorations are hierarchies of
heterogeneous information. These structures serve
multiple functions: 1) They allows related information
to be kept together (one can easily see which query led
to which subsequent query by looking at levels of
indentation). 2) They save search results so they are not
lost, while allowing un-needed ÔhitsÕ to be deleted. 3)
They allows one-click access to details of each
exploration node Ð i.e. by displaying the details in the
information pane. 3) They allow the SE to maintain a
list of things to do or a structured mental model of
some aspect of the systemÕs design.

TkSee history hierarchy elements allow one-click
access to any of a set of complete explorations. The SE
can easily click on different history items to jump back
and forth among tasks without losing context. The fact

that the history is a hierarchy parallels the fact that SEs
work on a hierarchy of tasks and subtasks.

The following summarizes  what we believe to be
the theoretical benefits of using hierarchies as the main
visual organizing technique:

¥ Related information is kept close together: When
using simple indentation to show the relationship
between one node and another, the two nodes are as
physically close as possible. We posit that this reduces
the effort to keep track of information and helps users
focus their attention. In particular it helps solve the
problems described in sections 4.1 (too much switching
among windows) and 4.2 (losing information
previously found).

¥ One representation for any kind of relationship:
Many software tools show different kinds of
relationships in different ways. They might use
hierarchies for some information, but use separate
windows or tools in other cases. We find that
hierarchies provide a unifying representation capable
showing practically any information.

¥ Hierarchical data is modelled naturally: Much of
the information related to software systems tends to be



hierarchical in nature: Examples from software
architecture which can appear in the exploration pane
include inheritance hierarchies, routine call hierarchies
and file inclusion hierarchies. Task hierarchies,
appearing in the history pane, are similarly hierarchical
in nature. Note that the TkSee hierarchies are not
exclusively used to show naturally hierarchical
relationships since arcs (indentation) can be used to
show any arbitrary relationship.

¥ Heterogeneous hierarchies are readily usable and
understandable: Early prototypes of TkSee showed
that users understand the heterogeneous hierarchies.
Any usability problems they discovered related to other
aspects of the interface.

¥ Hierarchies are easily manipulable: The user can
easily delete and rearrange nodes in a hierarchy to build
a model of just the relationships among information he
or she is interested in.

5.3 Other aspects of TkSee that facilitate personal work
management

The following are two other features of TkSee that
attempt to solve the problems listed in section 4, and
thus facilitate personal work management. These
features work synergistically together with the twin
hierarchies.

The single window: Having a single window in
TkSee was a conscious decision designed to combat the
problems of losing information and jumping among
tools. We recognize the risk of losing information
within the single window Ð this is combated by the
other features listed below.

Information pane plugins: TkSee can be enhanced
by adding different types of information which are
displayed as nodes in an exploration, and presented in
detail in the information pane. This allows us to
integrate various tools, reducing the need for the user to
switch among windows.

For example, the ability to display lines of code is
implemented by simply calling standard Unix grep Ð
TkSeeÕs value-added in this case is the management of
the results returned by grep. Two lines returned by
grep, that resulted from searching for items in the
exploration pane, can be seen in Figure 2.

As other examples of plugins, we have recently
integrated standard Unix debuggers into TkSee and are
integrating separately-designed facilities for analysing
traces and clustering source code to recover
architecture. As with grep, these tools merely add
different types of nodes to an exploration.

6. Comparison of TkSee features to those of certain
other tools

TkSeeÕs facilities have parallels in other tools
although no tool has made quite the same design
choices as TkSee designers. In this section we compare

TkSee to Emacs, to web browsers and to Source
navigator, a commercial source code  exploration tool.

6.1 Comparison to Emacs

Emacs [12] is a highly functional editor with some
facilities for exploration and the ability to be expanded
easily to provide new functions. For Unix programmers
it is often the environment of choice, although it
requires a considerable investment of time before one
becomes a expert.

TkSee, on the other hand, is strictly an exploration
tool; if a user wants to edit a file displayed in the
information pane, he or she must click on an icon that
opens the file in the editor of the usersÕ choice (which
could be Emacs). Since TkSee is being developed
primarily for research into program comprehension, we
donÕt want to spend time giving it editor facilities Ð we
would never be able to give it the power of Emacs.

TkSee is, unlike Emacs, designed to be usable by
beginners with little training. In fact, our goal is to
make it so intuitive that documentation is not needed.
Our user documentation is therefore very minimal.

Like users of TkSee, users of Emacs often perform
all their work in a single-window, using EmacsÕ
ÔbuffersÕ to store information they want to revisit;
TkSeeÕs explorations provide similar facilities but with
several advantages:

¥ Explorations contain heterogeneous information
organized hierarchically..

¥ Explorations themselves are organized using the
history pane - this hierarchy of hierarchies gives
considerable organizational power.

Unlike Emacs, TkSee currently doesnÕt allow users
to open more than one information pane at once Ð
something that would be useful, for example, if one
wanted to compare two files. However, one can rapidly
flip back and forth between files by moving the cursor
between their names in the exploration pane.

It has been suggested that we could build TkSee
functionality into Emacs, and a future project might
endeavour to do that. However we are moving in the
direction of supporting various kinds of graphical
views in TkSee, something the text-oriented Emacs
cannot readily handle.

Among TkSee users, most use Emacs as well,
suggesting that the functionality of the two tools is
complementary.

6.2 Comparison to Web Browsers

Web browsers are widely used to explore vast
information spaces, so why not just render software
information as html, and use a web browserÕs
navigation facilities in place of TkSee?

The information pane of TkSee is very similar to a
web page in the sense that it can contain many different



types of information, can be searched internally and has
hyperlinks.

The main power of TkSee for personal work
management, however, comes from its exploration and
history panes. These are quite different from what is
available in a web browser, unless you encapsulated
TkSee functionality in a Java applet. Table 1 provides a
detailed comparison of the different types of work
management capabilities in the two environments Ð

TkSee takes some features from web browser
bookmarks and history and combines them with
querying capabilities and one-click access to
information.

Several other researchers [13] [14] [15] have
suggested how web browser history mechanisms could
be improved.

TkSee
History

TkSee Exploration Web Browser
History

Web Browser
Bookmarks

Nature of
an
individual
node

An ÔexplorationÕ (next
column), a heterogeneous
graph of information cre-
ated and edited by the user

Could represent a
subsystem, file, rou-
tine, variable, line of
code É or anything

A Ôweb pageÕ
(can contain
anything)

A Ôweb pageÕ, or a
manually specified
category of web
pages

Reason for
presence of
a node

A task or subtask of the
user

Information resulting
from a query; may or
may not be interesting
or have been visited

Information
visited

Information visited
that is interesting

Structure of
a set of
nodes

A hierarchy Typically a
hierarchy, but can be
a graph

A list By default a list, but
can be a hierarchy

Nature of
child nodes

Subtasks Information in any
relationship to parent
(e.g. ÔcallsÕ,
ÔincludesÕ)

n/a Non-leaves are
categories; leaves are
web pages

Upon
revisiting a
node

Redisplay the exploration;
the user can edit the
exploration

Redisplay details of
the unit of
information

Redisplay web
page

Redisplay web page

A new node
is createdÉ

Automatically when a
query replaces the current
exploration graph; or
manually if the user
chooses to extract a sub-
graph of an exploration

Manually in response
to a query (many
nodes may be created
at once)

Automatically on
visiting a page

Manually, whenever
the user is interested

Ability to
delete a
node

Yes Yes No Yes

Operations
on sets of
nodes

Deletion only Queries to create
children of multiple
parents, deletion,
extraction to create
new history

None Deletion only

Ability to
rename a
node

Yes (to attach more mean-
ingful name)

No No Yes (needed when
web page title is
poor)

Persistence Permanent (users may have
several files or use the de-
fault)

Permanent (stored in
an exploration)

Typically current
session only

Permanent (users
may have several
files or use the de-
fault)

Table 1: ÔHistoryÕ and ÔBookmarkÕ facilities used for personal work management in TkSee and typical web
browsers.



6.3 Comparison to Source Navigator

Source Navigator is a commercial source code
browsing tool. In fact, we often use it to maintain
TkSee. The reason we do not use TkSee to maintain
itself is because we do not yet have a parser for Tcl/Tk,
the language in which TkSee is written.

Source Navigator shares many facilities with
TkSee: It allows one to browse many different types of
software objects and relationships. It has the advantage
of allowing one to edit code directly and, since it is a
commercial tool, has a wide range of very robust
parsers.

Source navigator has panes that resemble TkSeeÕs
exploration pane in the sense that they contain certain
types of hierarchies of information. However it does
not present all types of information in the same
hierarchy, nor does it have one-click access to a
hierarchical history of explorations. This forces the
maintainer to open several different windows to access
information.

6.4 Comparison to integrated development
environments (IDEs)

Many compilers today come with integrated
development environments. There is a long history of
research into such facilities dating back to the early
days of Lisp and Smalltalk [16] [17 [18] [19].

In addition to providing a unified tool for the
editing, configuration management and compilation
process, many of these provide program exploration
facilities similar to Source Navigator such as displaying
call hierarchies and variable-use cross reference
information.

Most IDEs, however, use different windows to
display different types of information. Furthermore, we
have found no IDE that effectively targets the
difficulties we identified in which users have trouble
keeping track of their search results, their mental
models of some small aspect of the system and their
hierarchy of tasks.

7. Evaluation

Evaluation is an essential aspect of research into
software tools. We are using several techniques to
evaluate the use of TkSee in a real industrial
environment. In particular, we want to determine
whether the distinctive features of TkSee Ð those
oriented around personal work management  Ð in fact
provide a significant advantage over features in
alternative tools. At the current time we are still in the
early phases of this evaluation.

Our first step has been to evaluate TkSeeÕs usability
and remove any superficial problems that might mask
more important advantages or disadvantages. We have
so far completed two cycles of usability evaluation; we
describe this process elsewhere [8] [9].

 Our second evaluation technique is to monitor
ongoing use of the tool Ð we do this by logging each
invocation of each command. So far, TkSee has been
used on a discretionary basis by over 20 different
people, some of whom have used it for several years on
an every-day basis. Management reports that the time
taken by new employees to learn about the subject
software has dropped considerably [7]. We consider
this to be good evidence that TkSee, as a whole, is
probably more useful than other tools that the
developers have available. Therefore we have achieved
our goal of making software engineers more
productive, at least in the context of the particular
group with which we are working.

Our next step is to analyse the detailed use of
specific TkSee features to discover which ones
contribute to the success, and how much. We plan to do
this using questionnaires,  more detailed analysis of
logs and observation.

Our overall three-step evaluation approach is
described in more detail elsewhere [20].

8. Conclusions

TkSeeÕs twin hierarchies Ð its history pane and its
exploration pane Ð provide robust, simple-to-learn
personal work management capabilities for the
software maintainer.

By personal work management, we mean
organizing three aspects of the context surrounding
ones work: Firstly, keeping track of tasks and subtasks
the maintainer must perform, despite frequent context-
switching. Secondly, organizing information one is
using to solve oneÕs problem, particularly  information
one has retrieved through various search or query
mechanisms. Thirdly, allowing manipulation of oneÕs
personal mental models of the system and the problem.

We define an  exploration to be heterogeneous
graph, normally a hierarchy, whose nodes represent any
kind of information related to software including files,
variables and problem reports. A new exploration is
first created as a result of performing a search. The
maintainer then incrementally modifies the exploration
by selecting nodes and deleting them or performing
further queries. Over time the exploration comes to
represent part of the maintainerÕs personal mental
model of the system or a list of things to do. TkSee
constantly displays an exploration in its bottom-left
pane; a simple click on a node displays more details,
such as the source code, in the right-hand information
pane.

A set of explorations is maintained in the history
pane. This set can typically represents a hierarchy of
tasks, and provides one-click task switching Ð selecting
a history item replaces the contents of both the
exploration and information panes.

Many other tools provide some of the features of
TkSee, but we believe that TkSee is the first software



engineering tool to provide the twin-hierarchy
approach to improve software engineersÕ personal work
management.

TkSee has been enthusiastically used by a variety of
users on a large maintenance project for several years.
We are continuing to develop TkSee and to experiment
with it to learn more about how software engineers can
be made more productive.
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1. Introduction

Any interactive software engineering tool that deals
with programs inevitably displays source code for a
human to read and possibly modify1. The technology for
doing this, however, has changed little in twenty years,
despite a compelling intuition that specializing the tech-
nology for programming languages might increase user
productivity substantially. In contrast, consider how word
processing systems have evolved beyond simple text edi-
tors during those same twenty years.

Extensive research, numerous prototypes, and more
than a few commercial attempts have failed to deliver
practical language-based editing for source code. Pro-
grammers find such systems difficult and unpleasant when
compared with simple text editors. Tool builders find that
implementations are fragile and place high demands on
supporting infrastructure.

Language-based editing will only succeed in practice
when it addresses the real goal: to help programmers pro-
gram in the context of existing skills and tools. This trans-
lates to two sets of requirements, often conflicting, for an

editor:
• Programmer’s perspective: the editor must make read-

ing and writing source code easier and more reward-
ing.

• Tool builder’s perspective: the editor must reliably
share information with other tools, for which it may
act as a user interface, and it must be packaged for
reuse (portable, highly configurable, and embeddable).
The CodeProcessor2 is an experimental tool for edit-

ing source code, under development at Sun Microsystems
Laboratories. It is based on technology that strikes a bal-
ance among apparently competing requirements. It is text
oriented, but fundamentally driven by language technol-
ogy. It can make its language-oriented representation
(configured by declarative specifications) available to
other tools, and can be embedded in other GUI contexts.
The key architectural choice is a lexically-oriented inter-
mediate representation for source code that addresses both
usability and integration with other tools.

1. We do not address purely graphical programming languages, although
some of the issues are similar.

2. “CodeProcessor” is an internal code name for this prototype; it is
intended to suggest a specialization of simple text editing for source
code, much as word- and document-processors are specialized for nat-
ural language documents.
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Experience suggests that simple usability testing, bet-
ter GUI design, or new algorithms would not have pro-
duced this design. Rather, it resulted from rethinking the
tasks, skills, and expectations of programmers, and from
then finding ways to address them: using existing lan-
guage technology and within the context of practical soft-
ware engineering tools. The result is an architecture that is
different, though not necessarily more complex, than
those tried in the past.

This paper presents an overview of the CodeProcessor
and the design choices it embodies. Section 2 reviews
requirements, and Section 3 discusses how previous tech-
nologies have failed to meet them all. Section 4 offers a
new look at the design trade-offs needed when combining
text editing and language support, and shows how this
analysis leads to a solution. Sections 5 and 6 describe the
two complementary and mutually dependent aspects of
the CodeProcessor’s design: architecture and user-model.
Finally Section 7 reviews implementation status, followed
by related work and conclusions.

2. Design goals

The requirements mentioned in the introduction, and
discussed in more detail here, reflect different perspec-
tives: programmers and tool designers. Past failures result
from neglecting one point of view or the other; Sections 3
and 4 will show how they can be reconciled.

2.1. No training

All available evidence shows that programmers read
programs textually; they also have “structural” under-
standing, but it is highly variable and not based on lan-
guage analysis [10][12]. Programmers have deeply
ingrained work habits as well as motor-learning that
involves textual editing; they will only accept a tool that is
familiar enough for immediate and comfortable use with-
out special training.

This need not, however, prohibit advanced functional-
ity. Consider how users experienced with simple text edi-
tors find the transition to word processors smoothed by
familiar text entry and cursor commands. By analogy, lan-
guage-based editing services should be layered carefully
onto basic text editing behavior, imposing no (or barely
noticeable) restrictions.

2.2. Enhance reading and writing

Additional editing services derive from specialization
for the tasks confronting programmers. A familiar exam-
ple is automatic indentation of source code lines. This ser-
vice is based loosely on linguistic structure, and it helps
both reading (visual feedback on nesting) and writing
(saving tedious keystrokes). This particular service can be
delivered in a simple text editor, but it can and should be
taken much further.

Research shows that high quality, linguistically-driven
typography measurably improves reading comprehension

[3][19]. In many environments, reading is still the domi-
nant task for programmers, even while writing code
[9][31]. Good designs for program typography are avail-
able (for example the paper-based publication designs by
Baecker and Marcus [3]), yet rarely used.

Also highly important, is special support (both reading
and writing) for program comments. Transparent to con-
ventional language tools, comments are tedious to format
but crucial for readers.

Although specialized enhancements are important, it is
absolutely essential that they not make things worse. Any
intrusion on text editing must respect the “balance of
power” between user and tool. This can be delicate even
in the simplest of cases, for example auto-indentation
mechanisms that programmers find helpful but “not quite
right.”

Nowhere has intrusiveness been more problematic
than in treatment of fragmentary and malformed source
code. This is, of course, the normal state for programs
under development. Unfortunately, language-based edi-
tors typically treat such situations as user “errors” and
encourage or require corrective action. The real “error” is
that the tools fail to model what the user is really doing
[14] and cannot function usefully until rescued. Editing
tools must function without interruption in any context.

2.3. Access to linguistic structure

Software engineering tools (for example analyzers,
builders, compilers, and debuggers) generally operate
over structural source code representations such as
abstract syntax trees. An editing tool is most easily inte-
grated with other tools if it can share such representations,
but as Section 3.1 discusses, this presents severe design
challenges for a tool whose job is to display and permit
modification to source code in terms of text.

2.4. Configuration and embedding

Finally, as software engineering tools evolve, empha-
sis shifts from standalone editing systems to specialized
tools that must work with other tools. A tool for source
code editing must be well encapsulated, somewhat like a
GUI component, and not demand complex support such
as a particular kind of source code repository. Reflecting
the reality that practical software engineering involves
many languages, it should be easily configured via lan-
guage specifications. In order to be used as an interface by
many other tools, an editing tool must have a visual style
that is easily configured for different contexts and tasks.

3. The design space

At the heart of a specialized editing tool is an internal
representation for source code. Conventional choices,
depicted in Figure 1, are divided by a gulf between funda-
mentally different approaches: one oriented toward usabil-
ity and one toward higher level services.



3.1. Pure designs

At the far right of the diagram are “structure editors”
[4][6][8][18], so called because of internal representations
closely related to the tree and graph structures used by
compilers and other tools. This greatly simplifies some
kinds of language-oriented services, but it requires that
programmers edit via structural rather than textual com-
mands. Behind this approach is a conjecture, articulated
by Teitelbaum and Reps, that programs are intrinsically
tree structured, and that programmers understand and
should manipulate them that way [25]. Unfortunately,
years of failed attempts [11], combined with research on
program editing [17] and on how programmers really
think about programs [13][22] have refuted that conjec-
ture. From a tool integration perspective, the advantages
of complete linguistic analysis are offset by its fragility (in
the presence of user editing) and context-dependency (the
meaning of code in many languages depends potentially
on all the other code with which it will run). Few structure
editors are in use today

At the far left are simple text editors with no linguistic
support. Editing is simple and familiar, but there is no real
specialization for source code. Integrating a simple text
editor with software engineering tools requires complex
mappings between structure and text, but these typically
result in restrictive and confusing functionality, fragile
representations (for example, where the identity of struc-
tural elements is not preserved during editing operations),
or both [27].

3.2. Modified designs

Subsequent efforts in language-based editing can be
viewed as attempts to bridge this gulf. Some structure edi-
tors allow programmers to “escape” the structure by trans-
forming selected tree regions into plain text [21], but
usability problems persist. The complex unseen relation-
ship between textual display and internal representation
makes editing operations, both structural and text escapes,
confusing and apparently unpredictable [27] because of
“hidden state.” Textual escapes make matters with a con-
fusing and distracting distinction between those parts of
the program where language-based services are provided
and those where they are not. Often language services and
tools stop working until all textual regions are syntacti-

cally correct and promoted back into structure.
At the left side of Figure 1 are widely used code-ori-

ented text editors such as Emacs [23]. These use a purely
textual representation, assisted by ad-hoc regular expres-
sion matching that recognizes certain language constructs.
The structural information computed by simple text edi-
tors is, by definition, incomplete and imprecise. It there-
fore cannot support services that require true linguistic
analysis, advanced program typography for example.
Simple text editors typically provide indentation, syntax
highlighting1 and navigational services that can tolerate
structural inaccuracy. A malformed program will, at
worst, be incorrectly highlighted.

A few text editors perform per-line lexical analysis
with each keystroke, but the information has never been
fully exploited and the lack of a true program representa-
tion leads to confusion in the inevitable presence of mis-
matched string quotes and comment delimiters.

3.3. Inclusive designs

A more inclusive approach is to maintain both textual
and structural representations. Although this approach
promises a number of advantages [5][26], it is difficult to
keep the representations consistent and it has not been
demonstrated that the cost and complexity are justified.

4. Finding the middle ground

Section 3 described a fundamental design tension:
• It is desirable to maintain a linguistically accurate pro-

gram representation, updating it on every modifica-
tion, however small.

• The greater the degree of structural sophistication, the
more fragile the representation is in the presence of
unrestricted textual editing, and the more room there is
for confusing behavior and inconsistency between
what’s seen and what’s represented internally.

In summary, an ideal representation would be closely
related to displayed text, but would also reflect linguistic
structure at all times. What’s needed is a compromise

Text

Rich representation
(more structural: better for services)

Simple user-model
(less structural: better for users)

Figure 1: Design choices for program editors

Language
Structure

Text
+

Ad Hoc Matching

Language Structure
+

Text Escapes

1. “Syntax highlighting” is an unfortunate misnomer, since pattern-
matching is considerably weaker than syntactic analysis. It would be
more accurate to call it “unreliable keyword, string, and comment rec-
ognition”.



somewhere in the middle of Figure 1, where the amount
of language analysis performed is as simple (and local-
ized) as possible, but also as useful as possible.

A compromise can be found by taking a closer look at
language analysis: both the internal engineering of com-
pilers, and the formal language theory behind it. A typical
compiler analyzes textual programs in phases, shown
below. Each stage is driven by a different kind of grammar

(corresponding approximately to types 3, 2, and 1 in the
Chomsky grammar hierarchy) and uses a corresponding
kind of analyzer [29]. Programming languages are often
designed around this grammatical decomposition, and
batch-oriented compilers benefit from the simplicity and
formal foundations of separate phases.

This decomposition reveals additional choices,
depicted in Figure 2, for analyzing and representing pro-
grams being edited. Possible representations include the
standard products of each phase: lexical token stream,
parse tree, and attributed tree respectively. Intermediate
choices include partial analysis of the next grammatical
level: regular expression matching is a partial lexical anal-
ysis, fuzzy parsing is a partial syntactic analysis which
recognizes only certain features of the context-free syntax
(e.g. nested parenthesis or context-dependent categoriza-
tion of identifiers into function and variable names), and
partial semantic attribution that can be used for computing
limited amounts of semantic context. Partial analyses are
often simpler to implement (fuzzy parsing can be per-
formed through a simple pattern matching on the token
stream) and more forgiving of inconsistencies in the rep-
resentation.

An important distinction among the three analysis
phases concerns the scope of cause and effect. Static
semantic analysis (closely related to Chomsky’s context-
sensitive syntax) at each point in a program depends
potentially upon the entire program. Parsing (context-free
syntax) depends only on the enclosing phrase, but
assumes that program is well formed. Lexical analysis
(regular syntax) depends only on adjacent tokens, making
it highly suitable for the inner loop of an editor.

Thus the lexical representation, not used in any prior
systems, emerges as a promising compromise:
• It is a stream, not a tree, and thus bears a close rela-

tionship to textual source code;
• The analysis needed to update the representation after

each edit usually requires only local context;
• It is suitable for program fragments;
• It has enough linguistic information to provide many

language-based services, including more robust imple-
mentation of familiar services such as indentation,
parenthesis and bracket matching, procedure or
method head recognition, etc.; and

• It is a language representation suitable for integration
with other tools, including complete language analyz-
ers. Further analysis, for example parsing, could be
folded into the CodeProcessor if added carefully, but
at some additional cost in complexity.
Although this approach is promising, a number of

design questions remain:
• Can the textual display and behavior be made to look

and feel familiar enough that it requires no training?
• To what degree can the display be specialized for pro-

grams using only lexical information?
• Can such a fine-grained typographical display be

implemented using current toolkit technology and
made configurable?

• Can the lexical token representation be made robust in
the presence of partially typed and badly formed
tokens? In particular, how can “bracketed” tokens such
as string literals be managed when one of the brackets
(double quotes for strings) is missing?

• What specialized support for comments and other,
possibly non-textual, annotations is possible?

• How can a description-driven lexical analyzer be
adapted to update the representation after each key-
stroke?

Solutions appear in the following two sections, which
summarize respectively the two mutually dependent
aspect of the CodeProcessor’s design: architecture/imple-
mentation and user-model. The architecture is presented
first in Section 5, although many aspects were driven by
the user-model design described in Section 6.

lexical analysis→ parsing→ static semantic analysis
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Syntax Tree
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Figure 2: Additional choices for program representation and analysis



5. Architecture

The CodeProcessor’s architecture, depicted in Figure
3, is based on the Model-View-Controller design para-
digm. This choice is not accidental: in addition to being a
natural architecture for display and editing, it also reflects
the design of the Java™ Foundation Classes (JFC)
“Swing” toolkit and its text framework [30] which was
used to implement the current prototype. Multi-lingual
behavior is supported by separating each of the three core
modules into two components: one implementing the lan-
guage-independent functionality, and the other (collec-
tively known as aLanguage Module) providing language-
sensitive features for a particular language. In the
CodeProcessor this separation is achieved by subclassing,
but other decompositions are also possible.

The remainder of this section describes each of the
major design constituents in order.

5.1. The Controller

The Controller is manifested through two closely
related components: theEditor Widget and theEditor Kit.
The Editor Widget is responsible for dispatching window
system events and making the CodeProcessor a fully func-
tional member of the JFC widget family. The Editor Kit
implements the intricate editing behavior described in
Section 6.2.

Much of Editor Kit’s functionality is language-inde-
pendent; some, however, may be custom-tuned for each
particular language, for example adding keyboard short-
cuts for inserting language constructs.

The primary responsibility of the Editor Kit is to
implement user actions that require taking the context of
the action into the consideration. Some actions, such as
cursor movement commands, require no changes to the
source code model; their execution depends only on the

context (tokens) surrounding the cursor. Other actions,
such as insertions and deletions, may depend not only on
the modification context, but also on the stateafter the
modification, since certain nuances of the user-model
require “looking into the future.”

To facilitate this, the Editor Kit commences a two-
stage modification process upon any potential change.
First, the source code model is requested to consider the
effects of the changewithout modifying the underlying
content. This produces an object describing the change in
terms of a model transformation that needs to take place.
When the Editor Kit regains control it examines the trans-
formation, either discarding it, if it has no effect or is not
valid, or applying it to the model.

5.2. The Model

As discussed in Section 4, source code is represented
as a sequence of lexical tokens, although this representa-
tion is extended in several crucial ways. This representa-
tion allows for much-needed flexibility, as it both supports
the required user-model, and fits naturally with the incre-
mental lexical analysis algorithm.

The lexical analysis algorithm, developed by Tim
Wagner [28], is fully general: it supports unbounded con-
textual dependency and multiple lexical states. Moreover,
incrementality can be crafted onto existing batch lexers
that conform to a simple interface. For instance, the cur-
rent prototype’s lexer for the Java programming language
is generated by the JavaCC tool [16] from a readily avail-
able lexical specification; the specification is extended to
include various categories of irregular lexemes created
during editing, as discussed in Section 6.1.

Figure 4 depicts the modification of a model after
insertion of the characters “=x ” into a fragment contain-
ing the four tokens ‘a’, ‘ +’, ‘ c ’, and ‘; ’ with cursor ini-
tially between ‘+’ and ‘c ’. Figure 4a represents the
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content immediately prior to the modification, 4b -- the
transformation resulting from considering given modifica-
tion, and 4c -- the content after the suggested transforma-
tion has been applied.

The source code model is also responsible for adding
and removing “separators,” special non-linguistic tokens
whose role in the user-model is described in Section 6.2.
Other non-linguistic tokens include comments, line
breaks, and other layout directives.

A significant advantage of the model, from the per-
spective tool integration is that it enablesstablereferences
to source code structure: during any kind of editing, the
identity of unaffected tokens is guaranteed.

5.3. The View

The rendering mechanism displays source code in
accordance with the requirements outlined in Section 6.1.
The typographically-enhanced display is facilitated by
assigning stylistic properties to each token by means of
the Styler component. The Styler lends itself to being
automatically-generated, although the current implemen-
tation uses hand-written Stylers.

Stylers can also be used to export human-readable
source code from the CodeProcessor by rendering into a
character stream, dropping stylistic information that can-
not be represented. Appropriate formatting can be
achieved by Stylers optimized for text output.

5.4. Representing embedded structures

Programming languages commonly include embedded
syntactic structures that have distinct lexical rules, most
notably comments and strings. Embedded structures are
supported by nested editors with transparent boundaries
(behavioral considerations are presented in Section 6.3).
The only requirements for this support, easily met by all
embedded language structures we have encountered, are
that they have well-defined linguistic boundaries and that
their contents be tokenized as a single entity by the lan-
guage lexer.1

This architecture permits utilization of any editors in

the JFC text framework, including the CodeProcessor
recursively. The mapping from token types to editor types
is performed by the Language Module; this module in the
current prototype uses the standard JFC text editor for
comments and a token-based CodeProcessor editor for
strings and character literals.2

6. Functionality and user-model

This section presents an overview of the CodeProces-
sor’s functional behavior as well as the user-model experi-
enced by the programmer.

6.1. Advanced program typography

The CodeProcessor is visually distinguished by its
advanced typographical “styles,” implemented by the
view architecture described in Section 5.3. These styles
approximate designs by Baecker and Marcus [3] and are
updated with each keystroke as the source code is being
incrementally reanalyzed. Alternate styles for each lan-
guage can be selected dynamically, either to suit individ-
ual preference or as required by particular tools driving
the display. The style appearing in Figure 5 is configured

by 123 token categories to which are assigned 61 separate
token styles.3 Each token style specifies type face, size
relative to a base, style (plain, bold, italic), foreground and

1. If the nested editor is, in fact, another instantiation of the CodeProces-
sor, the contents of an embedded structure may be further tokenized
by the nested lexer.

a + c ;

Figure 4: Example model update

a)

b) replace from to with += xc

a += xc ;c)

2. Both strings and character constants afford a simple lexical descrip-
tion that recognizes character escapes such as \n, \t, etc. This lets us,
for example, highlight legal escapes so that they are distinguishable
from the rest of the text, as well as indicate which ones are invalid.

3. Much of the stylistic detail is required as compensation for the
absence of type faces suitable for programs [3].

Figure 5: Example CodeProcessor display



background colors, baseline elevation, and both left and
right boundary specifications used to compute display
spacing between adjacent tokens. Token styles can also
specify alternate display glyphs, for example to display
ligatures.

In a departure from the Baecker and Marcus designs,
which require well-formed programs, CodeProcessor
styles reveal that certain tokens are lexically incomplete
(for example “0x ”) or badly formed (for example “08”),
based on lexical grammars extended to include such
tokens. The CodeProcessor treats such tokens as legiti-
mate in every other respect.

Although the Baecker and Marcus designs require full
program analysis, a surprising amount of the visual detail
can be achieved using only lexical information. Indenta-
tion requires fuzzy parsing in the style of many text edi-
tors. More visual features could be added through other
kinds of fuzzy parsing, for example adjusting operator
spacing based on expression depth.

Horizontal spacing between tokens is computed from
the source code, not affected by presses on the space bar.
This improves legibility and saves keystrokes, much in the
same way that conventional auto-indentation works at the
beginning of each line. We anticipate adding a tab-like
mechanism to the current prototype that gives program-
mers some ability to impose vertical alignment.

6.2. Editing behavior

The CodeProcessor behaves like a code-oriented text
editor in most respects. Where it differs, the behavior has
been designed so that it appears to do the right thing when
used as a text editor. Preliminary experience with the
CodeProcessor’s user-model suggests that programmers
find descriptions of the behavior confusing, but the behav-
ior itself unremarkable.

Some behaviors are completely conventional. Indenta-
tion is automatic. Line breaks are explicitly entered and
deleted by the programmer.1 Typing text within comments
and language tokens (especially string literals) is likewise
conventional, with the notable exception that program-
mers can easily type multi-line comments (and perhaps
eventually strings), as shown in Figure 5.

Non-standard behavior appears in and around token
boundaries. To first approximation, token boundaries are
determined purely by the lexical analyzer. When the cur-
sor rests between two tokens it is displayed midway
between them; pressing the space bar silently does noth-
ing.

However, not all boundaries can be unambiguously
computed, for example between keywords. Here the
CodeProcessor automatically inserts a “separator” token.

This behaves somewhat like a “smart space” in a word
processor: no more than one can be present between adja-
cent lexical tokens. The cursor can rest on either side of a
separator; deleting a separator is treated as a request to
join surrounding lexical tokens (if they could not be
joined, there would have been no separator present). Sepa-
rators often come and go as the lexical categories of adja-
cent tokens are changed by editing, but since they are
behavioral rather than visual, this is not distracting.

String literals and comments receive special treatment,
as described in the following section. Additional subtleties
in the user-model, beyond the scope of this paper, are
required so that “the right thing” appears to happen at all
times.

6.3. Nested editors

The user-model for editing programs described in the
previous section is inappropriate in certain regions. The
contents of string literals obey different grammars than
surrounding code, and the contents of comments are not
analyzed at all.

Such regions receive special support in the CodePro-
cessor, beginning with behavior that preserves their
boundaries during all normal editing. This has the flavor
of structure editing, but it solves a number of traditional
problems with boundary confusion; potentially confusing
behavior can smoothed over with careful design.

Having guaranteed boundary stability for these
regions, the CodeProcessor can then provide specialized
behavior in a straightforward way. Specialized editors are
simply embedded to match the model: one kind for
strings, another for character literals, yet another for plain
text comments. More can be added, for example to sup-
port HTML or graphical comments. Although this has
something of the flavor of a compound document system,
it is specialized for source code and designed so that the
boundaries are no more obtrusive than absolutely neces-
sary. For example, the text cursor moves smoothly across
boundaries between code and embedded structures.

6.4. The Programmer’s Experience

The net result of these behaviors is by design an edit-
ing experience that is visually rich but otherwise unobtru-
sive. Nearly all familiar keystroke sequences have their
intended effect, with the added bonus of fine-grained
visual feedback. Time wasting efforts at whitespace man-
agement, for example deciding where to insert spaces and
how to align multi-line comments, become as unnecessary
as manual indentation. This frees the programmer to con-
centrate more completely on the task at hand: understand-
ing and writing code. Furthermore, the rich display engine
creates new opportunities for tools to present information
by modulating the source code display to suit the task at
hand.

1. The CodeProcessor does not break lines, but it would be helpful to add
a linguistically driven mechanism for “wrapping” lines wider than the
available window.



7. Implementation status

Initial design of the CodeProcessor was carried out at
Sun Labs by the first author in the Spring of 1993. A pro-
totype using C++, thelex analyzer, and the Interviews
graphical toolkit [15], was demonstrated later that year as
part of a larger programming environment project. An
evolution of the first prototype, using the Fresco toolkit
[7] (itself an evolution of Interviews) was completed and
demonstrated in early 1995, at which time work ceased
with the conclusion of the project. The design was then
shelved, awaiting more suitable infrastructure than was
available at that time.

The second author commenced a reimplementation of
the CodeProcessor design during a summer internship at
Sun Labs in 1998, adding recent improvements in incre-
mental lexing technology and adapting the recently devel-
oped text framework from the JFC swing toolkit [30].
This prototype, which will be subject to further refinement
and evaluation, is substantially complete, with the excep-
tion of automatic indentation and other services not part of
the core design.

8. Related work

Emacs [23] is an augmented text editor of the kind
described in Section 3.2. Its editingmodesadd specialized
behavior and text coloring via pattern matching, but they
fall short of the CodeProcessor’s requirements. Weak
encapsulation of its internal representation, as well as
insufficient model-controller separation, makes reliable
representation and manipulation of structural information
difficult, if not impossible. Language analysis is limited to
(unreliable) regular expression matching of fewer than ten
lexical constructs. Rendering and layout, even in the more
recent XEmacs [32], does not meet the CodeProcessor’s
demands. The editors embedded in many commercial
integrated development environments have basic text edit-
ing and display functionality comparable to Emacs.

Numerous structure editors, mentioned in Section 3.1,
were built in research environments, for example Centaur
[6], Gandalf [18], Mentor [8], and PSG [4]. All had
acknowledged usability problems [11].

The commercialized Synthesizer Generator [21] is a
notable example of the modified structure editors
described in Section 3.2, but was still plagued by confus-
ing behavior [27] and by restrictions on editing.

The Pan system [5] is characteristic of the inclusive
designs described in Section 3.3. It permitted unrestricted
text editing, performed full incremental language analysis
on demand, and provided semantic feedback. Although
some attention was paid to usability [26], the implementa-
tion was enormously complex and offered no language-
related advantages during textual editing. Important fea-
tures such as comments received no special support at all.

Several elements of the CodeProcessor’s design subse-
quently appeared in the Desert environment, including

attention to usability, adoption of advanced typesetting,
and the choice of a token-based representation [20].
FRED, the Desert editor, performs language analysis via
integration with the FrameMaker document processing
system [1]. This limits FRED’s ability to support fine-
grained language-based behavior due to the lack of appro-
priate abstractions in the Frame Developer’s Kit API [2].
Moreover, reliance on a sizable document processing sys-
tem reduces the likelihood of embedding FRED else-
where.

9. Conclusions

We have designed and prototyped source code editing
technology that addresses the full spectrum of require-
ments faced by designers of software engineering tools.
This technology matches programmers’ skills and expec-
tations, and brings to bear the power of language-based
technology in support of both the people and other tools in
the environment. Meeting these often conflicting require-
ments required both a new user-model for its behavior as
well as a new architecture. Its construction stretches the
limits of the existing infrastructure.

History tells us that less ambitious designs will fail.
Some language-oriented technology can be grafted onto
simple text editors, but insufficiently rich representations
limits their power and accuracy. Some usability compro-
mises can be made to language-oriented structure editors,
but the fundamental architecture dooms their usability.

A lexical-based architecture by itself would also fail,
since a naive user-model would suffer many of the ills of
tree-oriented editors. Likewise, the new user-model by
itself would fail, since the mismatch between it and exist-
ing representations would preclude adequate implementa-
tions.

The CodeProcessor performs enough linguistic analy-
sis to permit useful tool integration, as well as useful lan-
guage-based services such as high-quality on-the-fly
typography. At the same time its fundamental behavior is
textual, permitting easy adoption by programmers, and it
includes specialized support that simplify and extend
comment management significantly.

Designing tools that are both powerful and effective is
difficult, and the more “low level” the tool, the more
demanding are the user requirements. Starting with these
requirements, however, and embracing the notion that
powerful tools must above all fit with programmers skills,
expectations, and tasks, gives hope that benefits of soft-
ware development technology can actually make a differ-
ence in the way people work.
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Abstract

Constructing complex software engineering tools and integrating them with other tools to form an effective
development environment is a very challenging task. Difficulties are exacerbated when the tool under construction
needs to be extensible, flexible and enhanceable by end users. We describe the construction of SoftArch, a novel
software architecture modelling and analysis tool, which needs to support an extensible set of architecture abstractions
and processes, a flexible modelling notation and editing tools, a user-controllable and extensible set of analysis agents
and integration with OOA/D CASE tools and programming environments. We developed solutions to these problems
using an extensible meta-model, user-tailorable notation editors, event-driven analysis agents, and component-based
integration with process support, OOA/D, code generation and reverse engineering tools.

Keywords:  software engineering tools, software architecture, modelling notations, analysis agents, tool integration

1. Introduction
Building complex software development tools and

integrating these tools with existing 3rd party tools is very
challenging [20, 7, 17]. We have been developing a novel
software architecture modelling and analysis tool,
SoftArch, which presents a number of challenges in its
construction. SoftArch needs to support an extensible set
of architecture modelling abstractions, visual notations
and editing tools. It also needs a user-controllable and
extensible collection of model analysis agents to assist
with validating an architectural model. Import of OOA
specifications and export of OOD models and code
fragments is needed, to make use of the tool
organisationally feasible.

These requirements are a challenge to meet with
conventional tool construction approaches, such as those
provided by MetaEDIT+ [12], MOOT [16], KOGGE [3],
JComposer [7], and MetaMOOSE [4].  This is because
such approaches either produce inflexible, difficult to
integrate, configure and extend tools, or provide
inappropriate abstractions for building tools like
SoftArch.

We describe the implementation of SoftArch using
the JComposer meta-CASE toolset and focus on various
adaptations we had to make to JComposer’s tool
development approaches in order to successfully realise
SoftArch. We developed an extensible meta-model with
its own visual programming language, enabling
developers to extend SoftArch’s architecture modelling
abstractions. Editing tools and notational symbols with a
high degree of user-customisability give developers a

degree of freedom when representing model abstractions.
User controllable and extensible analysis agents were
developed using event-driven components, along with a
visual end user programming language. The Serendipity-
II process management environment [5] provides this
event-based end user programming language, plus
process and work co-ordination agent support.
JComposer itself provides OOA and D model
import/export for SoftArch, along with code generation
and reverse-engineering support. These tools are
integrated using a component-based software
architecture. In addition, we have prototyped OOA and D
model interchange between SoftArch and Argo/UML
[17] using UML models encoded in an XML-based data
interchange format. A proposed approach to dynamic
architecture visualisation using SoftArch is briefly
discussed. We briefly compare and contrast the
implementation of SoftArch with other approaches.

2. Overview of SoftArch
There has been a growing need for support for

software architecture modelling and analysis tools as
systems grow more complex and require more complex
architectures [1, 10, 13, 19]. We developed the SoftArch
environment to address this need [10]. SoftArch supports
the modelling and analysis of large, complex system
architectures using primarily multiple views of visual
representations of architectural abstractions. SoftArch
uses a concept of successive refinements of architecture
abstractions, from high-level component characterisations
to detailed architectural implementation strategies.
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Figure 1. Overview of the SoftArch modelling and analysis approach.

Figure 1 illustrates this concept. An OOA
specification (codified functional and non-functional
requirements) is imported into SoftArch, typically from a
CASE tool. Architects then build an initial high-level
architecture for the system that will satisfy these
specifications. This high-level model captures the essence
of the organisation of the system’s software components.
It includes information about the non-functional
properties of parts of the system, and links architectural
components to parts of the OOA specification they are
derived from. Architects then refine this high-level model
to add more detail, making various architectural design
decisions and trade-offs, and ensure the refined
architectural models meet constraints imposed by the
high-level model. Eventually architects develop OOD-
level classes which will be used to realise the
architecture, and export these to CASE tools and/or
programming environments for further refinement and
implementation.

Figure 2 shows an example of SoftArch being used to
model the architecture of an e-commerce application (a
collaborative travel itinerary planner [8]). The travel
planner system is made up of a set of client
applications/applets (shown in view (1) at the top). These
communicate via the internet to a set of servers, in this
example comprising a chat server, itinerary data manager
and RDBMS. View (2) shows a more detailed view of the
itinerary management part of this system. This includes
the itinerary editor client and its connection to the
itinerary management server, a client map visualisation,
and a map visualisation agent, which updates the map to
show a travel path when the itinerary editor client is
updated by the user. Architecture components can be
refined  by creating a subview containing their
refinements, by enclosing their refinements (like for
“server apps” in view (1)), or using explicit refinement
links. OOA and D-level classes and services can also be
modelling in SoftArch, and refined to/from appropriate
architecture abstractions.

View (3) shows an analysis agent reporting dialogue.
A collection of user-controllable analysis agents monitor
the state of the architecture model under development.

They report inconsistencies, problems or suggested
improvements to the user non-obtrusively via this
dialogue, are run on-demand by the developer, or act as
“constraints” that validate modelling operations as they
are performed. SoftArch OOA level abstractions can be
sourced from a CASE tool, and OOD-level classes
exported to a CASE tool or programming environment
(by generating class stubs). Reverse engineering of
existing applications is also supported, with OOD-level
abstractions able to be imported from a CASE tool and
grouped by reverse-refinement into higher-level
architectural abstractions.

SoftArch poses various challenges for the tool
developer:
• Architectural abstractions include components,

associations and component annotations, each which
may have a variety of properties [10]. The
modelling abstractions available needs to be
extensible by the user of SoftArch, to allow them to
capture information about the architectural entities
they deal with in useful ways, and to add additional
components, component properties, etc. as required.

• The modelling notation and editing tools need to be
flexible and preferably extensible, supporting model
abstraction enhancement and tailorability of the
tool. Users should be able to reconfigure the tool to
display architecture abstractions as they prefer.

• Templates, or reusable architectural model
fragments, are required to assist developers in
reusing common architectural styles and patterns.
Thus SoftArch must support abstraction of views to
templates, instantiation of templates, and ideally
support keeping templates and derived model
components consistent when either changes.

• Analysis tools that constrain how a model is built
and/or check model validity on demand must be
user-controllable and extensible. When doing
exploratory modelling, modelling alternatives or
changing a model dramatically, we have found
architects prefer to relax constraints. They then
successively re-activate checks as they need them.



(3)
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Figure 2. Examples of architecture modelling and analysis in SoftArch.

• The architecture development process should be
definable and process management tool support
provided to developers. This should not just guide
development but also support automated analysis
tool activation/deactivation, and configure available
modelling abstractions appropriate to the
development process stage being worked on.

• Import/export support between CASE tools and
SoftArch should leverage existing support within
CASE tools where possible. For example, using a
CASE tool or programming environment API, using
XML-based encoding, or using source code files.

3. SoftArch Architecture and Implementation
The basic architecture of SoftArch is illustrated in

Figure 3. SoftArch maintains a collection of meta-model
entities, specifying available architectural abstractions
and basic syntactic and semantic constraints. A collection
of reusable refinement templates supports reuse of
common architectural styles and patterns. A collection of
analysis agents monitor the changing architectural model
and inform the developer of problems. An architecture
model holds the current system architectural model
(repository, multiple views, refinement links etc.).

We integrated SoftArch with the Serendipity-II
process management environment. Serendipity-II
provides architecture development process models, work

co-ordination agents based on these processes, and user
defined analysis agents used to check the validity of
SoftArch models. SoftArch was also integrated with the
JComposer component engineerint tool. JComposer
provides OOA-level class components for SoftArch and
SoftArch generates OOD-level class components in
JComposer. SoftArch also uses JComposer’s code
generation facilities to generate Java classes based on
OOD-level architectural abstractions and middleware and
database component properties described in SoftArch.
Generated Java classes can be modified in tools like
JBuilder and JDK, and changes reverse-engineered back
in JComposer and then into SoftArch. We have
prototyped simple XML-based import/export tools, which
exchange OOA and D models with Argo/UML.

We implemented SoftArch with the JViews multi-
view, multi-user software tool framework, using the
JComposer meta-CASE and component engineering
toolset [7]. Our JComposer tool also provides a
component engineering environment for JViews.

We encountered a number of challenges when using
JViews and JComposer to engineer SoftArch. JComposer
does not directly support extensible meta-models for
CASE tools, however, and its notation tailoring tool
enables users to inappropriately modify notation-
implementing editors and icons.



Figure 3. Basic architecture of SoftArch.

Flexible and extensible analysis tools can be built, but
no direct abstractions are provided by JViews, and some
Java programming is required to achieve these. Tool
integration is supported directly via component interface-
based mechanisms, but indirectly via components
implementing 3rd party tool communication protocols and
data exchange format parsing and generation.

The following sections examine the construction of
various SoftArch facilities in further detail, focusing on
the approaches we used to satisfy some of these more
challenging requirements of the tool. As JViews and
JComposer did not directly support many of these
capabilities, we discuss how we overcame these short-
comings. We then discuss the various lessons we learned
from developing SoftArch, and summarise some
directions for future software tool construction
approaches we have been exploring because of this work.

4. Architecture Modelling

5.1. Meta-model Support
SoftArch uses a basic model of architecture

components, inter-component associations and
component and association annotation to describe
architectural models [10]. Each of these architectural
entities has a set of properties associated with it. Property
values can be simple numbers or strings, or a collection
of value ranges. JComposer, like most meta-CASE tools,
assumes a tool developer would have a fixed set of tool
repository component and relationship types e.g. process
stages, in/out ports, filters and actions in Serendipity-II,
and components, association, generalisation, aspects etc.
in JComposer itself [5, 7]. Thus with SoftArch there

might be a fixed set of different architecture component,
association and annotation types, each with a fixed set of
properties, which could each be modelling as appropriate
JViews repository component specialisations.

However, in order to support user-extension of
SoftArch’s software architecture modelling capabilities,
we had to develop a meta-model for SoftArch in
JComposer, as well as the component/association/
annotation architecture model repository representation.
Figure 4 (a) illustrates the basic components of this meta-
model. SoftArch components, associations and
annotations must each have a type, with the meta-model
allowing the specification of valid component
associations and annotations. Each different type has a set
of properties, which have property type and value
constraints. For example, component types include “SA
Entity”, “OOA class”, “Process”, “Server”, “Client
Process”, “RDBMS” etc. Association types include
“dependency”, “data usage”, “event subscribe/notify”,
“message passing” etc. Annotations include “cached
data”, “data exchanged”, “events exchanged”, “replicated
data”, “process synchronisation”, etc.

Component (and association and annotation) types
also specify valid refinements allowed. For example, the
most general “SA Entity” component can be refined to
any other kind of architecture component when
modelling. The “Client Process” type cannot, however,
be refined to “Server Process” or “RDBMS” components,
as such a refinement does not make any sense.

Unlike most CASE tools, SoftArch does not
inherently enforce constraints like valid
associations/annotations, valid refinements or valid
properties/property values for components. A set of



analysis agents does this, and selected agents can be
turned on and off to allow architects greater or lesser
flexibility to model and change architectures (see Section
6). We found this facility to be very useful when
architects dramatically change an architecture, or are
doing alternative or exploratory modelling of parts of an
architecture. Relaxing some constraints makes it easier
for architects to morph or revise parts of the model
through partially inconsistent states, than if meta-model
typing constraints are always rigidly enforced.

We allow users of SoftArch to open JViews projects,
which contain partial meta-model specifications. Meta-

model components in different projects build upon one
another to construct a complete set of component and
other types available when modelling architectures with
SoftArch. Users can extend the meta-model using a
simple visual specification tool, illustrated in Figure 4
(b). Using multiple meta-model projects allows architects
to package domain-specific meta-models e.g. “basic
abstractions”, “real-time systems”, “e-commerce
systems” etc., each with specialised architecture
modelling abstractions.
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Figure 4. (a) SoftArch meta-model; (b) visually viewing and programming the meta-model.

Figure 5. Examples of SoftArch Notation Usage.



5.2. Flexible Modelling Notation
JComposer provides a notation icon editor,

BuildByWire, which can be used by tool users to
reconfigure their icon appearance in certain ways [7].
With SoftArch, we decided to take an alternative
approach and provide users with a range of icon
appearances that they could tailor as they required via the
same dialogue used to specify and view architecture
component properties. For example, Figure 5 shows two
examples of modelling the same information in SoftArch,
the top view using bus-style associations between client
and server components and the bottom node-style
connectors and enclosure of clients running on the same
host. The dialogue shown provides configuration
capabilities allowing users to tailor the appearance of
component, association and annotation icons as they
require. Automated tailoring can be achieved using
Serendipity-II task automation agents (see Section 6).

We adopted the customisable icon appearance
approach over having end users use BuildByWire directly
as it is much easier and quicker for them to tailor icons,
and they do not need to learn to use the meta-CASE tool.
They also can not make errors and cause SoftArch to fail,
which is possible using BuildByWire directly. Users can,
however, use the BuildByWire meta-CASE tool to extend
the possible icon appearances if no pre-defined ones suit
their needs.

5.3. Refinement Templates
In order to support reuse of common architectural

styles and patterns, we developed reusable refinement
templates for SoftArch. A view in SoftArch which

specifies the refinement of one (or more) architectural
components into more detailed architectural model
components can be copied and packaged for reuse. For
example, Figure 6 (a) shows a packaged refinement
template commonly used in simple e-commerce
applications. The high-level component “simple e-com
server” encloses (and thus is refined to) several parts: an
http server with html and other files, an application
server, and an RDBMS server with tables. Figure 6 (b)
shows how the user of SoftArch has reused this
refinement template when developing part of the travel
itinerary system’s architecture. SoftArch allows users to
reuse refinement templates by creating subviews for a
specified component or by automatically copying the
template components into their model (as in this
example).

JViews does not explicitly support the concept of
templates. When developing Serendipity-II’s process
templates we built a complex mechanism for copying and
instantiating template process models [5].

When developing SoftArch refinement templates we
instead extended the versioning and import/export
mechanisms JViews supports. A template is created by
exporting a view to a file then importing it and using
JViews’ component identifier (ID) mapping mechanism
to create a template. When instantiating a template, we
export the template to a file then import it, using the same
ID mapping mechanism to create new components with
unique IDs in the software architecture model.
Refinement links are created automatically by SoftArch
for subviews, and are created automatically for imported
enclosed components and explicit refinement links.

Figure 6. (a) Example of SoftArch template; (b) reused template.



This approach proved to be a much simpler solution
than that used for Serendipity-II, but provides almost
identical template support. JViews’ version merging
abstractions [7] can even be used to reconcile changes
made to the template or components copied from the
template into the architecture model.

5. Process and Analysis Support

6.1. Process Management
We wanted to provide SoftArch users with integrated

process management support to allow them to use
enacted process models to both guide and track their
work. It would also automate tedious tasks like
enabling/disabling analysis agents and configuring
allowable component types and notation appearance
during different stages of architecture model
development. Rather than building process support into
SoftArch, as done in Argo/UML [17], using CAME tools
like MetaEdit+ with very limited automation support
[12], or forcing developers to configure the tool
themselves, as in Rational Rose [15], we reused the
Serendipity-II process management environment.

Figure 7 shows a simple architecture development
process in Serendipity-II, along with a task automation
agent which enables and disables groups of analysis

agents when a particular process stage is enacted or
finished. Serendipity-II detects changes made to SoftArch
models and records these against process stages, allowing
developers to track work associated with different process
tasks/subtasks. The task automation agent illustrated here
detects process activation/deactivation (the left-hand
square icons, or “filters), then uses two actions (shaded
ovals) to enable and disable named SoftArch analysis
agents (right-hand side rectangles). The actions send
events to the SoftArch analysis agent manager to enable
or disable the named SoftArch analysis agents. The filters
and actions used here are reused from a library of such
event-driven components. Others can be implemented
using JComposer and Java and added to this library as
required.

This integration is achieved by Serendipity-II using
JViews’ component event propagation mechanism to
listen to SoftArch component events and to record these.
The task automation agents, like the one shown here,
send events to SoftArch which configure analysis agents,
configure display of notational symbols and configure
available meta-model abstractions. This produces what
seems to the developer to be a more or less seamlessly
integrated process management and task automation tool
support for SoftArch.

Figure 7. (a) Simple software process; (b) simple analysis co-ordination agent.



5.2. Design Constraints, Critics and Analysis Agents
SoftArch’s meta-models have a set of analysis agents

(implemented by event-driven JViews components)
which monitor the state of the architecture model being
developed. Agents may be fired immediate an invalid
action is made e.g. incorrect association type specified
between two architecture components, and the editing
operation reversed and an error dialogue shown.
Alternatively, they can monitor changes and
unobtrusively add messages to an analysis report dialogue
(like the one shown in Figure 2), or can be run on-
demand by developers and their error messages displayed
as a group. Users can control the way an analysis agent
behaves using a control panel dialogue e.g. change an
agent from running as a constraint to a critic, enable or
disable agents etc. As show in Figure 7, Serendipity-II
visually-specified task automation agents can also be
used to control analysis agents.

Users can also extend the set of analysis agents being
applied to a SoftArch model by using Serendipity-II’s
task automation agent specification tool. Figure 8 shows
a user-defined analysis agent that checks to see if a
component has associations (either from it to other
components, or to it from other components). The top
“guard” filters are fired when a component has been
changed, and then following filters determine if the
component has associations to/from it. If neither, an
action (bottom oval icon) generates an error event which
the analysis agent manager displays in an error dialogue
(if this agent is run as a constraint) or displays in an
analysis agent report.

Figure 8. Simple visual analysis agent specification.

6. Tool Integration

7.1. OOA/D Import & Export
Many tools exist which provide object-oriented

analysis and design capabilities. Our own JComposer is
one such example, but others include CASE tools like
Rational Rose [15] and Argo/UML [17]. We originally
planned SoftArch as an extension to JComposer, but
decided it would be more useful as a stand-alone tool,
that could ultimately be used in conjunction with other,
3rd party CASE tools.

SoftArch requires constraints from an OOA model,
particularly non-functional constraints like performance
parameters, robustness requirements, data integrity and
security needs and so on. These constrain the software
architecture model properties that needs to be developed
in order to realise the specification. These also influence
the particular architecture-related design decisions and
trade-offs software architects need to make. Similarly, a
SoftArch architectural model is little use on its own, but
needs to be exported to a CASE tool and/or programming
environment for further refinement and implementation.
Some code generation can even be done based on a
SoftArch model description e.g. appropriate middleware
and data management code generated. When reverse
engineering an application, an OOD model will need to
be imported into SoftArch and a higher-level system
architecture model derived from it. Ultimately an OOA
specification may be exported from SoftArch to a CASE
tool. Thus SoftArch must support OOA and D model
exchange with other tools, and ideally some code
generation support.

We initially used a JComposer component model as
the source for SoftArch OOA-level specification
information. JComposer allows not only functional
requirements to be captured, but has the additional benefit
of requirements and design-level component “aspects”,
which are used to capture various non-functional
requirements [9]. We developed a component that
supports basic component and aspect import into
SoftArch from a JComposer model, using JViews’ inter-
component communication facilities to link SoftArch and
JComposer.

Rather than add OOD and code generation support to
SoftArch itself, we leveraged existing support for these in
JComposer. SoftArch uses JComposer’s component API
to create OOD-level components (classes) in JComposer,
and instructs JComposer to generate code for these to
produce .java files. JComposer supports a concept of
code fragments, which SoftArch uses to generate some
basic Java component configuration, communications and
data access code for generated classes. Figure 9 illustrates
the interaction of JComposer and SoftArch to achieve
OOA import and OOD/P export for SoftArch.

JComposer was reasonably straightforward to
integrate with SoftArch as JComposer provides a JViews-
implemented, component-based API. Other CASE tools
and programming environments do not generally provide



such open, flexible integration mechanisms. Generated
.java class source code files can be used in tools like JDK
and JBuilder, and changes reverse engineered back into
JComposer and then into SoftArch. We have prototyped a
data interchange mechanism to enable SoftArch to
exchange OOA and D models with Argo/UML using an

XML-based encoding of UML models. This is a less
tightly integrated mechanism than that used by SoftArch
and JComposer, but allows other tools using the XML
exchange format for UML models to be integrated with
SoftArch in the future.
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Figure 9. Import/export approaches in SoftArch.
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Figure 10. Planned dynamic architecture visualisation using SoftArch views.

7.2. Runtime Architecture Visualisation
So far we have discussed static architecture

modelling, analysis and OOD/code generation support
with SoftArch. Ultimately we would like to extend
SoftArch’s support for architecture modelling to include
dynamic architecture visualisation and configuration i.e.
run-time visualisation and manipulation of software
architecture abstractions using SoftArch-style views. We
are beginning work to achieve this by making use of our
JVisualise component monitoring and configuration tool
[7]. JVisualise allows running JViews-based systems to
be viewed using JComposer-style visual languages. Users
can also manipulate visualised components – changing
their properties, adding or removing inter-component

relationships, and creating new component instances. We
intend to enhance JVisualise to enable any JavaBean-
based application to be thus monitored and controlled.

Figure 10 illustrates how SoftArch will be used to
visualise and configure running software architectures.
JVisualise will request running components send it
messages when they generate events, and will create
proxies to enable it to intercept operation invocations on
components. SoftArch will instruct JVisualise to send it
these low-level component monitoring events, which will
be mapped onto SoftArch OOD components using the
JComposer-generated Java class names. SoftArch will
then allow users to view information about running
components using higher-level SoftArch views, as OOD-



level components will have refinement relationships to
higher-level architecture components in these views. For
example, when components implementing a server are
created and the server initialised, SoftArch can show a
single server component has started in a high-level
SoftArch view. Similarly, when the server component
receives a message from a client, SoftArch can annotate a
high-level association link to indicate this. The user may
add a client component to this dynamic visualisation view
and connect it to the server. SoftArch can instruct
JVisualise to create appropriate components which
implement the client and initialise them.

JComposer-generated OOD models and code may be
extended if necessary to include additional monitoring
components and wrappers to intercept data and
communication messages. JVisualise would use these to
provide improved event and message monitoring and
control support.

7. Discussion
A wide variety of tools and approaches exist with

which to build a system like SoftArch. General-purpose
programming languages and frameworks, such as Java
and JFC, Borland Delphi, Smalltalk, or similar, can be
used to implement such a tool “from scratch”. However,
many tool facilities required by SoftArch, including
multiple views with consistency management, multi-user
support, version control, persistency and distribution, and
so on, are time-consuming to build using such
approaches. In addition, building tools with extensible
meta-models, visual languages and tool integration
mechanisms with these low-level abstractions is
extremely difficult.

General purpose drawing editor frameworks, such as
Unidraw [21] and Hotdraw [2], could be used to provide
editing support, and middleware architectures like
CORBA [14], DCOM [18] and Xanth [11] used to
support distribution and transparent persistency. Again,
these technologies assist tool developers but still lack
appropriately focused software tool building abstractions.
An existing CASE tool, such as JComposer [7], MOOSE
[4] or Argo/UML [17] could be extended to add
SoftArch-style support. However, such an approach
would make an already very complex tool more
monolithic, the existing CASE tool infrastructure may not
support some desired characteristics of SoftArch, and the
resultant tool may not be usable with other 3rd party tools.

A variety of meta-CASE and CAME tools exist which
might be usefully employed. Examples include KOGGE
[3], MetaEDIT+ [12], MetaMOOSE [4], MOOT [16],
and JComposer [7]. Tools like MetaEDIT+ and KOGGE
provide a range of abstractions and tools enabling quick
development of conventional CASE tools. Unfortunately
they do not support well the need for users of SoftArch to
extend architecture model abstractions and notations, do
not provide adequate model analysis tool building
support. MOOT and MetaMOOSE provide better support
for extensible meta-models for software tools, and

reasonably tailorable notations. However, they do not
support template reuse well, and their analysis tool and
tool integration capabilities are limited.

We found our JComposer tool to be of relatively
limited usefulness in developing SoftArch. JComposer
and its underlying framework, JViews, do not directly
support the concept of an extensible tool meta-model,
user-configurable icons for visual languages, patterns and
templates, model analysis and process co-ordination, and
flexible tool integration support. Process co-ordination
and tool integration are provided by additional plug-in
components (for example, the Serendipity-II process
management tool for processes, and various components
for database, remote server and XML data encoding use).
This support could be improved to make build
environments like SoftArch easier.

Allowing users to dynamically extend the meta-model
of their enviroments, the visual languages they model
with, the analysis tools and incorporate integration
mechanisms with third-party tools are all very difficult in
general. Our approach with SoftArch has been to build a
JViews meta-model that has its own visual programming
language, and have SoftArch use this model to validate
architecture models. This proved challenging to realise,
as JViews components designed for building software
tools weren't built with a meta-model in mind, but rather
a fixed, JComposer-generated model. Re-architecting
both JViews and JComposer is required to provide
suitable abstractions that make it easier to build such
facilities. Similarly, while we developed the
BuildByWire visual tool for iconic specification, this was
not intended for use by tool users directly, but for tool
developers. We need to modify the architecture of this to
better-support end user configuration of iconic
appearance, while retaining tool editing semantics.

We have built some reusable components in JViews
which can be deployed for use in other environments to
support analysis agent specification. We have also
developed some basic agents in Serendipity-II that can be
deployed by end users to extend the constraint and
analysis checking of their tools while in use. However,
these require further development to become easier to use
by both tool developers and users. Similarly, our tool
integration components built for SoftArch could be
usefully generalised to make building file and XML-
based tool integration easier. We are extending JViews'
support for patterns and templates, and also extending
JViews and JComposer to provide higher-level dynamic
monitoring to better support visualisation of running
SoftArch-modelled systems.

Alternative approaches to building SoftArch might
have used a meta-CASE tool which allows end users to
extend a meta-model and/or visual notation. However,
most meta-CASE tools, like JViews, assume tool
developers specify such meta-level constructs, rather than
tool users. Another approach would be to use tools
designed for end user computing, somewhat like
Serendipity-II's process modelling and agent specification



tools. In fact, we originally explored building most of
SoftArch using Serendipity-II in this fashion.
Unfortunately the abstractions supported by such an
approach for SoftArch-style notations, architecture
models and analysis are very difficult to express in such
end user computing tools, and the efficiency and
extensibility of the resulting solution likely to be poor.

8. Summary
We have described the construction of the SoftArch

software architecture modelling and analysis tool.
SoftArch requires a number of facilities that are
challenging to build using conventional tool development
approaches. We achieved the aim of an extensible set of
modelling abstractions and notations by using a user-
extensible meta-model and set of user-customisable
icons. Reusable refinement templates are supported by
SoftArch, leveraging component import/export and
version merging capabilities of our tool implementation
framework. Process support, including work co-
ordination and user-defined analysis agents, are supported
by integrating SoftArch with the Serendipity-II process
management environment. OOA/D import/export and
code generation and reverse engineering support are
provided by integrating SoftArch with the JComposer
component engineering/meta-CASE environment and the
Argo/UML CASE tool.

We are investigating extending our JComposer meta-
CASE toolset to better support meta-models for software
development tools, and to provide abstractions for
template and pattern reuse. In addition, we are
investigating other process management tool integration
approaches, such as the workflow management
coalition’s process interchange format. We are also
investigating other interchange formats for CASE tools
and programming environments, allowing more OOA
specification information, especially non-functional
requirements codification, to be exchanged, along with
improved OOD and code generation facilities. We are
beginning to develop an exploratory dynamic architecture
visualisation and configuration facility, using SoftArch
and the JVisualise component monitoring tool.
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Abstract
Computer-Aided Software Engineering (CASE) tools need to cooperate and this can be accomplished by exchanging

or sharing meta-data stored in a repository.
STEP is an ISO 10303 standard developed to facilitate product information sharing by specifying sufficient semantic

content for data and their usage. STEP is providing a dedicated technology, mainly an object oriented modeling language
EXPRESS and a standardized data access interface SDAI.

Meta-modeling the repository in EXPRESS allows a facilitated cooperation. Both exchange and sharing are provided
by the SDAI generated from the EXPRESS meta-schema. Some experiments are related and an industrial project is
depicted. Designer/2000 modeling is jointly used with dedicated Visual Basic code generators. Consistency is needed
between these two tools families. This is achieved with a simple tool, but the use of the experimental method proposed is
still difficult. Impedance mismatch between relational and object database paradigms may be the origin of the difficulties.

Keywords : CASE tools interoperability, CASE tools implementation, STEP standard, SDAI, EXPRESS

Introduction
CASE tools assist system development in managing

system documentation. Documentation is structured with
the help of various models, elaborated throughout the sys-
tem development cycle. Information on the different mod-
els are the data (in fact meta-data) processed by the CASE
tools. Cooperation of CASE tools rely on common meta-
data access. This kind of cooperation is described as a data
integration in [12].

CDIF (CASE Data Interchange Format) [3] and IRDS
(Information Resource Dictionary System) [6] are two ex-
amples of proposals intended to facilitate the cooperation
of CASE tools and the exchange of models between the
vendor’s tools.

In early 90’s, CDIF and IRDS are the major representa-
tives of the two approaches used to (meta-)data integra-
tion : exchange of meta-data files or sharing through a
common repository. These approaches are still valid to-
day, although the technology slightly differs (e.g. use of
marked-up language such as XMI or dedicated API).

One major component of a CASE tool is the repository.
A repository holds the system documentation in a central

place online. Various tools pick information in the reposi-
tory, process them and store the results in the repository.
The structure of data in the repository is often referred
as the meta-model. The repository itself is usually im-
plemented using either a relational or an object-oriented
database management system.

STEP is an ISO 10303 standard developed to facilitate
product information sharing by specifying sufficient se-
mantic content for data and their usage. Parts of ISO 10303
are intended to standardize conceptual structures of infor-
mation which are either generic or within a subject area
(e.g. mechanics). Standardized parts are expressed with
a dedicated technology, mainly an object-oriented model-
ing language called EXPRESS and a standard data access
interface called SDAI.

As mentioned in the STEP box, the SDAI is a functional
interface for EXPRESS-modeled database and is indepen-
dent of any particular system and language. The SDAI al-
lows data sharing as well as data exchange. The key point
is that a SDAI is automatically generated from the EX-
PRESS schema of the database (as long as an SDAI gen-
erator has been made for the target database management
system).



STEP description and implementation methods
The EXPRESS language [1] is an object-oriented modelling language. The application data are described in schemata. A

schema has the type definitions and the object descriptions of the application called Entities. An entity is made up of attributes and
constraint descriptions.
The constraints expressed in an entity definition can be of four kinds: (1) the unique constraint allows entity attributes to be con-
strained to be unique either solely or jointly, (2) the derive clause is used to represent computed attributes, (3) the where clause
of an entity constraints each instance of an entity individually and (4) the inverse clause is used to specify the inverse cardinality
constraints. Entities may inherit attributes and constraints from their supertypes.

The STEP physical file format defines an exchange structure using a clear text encoding of product data for which a conceptual
model is specified in the EXPRESS language. The mapping from the EXPRESS language to the syntax of the exchange structure
is specified in [2].

The Standard Data Access Interface (SDAI) [3] defines an access protocol for EXPRESS-modelled databases and is defined
independently from any particular system and language. The representation of this functional interface in a particular programming
language is referred to as a language binding in the standard. As an example, ISO 10303-23 is the STEP part describing the C++
SDAI binding [4].
The five main goals of the SDAI are: (1) to access and manipulate data which are described using the EXPRESS language, (2) to
allow access to multiple data repositories by a single application at the same time, (3) to allow commit and rollback on a set of
SDAI operations, (4) to allow access to the EXPRESS definition of all data elements that can be manipulated by an application
process, and (5) to allow the validation of the constraints defined in EXPRESS.
An SDAI can be implemented as an interpretor of EXPRESS schemata or as a specialized data interface. The interpretor imple-
mentation is referred to in the standard [3] as the SDAI late binding. An SDAI late binding is generic in nature. The specialized
implementation is referred to in the standard as the SDAI early binding.
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This paper argues that given a CASE tool, data interop-
erability can be accomplished through an SDAI generated
from the EXPRESS schema resulting from the meta-model
used in the CASE tool. Benefits of this method include
data exchange as well as data sharing, allowing system de-
velopers to use best suited CASE tools to their projects,
even if they belong to different CASE toolsets. However,
complex repository causes a complex meta-modeling and
the resulting SDAI can be difficult to use.

The paper is organized as follows: an example of dif-
ferent data integration is described in section 1. Section 2
shows how different CASE tool were needed and used in a
commercial system. Then we finish with perspectives and
a conclusion.

1 Examples of data integration

1.1 UML

Within the context of a research project, colleagues
were faced to use jointly two kinds of CASE tools: a UML
tool and a SDL tool. The cooperation should be the follow-
ing: an UML tool will be used to design class diagrams and
collaboration diagrams. SDL code will be generated from
both diagrams and then imported into the SDL tool.

Within another research project, a colleague wished to

use UML to design class diagrams and then generate a
SmallTalk-80 implementation. Unfortunately, he didn’t
find any UML tool able to generate SmallTalk-80 code.

We started two different projects of two persons within
the context of final-year course-work (bachelor students).
We chose Argo/UML from Jason Elliot Robbins [10] for
its open-implementation and its conformity to the UML
Meta-model 1.1 [1]. Moreover, Argo/UML allows the two
types of data integration mentioned above : a set of Java
classes providing an API (Application Programming Inter-
face) to the meta-data as well as a file exchange format
(.xmi).

Meta-programming with an API For the cooperation
between Argo/UML and SDT [11], a SDL tool, meta-
programming with ARGO API was chosen. Argo/UML
does not use a database management system to store infor-
mation about diagrams. Hence in order to share meta-data
with the class and collaboration diagrammers, students [4]
incorporated a SDL generator in Argo/UML. This genera-
tor was written in Java.

Part of the time devoted to the project has been used
to understand the UML meta-model (available only in a
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graphical UML form) and to learn the use of the API
(formed by a total of 120 classes) and the way it matches
the meta-model. Then the students were able to use the
API to write their SDL generator.

Meta-data exchange In the second project, meta-data
exchange between Argo/UML and the generator was the
solution we kept. The generator was built with Eugene, our
STEP-based application generators builder [9]. Eugene is
used within the context of research projects at Brest Uni-
versity and also in industrial projects in Syseca, a software
company.

Like the first project, part of the time was devoted to
UML meta-model understanding. Building an application
generator with Eugene requires an EXPRESS description
of the meta-model of the generator inputs (here a .xmi file)
and students did it [5]. Then a meta-program was written
in order to generate Smalltalk-80 code from meta-data.

Discussion We cannot compare the time devoted to real
development in each project. The SDL generator was writ-
ten without any meta-environment whereas the SmallTalk-
80 generators uses that type of environmment. But there
were two successive phases in both projects, i.e. learning
the system (API or meta-model) and programming. Two
points should be noted:

� Learning an API is an experimental task, and no
learning method can be provided. Consistency in the
naming of elements and operations in the API helps
to make learning and use more efficient.

The use of Eugene implies writing of a schema of the
meta-model. The learning phase is in fact a meta-
modeling phase. This activity helps the students in
the learning of UML meta-model.

� Programming an API depends on the API itself. Lit-
tle experience can be re-invested in another API.

Meta-programming is based on the meta-modeling
phase, and another project will require another meta-
modeling activity. So some meta-modeling experi-
ence will grow from a project to another.

1.2 STEP use

Cooperating with a CASE tool is made easier if the
CASE tool provides an access to meta-data (API, meta-
data files or others formated outputs). Experience gained
from the above projects enables us to provide a method
(supported by a tool, an SDAI generator) to write a CASE
tool intended to cooperate with an existing CASE tool (see
fig. 2):

Meta-modeling The structure of the existing (source)
CASE tool repository is modeled with EXPRESS
schemata.

SDAI generation An SDAI for the management system
running the new CASE tool (called the target sys-
tem below) is generated. This requires naturally an
SDAI generator suited to the target system, but such
an SDAI generator is re-used for each CASE tool
available within this target system.

The SDAI is useful for each source CASE-tools:
meta-data produced by a source CASE-tool are im-
ported into the new CASE tool. For such a task, a
specific program (i.e. a program parser or a meta-
data converter) is implemented. An SDAI can be
generated within the source system and used for this
implementation.

CASE tool development The development of the new
CASE tool is based on the SDAI, which provides
a standard access to the meta-data exported from the
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existing CASE tool and managed by a STEP reposi-
tory.

2 Working with different CASE tools
2.1 The context

At Syseca Brest, a small team (3-6 persons) has been
developing new software within a global project named
ARIANE : the management of the textile department of a
supermarket chain. Technical choices made at the begin-
ning of the project (1995) and still valid are Oracle7 (now
Oracle8) for the database management system and Visu-
alBasic and SQL for the client software. System analy-
sis and design is done with the help of Designer/2000; the
repository is continually updated and SQL DDL code (the
database schema) used in the project is always obtained by
the code generators of Designer/2000.

Since 1998, a part of the team’s effort has been de-
voted to developing and maintaining a family of VisualBa-
sic generators, called GARI (for Generator ARIane). Eu-
gene is the environment used to build the generators. In-
put to these generators are either SQL select statements or
EXPRESS schemata hand-made from Designer/2000 in-
formation.

2.2 Designer/2000

Oracle Designer/2000 is a suite of software toolsets
for designing Windows-based client/server applications
that interact with an Oracle database. Designer/2000 in-
corporates support for busines process modeling, system
analysis, software design and code generation [8]. De-
signer/2000 provides a multi-user repository implemented
using Oracle’s RDBMS. The repository consists of tables
that store information on the system we are analysing,
designing and producing. A good introduction to De-
signer/2000 software toolsets and also a software devel-
opment method using these tools can be found in [2]. De-
signer/2000 provides an Application Programming Inter-

face (API) to the repository. The API is a set of database
views and PL/SQL packages that allow safe access to the
repository data (meta-data).

2.3 Visual Basic Generators

The GARI family is used throughout the projects. Some
generators use EXPRESS schema as inputs and still pro-
duce VB code. These schemata need to be hand-written
from the meta-data of the repository. They may include
entities and their attributes or tables and their columns, all
of which have individual properties useful for the genera-
tors. The re-writing in EXPRESS schema of the informa-
tion still present in the Designer/2000 repository is a te-
dious task, prone to errors and requiring repeated efforts to
maintain the mapping between Designer/2000 information
and VB code generated.

So the problem lies on providing inputs to GARI gen-
erators with a guaranteed and automatic consistency with
the Designer/2000 repository. This will provide a seamless
integration of all CASE tools used in the project.

2.4 Possible solutions

2.4.1 Generating EXPRESS from repository data

A first solution will be making a translation tool able to
produce EXPRESS schema from the repository meta-data.
The seamless integration is obtained through three steps
(see our current implementation depicted in figure 3): anal-
ysis and design using Designer/2000 tools, generation of
the EXPRESS schema, generation of the VB code with the
GARI family.

Pros and cons It took three weeks to make the above
translation tool (called Malam) [7]. It works as expected
and provides consistency. But this consistency is possible
because there is no semantic loss between the information
needed in the repository and the translation in EXPRESS.
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We are working essentially on table definition which are
easy to translate.

2.4.2 Meta-modeling the repository structure in EX-
PRESS

As stated in conclusion of section 1, cooperating with De-
signer/2000 will be made easier by an SDAI operating on
the repository, this SDAI being generated from a meta-
model of the repository.

Since the repository is a standard SQL database, the
translation tool above depicted in 2.4.1 can be used to pro-
duce automatically an EXPRESS schema of the repository
structure. We did so but we now need to refine the schema.
As a matter of fact, the repository consists of a relatively
small number of tables that store the meta-data. These ta-
bles have complex (undocumented) relationships. There
are, however, many views of these tables that represent
repository objects, such as entities and attributes. These
views are an important part of the API because they al-
low us to examine the definition of objetcs created through
the toolsets [2]. Unfortunately, if translating automatically
SQL DDL statements is straightforward, this is not true
with SQL DML statement, specially if they are complex.

Pros and cons The generated schema contains more than
5000 EXPRESS statements. Generating an SDAI for this
schema provides a complex API, usable in many situations.
Until now, we haven’t built new tools that will use this
SDAI. Intuitively, we expect that using this SDAI will be
so complicated that it requires company investments.

3 Perspectives
Perspectives depends on the quality and the readibil-

ity of the Designer/2000 repository meta-modeling. Com-
mercial tools often change but our experience with Oracle

CASE tools indicates that the repository (formerly named
Case*Dictionary in previous version of Oracle CASE) is
stable, at least for the analysis and design phase. So, we
are pursuing our efforts in repository understanding and
meta-modeling refinements. The data-flow between De-
signer/2000 and the futur family of tools is depicted in
figure3.

The difference of paradigm between a relational
database (the repository) and an object-oriented schemata
causes some problems, which may not be solved automat-
ically.

4 Conclusion

We need a cooperation between different CASE tools,
especially if we wish to guarantee consistency. This re-
quires access to the CASE tool repositories. STEP is an
ISO standard (ISO-10303) for the computer-interpretable
representation and exchange of product data. We success-
fully used STEP framework to produce SDAI automati-
cally from the repository meta-modeling, and using this
standard meta-data access more easily than the dedicated
repository API. However, when the repository structure is
complex, following this approach requires investments. In
fact it depends on the quality of the meta-model. Hence
in some situations, dedicated translation tools using the
repository API are easier to develop.
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Abstract

Tool builders dealing with many different languages, and language designers require sophisticated pretty-print techniques
to minimize the time needed for constructing and adapting pretty-printers. We combined new and existing pretty-print
techniques in a generic pretty-printer that satisfies modern pretty-print requirements. Its features include language inde-
pendence, customization, and incremental pretty-printer generation.

Furthermore, we emphasize that the recent acceptance ofXML as international standard for the representation of struc-
tured data demands flexible pretty-print techniques, and we demonstrate that our pretty-printer provides such technology.

Keywords: documentation, languages,XML , tool construction, software engineering

1. Introduction

Pretty-printing is concerned with formatting and presen-
tation of computer languages. These languages include
ordinary programming languages and languages defining
data structures.XML [6], recently accepted as international
standard for the representation of structured data, brings
formatting issues (related to the transformation ofXML

documents to user-readable form) towards a broad com-
munity of tool builders.

These tool builders as well as language designers de-
mand advanced pretty-print techniques to minimize the
time required for developing new or adapting existing
pretty-printers. For both it is essential to maximize lan-
guage independence of pretty-printers and to be able to
add support for new languages easily. Moreover, pretty-
printers should minimize code duplication, be customiz-
able, extensible, and easy to integrate.

Most pretty-print technology used in industry today
does not meet these requirements. This lack of sophis-
ticated technology makes development and maintenance
costs of pretty-printers high. Despite the academic re-
search in this field which has yielded advanced pretty-
print techniques, we observe that these techniques have not
come available for practical use yet.

In this paper we combine new and existing techniques
to form a pretty-print system that satisfies modern pretty-
printer requirements. It features language independence,
extensibility, customization, pretty-printer generation, and
it supports multiple output formats including plain text,
HTML, and LATEX. Furthermore, the pretty-printer can eas-
ily be integrated in existing systems and is freely available.

This article is organized as follows. Section 2 describes
several aspects of pretty-printing by summarizing earlier
work in this field. In Section 3 we describe the design and

implementation of the generic pretty-printerGPP. Several
case studies are discussed in Section 4. Section 5 explains
how our pretty-printer can be used to formatXML docu-
ments depending on their document type definition (DTD)
and how it may function as alternative to the extensible
style language (XSL). Contributions and future work are
addressed in Section 6.

2. State of the art

Traditionally, mostly ad-hoc solutions have been used to
cope with the problem of formatting computer languages.
Not only were traditional pretty-printers bound to specific
languages, they also contained hard-coded formatting rules
which made them non-customizable.

The first general solution to the pretty-print problem
was formulated by Oppen [20]. He described alan-
guage independentpretty-print algorithm operating on a
sequence of logically continuous blocks of strings. The di-
vision of the input by delimiters (either block delimiters or
white space) provides information about were line breaks
are allowed.

Oppen also introducedconditional formattingto sup-
port different formattings when a block cannot fit on a
single line. He distinguishes inconsistent breaking, which
minimizes the number of newlines that are inserted in a
block to make it fit within the page margins, and consis-
tent breaking, which maximizes the number of newlines.
Conditional formatting has been adopted in most modern
pretty-printers.

In addition to Oppen, many language independent
pretty-printalgorithmsare described in the literature. Tra-
ditional algorithms which are more or less similar to Op-
pen’s include [23, 18, 24, 19, 30]. A consequence of con-
ditional formatting is an exponential growth of the pos-



sible formattings. While the traditional algorithms only
consider a small subset of these formattings in order to
limit execution time, more advanced formatting algorithms
are designed in the community of functional programming
[12, 26, 14, 34]. These algorithms heavily depend on lazy
evaluation to abstract over execution time. This allows
the pretty-printers to select an optimal formatting in a lazy
fashion from all possible ones.

Several formatting primitives have been suggested as
alternative to the blanks and blocks of Oppen. Modern
pretty-printers describe formatting in terms ofboxes(as in-
troduced by [15] and [18]).PPML[19] defines a formalism
based on boxes to define the structuring of displays. It in-
troduces different types of boxes for different formatting.
Examples are theh box for horizontal formatting andv for
vertical formatting. Based onPPML, [30] introduces the
languageBOX, mainly to solve some technical problems
of PPML. Another similar approach toPPML is described
by Boulton [5]. He describes a formalism to annotate a
grammar with, among others, abstract syntax and format-
ting rules. The syntax for specifying formatting is based
on PPML.

Oppen [20] observed that the process of pretty-printing
can be divided in a language dependentfront-endfor the
translation of a program text to some language independent
formatting, and a language independentback-endwhich
translates the language independent formatting to an output
format. All current pretty-printers that we are aware of
follow this structure.

The division of a pretty-printer in a front-end and back-
end not only makes a back-end language independent, it
also makes a front-end output format independent. Despite
this fact, by far the most back-ends that are described in the
literature concentrate on the translation from a language in-
dependent input term to plain text. Articles which address
the translation to other output formats include [19, 30, 27].

A nice formatting is a question of style and personal
taste [16]. Blaschek and Sametinger [4] emphasize that
the ability to customizethe generated output of a pretty-
printer to one’s favorite style can improve the readability
and maintainability of programs significantly. Customiz-
ing existing pretty-printers mostly requires changing the
code manually, or modifying the formatting rules as anno-
tations of the grammar (which, as a result, also modifies
the grammar). An ordinary user cannot be expected to per-
form such modifications. A more user-friendly approach of
customizable pretty-printing is described by [4]. They in-
troduce user-adaptable pretty-printing using personal pro-
files which provide individual formatting rules for general
language constructs.

A front-end for a language can be constructed by hard-
coding the formatting rules manually, or be generated from
a grammar annotated with formatting rules. The first ap-
proach is most commonly used, for example in [13, 19].
The latter approach, suggested by Oppen (who emphasized
the importance of separating pretty-print information from
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Figure 1. An overview of the generic pretty-printerGPP. It
consists of a table generator, a front-end (parsetree2-
box ), and three back-ends which produce plain text,HTML
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code), is used in [23, 24, 5].
A front-end can also be generated from a grammar

without annotated format rules by a pretty-printergener-
ator that analyses the structure of a grammar to “guess”
a suitable layout. Despite the usefulness of such gener-
ators in environments where a large number of evolving
languages are used, little work has been carried out on this
topic. The only pretty-printer generator that we are aware
of is described in [30]. They describe a generator which
produces dedicated, language specific front-ends. These
front-ends contain formatting rules and the code to perform
the formatting. The actual formatting can be customized
by adapting or extending the generated code. Their ap-
proach yields highly customizable formatters but the for-
matters are language dependent and customization requires
modifying the generated code (and thus requires under-
standing the generated code).

3. A pretty-printer for every occasion

Despite all research on the topic of pretty-printing, most
pretty-printers that are used in practice are language spe-
cific, inflexible, and support only a very restricted number
of output formats. Moreover, for many languages not even



a pretty-printer exists. Adding support for a new language
or a new output format often means implementing a new
pretty-printer from scratch. This is not only a time consum-
ing task, but also introduces much code duplication which
increases maintenance costs.

On the other hand, more advanced pretty-printers that
have been developed as part of research projects are often
incomplete (because they only address a limited number of
pretty-print aspects), or are tightly coupled to a particular
system [19, 30] which make them hard to use in general.

Summarizing, there is a great need for advanced pretty-
print techniques in industry which are flexible, customiz-
able, easy to use, and language independent. Despite the
research in this field there are currently no such pretty-
printers for practical use available.

In the remainder of this section we will describe
the architecture and design of the generic pretty-printer
GPP which satisfies modern pretty-print requirements.
The pretty-printer is language independent and divided
in front-ends and back-ends to make future extensions
easy to incorporate. A box based intermediate format
(called BOX), which supports comment preservation and
which is prepared for incremental and conservative pretty-
printing [25], is used to define the formatting of languages
and to connect front-ends with back-ends. Furthermore,
the pretty-printer uses new techniques to support cus-
tomization of pretty-printers (based on re-usable, modular
pretty-print tables), and incremental pretty-printer gener-
ation. We support multiple output formats including plain
text,HTML, and LATEX. Finally, the pretty-printer can be in-
tegrated easily in existing systems, or be used stand-alone
and is freely available. Figure 1 gives a general overview
of the architecture ofGPP.

3.1. An open framework for pretty-printing

We followed the well-known approach of dividing a pretty-
printer in a language dependentfront-endand a language
independentback-end. This allows for an open pretty-print
system which can easily be extended to support new lan-
guages and output formats. A front-end for languageL

expresses the language specific layout ofL in terms of a
generic formatting language. A back-end producing output
formatO translates terms over this formatting language to
O. A pretty-printer forL producingO as output can now
be constructed by connecting the output of theL specific
front-end to the input of the back-end forO. This architec-
ture thus isolates language specific code in the front-end
and output format dependent code in back-ends. Adding
support for a new language only requires developing a new
front-end for the language, likewise, to add support for a
new output format, only a new back-end has to be devel-
oped.

We used the domain specific languageBOX [30] to con-
nect the output of front-ends to the input of back-ends (see
Section 3.2 for a description of theBOX language). By us-
ing BOX to glue front-ends and back-ends, the framework

operator

options
description

H hs Formats its sub-boxes horizontally.
V vs, is Formats its sub-boxes vertically.
HV hs, vs, is Inconsistent line breaking. Respects

line width by formatting its sub-boxes
horizontally and vertically.

A hs, vs Formats its sub-boxes in a tabular.
ALT Depending on the available width, for-

mats its first or second sub-box.

Table 1. PositionalBOX operators and supported space options
(hs defines horizontal layout between boxes,vs defines vertical
layout between boxes, andis defines left indentation).

allows anyBOX producer to be connected to anyBOX con-
sumer. This flexibility allows a whole range of front-ends
and back-ends of different complexity to be connected to
the pretty-print framework. For example, multiple front-
ends for a single language may exist simultaneously, pro-
viding different functionality or different quality. One of
them might be optimized for speed, performing only basic
formatting for instance, while another is designed to pro-
duce optimal results at the cost of decreased performance.

3.2. The box markup language

BOX is a language independent markup language designed
to describe the intended layout of text. Being a box-based
language, it allows a formatting of text to be expressed as a
composition of horizontal and vertical boxes.BOX is based
on PPML[19] and contains similar operators to describe
layout and conditional operators to define formatting de-
pending on the available width. In addition toPPML, BOX

supports tables, fonts, and formatting comments. In the
remainder of this section we will give a brief overview of
BOX (for a more complete description of the language we
refer to [27]).

A term over theBOX language consists of a nested com-
position of boxes. The most elementary boxes are strings,
more complex boxes can be constructed by composing
boxes usingpositional operatorsandnon-positional oper-
ators. The first (see Table 1 for a list of available positional
operators) specify the relative positioning of boxes. The
latter (see Table 2) specify the visual appearance of boxes
(by defining color and font parameters), define labels, and
format comments.

Examples of positional operators are theH andV oper-
ators, which format their sub-boxes horizontally and verti-
cally, respectively:

H [ B1 B2 B3 ] = B1 B2 B3

V [ B1 B2 B3 ] =

B1

B2

B3



operator

description
F Operator to specify fonts and font attributes.
KW Font operator to format keywords.
VAR Font operator to format variables.
NUM Font operator to format numbers.
MATH Font operator to format mathematical symbols.
LBL Operator used to define a label for a box.
REF Operator to refer to a labeled box.
C Operator to represent lines of comments.

Table 2.Non-positionalBOX operators.

The exact formatting of positional box operators can be
controlled usingspace options. For example, to control the
amount of horizontal layout between boxes, theH operator
supports thehs space option:

Hhs=2 [ B1 B2 B3 ] = B1 B2 B3

BOX as we use it slightly differs from its initial design as
described in [30]. We simplified the language (mainly to
improve comment handling) and made it more consistent.
Furthermore, we introduced a generalization of the condi-
tional HOV operator. This operator, which is available in
some form or another in most formatting languages, for-
mats its contents either completely horizontally or com-
pletely vertically depending on the available width (con-
sistent line breaking). We introduced as generalization the
ALT operator:

ALT [ B1 B2 ] =

B1

or

B2

This operator chooses among two alternative formattings
depending on the available width. It chooses for its first
sub-box when sufficient space is available and for its sec-
ond sub-box otherwise.

3.3. Pretty-print tables

We introduce the notion of interpreted formatting in which
a front-end (see Section 3.4) formats its input by interpret-
ing a set of language specific formatting rules. Formatting
rules and code are separated by defining the formatting
rules in pretty-print tables. Each formatting rule forms a
mapping of the formpL �! b (wherepL denotes a pro-
duction of the grammar of the languageL andb denotes
the correspondingBOX expression) and specifies how the
language constructpL should be formatted.

Representing formatting rules in tables instead of hav-
ing a single dedicated pretty-printer that contains all pretty-
print rules for a language provides the following advan-
tages. First, tables support a modular design of pretty-
printers. As a consequence, a pretty-printer can follow
the same modular structure as the corresponding modular

“package” Name “;” ! PackagedDeclaration —
H [KW[“package”] H hs=0 [ 1 “;”]],

“import” Name “;” ! ImportDeclaration —
H [KW[“import”] H hs=0 [ 1 “;”]],

“import” Name “.” “*” “;” ! ImportDeclaration —
H [KW[“import”] H hs=0 [ 1 “.” “*” “;”]]

Figure 2. A sample of a pretty-print table. The table con-
tains mappings from grammar productions in SDF (on the
left-hand side of ‘—’) to correspondingBOX expressions
(on the right-hand side of ‘—’).

grammar and re-use is promoted. Second, pretty-print ta-
bles promote incremental pretty-printer generation. When
one or more modules of a modular grammar are modi-
fied, only the tables corresponding to the modified modules
have to be re-generated. Third, tables allow easy personal
customization by separating globally defined or generated
formatting rules, and customized rules in different tables.
Defining an ordering on tables determines which format-
ting rule should be applied when multiple rules exist for
a single language construct. It allows a user to customize
the pretty-printer by defining additional rules with higher
precedence. Fourth, the separation of formatting rules in
tables allows for a genericBOX producer which, when in-
stantiated with language specific pretty-print tables, per-
forms language specific formatting (see Section 3.4).

We use the syntax definition formalism SDF [11] to ex-
press language constructs in pretty-print tables. SDF in
combination with generalized-LR parser generation [22]
offers advanced language technology that handles the full
class of context-free grammars. By using this technology
in the pretty-printer we also obtain pretty-print support for
this class of grammars. In addition to SDF, the general idea
of pretty-print tables containing mappings from language
constructs toBOX expressions can easily be implemented
for other syntax definition formalisms (likeBNF) or XML

as well.

Figure 2 shows an example of a pretty-print table which
defines a format for three language constructs of the pro-
gramming language Java. The first entry in the table de-
fines a formatting forPackagedDeclaration1. This lan-
guage construct consists of the terminal symbolspackage
and ‘;’, and the non-terminal symbolName. The format-
ting rule expresses that these three elements are layout hor-
izontally, thatpackage is formatted as keyword, and that
no white space is inserted between the non-terminalName
and the semicolon. Observe the use of the numbered place
holder (‘ 1’) to denote theBOX expression corresponding
to the formatted non-terminal symbolName. The remain-
ing formatting entries define similar formattings for the
two import declaration constructs of Java.

1Please note that productions in SDF are reversed with respect to for-
malisms likeBNF. On the right-hand side of the arrow is the non-terminal
symbol that is produced by the symbols on the left-hand side of the arrow.



3.4. A generic box producer

We designed a generic, language independent front-end
which applies formatting rules defined in an ordered se-
quence of pretty-print tables to a parse tree. Separating
the language specific formatting rules in tables allows the
generic front-end to be re-used unmodified to format any
language. Constructing a pretty-printer for a new language
only requires language specific formatting rules to be de-
fined in tables.

The front-end operates on a universal format for the
representation of parse trees (called AsFix [9]), which pre-
serves layout and comments. Operating on parse trees in
general has the advantage that lexical information for dis-
ambiguation is available. Therefore we do not have to
deal with the insertion of brackets to disambiguate the gen-
erated output2. Because AsFix is a universal parse tree
format, it can represent parse-trees for any language and
therefore allows generic parse-tree operations to be defined
in language independent tools. As a result, the transforma-
tion of a parse tree toBOX can be defined language inde-
pendently in the single toolparsetree2box (see Fig-
ure 1). Using AsFix has the additional advantage that all
layout is preserved in the tree which simplifies comment
handling.

The front-endparsetree2box constructs aBOX

term for a parse tree of a language by traversing the parse
tree in depth first order and simultaneously constructing
a BOX term according to the language specific formatting
rules in the pretty-print tables. For each node in the tree
that corresponds to a production of the languageparse-
tree2box searches the tables for the correspondingBOX

expression. When a format rule for a production does not
exist,parsetree2box automatically generates a default
rule (this approach makes pretty-print entries optional be-
cause simple formattings are constructed dynamically for
missing entries). TheBOX term thus obtained is then mod-
ified to include original comments, and is instantiated with
BOX terms representing the formatted non-terminal sym-
bols of the production. Original comments are restored by
insertingC boxes (containing the textual representation of
comments) in theBOX term, and by positioning these com-
ment boxes using theH andV operators to preserve their
original location.

3.5. Pretty-printer generation

Constructing a pretty-printer for a language by hand is
a time consuming task. The ability to quickly and eas-
ily obtain pretty-printers becomes more and more impor-
tant when the number of languages and dialects in use in-
creases. For example, development of domain specific lan-
guages (DSLs), and language proto-typing requires the use

2We do not consider constructing valid parse trees (i.e., parse trees
containing all lexical information for disambiguation) as part of pretty-
printing. In case a tree is not constructed by a parser directly, disam-
biguation (like described in [30] and [21]) might be needed and has to be
performed by third party tools.

Figure 3. A screen dump showing the result of theHTML

code of a Java code fragment as produced bybox2html .

of a large number of pretty-printers and demands enhanced
technology for the construction of pretty-printers.

Pretty-printer generation, based on grammars without
annotated format rules, is such technology. This technol-
ogy supports the generation of a pretty-printer for a lan-
guage by “guessing” a suitable layout based on grammar
analysis and formatting heuristics. Obviously, the result of
such generated pretty-printers will not satisfy completely
in most cases and the ability to adapt generated pretty-
printers strongly increases the usefulness of the generator
and its generated formatters.

In addition to the pretty-printer generator described in
[30], which produces dedicated, language specific front-
ends, we introduce an alternative technique for the genera-
tion of pretty-printers which benefits from the table based
pretty-print approach. Due to the separation of language
specific formatting rules and generic code to perform a
formatting, there is no need to generate any code. Only
pretty-print tables have to be generated and the generic for-
matting engineparsetree2box can be re-used for each
language to perform the actual formatting. This approach
completely separates data (the pretty-print tables) and code
(the generic formatting engine). The user can customize
the formatting by overruling generated formatting rules in
tables with higher precedence (see Section 3.3).

In our approach, a pretty-printer generator only con-
sists of a table generator. We developed such a table gener-
ator which constructs a separate pretty-print table for each
module of a modular SDF grammar. The generator cur-
rently only uses simple techniques to generate formatting
rules for a language. Improving the generation process by
using more advanced heuristics and grammar analysis is a
current research topic. Another approach to improve the
generated pretty-print tables would be to guide the genera-
tion process by means of user profiles (similar to [4]).



public class HelloWorld
f

public static void main( String[] args )
f

System.out.println( “Hello World!” );
g

g

Figure 4. The result of formatting a Java code fragment
using the back-endbox2latex .

3.6. Box consumers

A back-end transforms a language independentBOX term
to an output format. The advantage of usingGPP de-
pends on the number of available output formats.GPPcur-
rently supports the output formats plain text,HTML, and
LATEX, which are produced by the back-endsbox2text ,
box2html , andbox2latex , respectively.PDF can also
be generated but indirectly from generated LATEX code.

From the three back-endsbox2text is the most com-
plicated because it has to perform all formatting itself. The
translation toHTML and LATEX is less complicated because
the actual formatting is not performed by the back-end but
by a WEB browser or LATEX. The implementation of these
back-ends therefore consists of a translation from aBOX

term to nativeHTML or LATEX code.

The translation to text consists of two phases. Dur-
ing the first phase theBOX term is normalized to con-
tain only horizontal operators, vertical operators, and com-
ments. During the second phase the simplifiedBOX term is
translated to text and the final layout is calculated.

The formatting defined in aBOX term is expressed
in HTML as a complex nested sequence ofHTML ta-
bles. In contrast toBOX, HTML is designed to format a
text logically (consisting of a title, a sequence of para-
graphs etc.), not as a composition of horizontal and vertical
boxes. Only the use ofHTML tables (in which individual
rows correspond to horizontal boxes and tables to vertical
boxes) yielded a correctHTML representation of the for-
matting defined in aBOX term. Figure 3 shows a screen
dump of a pretty-printed Java code fragment produced by
box2html .

LATEX code, representing the formatting defined in a
BOX term, is obtained by translating theBOX term to cor-
respondingBOX specific LATEX environments. These envi-
ronments provide the same formatting primitives asBOX

in LATEX. As an additional feature,box2latex allows
one to define a translation fromBOX strings to native LATEX
code. This feature is used to improve the final output, for
instance by introducing mathematical symbols which were
not available in the original source text (for example, it al-
lows one to introduce the symbol ‘�’ in the output where
the wordphi was used in the original source text). Fig-
ure 4 shows the result of processing a small Java code frag-
ment bybox2latex .

3.7. Implementation

For the implementation of the individual tools ofGPPwe
combined modern parsing techniques with compiled al-
gebraic specifications. The parsing techniques, based on
SGLR (scannerless generalized-LR) parsing [32], allow us
to easily define and adapt grammars and automatically
generate parsers from them. The basic functionality of
the individual tools is implemented as a number of exe-
cutable specifications in the algebraic specification formal-
ism ASF+SDF [11, 3, 31]. From these specifications we
obtained C code by compiling the specification using the
ASF+SDF compiler [28]. The generated C code is efficient
and gives a promising performance ofGPP despite of its
interpreted approach based on pretty-print tables, and its
implementation as algebraic specification.

The generated parsers and compiled specifications are
glued together into a single component using Unix scripts.
We usemake in combination with dynamically generated
Makefiles as performance improvement, to prevent doing
redundant work.

In order to process files as produced bybox2latex
by latex , the style fileboxenv is required which con-
tains the implementation of theBOX specific environments.
For a general usage of this style file and for an in-depth dis-
cussion of its implementation we refer to [7].

4. Case studies

4.1. Formatting real-world languages

We experimented with the pretty-printer and its generator
and constructed pretty-printers for some real-world lan-
guages. These languages include the programming lan-
guage Java and the extensible markup languageXML . An
application of the pretty-printer in industry is its use as for-
matter for Risla [2], a domain specific language for de-
scribing financial products.

For the Java pretty-printer we first constructed a gram-
mar in SDF according to the Java Language Specifica-
tion [10]. Then we generated pretty-print tables from this
grammar. Finally, we customized the pretty-printer manu-
ally to meet our requirements. Figure 3 and Figure 4 show
the result of formatting a small Java program. Figure 3 is
obtained by usingbox2html , for Figure 4 we usedbox-
2latex .

The XML formatter is another application ofGPP for
real-world languages. Its development was very similar to
the construction of the Java formatter. We first constructed
a grammar fromXML in SDF according to [6], then we
generated and customized pretty-print tables. Thanks to
the table based approach, we were able to re-use these ta-
bles for the pretty-printer of the language depicted in Fig-
ure 5 and 6. Similar to the grammar of this language, which
combines the languagesXML andBOX (see Section 5), we
were able to also construct a corresponding pretty-printer
for this language by combining (and re-using) the pretty-
printers ofXML andBOX.



4.2. Tool construction

The individual components ofGPPprovide basic language
independent pretty-print facilities. These components can
easily be used in combination with additional software
to construct advanced special-purpose tools. We have
combined these generic tools for instance, with language
specific features to form two advanced formatting en-
gines for the algebraic specification formalism ASF+SDF

[3, 11, 31]. The tooltolatex generates a modular
LATEX document from an ASF+SDF specification by for-
matting each individual module incrementally, and com-
bining them to form a single document with a table of
contents and cross references between modules. Similarly,
the tooltohtml generates hyper-linkedHTML documents
from a modular specification, featuring visualization of the
import structure of the specification and hyper-links be-
tween modules.

Other examples of the use of the individual components
for tool construction include the integration ofGPPin the
interactive ASF+SDF Meta-Environment [29], and its inte-
gration and distribution as part of XT [8], a distribution of
tools for the construction of program transformation sys-
tems.

5. Formatting xml documents

The extensible markup languageXML [6] is a universal for-
mat for the abstract representation of structured documents
and data. Pretty-print techniques are used to transform
XML documents to user-readable form. FormattingXML

documents is being standardized in the extensible style lan-
guageXSL [1]. The combination ofXML andXSL separate
content (XML ) from format (XSL). Since the intended use
of XML initially was limited toWEB documents, techniques
for pretty-printingXML documents mostly concentrated on
the transformation toHTML.

We expect that the need to representXML documents in
other formats thanHTML will grow rapidly. Moreover, al-
ternatives toXSL are desirable because the translation from
XML to HTML usingXSL is considered to be difficult [17].
AlthoughXSL is powerful, its design might prove to be un-
necessarily difficult for the common case and thus makes
more simple pretty-print techniques sensible.

Our pretty-printer provides such techniques and com-
bined with its ability to produces different output formats
makes it suitable for formattingXML documents.

5.1. Using box to format xml documents

The Document Type Definition (DTD) of an XML docu-
ment defines the structure of a document. TheDTD of an
XML document can thus be seen as language definition or
grammar, and its contents as a term over that language.

A pretty-printer for a language can be constructed by
defining mappings from language productions toBOX ex-
pressions. Similarly, a pretty-printer for a particularDTD

<!ELEMENT person (name, surname, age)> —
V is=3 [“person” 1 2 3],

<!ELEMENT name (#PCDATA)> —
H [“name: ” 1],

<!ELEMENT surname (#PCDATA)> —
H [“surname: ” 1],

<!ELEMENT age (#PCDATA)> —
H [“age: ” 1]

Figure 5. A simpleXML DTD annotated withBOX format-
ting rules

can be constructed by defining mappings fromDTD con-
structs toBOX. Once such pretty-print tables have been
defined, well-formedXML documents over thatDTD can
be transformed to all output formats for which a back-end
is available.

Example 5.1 In Figure 5 we define a simpleDTD which
structures personal data (name, surname, and age). The
DTD is annotated withBOX formatting rules. These rules
formulate that the contents of records should be formatted
vertically, left indented, and preceded by the string “per-
son”.

Below the textual representation of a typical well-
formed document over thisDTD is displayed after format-
ting bybox2text :

person
name: Johny
surname: Walker
age: 5

Of course, the formatting can be improved, for instance by
using tables to align field names and field values.

Example 5.1 demonstrates that the use ofBOX as for-
matting language in combination withXML , and the use of
the available back-ends allowsXML documents to be for-
matted easily.

Currently, we do not support formatting rules to be de-
fined as annotations of aDTD directly (as we did in Fig-
ure 5). Instead, we first generate an SDF grammar from a
DTD, then we use the SDF grammar to generate a pretty-
print table. This indirection allows us to experiment with
XML by using existing pretty-print tools, minimizing the
need for additional software.

5.2. An alternative style language

The obvious way to transform anXML document toHTML

currently is by usingXSL stylesheets. AnXSL stylesheet
specifies how particular documents should be presented
in terms of someXML formatting vocabulary. AnXSL

stylesheet thus describes a structural transformation be-
tween the original document and the formatting vocabu-
lary. HTML is used as formatting vocabulary when anXML

document has to be transformed into a traditionalWEB doc-
ument.



<!ELEMENT person (name, surname, age)> —
“<html>” “<head>” “<title>” 1 2 “</title>”
“</head>” “<body>” 1 2 “ and ” 3 “</body>”
“</html>”,

<!ELEMENT name (#PCDATA)> —
“my name is ” 1,

<!ELEMENT surname (#PCDATA)> —
1,

<!ELEMENT age (#PCDATA)> —
“I am ” 1 “years old”

Figure 6. Pretty-print tables used as language to define a
simple transformation fromXML to HTML.

In spite of its advantage of separating presentation and
content, and its expressive power, we agree with [17] that
XSL is difficult. First because the language uses theXML

syntax which makeXSL stylesheets difficult to read. Fur-
thermore, the language is large as a result of the intention
to makeXSL stylesheets generally applicable. Finally, the
combination of a formatting language and a transforma-
tion language makesXSL stylesheets complex and difficult
to maintain because one has to deal with formatting and
transformation issues (by means of tree traversals) simul-
taneously.

We think that these negative aspects makeXSL

stylesheets too difficult for many simple transformations.
Separation of traversals and presentation, and a less com-
plex language would ease describing simple presentations
of XML documents.

With parsetree2box simple presentations ofXML

documents can be defined based on an implicit traversal of
the parse-tree. Pretty-print tables are suitable to express a
formatting in terms of a formatting vocabulary other than
BOX. The combination of an implicit traversal and pretty-
print tables as little language to express a transformation to
HTML thus forms an alternative toXSL for simple format-
ting purposes.

Example 5.2 Example 5.1 demonstrated how formatting
in terms of horizontal and vertical boxes can be defined
for a DTD. Formatting a document according to these rules
yields an unstructured representation of the document. Fig-
ure 6 shows how pretty-print tables can also be used to de-
fine a structured representation in terms ofHTML.

The mappings in Figure 6 define for each production of
the XML DTD the correspondingHTML code. Formatting
a well-formed document usingbox2text according to
these rules will yield:

<html>
<head>

<title>
my name is Johny Walker

</title>
</head>
<body>

my name is Johny Walker
and I’m 5 years old

</body>
</html>

This HTML document can then be displayed by the user
using anHTML browser.

Example 5.2 demonstrates how simple transformation
rules ofXML documents can be separated from code that
defines traversals. This provides, in combination with the
implicit tree traversals ofparsetree2box , a simple for-
matting mechanism ofXML documents and may serve as
alternative toXSL.

For more complex transformations where implicit
traversals are too restricted, we are planning to investigate
on using languages designed primarily for transformations
as alternative toXSL. An example of such a language is
Stratego [33], which has more powerful transformation fa-
cilities and a better syntax. We expect that both will help
to improve readability and maintainability.

6. Concluding Remarks

6.1. Contributions

In this paper we described the design, implementation, and
use of the generic language independent pretty-printerGPP.
The system can easily be extended in order to add sup-
port for more languages or more output formats. It can
also easily be adapted to extend pretty-print support for
existing languages. The system combines known tech-
niques (like language independent pretty-printing, division
of pretty-printers in front-ends and back-ends, and pretty-
printer generation) with new techniques to provide ad-
vanced pretty-print support. Our contributions are: i) For-
mulation of formatting rules in pretty-print tables, which
allows for a modular pretty-printer design and supports in-
cremental pretty-printer generation. ii) Customization of
pretty-printers by means of ordered pretty-print tables. iii)
We developed a generic format engine (parsetree2-
box ) which operates on a universal parse tree format
and interprets language specific format rules contained in
pretty-print tables. iv) We designed a table generator which
generates pretty-print tables for a language by inspecting
the corresponding grammar. v) We implemented three
back-ends which make plain text,HTML, and LATEX out-
put available for all formatters. vi) The pretty-printer is
designed as stand-alone system and can therefore easily be
integrated in third-party systems. Moreover, the system is
free and can be downloaded fromhttp://www.cwi.
nl/˜mdejonge/gpp/ .

Furthermore, we discovered thatXML is a relative new
application area of pretty-printing. We experimented with
XML and we found two useful applications of our pretty-
printer. First, the pretty-printer can be used to easily format
an XML document depending on itsDTD and to translate



it to several different output formats. Second, the pretty-
printer can be used for simple term transformations as al-
ternative toXSL. For complex transformations we suggest
using more advanced transformation systems (like the pro-
gramming language Stratego for instance) as alternative to
XSL.

6.2. Future work

This pretty-print project was initiated as part of the devel-
opment of a new ASF+SDF Meta-Environment and its in-
tegration as default formatter was the intended goal. The
integration of the pretty-printer in this interactive program-
ming environment is not finished yet but is planned to be
completed soon.

The table generator is the one component of the pretty-
print system that still needs additional research. This re-
search includes experimenting with more advanced heuris-
tics and grammar analysis to guess a suitable layout, and
experimenting with user profiles to guide the generation
process in order to respect user preferred formatting styles.

The recent experiments withXML proved the useful-
ness of the generic pretty-print approach that we followed.
The rapid growing importance ofXML and of formatting
XML documents makes it an interesting application area for
our pretty-printer and a natural extension of our research.
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Abstract
Ongoing development and combination of methods and tools for software development call for software engineering
environments (SEE) with ever changing functionality. Also the integration of operative support for the software
development process remains a major challenge. A good SEE design has to combine a high level of integration with
great flexibility towards evolving methods and tools as well as adaptability towards different kinds of development
projects. We have developed PIROL as a generic SEE demonstrating that an executable meta model may play
a key role in combining integration and flexibility. We coin the notion of a repository language to denote a
domain specific language for the domain of repository based meta models. We introduce Lua/P as PIROL’s repository
language with some non-standard properties and show how this language contributes to the desired properties of
the environment.
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1. Introduction

Although there is plenty of software tools, many de-
velopment projects still lack a suitable, state-of-the-art
software engineering environment (SEE). The reuse of
SEE components, their composability and configurabil-
ity still falls behind the demands of concrete develop-
ment projects. In spite of all commonality, projects differ
considerably in multiple dimensions. This is for a large
part a matter of different workflows and can be mod-
eled in notions of documents, states, persons, resources
and schedules. Two factors add to these problems: (a)
software development is a matter of very intense com-
munication and (b) a very tight semantical integration
of different (sub-)documents should be supported by the
environment across tool borders.

It is of course possible to hand craft a specialized SEE
for any project just using existing techniques. Only the
effort needed is far too high. Thus the uniqueness of
software development projects calls for techniques that
allow to build a specific SEE from components in just a
fraction of the time needed so far.

Many standards and techniques have emerged for solv-
ing single concerns of integration. Some focus on tech-
niques for communication between tools (cf. CORBA[1],
COM[2] etc.) others tend towards meta formats for data
exchange (XML) or even standardize parts of the en-
vironment’s meta model (XMI). Some approaches are
very general techniques that add no special solutions for
SEEs; others help under the precondition of a fixed set
of notations which is not appropriate for many fields
of software engineering where still new formalisms and
combinations thereof are widely explored (cf. [3]).

In earlier work [4] we have presented the vision of using
an executable object-oriented meta model as the central

concept for a tightly integrated yet configurable SEE.
Advantages include (a) a semantical enrichment of an
otherwise purely syntactic data model, (b) tool inde-
pendent implementation of process and framework inte-
gration (cf. [5]) and (c) adaptability of the meta model
through subclassing and scripting. In this paper we elab-
orate on certain requirements towards this meta model.
We show how data modeling can be extended with effi-
cient implementation of very fine grained data structures
and elaborate techniques for preserving consistency in
the presence of multiple views on shared data. The driv-
ing force is always the desire to reconcile a high level of
integration with clear modularity allowing flexible con-
figuration of a concrete environment from existing parts.

We point out the importance of the language that is
used for meta modeling. Such a language (the meta meta
model) will be called a repository language throughout
this paper. It is a domain specific language for the task
of defining meta models as a basis for and as integrative
glue of SEEs. The repository language has to blend in
with the techniques used for persistence and communi-
cation. We will present current work on the repository
language Lua/P that is part of the PIROL SEE.

The following section will give an overview of PIROL
and the systems it is built upon. Sect. 3 shows how Lua/P
encapsulates the underlying repository. Sect. 4 sketches
the communicational context. Sect. 5 discusses issues
of safeguarding consistency in the repository. Sect. 6
tackles the question of granularity with regard to data
modeling and processing. Sect. 7 motivates a disciplined
technique of class migration. Sect. 8 wraps up with some
examples of applying Lua/P. Just a few implementation
details are collected in Sect. 9.
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2. A Generic SEE: PIROL

PIROL (Project Integrating Reference Object Li-
brary)[4] is an SEE designed for supporting all five di-
mensions of integration as defined in the ECMA refer-
ence model[5]. In this section we will give an architec-
tural overview of the system.
PIROL is built according to a three–tier architecture as
illustrated in Fig. 1:
1. Data storage is provided by a repository which is ac-
cessible only through a dedicated server process.
2. For each user a workbench defines his or her working
context. The workbench caches accesses to the reposi-
tory and provides private visibility of the user’s current
work. Communication between the workbench and the
repository is based on the mechanisms provided by the
repository. Also, messages may be sent to other work-
benches.
3. Tools are connected to a user’s workbench by means
of a special messaging protocol. Tools only communicate
with the workbench, never directly with the repository.
Support is given for the implementation of new tools and
also for the integration of existing ones.

The focus of this paper lies on the workbench and
on Lua/P, PIROL’s repository language which is imple-
mented by an interpreter as part of the workbench. How-
ever, before presenting Lua/P we will briefly introduce
two systems on which all this is based.

2.1. H–PCTE

PIROL uses a system called H–PCTE[6] as its reposi-
tory (cf. Fig. 1). H–PCTE is an implementation of the
ISO standard PCTE[7]. Its central component is the
object management system (OMS), that defines a non–
standard database system. PCTE closely adheres to ex-
tended entity relationship models. Thus the main el-
ements are entities (objects), relationships (links) and
attributes. The latter can be attached to either objects
or links. The database is non–standard in that the pri-
mary access is not via tables and key attributes but by
navigation along links.

H–PCTE is implemented (and continuously being im-
proved and maintained) by the group “Praktische In-
formatik”, at Siegen University[8]. A special focus of
the design of H–PCTE was the performance issue in

conjunction with fine grained data modeling. H–PCTE
spells “high performance PCTE”.

2.2. Lua

Lua[9] is developed at PUC-Rio, Brazil. It is titled an
“extensible extension language”. The notion extension
language is to say that Lua is well-suited for integration
into a given application in order to provide a high level
facility for configurability, macro programming and the
like.

Within our context the extensibility of Lua itself is
of greater importance. Lua is adapted very easily to
specific needs yielding a great variety of derivatives that
could be called a family of languages. Lua is a (basically)
interpreted language, which comes as a library that can
be linked to applications. It is extensible by two mech-
anisms:
• C functions may be registered as Lua functions.
• The behavior of the interpreter can be modified by
the Lua code itself. This is done by redefining standard
constructs like reading or writing a field of an object.

At the time we started using Lua for PIROL this
second mechanism was called “fallbacks” and operated
globally for all kinds of objects. The PIROL development
required to use fallbacks for very different purposes (de-
pending on the kind of object). This contributed to an
improvement of the mechanism, which is now called tag
methods and can differentiate kinds of objects by a tag
that is attached to each object.

By means of these extension mechanisms, we extended
the host language Lua to encapsulate H–PCTE and add
object orientation to Lua, as well as all those features
that qualify it as a specialized repository language. Lua/P
spells “Lua for PIROL”.

3. Encapsulating the Repository

Lua/P encapsulates the repository in a way that com-
bines the following properties:
1. Lua/P objects are persistent without the need of ex-
plicit read and write operations. Reading is lazily per-
formed when dereferencing a link, writing occurs imme-
diately upon every attribute assignment or object cre-
ation.
2. Lua/P is used to define all data types in the repository
and adds behavior (methods) to repository classes.
3. Many functions from the large PCTE-API are en-
capsulated by core classes of the meta model written in
Lua/P. There is no need to access PCTE directly.
4. Lua/P itself is an evolving language that gives special-
ized support for the most common concerns in SEEs.
The following sections will focus on the concerns of
consistency (Sect. 5) and fine grained meta modeling
(Sect. 6).

Properties (1) and (2) mainly define Lua/P + H–PCTE
as an OODBMS. Note however, that Lua/P is not meant
to compete with standard OODBMS, but it combines



features of an object oriented database language with
specialized features for programming SEEs.

We had to consider some subtleties in the type sys-
tem of Lua/P as compared to PCTE: The type sys-
tem of PCTE knows types of attributes (string, integer,
boolean), objects and links, which are straight forwardly
mapped to basic types, classes and object references in
Lua/P. Lua/P, however, (a) encapsulates 1:n links by a List
class and (b) adds lists of basic values and lists of tuples.
These additions of course need to pay attention to effi-
ciency, so some of these types are packed into one binary
attribute in PCTE, or make use of link attributes, which
otherwise have no representation in object oriented lan-
guages. Only tuples with more than one object compo-
nent cannot benefit from such optimizations. They have
to be represented by additional PCTE objects. Sect. 6
shows how structured data types can be added to this
type system with minimal runtime overhead.

In addition to persistent objects, Lua/P also allows to
declare classes or attributes as transient, which is impor-
tant where the creation of temporary objects as reposi-
tory objects would impose an unnecessary performance
penalty. Clients, however, need not know about this
distinction because persistent and transient objects are
handled in a uniform way.

4. How Tools Access the Workbench

It has been shown how Lua/P encapsulates the un-
derlying OMS. This section briefly shows the interface
through which tools can operate on repository objects.
This defines the context from which execution of Lua/P
code is triggered and motivates why the Lua/P interpreter
must support change propagation between tools.

The channel used for all communication between
workbench and tools is a messaging facility with a mul-
ticast protocol. This facility is based on the package
MSG from the FIELD environment[10] with significant
modifications, that are not discussed here. Messaging is
implemented by a server and a client library such that
all clients can easily establish a socket connection to the
server. The server is responsible for message dispatch-
ing. Workbench and tools are clients of the message
server, which is in general transparent to both as they
communicate with each other.

In PIROL six types of messages exist by which tools
may request services from the workbench:
query: Read the value of one attribute (simple or

complex).
query list: Query a detail about a list attribute. Four

sub-functions exist:
length(), item(index), search(value),
filter(constraints)

set: Assign a simple attribute value.
set list: Lists can only be modified by these sub-

functions:
append(value), replace(index,value),

insert(index,value), delete(index).
execute: Execute a Lua/P method, passing any num-

ber of arguments.
create: Create a new repository object. This may

include a call to a Lua/P creation method.
Additionally the workbench broadcasts all attribute

changes to the message channel. This is a very impor-
tant feature of the Lua/P interpreter, because PIROL is
designed for supporting multiple views, which obviously
need to be kept consistent by means of some mechanism
of change propagation. It is left to each tool to register
a pattern for each object or attribute which is displayed
by the tool. The tool then receives all relevant update
messages and may update its display accordingly. List
updates are sent as incremental changes (reflecting all
those append, replace ... operations). For simple
attributes the new value is passed with the update mes-
sages.

In PIROL tools can generally be implemented in any
programming language. Currently most tools are imple-
mented in Java.

A class library exists for Java that encapsulates the
messaging library and provides proxy classes for all
classes of the meta model core. Proxy classes typically
have get xx and set xx methods for each attribute.
Lists are encapsulated by a Java class, which automat-
ically observes all changes of the corresponding list in
the repository. It may register additional observers that
propagate changes within the tool. Proxy classes have
static methods wrapping the creation of a repository ob-
ject. Method calls are directly delegated to the work-
bench. The main limitation of the Java client library is
the lack of multiple inheritance in Java. So a complete
mapping from Lua/P to Java is not possible.

A client library using Lua may exactly imitate the be-
havior of the workbench. No get xx or set xx methods
are needed. Not even proxy classes are needed for this
library, since they can be build on the fly from meta
information available from the workbench. Currently
however no tool is using this technique.

5. Consistency

PIROL emphasizes the role of multiple views within a
repository based environment. This imposes obligations
to safeguard the consistency of all views and their repre-
sentations as objects in the repository. Consistency has
to be ensured at least on two levels: when regarding tools
as view–control components according to a model–view–
control architecture, different views need to be kept con-
sistent by means of change propagation as mentioned
in the previous section (cf. also [11]). A more semanti-
cal understanding of consistency concerns invariants and
semantical constraints describing interdependencies be-
tween different objects/attributes in the repository. In
this section we will focus on the latter aspect of consis-
tency, but we will also relate this aspect to techniques



Event Arguments Description

Simple attributes:
assign object, value assignment of value to the resp. attribute of object.

get object retrieve the resp. attribute from object.
List attributes:

adding list, index, value value is being added to list at position index.
removing list, index, value value is being removed from list at position index.

append
remove

}
all regular list functions

. . .

Fig. 2. Events for attribute guards

of change propagation.

5.1. Guarded Attributes

Lua/P has been presented as a language for data defi-
nition and manipulation. It is generally possible to set
any attribute of any object to any value, as long as
access permissions and type correctness are observed.
This is very comfortable for most cases, but sometimes
this weak encapsulation is not sufficient. For achieving
a better encapsulation, Lua/P provides the mechanism
of guarded attributes which allow to implement further
constraints. Different applications of this technique are
possible:
1. Consistency constraints of the meta model might
require a change of one attribute to be propagated
in terms of changing also some other attributes/
objects.
2. Other constraints might allow only specific changes,
in which case assigning a wrong value should either
throw an error or just do nothing.
3. Some attributes may represent something outside the
Lua/P interpreter. Changing their value should produce
a side–effect by calling some low-level interface.
Examples for the three kinds of constraints are:
1. Classes CLASS and ROUTINE from the PIROL meta
model both have a flag is deferred1. The constraint
is: a class that has at least one deferred routine is it-
self deferred. Both flags are implemented as guarded
attributes. When a routine is set to deferred, the corre-
sponding class is also marked deferred, when a class is
set to not deferred, it is ensured that also all routines
are not deferred.
2. In class WORKBENCH an attribute current group de-
fines, on behalf of which group the current user is work-
ing. He or she may adopt another group simply by
assigning that group to current group. Given only
this, every user could possibly gain the rights of any
group by a simple assignment. However, implementing
current group as guarded attribute allows additional
checking. Only groups, of which the user is a member
are allowed. Violating this restriction generates a warn-
ing and the assignment is refused.

1 Deferred stands for ’not fully implemented’, ’abstract’. This is
one of a set of notions which we borrowed from the nomenclature
of Eiffel[12].

3. In fact the previous example already hints at a
third application of guarded attributes. The attribute
current group is not only documentation but effectively
defines the permissions of the current user. The ef-
fective access rights are always the combination of the
user’s personal rights and those of his or her current
group. This is achieved by calling the PCTE function
pcte adopt group() each time the current group has
successfully been assigned.

Definition of Guarded Attributes. Guarded at-
tributes are declared and used just like others. Only
a set of guard functions is added that is used for certain
events. The syntax of a full guard definition is:

AttributeAccess Class.Attribute {
Event = function(Arguments )...end,
...

}
This is for simple attributes. For list attributes the key-
word ListAccess is used instead. Fig. 2 shows the
events that can be (re)defined, Fig. 3 on the next page
shows an example. Here only the assign event is over-
ridden by a function that ensures the consistency of the
flag is deferred from our example (1) given above.
raw assign is the actual assignment function to be used
within an assign function.

It should be mentioned that guarded attributes are
mainly a matter of convenience. We could have re-
quired that all attributes be accessed only by means of
explicit access functions (even within the same class!),
which would, however, unnecessarily clutter the code
and should actually only be used, where needed. That’s
why in Lua/P no reason exists to ever call a function like
get attribute or set attribute. On the client side
it is important that regular and guarded attributes are
used in the same way. This guarantees that common
tools like generic browsers are able to exploit guarded
attributes in a meaningful way, without knowing about
their guards.

5.2. Derived Attributes

The previous section showed how to ensure consis-
tency in case of interdependencies between different ob-
jects/attributes. It is certainly a good idea to minimize
the necessity of such consistency constraints by avoid-
ing redundant data in the repository wherever possible.



Class ROUTINE {
attributes={

is deferred : Boolean, -- Declaration
. . .

},. . .
}
. . .
AttributeAccess ROUTINE.is deferred {

assign = -- Event
function (routine, flag) -- Guard function

if flag == routine.is deferred then
return

end
raw assign(routine, ”is deferred”, flag)
if flag then

local class = routine:get class()
class.is deferred = flag

end
end

}
. . .
local routine = . . .
routine.is deferred = true -- Application triggering the guard

Fig. 3. Guard for attribute ROUTINE.is deferred

PIROLs fine grained meta model is a major step towards
absence of redundancy. Another means is the mecha-
nism of derived attributes.

As an example of derived attributes, consider the sig-
natures of routines. Names, arguments and result types
of routines are kept persistently either as direct attribute
(name) or using separate repository objects of types
ENTITY (arguments) and TYPE (result type). It should
on the other hand still be possible to query the signa-
ture of a routine (encoded as a human readable string)
with just one query. Pre-assuming a redundant attribute
signature should be avoided for the sake of consistency,
a function ROUTINE:get signature() would be a good
starting point, but it has a great disadvantage as com-
pared to attributes. Only attributes allow to register
observers that inform a client about all changes of the
corresponding value. Function results may become in-
valid without further notice.

Derived attributes now combine the best of both
worlds. They are free of redundancy because they are
not persistent but computed when needed. Syntactically
a derived attribute is an attribute and most importantly
the workbench broadcasts all changes of the values of de-
rived attributes for which a tool holds an observer. Fig. 4
shows how a derived attribute is declared using the type
constructor Derived and how a derivation function is
attached as derive xx().2

6. Fine Grained Meta Models

Fine grained data modeling is a powerful means for a
tight integration of tools that are to share as much infor-
mation as possible. Of course an object oriented meta
model could very well be used to decompose a document
all the way down to single identifiers and symbols. This
technique is however not usable for SEEs. A promi-

2 ”..” is the Lua operator for string concatenation.
For the function foldl() cf. Sect. 6.2.

Class ROUTINE {
inherit FEATURE,
attributes={

signature : Derived(String), -- Declaration
arguments : List(ENTITY),
. . .

}
}
. . .
function ROUTINE:derive signature () -- Derivation Function

local args = self.arguments:foldl ( ”(”,
function (arg, pre)

if not pre == ”(” then pre = pre..”, ” end
return pre..arg.signature -- read another Derived

end) Attribute
args = args..”)”
if self.type then

return self.name..args..”: ”..self.type.name
else

return self.name..args
end

end

Fig. 4. Derived attribute ROUTINE.signature

nent approach to fine grained data modeling for SEEs
has been standardized as extension of PCTE[13]. Un-
fortunately no tool vendor ever really implemented this
standard due to tremendous performance problems that
should be expected. Database technology in fact im-
poses quite strict limits on the number of objects that
can be accessed efficiently when eg. loading a document.

Quite a different lesson can be learned from the area of
compiler construction and related tools. Such tools rely
on a set of types that represent all constructs of a (pro-
gramming) language in a tree or DAG structure, called
abstract syntax. The definition of these types and many
transformations are much more compact and perhaps
more elegant when using a functional programming lan-
guage rather than an object oriented one. For this reason
a previous instantiation of PIROL [3] that was targeted
at processing formal specifications based on their ab-
stract syntax used the programming language Pizza[14].
We made good experiences with Pizza’s combination of
object oriented and functional techniques. In this set-
ting the bottleneck was the serialization of Pizza objects.
Serialization, which was used to write units of the ab-
stract syntax as binary blocks into the repository, again
imposed performance problems on the system.

In response to this experience, Lua/P was extended by
some new features: The types needed for an abstract
syntax or similar structures can be defined as term gram-
mars. Terms as values of these types can be handled and
stored efficiently by the workbench. Allowing term types
for attribute declarations yields a smooth integration of
medium grained objects and very fine grained terms. Fi-
nally a touch of functional programming in Lua/P allows
concise implementations of algorithms over terms.

6.1. Term Grammars

Terms are tree structures whose leaves are simple val-
ues or terminal symbols. Simple values are strings, in-
tegers, boolean or subtypes thereof. Lua/P provides four



Grammar {”EXPRESSION”;
(1) expr = one of{value, binexp, unexp, ifexp},
(2) binexp = {{e1=expr}, {operator=binop}, {e2=expr}},
(3) unexp = {{operator=unop}, expr},
(4) ifexp = {{condition=expr}, {then exp=expr},

{else exp=expr}, ’?’},
(5) binop = subtype of{STRING},
(6) unop = one of const{{uplus=’+’}, {umin=’-’}},
(7) value = one of{INT, BOOL, varappl},
(8) varappl = subtype of{STRING},
(9) vallist = {value, ’*’},

}

Fig. 5. Grammar EXPRESSION.

kinds of type rules (the LHS of each rule is a type):
subtype of The LHS type can be used wherever the

RHS type is required. It has the same
structure.

one of The LHS type has alternatives that are
listed here. The alternatives still have
to be defined.

one of const Similar to the above but the alternatives
are terminal symbols given by their rep-
resentation.

production The LHS type is a tuple of the types
listed at the RHS. Production rules have
no keyword.

Fig. 5 gives an example grammar defining a simple
expression language. The names e1, operator and e2
as defined in rule (2) are selectors for the components of
an expr term. The second component in rule (3) is not
named, so the type name expr is also used as selector.
The ’?’ in rule (4) specifies that the last component
(else exp) is optional. The value in rule (9) may occur
zero to many times (denoted by ’*’). Elements of such
a list can only be accessed by their numerical index.
Finally the whole grammar is given a name in order to
make it a selectable name space.
Each type defined in a grammar can be used for attribute
declarations as in

Class SIMPLE FUNCTION {
inherit ROUTINE;
attributes={

value : EXPRESSION.expr
}

}
When storing such values to the repository a compact
yet type safe binary encoding is used to pack complex
terms into a single attribute of PCTE. The effect is that
for Lua/P each (partial) term is a well defined entity and
terms are structures built according to strict type rules.
The system’s performance however does not suffer from
such very fine grained data modeling, because no addi-
tional PCTE objects are created.

6.2. A Touch of Functional Programming

Being able to define term types by grammars as shown
above we left pure object oriented techniques. The new
types can only be exploited effectively if we also add the

function expr2string (t)
return t switch(t,

(1) t case(’@value’,
function (val)

return val
end),

(2) t case({’expr’, ’@binop’, ’expr’},
function (e1, op, e2)

return(’(’..expr2string(e1)..op..expr2string(e2)..’)’)
end),

(3) t case(’unexp’, {’@unop’, ’expr’},
function (op, expr)

return(’(’..op..expr2string(expr)..’)’)
end),

(4) t case(’vallist’,
function (list)

return ’{’..
list:foldl(’’,

function (v, col)
if col ˜= ’’ then col=col..’, ’ end
return col..v.repr

end)..
’}’

end),
t otherwise(

function () return ’?’ end)
)

end

Fig. 6. Using pattern matching for a simple pretty
printer.

appropriate functions for handling terms. Fortunately,
Lua already provides the basic mechanism for functional
programming. In Lua a function is a value that can
be assigned to variables and can be passed as function
argument or result. Additionally function closures are
supported which by so-called upvalues provide a clean
solution to the problem of variable scoping as it occurs
in nested functions.[15]

Next to pure higher orderedness a special merit of
many functional languages is their support for pattern
matching. In Lua/P this is done by a function t switch
which matches a given term against a list of type pat-
terns. Patterns are given by t case branches. In the
simple case, each pattern specifies a type and a func-
tion that should be executed, if the term is conform to
that type. The function is called with the term as only
argument. In addition to the top-level type a pattern
may also give a list of types to which the subterms must
conform. If such a pattern is matched, the subterms
are passed as distinct arguments to the function. When
the string representation of a term is desired this con-
version can be automated by prepending the @ operator
to the type pattern. Finally a t otherwise branch may
provide a default function, that is used if no pattern is
matched.

See Fig. 6 for a simple pretty-printing function for
expressions as defined in Fig. 5. Note, that in object-
oriented programming the standard technique for this
problem would be to apply the visitor pattern, intro-
ducing far more overhead than the more functional ap-
proach.

The first branch matches subtypes of value, the next
branch matches any term consisting of an expression,



a binary operator and another expression. Branch (3)
combines matching of top-level type (unexp) and struc-
ture (unary operator and expression). All operators and
values are passed by their representation (use of @). Ex-
pressions are passed as terms. Branch (4) again is a sim-
ple match by type. It shows an application of the foldl
function, which is borrowed from ML[16]. We introduced
foldl to Lua/P as one of the most general higher order
functions, that iterates over a list, collecting the results
through a second argument (col). In this example the
effect resembles a smarter mapconcat function: the rep-
resentation of all list elements are concatenated using
’, ’ as a separator except for the first element.

7. Upgrading

In most object oriented languages the type of an ob-
ject is an unchangeable property. In PIROL it has rea-
sons of methodology that it should be possible to create
an object with an unspecific type which later-on, as more
information is gathered, is converted according to a more
precise type. This may even iterate along several steps,
such that the object’s type stepwise becomes more and
more specific. Because references to such an object must
remain valid, it is important that
• the object identity is not changed and
• the object remains conform to the typing of all incom-
ing references.

It is the first demand, that leads to upgrading as a spe-
cial language feature rather than a mere copy method.
The second demand restricts upgrading to a type change
from a superclass to one of its subclasses. (For type con-
versions, or “migration”, cf. eg. [17]).

Regarding the consistency of attribute values, upgrad-
ing is very similar to object creation. At creation time
a creation method puts the object into a sound state
with respect to its attribute values. When upgrading
an object new attributes may be added, which are ini-
tialized by an upgrade method. Lua/P also introduces a
hook called upgrade pre which may be used to decide if
upgrading should be allowed or disallowed. This way a
class may put forward constraints on the state of objects
that shall be upgraded.

At the user interface level upgrading is available
through an operation “insert as ...”. A selected un-
specific object may eg. be inserted into a class diagram
as class or as attribute.

8. Application of Lua/P

This section gives examples for parts of an environ-
ment that may be implemented in Lua/P and benefit from
execution within the workbench.

8.1. Process Modeling

Many projects have taken efforts on formalizing the
dynamics and constraints of software development pro-
cesses. Using Lua/P for this task is elegant because all

relevant entities are equally at hand and can be han-
dled in a uniform manner. A process model in Lua/P
may at the same time refer to a SUBSYSTEM that is be-
ing developed including all contained CLASSes as well as
the PERSON who is responsibly for delivering these items
in a certain STATE using certain (time–, hardware– . . . )
RESOURCEs etc.

As a simple example we present a state machine that
manages the progress of development items along a chain
of document states like busy, proposed (for publishing),
published etc. Each artifact carries a reference to an ob-
ject of class STATE. STATEs are connected to next states
by TRANSITIONs. Transitions in turn have a GUARD and
an ACTION. In the most simple implementation GUARD
objects specify which persons/groups are allowed to per-
form the corresponding transition and an ACTION object
specifies how the access permissions of an object shall
be changed.

This state machine can be adapted on two levels.
First, the concrete set of states and transitions is a graph
of objects that can be initialized by a Lua/P script once
for each project. Second, the algorithms of guards and
actions can easily be redefined by subclasses of GUARD
and ACTION.

8.2. Common Services

Class WORKBENCH is central for the PIROL meta model.
For each user an object of this class defines the working
context that is available to all tools. This object contains
eg.
• a list of tools that are installed and configured,
• a reference to the current project, group (cf. Sect. 5.1)
etc.
• a simple clipboard.

Based on this information, services are implemented
like selecting all tools that are available for editing a
given object, providing lists of recipients to whom mes-
sages can be sent (within the group, project, company
. . . ). Other services that are implemented in Lua/P are
version control and access control.

Uniform Context Menus. All these services are
really helpful only if they are easily performed at the
user interface. An example of a flexible integration of
services into the interface of all tools is the mechanism
of workbench provided context menus. In addition to any
local context menu as it may be needed for operating a
tool, a submenu Workbench . is always provided. Con-
cerning the selected object, this menu is dynamically
put together by the workbench. The menu definition is
kept as a set of transient objects within the workbench.
The tool only reads the menu definition and displays
the menu. Upon selection of one menu option the corre-
sponding command (function closure) is executed within
the workbench. This way no tool needs to know about
any common service in particular, but all services pro-
vided by the workbench can be exported easily to all



tools. Inserting a new service (like the state machine
shown above) or changing the configuration of a service
(like adding a new transition to the state machine) has
immediate effect on the context menu within all tools.

9. Implementation Issues

So far we have presented the current state of Lua/P.
We did not develop this language from scratch nor in
one single step. Lua/P evolved from Lua in several incre-
mental cycles. We would like to give some hints on how
Lua made this development fairly easy.

Lua [9], [15] is in fact an interpreter framework in
the sense, that it is an application with many hot spots,
through which a programmer may add and modify the
application’s behavior. In Lua these hot spots are those
tag methods that have been introduced in Sect. 2.2.
By means of tag methods, a simple assignment like
obj1.att2=obj3.att4 can be redirected to invoke one
tag method for retrieving the value of attribute att4
from a repository object obj3 and another tag method
for storing this value in attribute att2 of another repos-
itory object obj1. Both tag methods make use of calls
to functions from the PCTE API that for this purpose
have been lifted from C to Lua. As seen from the Lua in-
terpreter, repository objects are opaque handles, whose
semantics are defined solely by tag methods. A similar
technique is used for term values (cf. Sect. 6) which are
efficiently implemented in C (which allows easy interfac-
ing also with other programming languages).

All access functions, that are stored with individual
Lua/P classes, are elegantly stored in function tables us-
ing Lua closures, that contain all necessary context in-
formation besides the function proper.

Another example for tag methods is the invo-
cation of creation methods: the Lua/P statement
obj=CLASS1:make(arg) denotes the creation of an ob-
ject of CLASS1 using the creation method make for initial-
ization. This is implemented in Lua as follows: retriev-
ing field make from CLASS1 yields a method-descriptor.
When trying to execute this descriptor as a function, a
tag method (for event function) is called, which will
find out, that no target object exists but one must be
created prior to invoking the actual method make.

The use of associative arrays (cf. [9]) allows to write
down all additions to the language in a usable, descrip-
tive syntax without ever touching the implementation
of the Lua parser. Only tiny changes have been made
to the code examples in this paper, in order to give it
a more standard appearance. Such modifications can
easily be handled by a simple pre–processor.

Note, that aside from Lua/P no other language is re-
quired: no data definition language, because this is just
one role of Lua/P, and no scripting language for whichever
purpose, because Lua/P can also be used for scripts that
automate any repeated tasks.

10. Conclusion

Several languages and systems exist, that are partially
related to the work presented in this paper. PCTE’s
DDL is a pure data definition languages. ODMG-
ODL[18] and CORBA-IDL[1] define object interfaces in
terms of attributes and methods. As early as 1987, Gar-
lan [19] defines different languages for defining different
kinds of views. His basic views define the structure and
behavior of objects in the database, dynamic views can
be compared to derived attributes, with the restriction,
that their results must be sets of objects. Pizza[14] is
a programming language that combines object oriented
and functional techniques. Within the UniForM work-
bench[20] concurrent Haskell is used for encapsulating
repository objects and tools and implementing tool com-
munication. Derived attributes are supported by nota-
tions ranging from Object–Z up to UML. OPM[21] is a
specialized DBMS that implements derived attributes.

None of these systems defines a repository language as
comprehensive as Lua/P. We should clarify that PIROL
is not a production environment competing with in-
dustrial tools. Until now, some well known concerns
like fine-tuned transaction management remain incom-
plete in PIROL, but by means of PIROL and Lua/P we
are able to demonstrate, which abstractions and mecha-
nisms may be covered by a repository language in order
to enhance modularity and integration of an SEE.

We have shown that Lua/P is well-suited as a data def-
inition language and at the same time lifts the reposi-
tory types to a comfortable object oriented programming
language. Fine-tuned type mappings and the introduc-
tion of transient attributes and objects provide for op-
timizations as they minimize the number of repository
objects. Using term grammars for the definition of very
fine grained data further improves the performance of
the system, because terms can be packed into a single
attribute.

Next to efficiency, Lua/P provides two mechanisms
for preserving data consistency. Derived attributes
help to avoid redundancy. Guarded attributes may
either restrict attribute changes or operationally en-
force consistency by propagating changes to other at-
tributes/objects. Additionally, guarded attributes may
lift properties of the underlying repository to Lua/P.

Aside from data modeling, Lua/P can be used for im-
plementing the dynamics of repository objects using
methods in the common object oriented sense. Addi-
tion of functional techniques enhances Lua/P’s capability
for transformations over complex structures like abstract
syntax.

Finally, Lua/P closes the gap between tools and the
repository. All persistent objects are accessible via a
specialized messaging facility, which helps to keep visual-
izations up-to-date by broadcasting all relevant changes.

The process model and all common services that are
implemented in Lua/P are independent from (but still



contribute to) any integrated tool. Modularity of the
resulting SEE allows for configuration and adaptation
at different levels: (1) Selection of methods and nota-
tions has impact on the product related part of the meta
model and on the selection of tools. (2) Also adaptation
of the process model or common services requires a few
specific additions to the meta model. (3) Tailoring an en-
vironment that has been constructed by the above steps
for a concrete project is mainly a task of writing simple
Lua/P scripts.

Of course the crucial part in putting together an SEE
from diverse components remains implementation, adap-
tation and integration of new and existing tools. We
have made good experiences with tools providing differ-
ent levels of openness. This ranges from tools specifically
written for PIROL up-to monolithic tools with only in-
sufficient interfaces[3]. We have good results especially
with a graphical editor that could be adapted at the
source code level. A clearly delimited adapter layer suf-
fices for a very close integration.

Most importantly an object oriented meta model writ-
ten in Lua/P greatly fosters the separation of concerns of
different tools and the workbench. Thus flexibility of the
SEE PIROL is essentially founded on the specific design
of its repository language Lua/P.

10.1. Current and Future Work

We are currently working on specialized language con-
structs for defining connectors that help to integrate ex-
isting tools by automating a mapping between two mis-
matching meta models [22]. This approach also over-
comes a major drawback of basic views according to [19]:
in some cases it is necessary to multiply instantiate a
certain view with regard to a common base structure.

Allowing wildcards in attribute names for guards
(cf. Sect. 5.1) will allow to use guards as advice in the
style of AOP[23], [24].

It will be easy to lift PCTE’s distinction between asso-
ciation (usually: existence links) and object composition
(composition links) to Lua/P. This powerful feature is
unknown to common object oriented programming lan-
guage.
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ABSTRACT
This paper describes work on a project concerned with
practical approaches to software engineering tool
construction.  Specifically, this paper reports how
workflow technology, and an emerging standard for
workflow products, can be used to provide a low cost
constructional approach to software engineering tool
developers.  Using an example Software Engineering
Environment (PSEE), built on top of a commercial
RDBMS, we demonstrate a mapping from the PSEE onto
the WfMC Process Definition Interchange Process Model.
The resultant workflow process definition can be imported
into a WfMC conformant workflow management system,
thereby enabling the enactment of the software process
model by different workflow management systems.
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1 INTRODUCTION
A software engineering tool is a software product that
provides some automated support for the software
engineering process [1].  This includes: support for
development activities such as specification, design,
implementation, testing, and maintenance; support for
process modeling and management; and metaCASE
technology, used for the generation of custom tools to
support particular activities or processes.  There are many
different kinds of software engineering tool variously
known as CASE (Computer Aided Software Engineering),
CAME (Computer Aided Method Engineering), IPSE
(Integrated Project Support Environment), SEE (Software

Engineering Environment), and CSCW (Computer
Supported Cooperative Work).  The development of these
tools is in itself a significant and challenging software
engineering task.  Although these tools differ in purpose
and scale, developers of these tools often face similar
constructional issues, such as: selection of host computing
platform and implementation language, conformance with
standards and reference models, choice of repository,
integration and interoperability mechanisms, and user
interface style.  The focus of our work lies not in the
application of these different kinds of tool, but in the
engineering of the tools themselves.

The provision of appropriate software engineering tools
plays an important role in the promotion and adoption of
sound software engineering practices.  One of these sound
practices is the identification of, and adherence to, suitable
software development processes.  For all organisations
involved in software development and for all kinds of
software, the identification and implementation of a
suitable development process is a recognised approach to
improving the quality of the software produced.  The use
of an appropriate software process management tool can
assist the implementation, maintenance, and improvement
of an organisation's software development process.  There
are many standard development methods and processes
such as JSD, SSADM, OMT, UML/Unified Process, and
there are plenty of commercially available tools to support
them.  However, many organisations do not use these
standard methods and would prefer to use their own
particular process or a modified version of the standard
processes.  These organisations could benefit from the
provision of flexible and customised process management
tools tailored to the specific requirements of their
particular development processes.

Workflow technology is defined as: "The automation of
a business process, in whole or part, during which
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documents, information or tasks are passed from one
participant to another for action, according to a set of
procedural rules." page 8 of [2].  Software tools to support
workflow technology are known as Workflow
Management Systems, and many commercial workflow
products are available.  There is a growing worldwide
interest in workflow technologies, and quite a demand for
workflow products [3].  The recent upsurge in electronic
commerce has provided additional impetus to research and
development of workflow products [4] [5].  The market for
workflow products is vastly greater than the market for
specialised software engineering tools such as a process
centred software engineering tool.  The central idea of our
project is the treatment of software process management as
a specialisation of a more general kind of process
management known as workflow.  Our approach is to use
this more general purpose technology, that is workflow
products, as a constructional technology for building the
specialised software engineering tools.  The cost of
developing such specialised tools is generally quite high,
and due to the small market for these tools, tool vendors
need to charge very high prices to recover their costs.  By
using off-the-shelf workflow technology, we aim to reduce
the cost and time of developing these specialised process
management tools, thus providing a cheap and rapid

approach to the delivery of custom process management
tools to those organisations that could benefit from them.
Furthermore, by conforming to workflow standards [6], we
hope to produce tools with improved integration and
interoperability facilities.

Our methodology in project is described as follows.  We
have taken an existing implementation of a software
process management tool, referred to as the PSEE, and
seen if another, functionally equivalent, version of this
particular tool could be quickly and simply implemented
using workflow technology.  If this technique is feasible
with the PSEE, then we should be able to use the same
technique to produce a range of custom process
management tools for managing different software
development processes.  The first step in this technique is
to write a high level, implementation independent,
description of the PSEE tool in a standardised workflow
description language.  This language is supplied by the
WfMC Process Definition Interchange Process Model [6].
The resultant workflow process definition can then be
imported into a WfMC conformant workflow management
system for enactment of the software process model.  Thus,
the nucleus of a software process management tool has
been automatically generated from high level descriptions
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with a minimum amount of work.  To generate other
process management tools, with different functionality to
the PSEE, only the high level descriptions, written in the
WfMC's standard language, need to be modified.

In the remaining sections of this paper we provide: more
detailed background and motivation information about our
work; a brief summary of key workflow and WfMC
concepts; a description of the PSEE and an example of a
software process model translated into a WfMC process
definition.  We discuss some of the results and issues
addressed so far in our investigations, and we identify
areas of further investigation.

2 BACKGROUND AND MOTIVATION
The current project arises from the authors’ previous work
in the area of CASE tool construction technologies and
techniques [7,8,9,10].  A number of approaches to tool
development have been explored and several technologies,
including RDBMS’s, stored procedural SQL, CDIF, Java,
and formal specification languages, have been evaluated
for their benefits to tool developers.  This work has been
motivated by the desire to discover cost and time effective
development approaches for method engineers who wish to
construct their own specialised custom software
engineering tools.

One of the lessons learned from these investigations was
the usefulness of readily available subsytems, such as an

RDBMS, for implementing both tool repositories and
process logic.  Although a commercial RDBMS may not
provide the same performance as a special purpose
database for a CASE repository, the widespread
availability, standardisation, and relative ease of access
and programming of an RDBMS can be a significant
advantage.  Similar benefits of an RDBMS for low-cost
implementations of workflow engines have been recently
reported [11].  This report motivated the authors to
examine workflow technology, in particular, the
standardisation activities of the Workflow Management
Coalition (WfMC) [12].  If RDBMS products can be
useful constructional technologies for software engineering
tool developers, and RDBMS products can provide low-
cost implementation of workflow engines, what benefits
might software engineering tool developers find in
workflow technology?

3  WORKFLOW AND THE WFMC
Workflow is the automation of a business process, in whole
or part, during which documents, information, or tasks are
passed from one participant to another for action,
according to a set of procedural rules [2].  A workflow
management system defines, creates, and manages the
execution of workflows through the use of software,
running on one or more workflow engines, which are able
to interpret the process definition, interact with workflow
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participants and, where required, invoke appropriate IT in
the PSEE meta-schema to the entities in the Workflow
tools and applications [2].  Workflow technology was first
applied to document-oriented business processes such as
approval processes in financial domains like banking.  The

workflow coordinates the flow of documents between
people, enforcing business rules for routing and deliveries.
Participants access documents and update them according
to their role in the process [13].  Workflow technology has
subsequently been applied to areas such as Enterprise
Resource Planning (ERP), Enterprise Application
Integration (EAI), business component programming, and
electronic commerce.

The Workflow Management Coalition (WfMC) is a group
of companies who have joined together to establish a
common “Reference Model” for workflow mangement

systems [14].  The workflow reference model identifies a
number of major components and a set of interfaces known
as the WAPI - Workflow API’s and Interchange formats.
These interfaces regulate the interactions between the
workflow control software and other system components
including process definition tools, administration tools,
client applications, invoked applications, and other
workflow engines (Figure 1).

In our investigations, we treat the software development
process as a specialised kind of business process, in which
documents, information, and tasks are passed from one
participant to another according to a set of rules known as
the development method.  If the software process is
considered as a specialised kind of workflow, then the
software process management tool used to model and
manage this process can be considered as a specialised
kind of workflow management system.  Using the WAPI
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Figure 5 – Design Phase activities in an example project

interface 1 for Process Definition Interchange, a software
development process can be defined as a workflow process
in the WPDL grammar.  Software engineers are
represented as the workflow participants in this process
definition, and their analysis and design tools are the
workflow invoked applications.  This process definition

can then be interpreted by a workflow engine that is
WfMC conformant, in order to model and manage the
software process.

4 EXAMPLE PSEE TOOL AND PROCESS
To test the feasibility of the proposed approach, we
selected a particular process management tool, referred to
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Figure 6 – Design Phase workflow for the example project

as the PSEE, along with a specific software development
process that could be modeled and enacted by this tool.
The PSEE implementation described here is a research
vehicle previously developed at the University of South
Australia.  Although it does not have all the functionality

of a fully featured commercial process management tool, it
has sufficient modeling capability for this exercise.  The
gross architectural features of the PSEE are shown in
Figure 2.  Essentially, we have a commercial RDBMS that
is used to implement both a CASE repository and a simple
software process enactment engine.  The repository is a
collection of relational tables defined by the schema shown
in Figure 3.  This schema, or meta-model, can store
definitions of various process models.  These models can
be executed by the process engine, which is implemented
as stored procedural SQL code within the DBMS.  The
executing model can invoke tools, and communicate
simple notification messages to/from participating software

engineers.  Currently, the PSEE meta-model permits the
definition of process models that are variants of the
waterfall type of process model.  Given this limitation, it is
still possible to define quite rich and complex models of
this general type incorporating features such as activity
decomposition into subprocesses, iteration, roles and
agents, artifact (document) usage and classification.

To illustrate how the PSEE meta-model represents a
software process we will take a simple example of a
waterfall process model shown in Figure 4.  This is in fact
the DoD Waterfall Model defined in [15]. We will
examine the Design Phase of this process in more detail,
and show how a particular software project, conformant to
this model, is represented in the PSEE repository.  Figures
5 and 6 show example data from the Design Phase of a
conformant project with its associated activities, artifacts,
and methods.  In the PSEE repository, this data is stored in
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relational tables, and fragments of these table contents are
provided in the appendix.

The WfMC reference model provides a basic process
definition meta-model for workflow process definition at
Interface 1 (see Figure 1).  This meta-model identifies a
basic set of object types for the interchange of simple
process definitions.   Further object types may be added by
vendor specific extensions.  There is also a textual
grammar for the interchange of these process definitions
known as the Workflow Process Definition Language
(WPDL) [6].  Figure 7 shows the entities and relationships
present in the Workflow Process Definition Meta-Model.
Each of these entities has many mandatory and optional
attributes for defining workflow processes of varying
degrees of complexity.   This meta-model includes some
entities, such as Participant, Application, and Workflow
Relevant Data, whose scope may be wider than a single
process definition.  The meta-model assumes the use of a
common process definition repository to store these entity
definitions.  To allow these common entities to be
referenced across process definitions, and to support the
efficient transfer of data to/from the repository, a
Workflow Model entity and additional relationships are
introduced to this minimal meta-model (Figure 8).

The mapping of the PSEE meta-model to the WfMC
Interface 1 is done in two stages.  First, we map the entities
Process Definition and Model Definition meta-models
(Figure 9).  The PSEE meta-model is being treated as a
specialisation of the more general workflow meta-models.
We therefore find cases of several specialised PSEE
entities mapping onto one, more general, workflow entity.

In the second stage, we translate the entities and attributes
of the PSEE meta-schema into the WPDL grammar for
import into a WfMC conformant workflow management
system.   This translation has been performed for the
example software project described above.  Fragments of
this WPDL workflow description are provided in the
appendix.

5  DISCUSSION AND SUMMARY
The WPDL workflow description of the example project
has been checked through a parser supplied by the WfMC.
The next stage in our investigations is to obtain one or
more workflow management systems that are capable of
importing this description written in the WPDL grammar.
We can then complete the construction of a simple process
management tool based on this technology.

Clearly, the construction of a working process management
tool requires more than simply the definition and
enactment of the process model.  For the tool to be useful
it must interact with the participants, that is, the software
developers involved in the process, and it must invoke and
communicate with the software engineering tools used by
the participants.  Other aspects, such as auditing,
performance monitoring, and interoperability with other
process management/workflow environments need to be
considered.   Our WPDL workflow description represents
a simple waterfall software process model.  Not all process
models are this simple.  We have not yet attempted to
represent many of the more interesting features of process
description such as iteration.  Demonstrating a syntactic
mapping between a software process model and a
workflow process definition, in itself, does not demonstrate



that the behaviour of the enacted processes will be
equivalent.  Once we have constructed the workflow based
software process management system, we can compare the
behaviour, and determine what these differences are.  We
can also explore other issues of the tools’ operation such
invocation and notification mechanisms, and examine the
possibilities of interoperation with other CASE and
workflow environments.

Until more comprehensive process management tools have
been completed, it will not be possible to determine if this
really is a low-cost option.  We are assuming that the
market for workflow products, which is a more general
application domain than software process management, is
much larger than the market for specialised software
engineering tools.  Such economies of scale will hopefully
reduce the purchase cost of a workflow product below the
cost a software process management tool.  Typically, these
products cost in the range of $2000-$3000 per user.  We
also have to add to this, the development cost of defining
the software process model, translating it into WPDL,
importing the WPDL to a workflow management system,
and configuring the system for support of software process
management.

At this stage, it is difficult to tell if the WfMC reference
model will be a widely adopted or long-lived standard.  It
is not uncommon in software engineering, and the IT
industry generally, for standards to emerge and fail to be
adopted.  The WfMC standards are continuing to develop,
and the WPDL may be superceded by an XML based
process description language [13].  However, even if the
particular features of the WfMC reference model do not
prevail, the general characteristics of workflow products
and process models are likely to persist for some time, and
our approach to tool construction may still be promising.
In this paper, we have reported upon our initial
experiences with workflow technology and the WfMC
reference model.  Over the following months, we anticipate
completion of more workflow-based software tools, and
further reports on these activities will be produced.
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APPENDIX

WORKFLOW PROCESS DESCRIPTION OF THE EXAMPLE SOFTWARE PROCESS IN WPDL GRAMMAR
This Appendix contains only a small sample of the process definition.  The complete process definition is much larger and it
can be obtained from the authors upon request.  The corresponding relational table definitions and data from the PSEE
repository can also be obtained from the authors.

// <Model>

MODEL 'GENERIC_WATER_FALL_MODEL'

WPDL_VERSION "7.0 Beta"
VENDOR "VENDOR:PRODUCT:RELEASE"
CREATED 1999-05-27
NAME "GENERIC WATER FALL"
DESCRIPTION "WPDL-NOTATION OF GENERIC WATERFALL MODEL"
AUTHOR "ADB"
STATUS "UNDER_REVISION"
EXTENDED_ATTRIBUTE 'ProjectId' STRING "PRJ001"

// <Workflow Participant List>

PARTICIPANT 'BATNY002'
NAME "Norman Bates"
TYPE HUMAN
EXTENDED_ATTRIBUTE 'EmailAddress' STRING "batny002@venus"

END_PARTICIPANT

PARTICIPANT 'LAFPY001'
NAME "Patrick LaFleur"
TYPE HUMAN
EXTENDED_ATTRIBUTE 'EmailAddress' STRING "lafpy001@jupiter"

END_PARTICIPANT

// <Workflow Application List>

APPLICATION 'RES001'
NAME "EMACS"
DESCRIPTION "Text Editor"
TOOLNAME "emacs.exe"
EXTENDED_ATTRIBUTE 'Res_Id' STRING "RES001"

END_APPLICATION

// <Workflow Process Relevant Data List>

DATA 'Artifact_Class'
NAME "Artifact_Class"
DESCRIPTION "Describes artifact classes used in SW Life Cycle"
TYPE ARRAY

OF RECORD
STRING 'ClassNo'
STRING 'Name'
STRING 'Type'
STRING 'InUse'

END
LENGTH [0...14]
DEFAULT_VALUE ( ("A" "PROJECT_ARTIFACTS" "STRUCTURE" "Y")

("B" "FUNCTIONAL_BL" "STRUCTURE" "Y")
("C" "SYS_REQ_SPEC" "STRUCTURE" "Y")
("D" "COMP_SYS_CONFIG_ITEM" "STRUCTURE" "Y")
("E" "DEVELOPMENTAL_BL" "STRUCTURE" "Y")
("F" "DESIGN_DOCUMENTS" "STRUCTURE" "Y")
("G" "CODE_UNDER_DEV" "STRUCTURE" "Y")
("H" "CODE_UNDER_TEST" "STRUCTURE" "Y")
("I" "COMP_SW_CONFIG_ITEM" "STRUCTURE" "Y")
("J" "COMP_SW_COMPONENT" "STRUCTURE" "Y")
("K" "COMP_SW_UNIT" "STRUCTURE" "Y")

END_DATA



// <insert entity Task_req_comp data here as a complex data type>
// <Insert entity Requirement data here as a complex data type>
// <Workflow Process Definition>

WORKFLOW 'WATER_FALL_LIFE_CYCLE'

CREATED 1999-05-27
NAME "WATER FALL LIFE CYCLE"
DURATION_UNIT D
DURATION 94

// <Activity List>
ACTIVITY 'SYSTEM_REQUIREMENTS_PHASE'

NAME "SYSTEM REQUIREMENTS PHASE"
DESCRIPTION "DEVELOPING SYSTEM REQUIREMENTS"
IMPLEMENTATION WORKFLOW 'SYSTEM_REQUIREMENTS'

END_ACTIVITY

ACTIVITY 'SOFTWARE_REQUIREMENTS_PHASE'
NAME "SOFTWARE REQUIREMENTS PHASE"
DESCRIPTION "DEVELOPING SYSTEM SOFTWARE REQUIREMENTS"
IMPLEMENTATION WORKFLOW 'SOFTWARE_REQUIREMENTS'

END_ACTIVITY

// <Transition Information List>
TRANSITION T_1

DESCRIPTION "Finish-Start Transition"
FROM 'SYSTEM_REQUIREMENTS_PHASE'
TO 'SOFTWARE_REQUIREMENTS_PHASE'

END_TRANSITION

TRANSITION T_2
DESCRIPTION "Finish-Start Transition"
FROM 'SOFTWARE_REQUIREMENTS_PHASE'
TO 'SOFTWARE_DESIGN_PHASE'

END_TRANSITION

END_WORKFLOW

// <INSERT WORKFLOW 'SYSTEM_REQUIREMENTS' HERE>
// <INSERT WORKFLOW 'SOFTWARE_REQUIREMENTS' HERE>
WORKFLOW 'SOFTWARE_DESIGN'

CREATED 1999-05-27
NAME "SOFTWARE DESIGN"
DURATION_UNIT D
DURATION 17

// <Activity List>
ACTIVITY 'SOFTWARE_PRELIMINARY_DESIGN'

NAME "SOFTWARE PRELIMINARY DESIGN"
DESCRIPTION "PRELIMINARY SOFTWARE DESIGN"
IMPLEMENTATION WORKFLOW 'PRELIMINARY_DESIGN'

END_ACTIVITY

ACTIVITY 'SOFTWARE_DETAILED_DESIGN'
NAME "SOFTWARE DETAILED DESIGN"
DESCRIPTION "DETAILED SOFTWARE DESIGN"
IMPLEMENTATION WORKFLOW 'DETAILED_DESIGN'

END_ACTIVITY

// <Transition Information List>
TRANSITION T_1

DESCRIPTION "Finish-Start Transition"
FROM 'SOFTWARE_PRELIMINARY_DESIGN'
TO 'SOFTWARE_DETAILED_DESIGN'

END_TRANSITION

END_WORKFLOW

END_MODEL





SESSION 3

MODELING, TRANSFORMATIONS,
AND GENERATION TECHNIQUES





An Approach for Generating Object-Oriented Interfaces for
Relational Databases

Uwe Hohenstein

Siemens AG , ZT SE 2, D-81730 München (GERMANY)
Phone +49 89 636 44011, Fax +49 89 636 45450, E-mail: Uwe.Hohenstein@mchp.siemens.de

Abstract

Several tools and class libraries aim at supporting the access of relational databases from object-oriented applications by
providing some kind of persistence layer. Nevertheless, a user’s exertion of influence is sometimes too low, as the layer
is mostly a black box. That is, the layer possesses a certain functionality, or it does not. Either the performance is
sufficient, or is not. One has to live with the layer as it is, there are no possibilities to improve performance, to include
new features such as advanced querying or transactions, or the other way round, to remove needless functionality.

This paper presents an alternative tooling, putting emphasis on highly customisable database layers. An adequate
object-oriented access interface can be designed according to the application’s needs. In order to keep the effort for
implementation low, layers are generated out of an object-oriented design tool. It is shown how a UML model
describing the persistent data can be used, and how the design tool can be enhanced to allow for generation.
Experiences will stress on the advantages over commercial persistence layers: Flexibility is higher as the functionality
can be freely designed. And transparency is given such that the structure of tables and the accesses to the database can
be modified, e.g., for tuning the performance.

Keywords: Persistence layer, object-oriented database interface, Rational Rose, generator.

1. Introduction

Nowadays, it is commonly accepted that using object-
oriented technologies in the software development
process possesses advantages with regard to extensibility,
flexibility, and reusability, thereby enhancing the
productivity of programming. The object-oriented
paradigm, through the notions of inheritance and
encapsulation, reduces the difficulty of developing and
evolving complex software systems.

Nearly all applications require a persistent storage of
data in a database system (DBS). From the point of
programming, it is desirable to store and retrieve objects
of the application in an easy manner. Object-oriented
DBSs (ODBSs) pick up this point bringing object-
orientation into database technology. They enhance
object-oriented languages to support database capabilities
like persistence, transactions, and queries in a
homogeneous manner so that the programmer gets the
illusion of just one language. Owing to being a new
database technology, ODBSs have got only a niche in the
marketplace – in spite of their advantages in many
application areas. Enterprises are just advanced to gain
confidence in relational DBSs since robustness and
reliability are gradually accepted. Storing data in
relational databases, lots of applications have been
developed recently. Since any DBS requires a large
amount of administration, nobody will switch to a new
database system without need. Hence, even new
applications will use a system that is already available in

a department or business unit. Replacing a relational DBS
with an ODBS, as an alternative solution, is often
impossible due to the so-called legacy problem [1]: There
is a lot of data stored in relational databases. This data is
a necessary input to many decision making processes, and
thus an enormous investment of a company. Migrating
the data in an object-oriented DBS is difficult and risky,
frequently leading to an unacceptable lack of operation.
Consequently, relational DBSs are still the state-of-the-art
for many companies, even if the object-oriented paradigm
is used in programming.

In fact, there is no principle problem to make
relational data accessible from object-oriented
programming languages. Relational database applications
can be written by using SQL statements embedded in a
general purpose programming language. Even if an
embedding in C++, SmallTalk and Java is sometimes not
supported, a detour via “Embedded SQL” for C can be
taken. But database vendors are more and more enabling
a direct embedding for C++ and Java, e.g., SQLJ.

Anyway, this approach suffers from the need to
switch between two different languages and to interface
them with extra programming effort. Both languages, the
programming language for implementing application
logic, and SQL for accessing tables in the database, are
strictly separated. This is the so-called impedance
mismatch. The languages follow different paradigms.
While the programming language is procedural, SQL is
descriptive, specifying what data should be retrieved
instead of how this is to be done. Data exchange between



both languages requires special concepts such as host
variables and cursors. Cursors allow receiving the query
result one tuple at a time, and the values of each tuple are
put into host variables, which have only scalar types. The
disadvantages are obvious: The application receives
tuples of atomic values and must convert them to objects.
Hence, the semantic gap is coming to light: The
application maintains complexly structured objects, while
the relational DBS manages simple records in flat tables,
because of different type systems. Objects have to be split
up in order to fit into tables, and the other way round
tuples have to be joined to build objects. This makes the
handling cumbersome and application programs difficult
to write and hard to read.

We accommodate ourselves to the significance of
accessing relational DBSs from the programming
language C++. We propose a layered system [2] that
provides a flexible and homogeneous coupling of both
worlds, solving the problems of impedance mismatch and
semantic gap in an elegant way. The impedance
mismatch is avoided by staying completely in C++.
Database features are encapsulated in predefined classes
and methods. Hence, our proposal hides the specific
coupling mechanisms of relational systems. C++
programs is given the ability to invoke database
functionality in a convenient and comfortable way.

In fact, there are some commercial C++ class libraries
and tools such as RogueWave’s DBTools.h++ that
attempt to ease the access of relational databases for C++
applications. Section 2 will discuss some disadvantages
of those tools. Essentially, commercial tools provide
persistence layers that do often not possess enough
flexibility to support specific demands. The other way
round, there are few possibilities to reduce the
functionality to a degree really needed by the application.
Moreover, the layers are black boxes. This is particularly
critical if a lack of performance requires database tuning
since this has to be done in the implementation part
(which is hidden by the tool). A layer implemented by
one’s own provides better adaptability and flexibility, but
requires more effort for implementation.

In order to reduce the effort for developing
application-specific persistence layers for a relational
database, we suggest generating the implementation of
the layer. Section 3 will first present a simple persistence
layer with an object-oriented C++ interface, before the
process of generating the implementation is illustrated in
Section 4. To this end, we take benefit from object-
oriented modelling tools.

Section 5 reports on experiences we made with the
generative principle in a concrete project. The main
advantage of our approach is that flexibility and
adaptability are completely under control. The persistence
layer is customisable with regard to application’s
requirements on database functionality. Performance can
be improved that way.

Section 6 finally outlines some future work we are
planning to do.

2. Persistence tools

Using embedded SQL is the classical way to build
relational database applications. But such a programming
of object-oriented database applications is very complex
due to the impedance mismatch and the semantic gap.
Fortunately, there are several products on the market that
promise to make this task easier. However, there are still
some deficits we want to discuss.

There are products such as RogueWave’s class library
DBTools.h++, the Java database interfaces JDBC (“Java
Database Connectivity”) and SQLJ, or  Microsoft’s
palette of interfaces, e.g., ODBC (“Open Database
Connectivity”), ADO (“Active Data Objects”), RDO
(“Remote Data Objects”), DAO (“Data Access Objects”)
and OLE-DB, partially in combination with the MFC
(“Microsoft Foundation Classes”). All these interfaces
behave similarly: They encapsulate the concepts of
relational database technology, e.g., transactions, tables,
columns, queries etc. by means of corresponding C++
classes TRANSACTION, TABLE, COLUMN, QUERY, or
similar. In fact, the handling of relational databases gets a
C++-like appearance making programming easier, but the
gain with regard to object-orientation is only little.
Applications still have to manage tables and to use SQL
for manipulating data. Even if the syntax may be
different, the concepts of SQL must be known when
querying data. Since a lot of application developers have
not much experience with relational database design and
SQL, those tools will not solve the big problems. But
without doubt this is an important step to achieve
independence of concrete database systems; using the
interface eases a later switch to another database system.

Other tools aim at providing more comfort by
managing C++ objects in relational databases. Those
products start with an object model 1 modelling the data
to be stored in the database in an object-oriented manner.
The object model is then automatically mapped onto
relational tables using some strategies. Moreover, a
database layer is generated that breaks down objects into
tuples accordingly. The layer provides an interface that
allows handling objects of the object model. It is possible
to store, retrieve and to delete objects in the database,
independently of how they are represented in tables.
Programming database applications thus becomes easier.
Particularly, the programmer is no longer responsible for
designing tables since the tool does this job implicitly.
Well-known tools are Persistence, POLAR (IBL
Ingenieurbüro), ObjectFactory (RogueWave), JavaBlend
and TOPLink (The Object People). The high-end of those
tools more or less emulate object-oriented DBSs on top
of relational ones. But they can certainly not compete
with the performance of real ODBSs, which are
optimised to handle complex structures and inheritance
                                                       
1 The term “object model” here means the result of modelling
data, i.e., a schema in database speak. It should not be
understood as the modelling language, e.g., UML (Unified
Modeling Language) or ER (Entity-Relationship).



already on the physical storage level. For example, the
typical traversal from object to object is an operation that
is performed very quickly in ODBSs. Doing this with an
object-oriented layer will take much more time as either
several accesses to the database are necessary, or costly
joins must be performed on tables. Subtyping is for free
in ODBSs, but in contrast requires several operations on
the relational database. It is not only the number of
accesses, but also the internal overhead required to
emulate ODBS features, e.g., a caching mechanism to
synchronise several copies of database objects in
memory. All these things cause some overhead that leads
to a loss of performance in any case, especially if object-
oriented accesses are used extensively. The comfort given
by object-oriented accesses is traded for worse perform-
ance. We made some studies that reveal a loss of 40%!

A lot of applications can presumably live with the loss
of performance, particularly, if the profit from faster
application development is taken into account. But if
performance is critical, applications will run into trouble
because tuning the database layer comes up against
limiting factors. For example, it is often not possible to
change the structure of tables afterwards, because the
tools operate in a top-down manner: If the tables are not
adequate due to performance reasons, one has to modify
the object model in such a way that the tool will produce
the desired, more efficient tables. This is very
cumbersome because the internal strategies must be
understood and turned up. Thus, the choice of the object
model depends on achieving certain tables. And even
more worse, any change of tables requires a new object
model, which affects the application heavily! By the way,
this is also a problem for accessing existing “legacy”
tables. Here again, the design of the object model is
essentially shaped by the tables. Similarly, there is only
little flexibility to modify the (relational) database
accesses because the persistence layer is a black box.
Unfortunately, changing the table structure and
reorganising the accesses possess the best potential for
improving the performance. The full potential for tuning
is only available if the code generated by the tool is
understandable, and changeable –  but it is mostly not.

Finally, we want to mention some special data re-
engineering approaches [3], which aim at accessing
existing tables. [4, 5] discuss a generative, specification-
based approach. It is based upon a specification that
describes the re-engineering of tables explicitly, i.e., how
tables can be modelled as object classes. Hence this is a
bottom-up approach starting with tables. There are very
flexible mechanisms to remodel relational data in an
object model. A specification is input to a generator that
produces a C++ interface conforming to the ODMG2.0
standard [6] for ODBSs. In other words: The approach
provides an adjustable, object-oriented access to
relational database systems, completely simulating an
ODBS on top. Similarly, the prototype COMan [7] is
working. Both tools are only available as research
prototypes, beyond having maturity for the market.

It is important to note that the newest database
technology of object-relational systems such as Informix
Universal Server with the Universal Data Option and
Oracle8 also do not provide a satisfying solution. Besides
embedding SQL in C++, they integrate object-orientation
in the DBS kernel. This means that tables may now be
complexly structured. A user can define new data types
including operations (in principle classes) that can be
used as attribute domains. Nevertheless, it is not possible
to store C++ objects directly as database objects; there is
still a mismatch to C++, as there are two separate worlds
with different concepts for relationships and inheritance.

In spite of the criticism, it should be mentioned that
the tools are useful as they make programming relational
database applications easier. [8] estimates the effort for
developing a persistence layer at 30% of the planned
resources! Nevertheless, there are special situations that
require an enhanced influence on the object-oriented
layer, e.g., due to performance reasons. Then it is in-
evitable to establish an own persistence layer between
object-oriented application and relational database.

3. Persistence layer

We now introduce a simple persistence layer for
relational databases. Later on, we will show how to
generate the implementation of the layer. The layer
should satisfy the following requirements:
• The interface provided by the layer supports database

functionality in an easy manner.
• Especially, the relational database technology (tables

and SQL) is transparent.
• The principle is in some way schematic and intuitive.

This makes it possible to use the interface by just
knowing the object model.

An object model, i.e., an object-oriented design of the
structure of an application, is a good starting point. The
object model comprises the model of persistent data.
More precisely, we should use the term “database model”
to denote the subset of persistent data in the object model.
The database model may omit single attributes of a class
or complete classes. It is useful to let the database model
be a subset of the object model. But sometimes there are
good reasons to keep them apart in two separate models.
Then there is a higher independence between application
and persistence, but a need for some mediation that
makes the usage more complex: The database model is
used to manage data from the database, which then must
be converted in such a way that it fits to the object model.

Our approach relies on a database model being a
subset of the object model. The database functionality is
then related to objects of the object model: Real objects
are stored, retrieved and deleted. Knowing the object
model is enough to use the database interface.

Such a persistence approach can be designed in
several ways. [9] gives a good overview of
object/relational access layers and discusses several
implementation aspects (which affect in turn the design
of the interface). When designing such a layer, there are



different forces: On the one hand, the layer should satisfy
all the needs from a functional point of view. On the
other hand, we should keep the layer as simple as
possible in order to enable generation. Particularly, the
part to be generated should be small.

We here pursue a shadow class concept which is very
practicable in most situations: Each persistent class A
obtains a superclass DBM_A; DBM stands for database
management. The DBM shadow class provides all the
methods needed for handling objects in the database:
There are methods to create, find, store, and delete
objects in the database. Associations between classes are
reflected by methods that allow for traversing from an
object to related ones. Special types of associations such
as aggregations/compositions in UML [10] may affect the
semantics of methods. For instance, it is useful to treat
aggregations/compositions as “complex objects”:
Fetching an object that has aggregations will also get the
associated parts, and similarly for removals. Hence,
complex objects are managed as a whole.

Let us discuss the principle of the persistence
interface in more detail by means of an example. We
assume the following object model:

A
attr1 : int
attr2 : string

B
b1 : int
b2 : string C

c1 : int
c2 : float

0..1

0..*0..1

RelB

RelC

Figure 1: Sample object model

The shadow class approach enhances the object model by
several DBM superclasses as shown in Figure 2:

DBM_A

A

DBM_B

B

DBM_C

C

Figure 2: Shadow class approach

The signature of the DBM_A class declares methods to
handle objects of class A:

class DBM_A {
public:
   int create();
   int store();
   int remove();
   static A* find(<key>);
   static Set<A*>* find(<query>);
   // for to-1 association RelB:
   B* getRelB();
   int setRelB(B*);
   // for to-n association RelC:
   Set<B*>* getRelC;
   int addRelC(C*);
   int removeRelC(C*);

protected:
   virtual int getAttr1()    = 0;
   virtual string getAttr2() = 0;
}

DBM_B and DBM_C possess analogous signatures. The
method create is used to create new objects in the
database, while store overwrites existing objects. We
assume that each class possess an identifying property,
i.e., a key attribute or a set of attributes. This key is used
to determine whether an object is new. If an object that
already exists in the database is created, an error is
issued. The return value detects the success of a method.

The find-method is static as the invocation is
independent of an object. <key> should denote the key
attribute(s) of the class; hence it is guaranteed that at
most one object is returned. More precisely, it is a pointer
to the object. <query> should denote some kind of
general associative query. In the simplest case, several
attributes may occur as parameters. Then all those objects
are searched that possess the passed values as attributes.
For example, find(String a2) will return all the A-
objects that possess the parameter a2 as value of attr2.
For advanced query capabilities, SQL-like conditions are
possible. This can either be done by passing a string to
find, specifying the condition in a query language, or by
means of a Query class that allows constructing queries.
Anyway, the language should rely on the object model in
the sense of an ObjectSQL [11]; relational SQL is no
good choice because it is based upon tables which are
supposed to be hidden by the layer. The result of a query
is represented by a Set as it is typically provided by class
libraries, e.g., templates RWTPtrSlist<T> in
RogueWave’s Tools.h++. The collection templates offer
methods to iterate over the result set.

Associations of the object model are reflected by
traversal methods. Invoking getRelB for a given A-
object returns the B-object that is related to by RelB. In
case of to-n associations, e.g., RelC, a set of objects is
yielded. The methods setRelB and addRelC can be
used to establish new relationship instances. Due to to-n,
addRelC adds a new instance to the already established
ones, while setRelB overwrites a to-1 association.
Analogously, removeRelC removes a relationship.

The (pure) virtual get-methods are necessary,
because class DBM_A needs to access the attributes of
class A when implementing the methods create/store.
The protocol is as follows: DBM_A only declares a
protected method <datatype> get<Attr>() that
gives the DBM layer access to any attribute <Attr>. The
implementation of the method must be done in class A.
Analogously, the implementation of DBM_A::find has to
create A-objects and to fill the attributes with values
found in the database. Hence, class A must possess a
constructor to set all the attributes.

Owing to inheritance, using the database functionality
is very easy and intuitive. Here is a sample program:



DBM_Transaction t;
t.start();
// create an A-object in memory:
A* objA = new A(...);
// store object in the database:
objA->create();
// modify the object in memory:
objA->setAttr2("new value");
// write the object back to database
// (the object must already exist):
objA->store();
// get related B-object (via RelB):
B* objB = objA->getRelB();
// get the related C-objects:
Set>C*>* setC = objA->getRelC();
// establish association between objA,objC:
C* objC = new C(...);
objA->addRelC(objC);
// query: find all A-objects with name
// "Ms. Marple"
Set<A*>* result = A::find("Ms. Marple");
A* obj;
// iterate over result:
while (obj = result->next())
{ ... obj->method() ... }
// commit all the modifications:
t.commit();

Obviously, the interface smoothly fits to C++; the
handling is similar to an ODBS. The usage of the
interface is closely related to the object model, as the
object-oriented concepts are directly reflected. The
principle is schematic, all objects are handled in the same
manner. Hence, the database functionality is immediately
comprehensible. Transparency is given as the underlying
relational database is invisible. Objects and associations
are handled, no matter whether they are found in one or
more tables. Traversals can be performed without
knowing how to join which tables. Consequently, there is
a strong independence between application programming
and the relational database.

The DBM classes in total implement a layered system
in the sense of [2]. The generic interface yields enough
abstraction from “physical” database details allowing for
an efficient implementation.

Implementing the DBM classes is very schematic and
straightforward. A sample implementation may look as
follows. We consider the method create for inserting
new objects in the database. To ease embedding SQL in
C++, we here use the class library DBTools.h++.
Programming thus becomes simpler and the code is
independent of a specific database vendor.

static const RWCString tabName("tabA");
// table tabA(a1,a2) for class A (cf. 4.4)

int DBM_A::create()
{
   int failure = 0;
   RWDBConnection* cPtr =

 DBM_ConnectionMgr::getConnection();
   /* get connection to database,
      if not already existing    */
   RWDBTable tab(tabName);

   RWDBInserter ins = tab.inserter();
   try

{ /* store atomic attributes of object
      in tabA  */

ins << getAttr1() << getAttr2();
ins.execute(*cPtr);
cache.insert(new Entry
  (Key<A>(getAttr1()), // key
   this,  // pointer to object
   NEW,         // status of object
   1); // reference counter

}
catch(const RWxmsg& x)
{ DBM_ErrorHandler::set(failure); }
return failure;

}

The code aims at keeping the class-specific part as low as
possible. In fact, this is the part to be generated.
Consequently, connecting to a database and error
handling are put in separate classes
DBM_ConnectionMgr and DBM_ErrorHandler.

Handling database errors in DBTools is quite easy.
An error handler can be installed by means of cPtr->
setErrorHandler(DBM_ErrorHandler::handler).
Any occurrence of a database error will then invoke the
method DBM_ErrorHandler::handler. This routine
analyses the error, converts the DBTools/DBS error into a
DBM error number, and throws a RWxmsg exception. A
catch-block catches the exception and lets the variable
failure be set with the DBM error. Doing that way,
errors such as “unique constraint violation” are handled
and changed to “object already exists”. In fact, we let the
database system check for uniqueness of tuples (objects)
by defining primary key constraints.

The piece of code is intuitive and shows the principle.
One point is worth mentioning, a cache that controls the
usage of objects. This is important because an object can
be retrieved several times by multiple find or
getRelB/C invocations. A (too) simple implementation
would maintain several copies of this object in main
memory. As a consequence, the copies would evolve
independently of each other. If objects are written back to
the database, then object changes get lost, as the last one
would override all the previous ones, unless there is some
synchronisation mechanism [12]. The cache now cares
for synchronisation in the following manner. Any object
occurs only once in main memory, other pointers refer to
that copy. Hence, all modifications are made to the same
copy, and writing this copy back will include all changes.
This implies that the implementation of find looks in the
cache before fetching an object from the database.

The cache maintains a hash table of all objects
currently fetched from the database. An entry of this list
consists of the object’s key value (encapsulated in a class
Key<A>), a pointer A* to the object, a status (NEW,
DELETED etc.) and a counter that counts how often an
object is referenced. Committing a transaction, all the
modified objects in the cache are written to the database.



The example is intentionally kept simple. Class A
possesses only atomic attributes. Complex attributes and
embedded objects (by aggregation/composition) must be
handled similarly. Furthermore, subclasses will require
some additional actions. In case of find, an object of the
most specific subclass must be determined in order to
support polymorphism correctly. In order to set attributes
of the superclass (which are inherited to a subclass), a
table related to the superclass must often be accessed,
according to some mapping strategy.

Please note this is just one proposal for a persistence
layer. We here want to keep the layer simple and
understandable for reasons of a later generation, but also
to show how simple a layer may be. Nevertheless, the
layer can be enhanced in any way to bring it into line
with specific requirements. The reader is referred to
[13,8] that discuss important aspects of designing
scaleable object-persistence layers in more detail.

4. Generative approach

4.1 The principle

This section describes how to implement a generator
that produces persistence layers such as the one
discussed. In order to keep the effort for development as
low as possible, we integrate the generator in an object-
oriented design tool. This has the advantage that the
graphical user interface, especially for modelling the
structure, can be used. There is no need for developing a
user interface of its own for the generator. The generator
can focus on its real task, generating code.

All the well-known object-oriented design tools are
extensible in a certain sense. They possess
• a repository that maintains all the information about

existing object models (e.g., in .cat-files in ROSE),
• an interface to access the meta-data in the repository,
• an opportunity to define additional properties for

object models, and
• means to implement and run scripts within the tool.
These are technical prerequisites to integrate a generator
in a tool. The procedure of implementing a generator can
then be done stepwise. We here focus on Rational ROSE
to give the discussion more technical depth. The ideas
can be transferred directly to other design tools, too.
1. Starting point is a database model (as part of the

application’s object model) specified in ROSE by
means of UML (“Unified Modeling Language”) [10].
UML allows for an object-oriented modelling of the
application structure. Moreover, dynamic aspects can
be described by sequence diagrams etc., but this not
relevant here. We are interested in modelling the
structure since the resulting ROSE model is a superset
of the persistent objects. It does not matter whether
the database model is subset of the object model or
whether is apart from it.

2. The ROSE model is enhanced with additional
“properties”. Those properties can be attached to

ROSE concepts to carry additional information, which
is needed by the generator and must be supplied by
the user of the generator. Examples are markers for
the persistent classes, their persistent attributes, key
attributes, what attributes are used for querying (in
find) etc. Furthermore, properties may represent
mapping strategies, how to map set-valued attributes
onto tables, i.e., how to handle subtyping and so on.
Properties are organised in new folders (named
“tools” in ROSE) that occur in ROSE specification
windows (cf. the tool “CODE” in Figure 3).

3. Generators are implemented in a script language
similar to VisualBasic Script. The script language
includes special classes and functions to access the
repository, i.e., to get information about the modelled
classes, their attributes and associations, inheritance
hierarchies and so on. Using this meta-data, SQL
statements can be generated that install tables in the
relational database. Information about key attributes
and mapping strategies can be obtained by querying
the generator-specific properties.

4. Taking each persistent class of the ROSE model, a
generator can produce the corresponding DBM class.
The set of all DBM classes together with some
predefined classes constitute the persistence layer.

5. In order to have a complete description of all the
software, the model of the DBM classes can be
generated and inserted into the repository. That is, the
DBM part does not need to be modelled with the
design tool manually!

Subsections 4.3 to 4.6 will explain how to perform the
steps 2 to 5. The repository of ROSE is the central part
for the steps. The essentials of the repository and its
meta-model are summarised beforehand in Section 4.2.

Having developed the generators, usage is as follows
from an end user’s point of view. It is first necessary to
mark the persistent classes in the ROSE model, and to
indicate the persistent attributes and associations. Classes
are specified in a “Class Specification” diagram in ROSE.
The diagram possesses a property that can be switched to
“persistent”. Alternatively, the user can click on
persistent classes in ROSE before starting the generator.
The generator then takes the chosen classes into account.

Similarly, the user has to indicate what attributes and
associations of a class become persistent. To this end,
newly defined properties are used. Figure 3 displays the
attributes of class A in the “Attributes” folder of the
“Class Specification” window (left). Selecting “attr1”, a
“Class Attribute Specification” diagram appears. This
window possesses a new folder “CODE”; being activated
it presents the new properties for interactive modification.
Hence, the user can mark “attr1” as a key by filling in
“yes” for the “Key” property. Any attribute is assumed to
be persistent by default, but this value can be overwritten.
Similarly, special strategies for handling multi-valued
attributes and subtype hierarchies can be managed.
Analogously, the “Class Association Specification” is to
be handled by means of the folder “Relations”.



Having enriched the ROSE model in that way, the
ROSE script implementing the generator can be selected
in the main menu and executed. Consequently, enhancing
an object model with generator-specific information is
completely integrated in ROSE!

4.2 The Meta-model of ROSE

Design tools possess a repository, which contains the
information about all the object models. The organisation
of this meta-data is done according to a meta-model. The
meta-model of ROSE exposes all the UML concepts by
corresponding meta-classes such as Class, Attribute,
Association, Operation, Role, and Parameter,
reflecting the concepts directly. Hence, the meta-class
Class maintains all the classes of a ROSE model as
instances. Every meta-class possesses a method Name to
determine the name as a string: Having an instance
aClass of Class (i.e., a class of the model),
aClass.Name computes the name of that class. Traversal
functions relate meta-classes. A function Attributes
computes the attributes of a class. Similar functions can
be used to determine the associations of a class
(Associations), the roles of an association (Roles),
the superclass(es) etc.

Each concept possesses a corresponding collection
class ...Collection, e.g., AttributeCollection
maintains a collection of Attribute instances. This is
because some functions return a collection. For example,
aClass.Attributes returns an Attribute-
Collection, which contains all the attributes of
aClass. Those collection types have GetAt(int) and
Count functions to iterate over the collection:

FOR i%=1 TO aClass.Attributes.Count
' for any attribute of the class:

SET anAttr = aClass.Attributes.GetAt(i%)
   ...
NEXT i%

The meta-model comprises all ROSE-specific concepts,
even those that have an organisational purpose such as
packages and categories. They are used to modularise and
partition large ROSE models. Hence, an object model can
be split into several categories, each one modelling a part
of the software system. It is sensible in our case to put the
DBM classes in a category of its own.

The repository is the central point to get information
about object models. Particularly, there are means to ask
the settings of generator-specific properties. The
properties are an elegant way to enhance an object model
with additional information, which is not purely related to
modelling, but rather to generating code.

4.3 Definition of new properties

As mentioned in Subsection 4.1, the generator needs
additional information to control generation. ROSE can
be extended by properties that can hold additional input.
Adding generator-specific properties to ROSE is done by
means of the meta-class DefaultModeProperties.
Having an object model loaded in ROSE, the following
lines will introduce a new property “Persistent” for the
“Class Attribute Specification” diagram.

DIM prop AS DefaultModeProperties
SET prop =
    RoseApp.CurrentModel.DefaultProperties
prop.AddDefaultProperty
  ("Attribute", "CODE", "default",
   "Persistent","String", "yes")

The first parameter of AddDefaultProperty
determines the concept to be enriched, here “Attribute”.
Any property must belong to a folder in the diagram. We
name the folder “CODE”. Any further call of
AddDefaultProperty with the same folder name adds
a property to the already existing folder. The next
parameters define the new property “Persistent” of type
“String”; the property is initialised with the value of the

Figure 3: Class attribute specification



last parameter “yes”. This value can in fact be modified
by the user, if s/he selects the “Class Attribute
Specification” and clicks on the “CODE” tool.

4.4 Generating tables

A first generator will show the principle of how to
create SQL scripts for setting up tables. Mapping object
classes onto tables can be done according to several
mapping strategies [5,9,14]. Frequently, each class A will
result in a base table tabA that is able to hold all the
atomic attributes of the class. Multi-valued attributes will
be stored in an additional table with a foreign key
referring back to the base table. Associations require
foreign keys. The following tables are adequate for the
introductory object model in Figure 1.
tabA (attr1 integer, attr2 varchar,
      primary key attr1);
tabB (b1 integer, b2 varchar,
      attr1 integer, primary key b1,
      foreign key attr1
      referencing tabA.attr1)
tabC (c1 integer, c2 float, attr1 integer,
      primary key c1, foreign key attr1
      referencing tabA.attr1)

Table tabA takes all the atomic attribute of class A. Using
the value of the “Key” property, attribute attr1 becomes
a primary key: There cannot be two tuples in the tables
with the same attr1-value. Both tables tabB (for class
B) and tabC (for class C) possess a foreign key attr1
that refers to table tabA. The foreign keys express the
associations of B and C with A. Since table tabC can
contain several entries with the same attr1-value,
several C-objects are related to the one A-object in tabA
that possesses this attr1-value.

The literature discusses several mappings for handling
associations, multi-valued attributes, and subtype
hierarchies. Hence, we want to refer to this work, e.g.,
[5,4,9].

A generator now produces a text file that contains
corresponding CREATE TABLE statements. In fact, the
repository of ROSE must be accessed to get the
information about class names, attributes, keys etc. The
basic principle is easy.

SUB Main()
 DIM classes AS ClassCollection
 DIM aClass  AS Class
 DIM attrs   AS AttributeCollection
 DIM anAttr  AS Attribute
 DIM tabName AS String
 OPEN "create.sql" FOR OUTPUT AS #1
 SET classes =
  RoseApp.CurrentModel.GetSelectedClasses()
 ' for any class marked in the ROSE model
 FOR i% = 1 TO classes.Count

SET aClass = classes.GetAt(i%)
tabname = "tab" + aClass.Name
PRINT #1,"create table " + tabname + "("
SET attrs = aClass.Attributes
' for any attribute of aClass

FOR j% = 1 TO attrs.Count
  SET anAttr = attrs.GetAt(j%)
  IF anAttr.Type <> "int" AND
     anAttr.Type <> "float" AND ... THEN

  handleComplexAttr(anAttr)
  ELSE PRINT #1, anAttr.Name + " " +
              mapType(anAttr.Type) + ","
  END IF
NEXT j%
handleAssociations(aClass)
printPrimaryKey(aClass)
PRINT #1, ");"

 NEXT i%
 CLOSE #1
END SUB

There is a loop over all classes that the user has selected
in the current model. An inner loop gets information
about the attributes of the current class. A function
mapType is responsible for transforming C++ data types
into SQL types. Complex attributes, i.e., those with a
domain Set<T>, require special treatment by a function
handleComplexAttr. Those attributes can be
recognised by their type (anAttr.Type). Furthermore,
functions handleAssociations and printPrimary-
Key are needed to handle associations (e.g., by foreign
keys) and to define primary keys. These can be
implemented similarly. Associations are obtained by
aClass.Associations yielding an Association-
Collection. Having an Association instance, the
roles (Roles, Role1, Role2), the cardinality of a role
(Cardinality) etc. are accessible. Depending on the
cardinality, a foreign key or a relationship table can be
installed. Du to space limitations, we cannot show the full
implementation. Particularly, subclass hierarchies are
completely left out. But an adequate handling can be
incorporated easily. [4] discusses several strategies to
map hierarchies on tables with pros and cons, e.g., a
vertical, a horizontal, a flag-based strategy and a
complete materialisation. Functions GetSubClasses/
GetSuperClasses help to get the corresponding meta-
information.

There are several strategies for handling complex
attributes and subtype hierarchies. Instead of
implementing one fix strategy, it is more flexible to let
the user choose one. This can be done by means of the
property “Strategy” (cf. Figure 3). Implementing a
generator, we are then concerned with accessing those
generator-specific properties. This can be done as follows
for a given anAttr:

DIM aProp   AS Property
DIM propset AS PropertyCollection
...
SET propSet = anAttr.GetProperties
FOR k%=1 TO propSet.Count
   SET aProp = propSet.GetAt(k%)
   IF aProp.Name = "Strategy" THEN
      ... act according to aProp.Value ...
   END IF
NEXT k%



Thanks to the script language, the value of the generator
can be increased with a graphical user interface. All the
features of VisualBasic Script are usable. For example,
boxes can be displayed asking for a database system (for
which CREATE TABLE statements are to be generated),
the names of output files can be chosen in pull-down
menus, and so on.

4.5 Generating a ROSE model for the DBM classes

The persistence layer consists of several DBM
classes, which all should become part of the ROSE model
for documentation reasons. We assume that a category
DBM has already been established in ROSE. The
following script puts all the DBM classes in this
category:

DIM theDiagram  AS ClassDiagram
DIM theDbmCat   AS Category
DIM allCats     AS CategoryCollection
...
' search DBM category
SET allCats =
  RoseApp.CurrentModel.GetAllCategories
FOR i%=1 TO allCats.Count
   IF allCats.getAt(i%).Name = "DBM" THEN

SET theDbmCat = allCats.GetAt(i%)
   END IF
NEXT i%
' create new DBM public class diagram (PCD)
SET theDiagram = theDbmCat.AddClassDiagram
                  ("PCD_DBM_Interface")
' create a DBM class DBM_A for each class A
SET classes =
  RoseApp.CurrentModel.GetSelectedClasses
FOR i%=1 TO classes.Count
  SET aClass = classes.GetAt(i%)
  dbmClassName = "DBM_ " + aClass.Name
  SET dbmClass =
     theDbmCat.AddClass(dbmClassName)
  theDiagram.AddClass(dbmClass)
  ' establish a subclass relationship
  SET theInhRelation = aClass.AddInheritRel
                 ("inherits from",dbmClass)
  theDiagram.AddClass(aClass)
  ' find-method (analogous for others)
  SET theOp = dbmClass.AddOperation
               ("find", aClass.Name + "*")
  SET theParam = theOp.AddParameter
                     ("key", <datatype>,1)
  theOp.AddProperty("OperationKind",
                    "Static")
NEXT i%

At first, a new public class diagram (PCD) is created.
This diagram will contain the DBM classes. Then again,
all the classes selected in the ROSE model are treated.
For each class aClass, a DBM class is created in the
PCD. All the methods such as find are added by
invoking the function AddOperation, passing the name
of the method and the return type. Calling
AddParameter, the parameters are defined with a name,
a data type, and a position. Each Operation instance has
a pre-defined property “OperationKind” that can be set

to make the method static. Similarly, a property
“virtual” can be set for the get methods. The original
class aClass is then inserted into the diagram to make it
visible; the class is not duplicated by ROSE! The class is
needed to establish the inheritance relationship between
aClass and dbmClass.

Starting the generator creates the DBM class in ROSE
automatically. It can be modified afterwards within
ROSE, e.g., adding further find-methods.

4.6 Generating the persistence layer

The previous sections have already presented the
basics of generation. A generator for the persistence layer
can be implemented analogously. In principle, the code
sketched out in Section 3 must be written into a file. All
the generic parts such as class and attribute names must
be filled in by accessing the repository. The following
procedure generates the code for the create-method.

SUB printCreate(dbmClass AS Class,
                aClass AS Class)
 PRINT #1, "int " + dbmClass.Name +
           "::create()"
 PRINT #1, "{"
 PRINT #1, "   int failure = 0; "
 PRINT #1, "   RWDBConnection* cPtr =
     DBM_ConnectionMgr::getConnection();"
 PRINT #1, "   RWDBTable tab(tabName);"
 PRINT #1, "   RWDBInserter ins =
                  tab.inserter();"
 PRINT #1, "   try"
 PRINT #1, "   {"
 txt =     "      ins"
 FOR j% =1 TO aClass.Attributes

txt = txt + " << anAttr.Name + "()"
 NEXT j%
 PRINT #1, txt + ";"
 PRINT #1, "      ins.execute(*cPtr); "
 PRINT #1, "      cache.insert
       (new Entry(Key<"+ aClass.Name +">" +
       "(" + handleKey() + "),this,NEW,1);"
 PRINT #1, "   }"
 PRINT #1, "   catch(const RWxmsg& x)"
 PRINT #1, "   {" DBM_ErrorHandler::
                           set(failure); }"
 PRINT #1, "   return failure; "
 PRINT #1, "}"
END SUB

Information about both classes is needed: aClass
provides the attributes to build the get methods. The
dbmClass is necessary since new methods might have
been included in addition to the automatically generated
ones, e.g., find-methods with other parameters.

5. Experiences

The presented approach has several advantages over
commercial tools with regard to flexibility.
• The persistence layer can be brought into line with

specific requirements and needs. The layer is
customisable on several levels, in accordance to the



required functionality:
First, the modelling concepts can be restricted. For
example, one can think of prohibiting subtyping in the
database model, since this is difficult to handle and
may cause a lack of performance. But the easier
handling is dearly paid by the fact that subtype
hierarchies cannot be made persistent as they are.
Modelling is forced in those cases to introduce a
simpler database model beside the original object
model. This database model models the persistent part,
simple enough to get handled. A transformation
between both models becomes necessary.
   Next, the interface can be enhanced or simplified,
e.g., by introducing advanced transaction control or
omitting explicit transactions, respectively.
Sometimes, there is no need for explicit transaction;
each method can be treated as a transaction of its own.
In case of complex objects, which are fetched as a
whole from the database [14], the transaction contains
all those operations that are necessary to perform the
method consistently.
   We can also think of reducing the functionality of
the persistence layer. The caching of objects is a
possible candidate, if there is no danger of
synchronisation.
   Hence, the approach can be very simple, but it can
also support a full implementation of the ODMG
standard for ODBSs [6] on the other extreme. The
more complex the modelling concepts and the
interface are, the more complex will be the
implementation, and consequently the generator.

• Since we implement the persistence layer, we are able
to understand how it works. This gives us the
flexibility to modify the code afterwards, e.g., for
tuning the layer. In contrast to commercial tools, the
layer is no longer a black box!

• The approach is extensible to access existing tables.
This requires a data re-engineering in the generator for
producing the DBM classes, as now reverse strategies
[3] must be specified.

We are using the approach with Siemens AG in a huge
project in the field of telecommunication. The project
possesses some important characteristics, which form a
fertile soil for the generative approach:
(a) There are several work packages implementing the

overall system functionality. The developers are
mostly unfamiliar with relational database
technology, with table design and SQL. That is the
reason why a work package DBM (“Database
Management”) has been installed with the goal to
centralise database competence and to release other
work packages from database aspects. Hence, DBM
can take the part of implementing generators. Each
work package then gets a very comfortable, easy-to-
use interface for handling objects. It is obvious that
application developers do not need to care about any
database aspects except invoking DBM methods.
This accelerates the productivity of programmers.

(b) The schematic, model-based persistence approach
makes sure that there is a strong de-coupling of
application programming and persistence. The
database aspects are closely related to an object
model and thus easy to understand. Developing and
generating the persistence layer can be done in
parallel to the real application development. This
reduces the development times of working packages.

(c) There are more than 100 persistent classes in the
system. Consequently, the effort for implementing a
generator is modest on a per-class calculation.

(d) Some work packages have very specific requirements
on the database. For example, some do not need
transactions as each method is consistent in itself by
means of a transaction per method mechanism.
Others require very specific queries in the sense of
CMIS filters (“Common Management Information
Service”), which are very popular in
telecommunication standards. We could directly
support corresponding query classes in our layer.
Another group of work packages performs an internal
caching of data to speed up access in real-time. They
read the data of a class completely in an internal
cache. Using a commercial tool would have doubled
caching, leading to a loss of performance.
To satisfy these various needs, several persistence
approaches have been developed, grouping the
required functionality. This emphasises the good
adaptability of the generative approach.

(e) Database competence is also necessary as there are
several applications with hard performance
requirements. Hence, it is inevitable to have potential
for tuning database tables and accesses. However, the
interface should be stable for applications.

Consequently, the advantages of our approach come to
light. Do commercial persistence tools support the points
(a) to (c) to some degree, they lack of flexibility with
respect to (d) and (e). We are reporting on experiences we
made for point (e).

We had a work packages that caches more than
100000 complex objects during start-up of the system in
order to guarantee accesses in main memory speed. This
took about 3 hours using the generated implementation;
firmly too long to be acceptable. Indeed, commercial
tools would not have behaved better. Consequently,
tuning the layer was necessary. We re-designed the tables
(not the database model), and reorganised the accesses
and their order of execution. The interface gave us
enough potential for tuning database and accesses without
affecting the application. That is, the interface to the
database was as before, but the implementation of the
interface changed completely. Tuning the system, i.e., re-
implementing the layer manually, finally brought up
results in the area of 3 minutes. The essential advantage
in this respect was that the code is understandable and
thus modifiable. Certainly,  this action breaks the round-
trip engineering as any modification of the model must be
either adapted in the current implementation, or the



generated code must again be re-implemented. But
having such gains in performance does worth it anyway.

The approach is obviously suited if the amount of
work for implementing the generators is not too high. We
spent four person weeks for designing the various
persistence layers in accordance to requirements. The
effort for developing the generators tool took about three
person weeks. Certainly, these numbers depend on the
skill of the people who design and implement.

6. Conclusions

In this paper, we demonstrated how to generate
object-oriented persistence layers for relational database
systems with modest effort. The approach consists of
integrating code generators in Rational ROSE. Taking a
ROSE model, a persistence layer is automatically
generated. The usage is easy as persistence can be
modelled as part of a ROSE model. The paper discussed
in detail how such a generator can be implemented.

In contrast to commercial tools that also provide or
generate persistence layers, our approach has the
advantage that it is highly customisable: The persistence
layer can be tailored to the real needs of an application.

In spite of causing expenses, the approach is a good
alternative to commercial tools if
• special requirements are to be fulfilled (e.g., advanced

query mechanisms)
• the functionality and the overhead of the persistence

layer must be scaleable
• a high performance of database accesses is required

demanding for extensive tuning
• the number of persistent classes is large.
Future work is dedicated to enhance the generator to
allow for data re-engineering, i.e., accessing existing
tables in a relational database. Here, the focus lies on
building real object-oriented views for relational data.
Hence, it is important to have flexible strategies to bridge
the gap between an object model of an application and
the tables. Otherwise, an application would be forced to
adjust its object model to what is achievable by
remodelling, which might be not enough. We developed
an approach that is based on powerful syntactical
specification language [4]. This language allows one to
remodel tables in several ways. It has the drawback that
remodelling has to be done by writing down
specifications. We feel the need for a graphical support
[5]. Consequently, we think of integrating the powerful
re-engineering strategies in ROSE.
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Abstract

This paper describes work associated with the development of a requirements visualisation tool. Our work builds on the
strength of existing executable formal specification systems in that a software model can be described using an
executable specification language as the basis for the construction of a prototype system. In addition, it employs a
visualisation tool based on graphical dynamic animations so as to facilitate a flexible and customisable user validation
approach that distances the visual representation away from formality. In this context, this paper firstly details the issues
and principles associated with visual animation of an executable specification system that underpin and influence the
development of our software tool. Secondly, it describes a generic mechanism that facilitates visualisation of
specifications. Thirdly, the architecture design of our tool is outlined, together with the design decisions that were made.
Finally, our experience as a result of exploitation of our tool will be highlighted.
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1. Introduction

Requirements validation through feedback with users
is of paramount importance in producing a high quality
software requirements specification document. We argue
that an eclectic approach that offers an effective
combination of formalism and pragmatism may
encourage software developers to move towards software
engineering practices necessary for software systems that
satisfy user requirements. This approach involves the use
of an executable formal specification for the construction
of software prototypes, which can be used to validate
software requirements with users at an early stage
through feedback.

However, executable formal specifications are often
ineffective in the user validation process [1]. An
executable formal specification has traditionally been
used as an effective tool specifically for developer
validation; that is the developer can, via specification
execution, either individually or in a peer review format,
explore the consequences of the specification. However,
its use in user validation is often not user orientated. This
is exacerbated by the fact that the execution behaviour of
a prototype may not always be comprehensible to users
due to the abstract nature of notations supported by these
specification languages and by the way their execution
behaviour is presented to users. This may in turn render
the requirements validation process ineffective.

Use of requirements visualisation as an animation
technique has the potential to facilitate the
communication between the stakeholders. The use of a
visual technology supported by a human-centred process
to elicit and validate software requirements allows
complex concepts and information to be presented in
ways that are easier to understand. It is evident from the
literature that human processing can clearly benefit from
pictorial information and growing body of research work
continues to support this view [2]. Application of
visualisation techniques to requirements engineering
requires the use of a process with an appropriate tool
support which maps abstract formal representations to
concrete representations that can readily be understood by
users. Unlike a programming language translator, the
translation between the two representations should be bi-
directional so that users can directly interact with a
software system.

Literature is relatively sparse about software systems
using a visual technology to animate a formal
specification. Cooling [3] attempted to visualise
requirements specifications based upon VDM. To do this
a separate ’script’ was developed from VDM that derives
the visualisation and animation. The script itself contains
both a model of the system and the visualisation detail.
Evans [4] described a system in which Coloured Petri
Nets were integrated with the formal specification
language Z to specify and visualise concurrent systems.
The Teamwork/EDS [5] system was designed to execute



and visualise real-time structured analysis specifications
based on SA/RT graphical notation. Mosel-Meta-Frame
[6] is an approach that provides simulation and
visualisation of hardware circuits. The system uses
directed graphs as a visual formalism to support analysis
and verification. Visualising the behaviour of
telecommunications systems is the focus of the approach
described in [7]. Coloured-Petri-Nets were used as the
specification formalism, but are augmented with a more
abstract visual representation to support user interaction.
The CheckOff-M environment [8] facilitates the
verification of application specific integrated circuits
through visualising their behaviour. This approach
employs the symbolic timing diagram as a visual
formalism to specify and depict the dynamic behaviour of
model of integrated circuits.

Although the above approaches offer powerful
visualisation capabilities, the resulting visualisations are
still developer oriented in that they simply shift the issue
of incomprehensibility from the formal and textual
notation to the potentially cryptic visual form. Our work
is consistent with the systems described above. It builds
on the strength of the executable formal specification
systems in that the system model can be described using
an executable specification language as the basis for the
construction of a prototype system. In addition, it
employs a visualisation tool based on graphical dynamic
animations so as to facilitate a flexible and customisable
validation approach that distances the visual
representation away from formality. The remainder of
this paper details the development of such a visualisation
tool. Firstly, the issues and principles associated with
visual animation of a specification system that underpin
and influence the development of our tool will be
outlined. Secondly, specifics of our tool in terms of its
architecture and its components descriptions will be
described, together with design decisions that were made.
Finally, our experience as a result of exploitation of our
tool will be highlighted.

2. Issues and principles

This section describes a set of general issues and
general principles that are pertinent to the development of
a visualisation tool to support requirements validation
with users. These issues and principles associated with
them form the basis of the detailed requirements of a tool
described in this paper. They have been derived from a
synthesis of the analysis of the existing tools identified in
the previous section and general software engineering
principles and software quality factors are detailed next:
It should be noted that these do not preclude other very
important software quality goals such as reliability,
robustness, etc.

Provision for different types of representations. The
type of representation employed in the visualisation
process may have two attributes. Direct representation
types provide a realistic presentation of an object or
system under consideration, which is close to its real-

world counterpart, such as a video-clip or a photographic
image. This type of representation is best used when
trying to communicate highly detailed information where
a diagram could possibly hide some of the content. On
the other hand, abstract representations provide an
abstract image of the underlying information, and thus
provide an appropriate mechanism to emphasise certain
details while hiding others. Examples of abstract
representations, are charts, graphs or diagrams that show
relationships between information. The exact ratio of
direct representations to abstract representations is
ultimately a choice for the developers and users, but we
suggest that, in practice, it could be dependent upon the
nature of a software system being validated and the
sophistication of users who validate it. From our
perspective, a software tool should for requirements
visualisation should have the potential to provide support
for both types of representations for effective
visualisation and validation.

Provision for visual representations familiar to the
users domain. From the comprehension point of view,
merely seeing an image of an object is not enough for
comprehension. To be useful, the image itself must be
presented in some potentially meaningful way. In order to
understand what facilitates the ease of comprehension of
a representation the following issues need to be
examined: (a) general characteristics of images that make
them amenable to comprehension; (b) the abilities of
humans to understand visual representations; (c) the
cognitive processes that may occur in the brain to make
this understanding possible. Note that proper treatment of
these issues is beyond the scope of this paper. From our
perspective, it suffices to state that in order to facilitate
and enhance users’ comprehension, a software tool should
have the potential and produce representations that are
expressed using visual cues from the user’s own domain,
which can be tailored to match their sophistication. A
software tool should also support a wide range visual
techniques (such as multimedia support) to achieve this.

Provision for animation. This issue is concerned with
capturing the process of depicting dynamic and static
behaviour and may be addressed in terms of a generic
animation model. The level of animation has two
attributes. Static refers to an unchanging still image, such
as diagrammatic notations. This form of representation is
useful when attempting to convey relationships between
objects, and for analysing the structural properties of
systems, processes or data. Dynamic implies a
continuously changing set of images that correspond to
some execution process undergoing successive change.
This is useful when depicting, analysing, and
understanding dynamic processes. It is widely accepted
that effective validation is performed when the users
observe a dynamic representation of the system’ s
requirements [9]. In this context, the notion of
“ animation”  (in the graphical sense) becomes a prominent
issue. In order to reflect the dynamic nature of a process
or activity, an appropriate representation should use a



dynamic component, i.e. the representation should appear
to change so as to present the change in the execution
behaviour of the prototype. In contrast, should a
particular aspect of a prototype’ s execution behaviour
remains constant, then this should also be reflected in the
representation. Hence, a software tool should provide
support for the visualisation of both the static and
dynamic aspects of a prototype.

Provision for maintaining the integrity of
visualisation. Integration of informal and formal
techniques brings its own problems. A notable one is that
use of visualisation as an informal technique has an
undesirable side effect in that ambiguity and
misinterpretation may be introduced into the validation
process. This is due to the possibility of applying
arbitrary visualisations in inappropriate contexts. The
creation of a visualisation is a subjective process. It is not
possible to produce formal semantics for informal
visualisations represented by video-clips and
photographic images, etc, and there are no defined
semantic rules or translations that can force a visual
representation to possess one and only one meaning with
respect to elements in a specification. From a more
philosophical perspective, it could be possible to argue or
reason about the semantics of a particular representation
as opposed to another, as perceived by an individual, but
this would be beyond the realms of software engineering.
This issue does not necessarily invalidate the usefulness
of the application of visualisation to requirements
validation. However, it has to be addressed, at least
partially, to minimise its potential negative impact upon
the outcome of the validation process.

Provision for maintainability. During the
requirements validation process, initial requirements of a
software system undergo a number of changes as a result
of users’  feedback. These changes will inevitably alter the
structure and content of an executable specification on
which a prototype is based. Consequently, it is inevitable
that visual representations associated with the
specification should also be changed. Considering the
number of iterations during user validation and the
importance of timeliness in a prototyping activity, it is
important that a software tool should support rapidity so
as not to impede on productivity and that it should be
flexible enough to enable modifications to the existing
visualisations to be carried out without undue difficulty.
In order for a software tool to be flexible, it should
provide comprehensive facilities for creating and editing
visual representations with ease. The provision of such
facilities necessitates the consideration of appropriate
interaction styles.

Provision for re-use of visual representations.
Although reusability is arguably difficult to achieve and
that examples of software reuse in practice are rather rare,
it is clearly an important technique for reducing software
production costs. The notion of reusability is highly
relevant to requirements visualisation since during the
process of creating and editing visual representations, a

large number identical visual images are often shared by
different applications within a domain (i.e. vertical reuse,
such as images of books in different library applications)
as well as by applications within different domains (i.e.
horizontal reuse, such as images of people, bank notes,
machines, etc., in library or ATM applications). Hence, a
software tool that provides support for visual component
reuse can be beneficial to this process. Equally
importantly, a software tool should also provide a
mechanism for the effective retrieval of components
within a reuse repository to facilitate productivity and
rapidity during the process of creating and editing visual
representations.

Provision for interoperability. For the purposes of our
research, it is assumed that a software tool for the
visualisation of requirements will work in conjunction
with an executable specification system that exists as a
separate entity. Hence, interoperability becomes
prominent issue. The interaction is necessary for a
visualisation tool to intercept and subsequently visualise
the results of computations associated with a
specification, thus necessitating some form of a software
communication link. At a low level of abstraction, this
link needs to take into account of any underlying
operating system and environment in which the two
software tools co-exists as well as taking into account of
necessary communication protocols through which the
communication takes place. At a higher level of
abstraction, it is necessary to define the behaviour of how
visual representations can realistically reflect the
elements and computations associated with a
specification and how the communication link can
facilitate this.

3. A generic visualisation mechanism

Our visualisation technology allows software
developers, or visualisers, to choose an appropriate
representation for data elements (i.e. factors in an
expression) in a specification, and the results of applying
an operation to these data elements (i.e. the result of
executing an expression), and create dynamic and/or
static animations. It provides a generic visualisation
model to capture and describe the process of visualising
the static and dynamic behaviour of a specification. It is
based upon the notion of a state, and is described in terms
of visualising the state of a system before the execution
of a portion of a specification under investigation, and the
modified state (if execution changes the state) after the
execution.

In this context, visualisation of the formal
specification is a composition of appearance (i.e. direct or
abstract) and the corresponding dynamic components.
This visualisation is then related to the specification
concerned so that during its execution, the visualisation
tool will be able to ‘ play’  its corresponding visually
animated representation for user validation. To achieve
this, visualisations are attributed with an identifier. Each
expression to be visualised, i.e. ones that modify the



system state, can be augmented with a visual identifier to
facilitate its visualisation. Note that incorporating a visual
reference to the specification does not necessarily bias it
towards a particular implementation since the
visualisation process takes place after the specification
has been written. The resulting specification is then
processed by the run-time visualisation engine of our
tool.

4. Tool description

This section describes the design of our visualisation
tool. The design is presented in terms of the capabilities
of the tool and how the key principles that have been
introduced in the previous section are fulfilled. In
addition, the design description is augmented with the
design alternatives that were considered during the design
process and the design decisions that were ultimately
made. The organisation of this section is as follows:
Firstly, the architecture of the tool will be given.
Secondly, an integrity mechanism that maintains the
consistency between a specification and its corresponding
visualisation will be described. Finally, an integration
strategy will be outlined to describe how an executable
specification system can be integrated within our tool to
provide appropriate visualisations.

4.1 The architecture

As shown in Figure 1, the software tool is a collection
of interrelated software components that comprise of:

i). appearance component editor
ii). dynamic component editor
iii). visualisation editor
iv). visual component repository
v). visualisation engine

Figure 1 describes the relationships between these
components and the broader context of how the tool is
used in conjunction with other software tools to achieve
the objective of requirements visualisation. The direction
of arrows indicates that the lower component provides
support for the services provided by the upper
component. The main rationale for designing the tool in
terms of a number of sub-components is now given.

From our perspective, a visualisation is essentially
made up of two components as detailed in the previous
section. These are: appearance (i.e. direct or abstract) and
behaviour (i.e. static or dynamic). The responsibility for
creating these components was assigned to individual
software components (i.e. appearance component editor
and dynamic component editor) to support separation of
concerns. Furthermore, in order to compose the products
of these tools into a visualisation, which can later be
associated with a specification for animation, a third
component was developed (i.e. visualisation editor). In
addition, a repository was developed to support a
classification of visualisations and its components (i.e.
visual component repository). This classification has the
potential to facilitate component reuse and increase

A Specification Execution
Engine

Visual Component
Repository

Appearance
Component

Editor

Dynamic
Component

Editor

Visualisation Editor

Visualisation Engine
(run-time support for

visualisation)

Expression Processor

External
Communications Kernel

COTS for
multimedia

support

Internet and
other graphics

libraries
Hardware

Figure 1. The components of the visualisation tool and their relationships.



productivity during the process of constructing
visualisations. Finally, a software component that acts as
an interface between a specification execution system and
the tool’ s other components was developed (i.e.
visualisation engine). This provides support for
establishing communication, data exchange and co-
ordination of specification execution and its visualisation,
thereby providing an abstraction to a specification
execution system. Details of these components are
elaborated next.

The Appearance Component Editor

This component was required to provide a
straightforward means of expressing appearances that
should comprise of a range of possible visual cues,
colours, and textual components. Resulting appearance
components must be given a unique identifier by a
creator/designer. The system enforces the uniqueness of
this identifier. Equally importantly, this editor supports a
type domain to associate appearances with appropriate
types to maintain integrity. The role of appearance
identifier and appearance types will be elaborated in
Section 4.2.

A number of potential formats for this editor were
postulated, ranging from text-based command line forms
to fully interactive direct-manipulation style formats. The
final design decision was based upon the concept of
enabling a visual representation to be expressed in way
that promotes correspondence between the
developer’ s/designer’ s conceptual view of the desired
representation and the actual view while editing. To this
end, it was decided to use ‘ graphics to describe graphics’
as an interaction and editing style, as this method enables
the appearance to be viewed and evaluated immediately.
The final result is an editor that enables an appearance’ s
individual visual cues to be expressed separately, in a
graphical manner, whilst at the same time giving the
creator an opportunity to see the appearance as a whole.

The editor is capable at present of supporting basic
geometric shapes, text elements, photographic images,
and icons. These can be, if required, provided for by an
importation mechanism, whereby other commercial-off-
the-shelf (COTS) software packages, such as professional
image editing and manipulation tools, are used to capture
and enhance images. These are saved in files and
imported into the appearance editor as separate visual
cues. The design of the appearance editor makes
provision for importing image files that are of the popular
‘ bmp’ , ‘ gif’ , and ‘ jpg’  formats. Other image formats
could be accommodated by providing a suitable translator
to read and convert the files into a form that is
appropriate for the appearance editor.

The Dynamic-Component Editor

This tool is concerned with providing support for the
dynamic components of a visual representation that may
or may not have already been created. Hence, an
appearance and its animation behaviour are independent,

in that dynamic components are polymorphic and can be
applied to any appearance.

This particular editor must facilitate a range of
dynamism, stretching from the static view to the
graphically animated form. To represent static
visualisations, this editor can be used to describe the on-
screen locations of appearances. At run-time, an
appearance can be rendered at the location given. To
represent dynamic visual forms, the tool allows the path
of an appearance to be described in terms of a sequence
of nodes, and at run-time, the appearance can be animated
smoothly along this path to depict the movement of
objects in a scenario. Motion-components must be
attributed with a unique identifier. The role of dynamic-
component identifier will be elaborated in Section 4.2.

The design of this editor is based upon a direct-
manipulation style user interface. This enables locations
to be specified and paths to be described by creating and
dragging nodes on a ‘ canvas’  –  the canvas representing
the screen onto which appearances will be rendered.
Figure 2 shows the conceptual design of this interface,
and illustrates the placement of the path and its associated
nodes.
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The path, along which
appearances  will

animate

Nodes, representing the
beginning and end, and

direction of a path.

1

2 3

Figure 2. The conceptual design of the motion component
editor user interface.

The Visualisation Editor

This component of the visualisation tool is
responsible for combining together individual appearance
and dynamic components of a representation, that were
developed using the tools already described to form
visualisations. This is achieved by making references to
identifiers that refer to appropriate appearance and
dynamic components. Similar to the appearance and
dynamic component editors, a complete visualisation
containing its appearances and dynamic components are
must be given a unique identifier, which enables it to be
referenced by an expression within a specification.



One of the key design decisions made when
formulating the visualisation editor was to develop a type
domain for the creation of a visualisation. The type
domain as a whole incorporates the structure of
expressions that can be found in specification languages.
This domain could easily be populated with types to
match the type of expressions in a new specification
language. Using a syntax-directed editor, the structure of
a visualisation is constrained by the type of expression in
a specification language to be visualised.

Component Repository

As shown in Figure 3, a repository to store the visual
components that are created during the visualisation
process is also provided by the tool. This repository has
separate ‘ containers’  in which to store the different
categories of components that pertain to the visualisation
of a requirements model, i.e. the entire set of
appearances, motions, and expression-level
visualisations.

In addition to providing storage for these basic
components, the repository offers a classification
mechanism through the use of ‘ applications’ . These can
be likened to directories in a file system, whereby
components that are related, by virtue of being applied to
a particular validation project, can be partitioned.
Applications must also be given a unique identifier, just
as other visualisation components, and classification of
visualisation components is performed by attributing
them with the appropriate application identifier. The role
of application identifier will be elaborated in Section 4.2.

The Visualisation Engine - A Vehicle for Tool Integration

This component, which is essentially a run-time
system, facilitates visualisation of expressions within a
specification. It is made up of two sub-components, as
shown in Figure 1. These are the expression processor
and the communication kernel respectively.

The expression processor receives the string
representing a given specification. It processes the string
by traversing it in a recursive manner. To achieve this, for
each expression, it communicates with the specification
execution engine to request that it be evaluated. In
addition, if the expression is associated with a
visualisation identifier, then the components of the
expression, and the result, are visualised by retrieving the
corresponding visualisation from the repository.

To facilitate the communication between the two
tools, a design decision was made to implement the link
as a client-server architecture to provide support for a
wide range of applications, ranging from hosting both
visualisation tool and a specification execution system in
the same operating environment, to a distributed
architecture whereby the tools could communicate via the
IP protocol across a wide area network.

At present, the communication link relies upon the
DDE protocol to facilitate data transfer within the same
operating environment. In order to integrate a particular
specification execution system, the following procedure
needs to be followed. At the specification language end,
the syntax of the language needs to be modified slightly
to incorporate visualisation identifiers. At the
visualisation-engine end, an expression processor needs

Application
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Application ID

Motion IDAppearance ID,
Data type

Visualisation ID
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11

1

1

1

Repository

1

Figure 3. The entities and relationships that exist in the visual component repository and between specifications.



to be implemented to accommodate the syntax and
structure of the notation. This can be manifested as a
plug-in component to the visualisation engine. In
addition, the communication protocol must be
implemented (if it does not already exist) to incorporate
any protocol supported by the specification execution
system.

4.2 An integrity mechanism

Referring back to Section 3, the association between an
expression in a specification and the corresponding
visualisation via the visualisation identifier mechanism
we create a disengagement mechanism between the
visualisation and specification. This has the benefit that
our visualisation tool can be applied, theoretically, to any
executable specification environment that bases its
execution upon expressions. However, the main
drawback of this approach is that it is possible to create a
semantic disengagement between the specification and
visualisation. In order to partially address the issue raised
in Section 2 associated with integrity, a design decision
was made to implement a constraining mechanism to
restrict the application of visualisations to inappropriate
contexts. This comprises of two complementary aspects.

First, a constraining mechanism was developed, based
upon the use of applications (described in Section 3.2). A
developer or senior user can partition relevant
appearance-, dynamic-, and visualisation components into
a suitable application, in order to specify a context in
which the components can be used by future developers
or users. This places limits on the choice of components
that can be applied in a particular validation project. A
prerequisite is that the given specification incorporates an
attribute that signifies the application.

Second, a type system was developed to constrain the
association between the factors of an expression and
visual representations (i.e. appearances). A prerequisite is
that the given executable specification language should
support a type mechanism. If not, it may be necessary to
extend the syntax if the language to support one, which
would also require modifications to the visualisation
engine. Appearances are attributed with a type, that
corresponds the type domain of the specification
language, by the appearance component editor. Upon
creating an appearance, a developer/senior user can attach
an appropriate type. This appearance can then only be
applied to factors in an expression that are of the same
type.

5. Exploitation

Our visualisation tool has been exploited to support a
formal specification animation environment called ZAL
(or Z Animation in LISP) [10]. ZAL is a LISP-based
animation environment, which provides extensions to
LISP to form an animation environment. A close
correspondence between the Z notation and the ZAL
notation is preserved. The hallmark of ZAL is to view it
as a generic animator which models Z constructs rather

than any particular specification; the subset of Z that can
be animated is that for which equivalent constructs have
been developed in ZAL. Our tool was used to provide a
generic visualisation model to capture the process of
visualising dynamic behaviour of a ZAL specification. As
far as the ZAL system is concerned, the model is based
upon the notion of a state and is described in terms of
visualising the present state of a system before the
execution of a ZAL specification and the modified state
of the system after the execution of the specification.
Thus, a visualisation of a ZAL specification involves the
fabrication of a composition containing all the
representations and the corresponding dynamic
components for the states of the system.

A number of standard examples (such as a book
lending library system [11] and an automated teller
system [12]) and a very large case study of a real-time
safety-critical application (a water level monitoring
system) [13] have been specified, visualised and
validated. Preliminary results of this work was reported in
[14] and [15]. In addition, together with the ZAL system,
our visualisation tool was made available to
undergraduate students and a number of MSc students for
use and evaluation, but as yet has not been used on a real
industrial project.

For effective user validation, our tool is at present
supported by a usage oriented process to capture both
functional requirements (i.e. what a software system
should do) and software usage aspects (i.e. how the
system should behave from the users’  point of view). It
should, however, be noted that this does not preclude the
use of other processes and methods since our tool is not
process specific. With the aid of our tool, the users can
judge and comment on a scenario being animated within
the context of a use case with which it is associated. A
visual scenario allows different possible choices to be
investigated in the context of an entire system. More
importantly, visualisations of scenarios can effectively be
used as a catalyst to provoke debate to help elicit
additional knowledge to evolve the requirements, thereby
contributing to the overall specification rather than just to
the clarification and validation of a set of requirements.
Figure 4 illustrates the visualisation of a water level
monitoring system (WLMS) [15]. The scenario
demonstrates that if the water level drops below the
designated safety limits then the alarm will sound. The
values on this visualisation, such as “ Allok”  (i.e. all
devices are operating properly), “ Operating”  (i.e. the
WLMS is operating normally) and the water level in the
main reservoir, are the inputs to the ZAL specification
representing the WLMS system, and the “ Alarm is
Audible”  warning message is the result of computation
performed by the ZAL execution engine.

Changes in input values are at present carried out at
the specification level to give the users an opportunity to
explore different possibilities (such as what if the water
level is within the designated safety limits, but the device
that monitors the water level has failed?) to validate such



scenarios and possibly uncover situations that have not
been previously thought of so that the requirements can
be evolved.

6. Concluding discussion

This paper described an eclectic approach that
involves the use of an executable formal specification for
the construction of prototypes to validate software
requirements with the users. Our research is part of an
ongoing effort to move towards quality requirements. Our
experience suggests that employing formal notations
during the software validation process cannot always be
effective due to the users’  inability to understand the
formal specifications and their execution behaviour. We
have therefore advocated the integration of visualisation
techniques to the formal specification based software
development process to make formal notations more
accessible to the novice user stakeholders.

Initial evaluations of our tool proved successful. The
tool not only help validate existing requirements, but also
it was effective in eliciting information to identify 'key' or
interesting scenarios to stimulate discussion with the
users. However, there are a number of shortcomings that
need to be addressed for our tool to be used in an
industrial placement. First, we found that the component
repository was not effective enough to facilitate
immediate reuse and thus improve productivity. To
address this problem, the repository needs to be populated
with an adequate number of pre-developed visualisations.
Second, the appearance component editor needs to be
supported by a wider range of media types, such as aural
and video capabilities. We are currently investigating the
incorporation of hypertext facilities and how this could be
instrumental in the user validation process. Last but not
least, the architecture of the visualisation engine needs to
be supported by a wider range of plug-in components to
accommodate common industry standard specification
execution systems.
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Abstract

One of the most important features of software tools for domain-specific modeling is automatic output generation. Since
the existing techniques for specifying output generation in customizable modeling and metamodeling environments
suffer from some weaknesses analyzed in this paper, a new approach is proposed. The analysis is based on the
observation that the output generation is a process of transformation of a model from the source domain into the model
from the target domain. If the domains are at distant levels of abstraction, the mapping is difficult to specify, maintain,
and reuse. Therefore, the proposed approach introduces one or more intermediate domains. Assuming that the source,
target, and intermediate domains are conceptually modeled ( metamodeled) using the object-oriented paradigm, the
proposed approach uses extended UML object diagrams for specifying the mapping between them. The diagrams
specify instances and links that should be created by the transformational process. The proposed extensions are the
concepts of conditional, repetitive, and sequential creation. These concepts are implemented using the standard UML
extensibility mechanisms. Several examples from different software engineering domains are presented in the paper.
They prove some important benefits of the approach: the specifications are clear and concise, easy to maintain and
modify. Besides, the approach leads to better reuse of domain models and to remarkably shorter production time.

Keywords: object-oriented modeling, Unified Modeling Language (UML), object diagram, metamodeling, model
transformations

1 Introduction

Modeling is a central part of all the activities that lead
up to the deployment of good software, as of any other
engineering system [ 4]. Each modeling domain lies upon
another model that defines (1)  abstractions of the domain;
(2) their properties and relationships; (3)  their semantics
and behavior in the model; (4)  their visual appearance
(notation) and behavior in the supporting tool. The latter,
underlying model is called the metamodel of the
considered modeling domain. Therefore, metamodeling is
the process of defining the metamodel of the considered
modeling domain. 'Meta' should be treated as a relative
reference, not as an absolute qualification: each modeling
domain has its underlying metamodel, which is specified
by abstractions of another meta-metamodel, etc. [ 11].
This paper is focused to the modeling domains that can
be metamodeled using the usual object-oriented paradigm
[4], as opposed to some other paradigms, such as
grammar-based specifications.

Apart from their important roles in specifying,
documenting, and visualizing systems, the purpose of
modeling tools is most often system construction [ 4],
where 'construction' means producing output from the
system specification that may be interpreted by a certain
external environment to provide the desired system's
behavior. The examples of output include, but are not
limited to: documentation, source code in a certain
programming language, database scheme, hardware

description, or any other formally defined structure. It
may be observed that the output generation is actually a
transformation of the user-specified model from the
domain of his interest into the model from another target
domain. (Precisely, this is actually generation of another
model, but the term transformation is used in this context
more often.) The problem of specifying output generation
may exist in three different contexts. (1)  In fixed, non-
customizable domain-specific modeling tools, where the
source and target domain metamodels, along with the
mapping between them are fixed at the time of the tool
development (as the problem of designing the output
generation feature). (2)  In customizable modeling tools,
where the metamodels are fixed, but the mapping is
customizable by the user. For example, a modeling tool
such as a CASE tool may offer interfaces to the built-in
metamodels (e.g., the UML metamodel, a metamodel of
the target programming language, the relational
metamodel, etc.), and the user may specify the mapping.
(3) In fully featured metamodeling tools, where the user
can specify both the metamodels and the mapping.

This paper discusses the problems of the techniques
for specifying output generation implemented so far in
the existing (meta-) modeling tools, and proposes a new
approach that deals with the problems. The approach has
two major contributions.

First, very often the source and the target domains are
at distant levels of abstraction, and the mapping is
difficult to specify, maintain, and reuse. Therefore, the



proposed approach introduces one or more intermediate
domains. In other words, it simplifies complex and
cumbersome transformations of a model into another
representation by doing the transformation in multiple
steps. This has the advantage that each step becomes
simpler and that existing transformation can be reused.

Second, it uses extended UML object diagrams to
specify visually the mapping between the domains. The
diagrams specify instances and links that should be
created by the transformational process. The proposed
extensions are the concepts of conditional, repetitive, and
sequential creation. These concepts are implemented
using the standard UML extensibility mechanisms.
Consequently, the specifications are clear and concise,
easy to maintain and modify, and lead to shorter
production time.

The paper continues as follows. Section 2 reveals the
motivation for this work and defines the problem
precisely using a simple demonstrative example. Section
3 briefly discusses the related work. The idea of our
approach is presented in Section 4. Section 5 shows
several examples that illustrate the applicability and
efficiency of the approach. The paper ends with
conclusions.

2 Motivation and problem statement

The problem and the proposed solution will be
demonstrated using a simple example from the field of
telecommunication software development. The goal is to
develop a simple modeling tool that generates C++ code
for state-machine models. The code generation for state

machines should be completely customizable: the user
should be able to change the code generated from the
same model if he needs another execution model due to
performance, concurrency, distribution, or other
requirements.

The example is shown in Figure 1. It is assumed that
the desired code is obtained using the State design pattern
[6]. It is also assumed that the user has specified a state
machine named FSM as shown in Figure 1a. For this
example, several classes are generated in the output C++
code. The first is named FSM and is the interface class
whose behavior is specified in the model by the given
state machine. It contains operations that correspond to
the events of the state machine. The second class is
abstract and is named FSMState. It contains one
polymorphic operation for each event. Finally, one class
derived from FSMState is generated for each state. It
overrides the operations that represent those events on
which the state reacts. These operations perform
transitional actions and return the target state. Other
details may be found in [ 6]. The metamodel of the
domain (state machines) is shown in Figure 1c. (This is a
simplified version of the metamodel for state machines
from [14].)

Now, the code generation strategy to be applied to
each state machine should be specified. Let us consider
two possible approaches. A straightforward one is to hard
code the output generation scheme in an operation (e.g., a
member function of the class StateMachine that
implements the state machine abstraction in the modeling
tool). The operation should read the data from the model

Figure 1: Demonstrational example: Code generation for state machines. (a)  A sample state machine.
(b) An excerpt from the generated code. (c)  The metamodel.
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class FSM;

class FSMState {
public:
  FSMState (FSM* fsm) : myFSM(fsm){}

  virtual FSMState* s1 ();
  virtual FSMState* s2 ();
  virtual FSMState* s3 ();

  virtual void entry () {}
  virtual void exit  () {}

protected:
  FSM* fsm () const {return myFSM;}
private:
  FSM* myFSM;
};

class FSMStateA : public FSMState {
public:
  FSMStateA(FSM* fsm) :FSMState(fsm){}

  virtual FSMState* s1 ();
  virtual FSMState* s2 ();

  virtual void entry () { ... }
  virtual void exit  () { ... }
};

FSMState* FSMStateA::s1 () {
  fsm()->t1();
  return &(fsm()->stateA);
}

FSMState* FSMStateA::s2 () {
  fsm()->t2();
  return &(fsm()->stateB);
}

(a)

(b)

(c)



instances (i.e. to navigate through the model and read
attribute values) and produce the textual output following
the C++ syntax and semantics. An excerpt of such
operation that generates the beginning of the declaration
for the class FSMState may be:
// Generate base state class:
output<<"class "<<(this->name+"State")<<"{\n";
output<<"public:\n";
output<<"    "<<(this->name+"State")<<"(";
output<<(this->name)<<"* fsm):myFSM(fsm){}\n";
//...

The drawbacks of this approach are obvious:
(1) The process of specifying is extremely tedious, time-
consuming, and error-prone.
(2) The user must deal with the complexity of the target
domain (C++ syntax and semantics).
(3) The built-in general-purpose and reusable C++ code
generator is not used at all.
(4) Any modification is very difficult to apply because
the code is not clear and comprehensible.
(5) The code is not reusable.
(6) The user must deal with the technical details such as
the correctness of the output stream, opening files ( .h and
.cpp files must be created in C++), etc.

The core reasons for the listed drawbacks may be
revealed by the following observation. The output
generation process may be viewed as a creation of a
target model from the source model. The source model is
the model explicitly specified by the user in the modeling
tool and consists of instances of state machines, states,
events, and other abstractions from the source domain.
The target model is the textual output, i.e. the generated
C++ source code whose metamodel is implicitly assumed
by the user (C++ syntax and semantics). The code of the
given operation is actually a specification of the mapping
between the two domains. Since the two domains are at
distant levels of abstraction, their direct mapping by the
hard-coded special-purpose generator has all these
drawbacks.

This mapping between two distant domains has the
same disadvantages as the process of object-oriented
programming in the target programming language (e.g.
C++) without previous modeling at a higher level of
abstraction (e.g. with UML). This is because the
programming language level of abstraction is too far from
the level of abstraction that is suitable for the developer's
way of thinking. For our example, instead of directly
generating the textual output, it may be reasonable to
create an intermediate model based on a metamodel of a
higher level of abstraction, such as a subset of UML,
which includes abstractions supported directly by a
common object-oriented programming language (class,
operation, attribute, etc.). Because the general-purpose
C++ code generator from UML models may be built in
the tool, it may be reused for the generated intermediate
model. Hence, the idea is to create needed instances from
the intermediate domain using the built-in UML
metamodel, and then to invoke the built-in code generator
to produce the output:

void StateMachine::generateCode () {
// Temporary package for the intermediate model:
    Package& pck = Package::create();

    // Intermediate model:
    // Base state class:
    Class& baseState = Class::create(pck);
    baseState.name = this->name+"State";

    // Base state class constructor:
    Method& baseStateConstr =
        Method::create(pck);
    baseStateConstr.name = this->name+"State";
    Link::create(Members::Instance(),
                 baseState,baseStateConstr);
    //...
    // Code generation:
    pck.generateCode();
}

This code excerpt shows the creation of instances for
the class FSMState and its constructor. It creates
instances of UML abstractions Class and Method, using
the built-in UML metamodel interface. Then, it sets the
values of their attributes. Finally, it creates links between
these instances. All these instances are packed into a
temporary package for which the output is generated in
the end.

This approach remedies most of the drawbacks of the
first approach. In the first place, it eliminates the
impendance-matching problem between the source and
target domains by introducing an intermediate level. By
doing this, the process of output generation is split into
two steps, where each step is much easier to specify than
before. Besides, the second step is supported by the built-
in and reusable code generator. Thus, the first-step
mapping specification is completely reusable for other
target languages, provided that general-purpose code
generators from UML are available. However, the
specification of the operation body is still tedious and
error-prone. Besides, the code may be very complex and
difficult to manage. Since it is actually a specification of
the process of creating instances from the intermediate
domain, where both source and intermediate domains
may be formally defined by their metamodels, this
specification may be provided in another formal way. The
idea is to use a visual specification, preferably one that is
compatible with the UML standard. This is the subject of
this paper.

3 Overview of the Related Work

Due to the fact that the process of domain-specific
metamodeling can be formalized, the need for tool
support of this process has been recognized for long [ 2,
11, 13]. This need was first met in the domain of
automatic programming environment generation [ 10]. By
the maturation of numerous software-engineering
methodologies and notations, especially of object-
oriented ones, which all have been developed with the
perspective of CASE tools support, the field of meta-
CASE research has evolved [ 2, 11]. However, we do not
constrain our discussion here on the field of software
modeling, CASE, and meta-CASE tools, although it is



our major field of interest with a strong research
background. The results of our work may be applied to
metamodeling domains other than software systems. That
is why we use the term "metamodeling environment"
rather than the term "meta-CASE tool."

There are a number of approaches addressing a
similar problem using structural transformations of
grammar-based models and various rule-based techniques
[7, 8, 9]. Their goal is to transform a user-defined
structural model written in a domain-specific language
into another structural model in another target language.
Although the goal is similar to the one presented here
(transformation of models), there are a number of
differences. First, although their principles may be
generalized to more abstract terms, they primarily deal
with textual models (or, more generally, with strings of
entities). Second, their 'metamodels' are expressed with
grammars, where the entities are defined hierarchically
(using sub-entities), and where recursion is the main
difficulty, instead of the object-oriented paradigm that is
used here. The main purpose of the supporting
environments in that case is to build an internal
representation (derivation tree) from the user-defined
model (textual program) by parsing it, and then to
transform this internal representation into the target
internal representation. Thus, the internal structure of the
model is inherently a tree. In the modeling environments
that use object-oriented paradigm for metamodeling,
there is no need for the parsing phase, because the user
explicitly creates the instances of abstractions and their
links. Therefore, the model representation is a graph of
objects (instances of classes) connected with links
(instances of associations). This is why the approach
presented here may be considered as a more general
structural transformation.

The rule-based approaches allow the user to specify
the differences between the source and the target
grammars ('metamodels') and a supporting tool may help
in generating the model transformer but with some
intervention of the user [ 7]. The approach presented here
allows the user to specify the mapping, and the
transformer is generated without any intervention of the
user. Furthermore, defining a grammar for a certain
domain and specifying the mapping between the
grammars may be a difficult task because it requires more
sophisticated work than defining (in meta-environments)
or just understanding (in customizable modeling
environments) the metamodels specified in object-
oriented terms. It is evident that some domains may be
metamodeled with much less effort using the object-
oriented paradigm instead of grammars. This includes
most modeling methods with visual notations. For such
cases, the proposed approach is definitely superior.
Consequently, the proposed approach may be treated as a
complement to the grammar-based structural
transformations, more suitable for object-oriented
metamodels.

A research field also related to metamodeling is the
field of visual programming languages (VPL) [ 1, 5, 17].
However, the underlying metamodels of VPLs are also
grammars [5] or other formal models. Consequently,
VPL metaenvironments have the same characteristics as
the grammar-based environments described previously.
In an automatically generated VPL environment, the user
chooses a graphical element and puts it onto a diagram
rather arbitrarily. The task of the tool is to check the
correctness of the diagram when the translation operation
is explicitly invoked, considering the underlying
grammar. Then, it should parse the grammar elements
and develop an internal representation analogous to the
derivation tree in classical compilers. On the other side,
in object-oriented modeling environments, the user is
usually explicitly constrained in designing diagrams, and
the contents of the diagram is determined at the time of
its construction. The user creates and manages explicitly
model (semantic) elements, while visual elements are
only views to them. Besides, the problem of the model
transformation, which is the subject of this paper, is not
considered as an important one in the field of VPLs.

Automatic generation of CASE tools has been an
attractive discipline for years, and a lot of extensible
CASE and meta-CASE tools, both commercial and
academic ones, are available at the moment [ 18, 19, 20,
21, 22, 23, 24, 25]. A major commonality (and a
weakness also) of all existing meta-CASE tools that is of
greatest interest to our work is the output generation
facility. All these tools provide programming interfaces
to their metamodels through which the user may access
the models in the generated CASE tools to produce the
output. However, output generation is always specified
using a scripting language that is proprietary and vendor-
specific. Hence, the first hard-coded output generator
strategy described in the previous section is available to
the user. As they often offer a flexible interface to their
metamodels, the user may create an intermediate model
as described in the second approach in the previous
section. Nevertheless, this intermediate model may be
created only using the same scripting language, and there
is no other opportunity for doing this at a higher level of
abstraction (e.g., visually). None of these tools promotes
domain mapping as an explicitly supported strategy
available to the user. As a conclusion, to the best of our
knowledge, we are not aware of any other approach that
is closely related to the one presented in this paper.

4 Domain mapping specification

The idea of the domain mapping (Figure 3) is to
create an intermediate metamodel and a specification of
the mapping from the source to the intermediate domain.
A model transformer is automatically generated from the
mapping specification. It is used to create the
intermediate model from the user-defined source model.
Finally, the built-in code generator produces the ultimate
output. The benefit is because each of the transformations



is much less complex that the direct transformation, and
is thus easier to specify, maintain, and reuse.

The specification of the domain mapping should be
formal and preferably graphical. Since it is actually a
specification of a set of instances of the abstractions
(classes) from the intermediate domain that should be
created, UML object diagrams may be used. An excerpt
for our example is shown in Figure 4. It is assumed that
the diagram is defined for one instance from the source
model, which is referred to by a certain identifier in the
diagram. For this example, it is an instance of the type
StateMachine, referred to by the identifier fsm. The
diagram specifies the set of instances of classes from the
intermediate metamodel that should be created for each
StateMachine instance fsm from the source model. The
diagram specifies also the values of their attributes, along
with the links between them. The attribute values are
defined as expressions that refer to the instances from the

source model and their attribute values, using the
navigation through the source model. The links are
instances of associations from the intermediate
metamodel.

A standard object diagram is not sufficient for the
mapping purposes. There is also a need for repetitive
object creation. For our example, one method in the base
state class should be created for each event that the
machine reacts upon (see Figure 1). For this purpose, we
use a stereotyped package with the stereotype ForEach.
The example is shown in Figure 5. ForEach package
represents iteration through a collection of instances from
the source model and creation of a set of intermediate
domain instances for each of them. It contains three
tagged values:

- ForEach: An identifier that is introduced into the
scope of this package. It may be used inside the scope of
the package to refer to the current element of the
iteration.

- OfType: The type of the current element. The
iteration is type-sensitive, in the sense that only the
elements of the specified type from the collection are
processed, and the others are ignored (in the case that the
elements are polymorphic). The type is from the source
metamodel.

- InCollection: An expression that evaluates to a
collection of the instances from the source model to
iterate.

When a link connects an instance inside a package
and another outside that package, then each repetitive
instance created by the iteration will be linked to the
outer instance. For the expressions that are used to define
attribute values or collection in a ForEach package, any
formal language for navigation through the source model
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Figure 3: The idea of the domain-mapping strategy in the
context of the demonstrational example. The transformation
from the source into the target domain is split into two (or
generally more) steps in order to cope with the complexity of
the mapping specification.

baseState : Class

name = fsm.name+"State"

baseStateConstr : Method

name = fsm.name+"State"
isQuery = False
isPolymorphic = False
isAbstract = False
body = ""

baseStateEntry : Method

name = "entry"
isQuery = False
isPolymorphic = True
isAbstract = False
body = ""

baseStateExit : Method

name = "exit"
isQuery = False
isPolymorphic = True
isAbstract = False
body = ""

baseStateHelper : Method

name = "fsm"
isQuery = True
isPolymorphic = False
isAbstract = False
body = " return myFSM; "

baseStateAttr : Attribute

name = "myFSM"
type = fsm.name+"*"
initialValue = "fsm"

baseStateConstrParam : Parameter

name = "fsm"
type = fsm.name+"*"
kind = in
defaultValue = ""

baseStateEntryParam : Parameter

name = ""
type = "void"
kind = return
defaultValue = ""

baseStateExitParam : Parameter

name = ""
type = "void"
kind = return
defaultValue = ""

baseStateHelperParam : Parameter

name = ""
type = fsm.name+"*"
kind = return
defaultValue = ""

: formal parameter : formal parameter : formal parameter

: formal parameter

: members
: members : m

embers

: members : members

Figure 4: A simple part of the object diagram for
the domain mapping specification of the
demonstrational example. The diagram shows
only the specifications for the base class
FSMState and its members that are generated by
default. The diagram belongs to the context of the
state machine accessible through the fsm
identifier.

baseState : Class

name = fsm.name+"State"

baseStateSignal : Method

name = ev.name
isQuery = False
isPolymorphic = True
isAbstract = False
body = " return this; "

baseStateSignalParam :
Parameter

name = ""
type = fsm.name+"State*"
kind = return
defaultValue = ""

: m
em

be
rs

: formal
parameter

{
ForEach = ev,
OfType = Event,
InCollection = fsm.hEvents
}

<<ForEach>>
BaseStateSignals

Figure 5: "ForEach" concept for repetitive object
specification. The diagram shows only the
specification for the base class FSMState and its
member functions generated for the state machine's
events. It belongs to the context of the state
machine accessible through the fsm identifier.



may be used. For example, Object Constraint Language
(OCL) may be used [15] if the tool is capable of parsing
these expressions or the programming interface of the
model is OCL-compliant. The other option is the
scripting language used in the tool.

Another needed concept is conditional creation. An
instance, a link, or a ForEach package may be tagged
with a condition that is a Boolean expression again in the
scope of the source model. If the expression evaluates to
False when the intermediate model is being created, the
conditional instance or link is not created, or the package
is ignored. A simple example is shown in Figure 6. The
example assumes that the StateMachine type in the
source metamodel has a Boolean attribute named
"isSynchronized." If the value of this attribute is True, the
generated state machine code should be mutually
exclusive in a concurrent environment. This is achieved
by an attribute of type Semaphore that is generated in the
base state class and the corresponding wait/signal
operations in all publicly accessible operations (not
shown in the picture).

Since ForEach packages actually represent loops in
the process of intermediate model generation, they may
be nested. An example is shown in Figure 7. For our
example, a derived class should be created for each state.
This is specified with the outer ForEach package. For
each of the events this state reacts upon, an operation
should be generated in this class (specified with the
nested package).

A ForEach package introduces a scope of the
expressions. The rules for the scope nesting are identical
as in the traditional procedural programming languages.
An expression may use identifiers from the scope in
which it is defined, as well as from its enclosing scopes.
A ForEach identifier is local for its package, and hides
the same identifiers from the enclosing scopes.

It has been mentioned that the presented
specifications belong to the context of one instance from
the source model. A certain identifier ( fsm in our
example) refers to this instance. However, we generalize

this context in the following way. The whole mapping is
specified following the UML style of hierarchically
organizing models in packages. Thus, the mapping
specification is actually another model, represented with
a package hierarchy, where each package may, but need
not be a ForEach one, and may own instances, links, and
other packages. (Ordinary packages serve as grouping
elements only and map into the same grouping of the
elements of the generated model.) Besides, following the
UML diagrammatic style, it is allowed that the contents
of one package are defined by several diagrams to
enhance readability and clearance. Therefore, all the
diagrams shown in figures 4 to 7 belong to a ForEach
package with the InCollection value referring to a tool-
manipulated collection of all instances of the given type
in the source model (for our example, something like:
StateMachine::getAllInstances()).

The generated model is organized as a hierarchy of
packages, where each package is an unordered collection
of the elements it owns by default. More precisely, the
ordering of the elements in a package is implicitly
determined by the order of their creation; by default, the
ordering of creation is not defined. Sometimes, however,
an explicit ordering of the elements is needed. This
ordering may ensure a proper sequential traversal through
the model elements; for example, if a sequential structure
(e.g., text) is to be further generated from that model. If
an element x is to be created after an element y, it may be
considered dependent on y. This relationship is specified

derivedState : Class

name = fsm.name+"State"+st.name

{
ForEach = st,
OfType = State,
InCollection = fsm.states
}

<<ForEach>>
DerivedStateClass

baseState : Class

name = fsm.name+"State"

: generalization

supertype

subtype

<<ForEach>>
DerivedStateSignal

{
ForEach = tr,
OfType = Transition,
InCollection = st.hSource
}

derivedStateSignal : Method

name = tr.myTrigger.name
isQuery = False
isPolymorphic = True
isAbstract = False
body = "fsm()->" + tr.name + "();\n" +
"return &(fsm()->state" +
tr.myTarget.name + ");\n"

derivedStateSignal
Param : Parameter

name = ""
type =
fsm.name+"*"
kind = return
defaultValue = ""

: members

: formal parameters

Figure 7: Nesting of "ForEach" packages. The diagram
shows a part of the specification for the derived state
classes and their member functions for the events.

baseState : Class

name = fsm.name+"State"

baseStateSemaphore :
Attribute

{Cond = fsm.isSyncronized}

name = "sem"
type = "Semaphore"
inivitalValue = 1

: m
em

be
rs

Figure 6: Conditional object creation. The diagram shows
only the specification for the base class FSMState and its
data member (a semaphore) generated for synchronization,
only if the state machine is  "synchronized."



in the mapping diagram with a dependency from x to y,
stereotyped as <<sequence>> [ 4]. Consequently, y will
precede x in a traversal of the elements of their enclosing
generated package.

From the diagrams formally specified as shown
above, the source or the scripting code for the model
transformer used at the modeling level may be generated
automatically. For our example, the code is shown in the
appendix, and the details are reported elsewhere [ 12].
The algorithm for generation of such code is as follows.
For a package, the algorithm is: first introduce implicit
sequence dependencies from links to the instances they
connect, then sort topologically the owned elements
according to the sequence dependencies, and then
generate code for each of the elements (recursively for its
nested packages). If the package is a ForEach one, the
specified iteration will be performed, and one package in
the generated model will be created for each iterated
element. Each instance generates statements that will first
create an object of the specified type and then set its
attributes to the specified values, using the programming
interface of the modeling tool.

The approach of the domain mapping may be
generalized to arbitrarily many intermediate domains.
The idea is that a tool may generate several intermediate
models as different levels of modeling abstraction, using
the domain mapping specifications. The process of
creation of intermediate models may be viewed as a
descent down the abstraction levels. The tool may allow
the user to make changes in each intermediate model,
prior to generating the next one, if the user is not satisfied
with the automatically generated model. By using
different domains for intermediate models, it may be
expected that a better understanding of the problem and
more complete modeling may be achieved. On the other

side, other more abstract domains may be built on top of
already designed domains, and the transformation may be
easily specified using the mapping from the new domain
into the already implemented lower-level one. This is one
of the directions for the future work.

5 Case study and evaluation

The example of the modeling tool for state machines
has been implemented as a final project for the B.Sc.
degree at the University of Belgrade. The specification
had about 30 instances and seven ForEach packages. The
implementation of the code generation part, using domain
mapping, and a built-in C++ code generator, took about
ten hours, including testing.

Apart from this example, two more are presented here
(these are just small excerpts of much more complex
examples from practice). The second example is the
problem of transforming object-oriented class model into
the relational database model. This is a common task in
object-oriented programming when persistence of objects
is accomplished by a relational database. Here, the source
domain is UML. The target domain is the code that may
be used to define database tables and fields, e.g., SQL
declarations. However, the direct mapping from the class
model into the textual SQL declarations is difficult to
specify. Therefore, an intermediate domain is introduced,
with the metamodel shown in Figure 8a. It is a simplified
version that encompasses tables and fields only. It is now
easy to specify generation of SQL declarations from this
intermediate domain, because it is almost (if not
completely) one-to-one mapping. In this example, the
accent is on inheritance, as the most difficult task in this
process. It is assumed that the user is offered two
strategies of implementing inheritance in relational tables.
The first one assumes that a derived class has its own

Table

+ name : String

Field

+ name : String
+ type : String

fie
ld

s

*

(a)

table : Table

name = cls.name

<<ForEach>>
OwnedAttributes

{
ForEach = attr,
OfType = Attribute,
InCollection = cls.myMembers
}

field : Field

name = attr.name
type = attr.type

: f
ie

ld
s

<<ForEach>>
BaseClasses

{
ForEach = gen,
OfType = Generalization,
InCollection = cls.supertype
}

: fields primaryKey : Field

name = "ID"
type = "AutoNumber"

foreignKey : Field

{ Cond = gen.inheritFieldsFromCommonTable }
name = "ID"+gen.supertype.name
type = "Long"

<<ForEach>>
InheritedAttributes

{
Cond = ! gen.inheritFieldsFromCommonTable,
ForEach =attr,
OfType = Attribute,
InCollection = gen.supertype.getAllMembers()
}

field : Field

name = attr.name
type = attr.type

: f
ie

ld
s

(b)

: f
ie

ld
s

Figure 8: Example: Generation of the relational database scheme from a UML class model. This example focuses on
inheritance. The source domain metamodel is UML (not shown here). (a)  The target domain metamodel (relational).
(b) The domain mapping spe cification. Operation getAllMembers() returns the collection of all owned and inherited
members of a GeneralizableElement (Type in this case).



independent table, with all inherited attributes copied into
its own table. In this approach, an object is represented
with a single record in the table that represents its class.
In the second approach, a derived class has a table
without inherited attributes, but its records are dependent
on the records from the table that represents its base class.
In this second approach, an object is represented by a set
of records in the tables that represent its own class and its
base class. We assume that the user may chose one of the
approaches for each generalization in the class model, by
setting the Boolean attribute of the generalization named
"inheritFieldsFromCommonTable." This attribute should
be added to the UML metamodel as a tagged value of
generalization. If this field is set to True, the second
approach is chosen. In both approaches, the table should
have a primary key (of type "AutoNumber" and named
"ID"), and the set of the fields for the attributes of the
class. In the first approach, the table should have the
fields for all attributes from the base class, for each
inheritance relationship tagged with
inheritFieldsFromCommonTable = False. In the second
approach, the table should have only a foreign key (of
type "Long" and named "ID"+<baseClassName>) to link
it to the base class table. The corresponding mapping
scheme is shown in Figure 8b.

The third example shows a case when UML is not
used as any of the domains. It is taken from one of our
projects with database-centric web application
development. A method and infrastructure for rapid
application development have been developed. A very
small part of the idea is presented here, just to illustrate
the usage of metamodeling and domain mapping. In this
approach, application is modeled by the navigation
through web forms. From one web form, the user can
choose a command, which performs some actions in the
database on the server and displays another web form.
The commands are implemented as radio button options
in the web form, and a "Submit" button that posts the data
from the form to the server. A very small part of the
source domain metamodel is shown in Figure 9a. This
domain should be mapped into the standard HTML
textual output. However, this mapping is complex
because the source domain has other concepts not shown

here. Therefore, an intermediate model is introduced that
may be mapped one-to-one to the target domain. It
contains abstractions such as an HTMLPage or an
HTMLControl (text box, list box, radio button, etc.). This
metamodel is shown in Figure 9b. As in the previous
example, generation of HTML from the intermediate
domain is straightforward. The mapping scheme for this
example is shown in Figure 9c. The author implemented
the complete prototype tool in only three days, including
metamodeling, code generation, and testing.

In practice, the following method for defining
intermediate domains and mapping specifications is
proposed. After the source domain is defined and well
understood, the most important task is the design of its
metamodel. All common principles of object-oriented
analysis and design may be applied to this process [ 3].
Then, the desired target output is informally specified and
supported by an example. For this purpose, a simple yet
descriptive example from the source domain is
developed. Then, the desired code for this example is
generated manually. The result of this process
corresponds to the example shown in Figure 1.
Afterwards, an intermediate domain that will make the
output generation less complex is found. It should be very
close to the target domain, so that the desired output may
be easily generated from it. If it is still conceptually far
from the source domain, other intermediate domains
should be built upon it, etc. We have successfully found
such a domain in all the cases. Reuse of already
developed domain models is of much help. For example,
if the target output is C++ or any other object-oriented
programming language code, we use a UML subset as the
intermediate domain. Another useful and reusable
example is the relational domain. The metamodel of the
intermediate domain should be built, too, if it is not
already available. Finally, the domain mapping is
specified using the following procedure. The developer
goes through the sample output, and tries to find out of
which element in the intermediate model that part of the
code is an outcome. It is then specified in the mapping
object diagram. The procedure is applied iteratively and
incrementally. This procedure is much easier than the
hard-code approaches, because the elements of the target
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page : HTMLPage

name = wf.name
description = wf.description

<<ForEach>>
Commands

{
ForEach = cmd,
OfType = Command,
InCollection = wf.myCommands
}

button : HTMLControl

name = "Command"
type = "Radio"
value = cmd.name
caption = cmd.caption

submitButton : HTMLControl

name = "Submit"
type = "Submit"
value = "Perform Action"

: p
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: pageControls

Figure 9: Example: Web design tool. (a)  An excerpt from the source domain metamodel. (b)  An excerpt from the target
domain metamodel. (c)  The domain mapping specification.



output that originate from the same source model element
may be spread all over the target model. For instance, in
our first example, the events of a state machine produce
operation declarations in many separate classes.
Therefore, it is easier to go sequentially through the
generated output and build incrementally the domain
mapping object diagram as the need for each of its
elements arises. Other possible heuristics and a more
formal approach to this process will be investigated in the
future work.

The research team from the University of Belgrade
has successfully used the described approach in several
other large projects. All the examples confirmed the
expectations on possible benefits of the strategy. The
specifications of output generation are clear and concise,
easy to maintain, modify, and reuse. They are
hierarchically organized, visually presented (using
multiple consistent diagrams), and thus cope well with a
potential complexity of the mapping. It is possible to
build the mapping specifications incrementally and
iteratively, and to test them using only partially
developed object diagrams. (Such incremental testing of
partially defined mappings is not available in other
techniques.) The process of specification is less tedious
and error-prone. As the most important benefit, the
development of output generator is shortened a lot. For
instance, the first example (state machines) was started by
using the conventional hard-coded approaches. It took us
several weeks only to specify, without testing and
debugging that were extremely difficult. By using the
domain mapping strategy, we have reduced the working
time to the order of hours. Production time will be
shortened even more when a considerable repository of
domain models and their transformers to various versions
of the target implementation is created. In that case, user-
defined models and transformers may be reused for
different versions of the target implementation by using
different transformers of the intermediate domains from
the repository. Besides, as already stated, the mapping
from the higher-level domains into the reusable
intermediate domains may be defined with less effort
than before.

Nevertheless, there are some weaknesses of our
approach recognized so far. Although the specification
supports conditional, sequential, and repetitive instance
creation, it does not support recursion. Namely, one of
the most important features of the traditional approaches
that traverse the model structure and invoke operations
for the model elements is that these operations may be
recursive. This issue is particularly important when
generating recursive structures, what is sometimes needed
in textual output. In the examples we have studied so far,
we have not encountered the need for recursion.
However, the solution exists, but the future work will
investigate this issue more deeply and will try to find a
way for specifying recursion that best fits the definition
of the existing concepts.

Another issue that may be improved is the visual
specification. It is very often the case that a lot of
instances and links must be specified in the domain
mapping model, in order to describe formally the creation
of an instance of a composite abstraction (e.g., a class and
a set of its members in Figure 4). If that abstraction has a
compound symbol defined in the accompanying notation,
it may be much easier to use that symbol instead of the
set of instances and links. It is possible to incorporate this
feature in our approach, while completely preserving the
described semantics.

6 Conclusions

The problem of specifying output generation in the
context of modeling environments has been studied in
this paper, and a new approach, called domain mapping,
has been proposed. The approach is based on the
observation that the automatic output generation is a
process of creating a model in the target domain from the
model in the source domain. If the domains are at distant
levels of abstraction, the mapping is difficult to specify,
maintain, and reuse. This is why one or more
intermediate domains are introduced. The mapping is
specified using UML object diagrams that show the
instances from the intermediate domain that should be
created by mapping. The diagrams are extended with the
concepts of conditional, repetitive, and sequential
creation. These concepts are implemented using the
standard UML extensibility mechanisms.

Several case studies from different software
engineering domains have been presented. All the
examples have proved the major benefits of the approach.
The specifications are clear and concise, thus easy to
maintain and modify. The domain mapping strategy leads
to a better reuse of domain models and to a remarkably
shorter production time.
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Appendix

The generated C++ code for the model transformer
(an excerpt for the diagram in Figure 7).
ForEach/EndForEach are C++ macros that implement
type-sensitive iteration.

// Temporary package for the intermediate model:
Package& pck = Package::create();
// Intermediate model:
ForEach(fsm,StateMachine,StateMachine::getAllInstances())
  // Generated for objects:
  // Object: baseState
  Class& baseState = Class::create(pck);
  baseState.name = fsm.name+"State";

  // Generated for ForEach packages:
  // Package: DerivedStateClass
  ForEach(st,State,fsm.states)
    // Generated for objects:
    // Object: derivedState
    Class& derivedState = Class::create(pck);
    derivedState.name = fsm.name+"State"+st.name;

    // Generated for ForEach packages:
    // Package: DerivedStateSignal
    ForEach(tr,Transition,st.hSource)
      // Generated for objects:
      // Object: derivedStateSignal
      Method& derivedStateSignal = Method::create(pck);
      derivedStateSignal.name = tr.myTrigger.name;
      derivedStateSignal.isQuery = False;
      derivedStateSignal.isPolymorfic = True;
      derivedStateSignal.isAbstract = False;
      derivedStateSignal.body = "fsm()->" + tr.name + "();\n" +
                                "return &(fsm()->state" + tr.myTarget.name + ");\n");
      // Object: derivedStateSignalParam
      Parameter& derivedStateSignalParam = Parameter::create(pck);
      derivedStateSignalParam.name = "";
      derivedStateSignalParam.type = fsm.name+"*";
      derivedStateSignalParam.kind = Return;
      derivedStateSignalParam.defaultValue = "";

      // Generated for ForEach packages:

      // Generated for links:
      // Link: <unnamed> of Association: members
      Link& link02 = Link::create(Members::Instance(),derivedState,derivedStateSignal);
      // Link: <unnamed> of Association: formal parameters
      Link& link03 = Link::create(FormalParameters::Instance(),
                     derivedStateSignal,derivedStateSignalParam);
    EndForEach(tr)

    // Generated for links:
    // Link: <unnamed> of Association: generalization
    Link& link01 = Link::create(Generalization::Instance(),derivedState,baseState);
  EndForEach(st)

  // Generated for links:

EndForEach(fsm)
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ABSTRACT

This is an experience report detailing design decisions

made in building a special purpose CASE tool.

STP is a CASE tool designed to facilitate automatic

transformation of the source code supporting a set of

related object-oriented applications. It uses reverse en-

gineering to permit visualization of the object system

by means of a simple arc and node graph. It allows for

speci�cation of desired transformations by manipulation

of the graph. Submitted transformations are checked to

make sure they do not introduce typing errors. The user

may also request checking for possible changes in behav-

ior for existing programs. Transformations are carried

out correctly, updating both de�nitions and their usages

throughout the program text. Regeneration facilities al-

low the revised source �les to be printed out.

Building STP required a number of design decisions re-

lating to the programming languages and platforms to

be used, the means for reverse engineering existing sys-

tems and the modeling both in terms of underlying data

structures and the visual representation of the object

system. STP also has its own language for specifying

transformations, a pattern for this language had to be

developed. Also, there was a need for some uniformity

in the way many of the processing tasks are carried out,

in the end, the Visitor Design Pattern [5] was employed.

The purpose of this paper is to describe those design de-

cisions, and give the rationale for the choices that were

made.

Keywords

CASE tool, reverse engineering, transformation pro-

gram.

1 Introduction

This work is largely motivated by experiences working

with evolution issues with Java programs. It is the con-

Draft of paper submitted to ICSE 2000.

tention of [15] that it is possible to build a tool to

carry out extensive transformations of the source code

of an object-oriented program, both safely and correctly.

The theoretical interest was to determine what nec-

essary preconditions must be satis�ed by a proposed

transformation. At the same time, it was felt neces-

sary to demonstrate the practical feasibility of such a

tool by actually constructing a prototype. The proto-

type, named Schema Transformation Processor (STP)

has been expanded to include many of the features of

a CASE (Computer Aided Software Engineering) tool,

including modeling, code generation and reverse engi-

neering. Building STP required a number of design de-

cisions which are the subject of this paper. The rest of

the paper is as follows: Section 2 gives an overview of

STP, the next sections outline the design decisions that

were made in the hopes of providing insight for other

CASE tool builders, �nally Section 10 has a progress

update and an outline of future work on the project.

2 An overview of STP

STP (Schema Transformation Processor) is a transfor-

mation tool under development for programs written in

Java. The approach is described at length in [15]. The

goals of STP are as follows:

1. Facilitate visualization of an object system using a

simple model.

2. Allow the easy speci�cation of changes to the

model.

3. Automate checking to make sure that changes do

not impair the type soundness of the system, or the

behavior of existing programs.

4. Provide for broad changes such as attening classes,

which would expand into sequences of lower-level

changes such as moving individual �elds and oper-

ations.

5. Facilitate adding new capabilities to existing sys-

tems by means of the Visitor Design Pattern [5].
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Figure 1: A screen shot from an STP session. The black

nodes represent classes. The hollow arrowhead pointing

to Crew indicates that O�cer is a subclass of Crew.

Name and captain are single-valued �elds of Crew and

Boat respectively. Sails and Crew are multiple-valued

�elds of Boat, as indicated by the "[]" in their labels.

3 Using STP

STP runs as a Java menu-equipped graphical applica-

tion, or in batch mode as a console application. It has

its own language, CSL (Change Speci�cation Language),

see Section 8, for specifying transformations.

STP can:

� Import a set of Java source �les.

� Extract class graph information and display it using

nodes and arcs.

� Display dialog windows for nodes and arcs.

� Display a fully functional text editor for source Java

�les and CSL �les.

� Check preconditions prior to carrying out transfor-

mations.

� Apply transformations correctly, for example if a

name is changed, the change is made wherever the

name is used. STP su�ciently understands scop-

ing rules and expression syntax to determine where

changes should be made.

� Generate transformed Java source �les.

Preconditions have been associated with each transfor-

mation supported by the system. In STP, the various

transformations are represented by classes. In the cur-

rent version, preconditions have been hard-coded into

checking methods belonging to these classes. Future

versions may allow the user to augment these precon-

ditions using logical expressions. There are two types

of preconditions. Weak preconditions are designed to

protect the the type integrity of the object system, so

that programs can continue to be compiled, strong pre-

conditions are designed to protect existing programs, by

ensuring that they can not only be recompiled, but also

that they will behave as before. Since it is not feasible

to check if two blocks of code have the same behav-

ior, strong preconditions preclude the replacement of

one method body by another. Such replacements might

occur, for example, when a method renaming hides or

unhides an inherited method. See [15] for a complete

discussion of the preconditions that apply to each trans-

formation.

Figure 1 shows a screen from a small STP session. In

addition to the above capabilities, STP can also be used

to generate Java source �les in the �rst place. In Insert

mode, the user clicks on the graph to add new class

nodes, and drags with the mouse to add new arcs repre-

senting inheritance relationships, �elds and operations.

Using dialog screens, the new nodes and arcs are anno-

tated with information such as name and multiplicity.

STP then generates source �les according to user prefer-

ences as to constructors, getters, setters, collection types

for implementing multi-valued �elds, etc. This capabil-

ity is being extended to also generate C++ header and

source �le code.

Another feature of STP is to provide support for adding

on new capabilities to existing systems by describing

paths of navigation to be used by the new functions, and

then automatically augmenting class de�nitions with

methods supporting the navigation. Such navigational

paths are called itineraries and are more fully described

in [15]. Using STP a designer can describe an itinerary

by clicking out its path in Attach mode.

The following sections will outline the many design de-

cisions that were made in building STP.

4 Choice of a programming language

Java was chosen as the programming language for build-

ing STP for the following reasons:

1. The initial systems to be transformed are written

in Java. Writing STP in Java as well demonstrates

a kind of boot-strapping.

2. The necessary tools are readily available and easy

to use in the Java environment. The graphical com-

mands generally work the same on di�erent plat-

forms, such as Microsoft Windows and X-Windows.

3. An excellent compiler compiler, JavaCC [13] is

freely available. The use of JavaCC is described

later on.



4. The Java Serialization Standard [8] provides a

means for objects to be saved, including recursively

saving associated objects. This is used to advan-

tage in STP to save models being worked on and

reload them later on.

5 The visual representation of the class graph

STP uses a simple method known as an IOM Graph

for visualizing class hierarchies and associations. IOM

stands for Implementation Object Model, so-named be-

cause the model conforms closely to the programming

language implementations. For example, binary associ-

ations are modeled at a lower level of abstraction simply

as pairs of �elds.

The IOM Graph uses only three constructs, namely cir-

cular nodes, directed arcs and labels. Filled circles rep-

resent types, arcs represent IS-A and HAS-A relation-

ships as well as operations and attributes. IS-A arcs are

from the subclass to the superclass (the target), and are

indicated by having hollow triangles for arrowheads. For

other arcs, the source is the class de�ning the �eld or

operation, and the target is the node representing its

type. Arcs are circular segments drawn through three

points, the center of the source and target nodes, and a

third point in between, which is the center of a hollow

circle providing a clicking target for the arc itself, and

an anchor for the arc label. Arcs were chosen rather

than lines because often nodes have more than one link

between them. Lines would overlap, but arcs can be

shown separately by dragging their middle circles.

The labels are important, operations are distinguished

from �elds by labelling them using parenthesized pa-

rameter lists. Multiple-valued attributes and HAS-A

links are additionally labelled by appending "[]" to their

names.

It is reasonable to question the need for a new object

model, when both OMT [12] and UML [1] are avail-

able and widely used. However, OMT and UML are

both (1) too rich in describing semantic artifacts such

as aggregation, and (2) too abstract in describing asso-

ciations between classes, in that the implementation of

such associations is not indicated. IOM provides all in-

formation needed to describe the STP transformations,

with a minimum of clutter. This allows more classes

to �t on a single screen, facilitating visualization [14].

Also, the arrows in IOM graphs can be highlighted to

show itineraries (navigational paths). Figure 2 shows

the IOM Graph equivalent of a UML object model.

A problem with any visual representation of an object

model is that models of substantial systems become

cluttered and hard to read. STP o�ers some partial so-

lutions. For example, the user can express a preference

as to which types of constructs to show, turning on or

o� the display of attributes, operations, etc. Scrolling is

also o�ered. Even so, consider that the building of STP

itself requires more than 250 separate classes, and the

limitations of visualization become clear. What would

help would be a zoom-in, zoom-out capability, similar

to the idea of exploding a process in a data ow dia-

gram [3]. However, this would require some notion of

modularization of an object-oriented systems with mod-

ules larger than a class yet smaller than an application.

Currently there is no agreement on the semantics of such

a modularization.

6 Using parsing plus reection for reverse en-

gineering

Reection refers to the ability to analyze the capabili-

ties and structure of classes. Java provides support for

reection at run-time using the Java Virtual Machine.

It is also possible to do a static analysis of Java class

�les by loading them using the Class.forName() method.

By successively loading the classes which comprise an

existing system, and using the operations available to

java.lang.Class, such as getSuperclass(), getFields() and

getMethods(), and then by using accessors available to

java.lang.reect.Field and java.lang.reect.Method, it is

possible to reconstruct the system of classes and associ-

ations. However, the source code is not recovered, mak-

ing reection inadequate for reengineering which works

by modifying it.

STP uses a combination of parsing and reection to re-

cover design information. Parsing is used for code which

is subject to eventual modi�cation. The parsed code

is analyzed to recover the desired design information.

Later, modi�cations can be applied directly to the code

contained in nodes of the abstract syntax tree.

JavaCC [13] was chosen for the parsing task. It com-

bines both a lexer and parser description in a single

�le. The actions associated with each production are

used to create objects, whose properties are set by the

right hand side of the production. Another advantage of

JavaCC is the availability of grammars for all versions

of Java, as well as for other languages such as C++. An

earlier version of STP used Lex and Yacc [6].

It is possible to reconstruct Java source �les from class

�les, using tools such as Mocha [4]. Java class �les actu-

ally store the original names of classes, �elds, operations

and other named constructs as strings [7]. Providing the

source �les have not been deliberately obfuscated, suf-

�cient design information can be recovered to construct

the IOM. This is useful in cases where the original Java

source �les are not available. See Figure 3.

Reection is used for library code. Although this code

will not be modi�ed, visualization of the system requires

that its structure be exposed as well. Library classes

are included if they are speci�cally imported. When
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an import statement contains a wild card as in "im-

port java.util.*;", only classes actually utilized in the

program are reected.

One reason for reecting imported classes is to help re-

solve method invocations inside expressions when the

parameters involve imported �elds or the return values

of imported methods. The types of the parameters must

be determined so as to properly resolve the method calls.

7 Internal data structures and algorithms

STP relies on two principal data structures:

1. An Abstract Syntax Tree (AST) representing the

parsed source �les.

2. The Implementation Object Model (IOM), which is

an internal representation of the class graph. Its

main constructs are classes, inheritance relation-

ships, �elds and operations and its visual represen-

tation is the IOM Graph.

The AST is constructed by parsing the Java source

�les. First, an object system representing the gram-

mar of Java 1.2 was built. A separate grammar class

was created for each non-terminal in the EBNF gram-

mar. The class has �elds for the items on the right hand

side (RHS) of its de�ning production. When the RHS

consists entirely of an alternation, an abstract class was

used, with the classes representing the alternatives in-

heriting from it. Otherwise, if the RHS contains an

alternation, as well as other items, �elds for all the al-

ternatives are provided. When a repetition appears on

the RHS, a vector �eld is used.

Here are three examples showing the class de�nitions
corresponding to Java grammar productions:

1. ForInit := LocalVariableDeclaration j StatementEx-

pressionList

class ForInit{

}

class LocalVariableDeclaration extends ForInit {

...

}

class StatementExpressionList extends ForInit {

...

}

2. PrimaryExpression := PrimaryPre�x ( PrimarySu�x

)*

class PrimaryExpression{

private PrimaryPrefix primaryPrefix;

private Vector primarySuffix;

}

3. BlockStatement := LocalVariableDeclaration ";"j
Statement

class BlockStatement{

private LocalVariableDeclaration

localVariableDeclaration;

private Statement statement;

}

The parser is provided with actions to construct an ab-

stract syntax tree from the source �le. The nodes are

objects of the non-terminal classes as de�ned above. In

accordance with the Visitor Design Pattern [5], each



grammar class is also provided with a visit method, fa-

cilitating a depth-�rst traversal of the AST carrying an

object of class Visitor. Visitor, in turn, has before and

after methods for each grammar class. An example is:

void before(LocalVariableDeclaration host)

Concrete subclasses of Visitor can override these meth-

ods to do tasks at nodes visited using the host parameter

for access. One such visitor has the task of construct-

ing the IOM. In traversing the AST it extracts de�ni-

tions of IOM constructs such as classes, �elds and oper-

ations, and inserts them as nodes into the IOM model.

The IOM nodes are provided with pointers into their

de�nitions in the AST. De�nitions may refer to types

from imported �les. Information about these types is

extracted directly from the zip or jar �les containing

the imports. Where a wild card import statement is

used, such as import java.io.*; only the types actually

used in the program are added to the IOM.

      return d;
   }
}

   private double d;

      return a.getD();
   }
}

class A{

class B{

A::getD()
declaration    public double getD(){

   public double getAd(){ 

Named Construct

   private A a;

class C extends A{
   public foo(){
      return 3*getD();
   }
}

usages

Figure 4: A Named Construct with pointers to its decla-

ration and usages in the program. (Actually the point-

ers are into the abstract syntax tree built by parsing the

program.)

The next step is to determine the usages of each of the

IOM constructs by examining AST nodes representing

method bodies and initializations. A specialized Usage-

TraceVisitor does this task. This visitor is aware of the

name scoping and inheritance rules, and the expression

syntax of the language so that it is able to make correct

determinations of which constructs are used in expres-

sions. Each node representing a usage is augmented

with a pointer to the IOM node representing its de�ni-

tion. In turn the IOM node is provided with a pointer to

the usage. This enables transformations such as renam-

ings to be carried out correctly. Figure 4 shows pointers

from an IOM node into its declaration and usages in the

AST.

From a design point of view, one problem with Java is

that it relies heavily on heterogeneous collections such

as Vector and Hashtable, even when they store objects

of only one type. In the IOM, �elds of collection type are

better represented as multiple valued �elds of the under-

lying type. This is easily done when the original code

contains arrays, or in the case of C++, templates. Since,

as of this writing, proposals for templates [9, 10, 2] have

not yet been adopted into the Java standard, the next

best thing is to use type inference [11] to discover the

underlying types of the collections. This inference can

be done by examining the types of objects inserted into

particular expressions, and the downcasts used when

extracting objects from them. Solving the set of type

constraints thus obtained can often determine the un-

derlying type of collections. This capability is planned

for STP, currently the STP user must manually infer

the base types in order to redirect arcs from collection

classes to ones which are more meaningful.

8 A language for specifying transformations

STP is based on a set of primitive transformations,

which are stated in terms of the IOM Graph. Lower

level primitives are summarized in Figure 5. The mean-

ings of Add, Drop, Rename and Retarget are clear. Re-

mult means to change the multiplicity of a �eld, Dele-

gate and Reclaim refer to moving a class member along

the HAS-A network, Lift and Lower refer to moves up

or down the IS-A hierarchy.

Primitives are represented as both commands and ob-

jects. For example, the primitive command "RETAR-

GET HAS-A x SOURCE A NEW TARGET C" illus-

trated in Figure 6 may be represented as an object of

class RetargetHasa.

Aside from the lower level primitives, there are also a

few upper level primitives such as Factor and Flatten,

which expand to a number of lower level Lift and Lower

primitives respectively, depending on the current state

of the IOM Graph.

The Lower Level Primitives are as follows:

1. Changes to classes

(a) ADD CLASS ClassName

(b) DROP CLASS ClassName

(c) RENAME CLASS OldClassName NEW

NAME NewClassName

2. Changes to attributes

(a) ADD ATTRIBUTE attributeName SOURCE

ClassName TARGET attributeType

(b) DROP ATTRIBUTE attributeName

SOURCE ClassName



Figure 5: Construct Update-Type Matrix
Construct Add Drop Rename Retarget Remult Delegate Reclaim Lift Lower

Class X X X

Attribute X X X X X X X X X

Operation X X X X X X X X

HAS-A X X X X X X X X X

IS-A X X

(c) RENAME ATTRIBUTE oldAttributeName

SOURCE ClassName NEW NAME new at-

tributeName

(d) RETARGET ATTRIBUTE attributeName

SOURCE ClassName NEW TARGET new at-

tributeType

(e) REMULTIPLY ATTRIBUTE attributeName

SOURCE ClassName NEW MULTIPLICITY

(0 j 1)

3. Changes to the HAS-A Hierarchy

(a) ADD HAS-A has-

aName SOURCE SourceClassName TARGET

TargetClassName MULTIPLICITY (0 j 1)

(b) DROP HAS-A has-aName SOURCE Source-

ClassName

(c) RENAME HAS-A oldHas-aName SOURCE

SourceClassName NEW NAME newHas-a

name

(d) REMULTIPLY HAS-A has-aName SOURCE

SourceClassName NEWMULTIPLICITY (0 j

1)
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Figure 6: HAS-A A::x is retargeted from B to C, a

narrowing of the target. The primary expression x.y

is transformed to compensate by including an upcast to

B.

(e) RETARGET HAS-A has-aName SOURCE

SourceClassName NEW TARGET NewTar-

getClassName

4. Changes to operations

(a) ADD OPERATION operationName SOURCE

ClassName PARAMETERS ( type1, type2, ...

) TARGET typeName

(b) DROP OPER-

ATION operationName SOURCE ClassName

PARAMETERS ( type1, type2, ...);

(c) RENAME OPERATION

oldOperationName SOURCE ClassName PA-

RAMETERS ( type1, type2, .. ) NEW NAME

newOperationName

(d) RETARGET OPER-

ATION operationName SOURCE ClassName

PARAMETERS ( type1, type2, ... ) NEW

TARGET newType

5. Changes to the class hierarchy

(a) ADD IS-A SubclassName SuperclassName

(b) DROP IS-A SubclassName SuperclassName

6. Moving a �eld 1 or operation

(a) DELEGATE FIELD �eldName SOURCE

SourceClassName USING HAS-A has-aName

(b) DELEGATE FIELD �eldName SOURCE

SourceClassName USING OPERATION op-

erationName

(c) RECLAIM FIELD �eldName SOURCE

SourceClassName USING HAS-A has-aName

(d) RECLAIM FIELD �eldName

SOURCE SourceClassName USING OPERA-

TION operationName

(e) DELEGATE OPERATION operationName

SOURCE SourceClassName PARAMETERS

( type1, type2, ... ) USING HAS-A has-aName

(f) DELEGATE OPERATION operationName

SOURCE SourceClassName PARAMETERS

( type1, type2, ... ) USING OPERATION op-

erationName

(g) RECLAIM OPERATION operationName

SOURCE SourceClassName PARAMETERS

( type1, type2, ... ) USING HAS-A has-aName

(h) RECLAIM OPERATION operationName

SOURCE SourceClassName PARAMETERS

( type1, type2, ... ) USING OPERATION op-

erationName

1A �eld is either an attribute or a HAS-A



(i) LIFT FIELD FieldName SOURCE Class-

Name1 TO ClassName2

(j) LIFT OPERATION opera-

tionName SOURCE ClassName1 PARAME-

TERS ( type1, type2, ... ) TO ClassName2

(k) LOWER FIELD FieldName SOURCE Class-

Name1 TO ClassName2

(l) LOWER OPERATION opera-

tionName SOURCE ClassName1 PARAME-

TERS ( type1, type2, ... ) TO ClassName2

The commands have a uniform syntax. There is an ac-

tion verb followed by the object type followed by its

name and source class. Finally, the modi�cation pa-

rameters are indicated.

9 Carrying out the transformations

Following the parsing of the source �les, the construc-

tion of the IOM and its annotation by the UsageTrace-

Visitor, the system is ready to receive transformation

commands. The user opens a new CSL �le to en-

ter wanted transformations, or loads an existing one.

Most commands including renamings, insertions of new

classes and members and deletions can be speci�ed by

interacting with the graphical IOM using the mouse,

or by typing into the dialog boxes that are brought up

by double or right mouse clicks. The appropriate CSL

commands (see Section 8) are generated into the CSL

�le. The user indicates a preference as to whether the

transformations are to be carried out under both weak

and strong precondition checking or only under weak.

The user then gives the transform command.

Preconditions for each type of transformation are

checked in the IOM by traversing it using specialized

IOM visitors. If the preconditions are satis�ed, the

transformation is carried out by additional IOM visi-

tors, which follow pointers from the a�ected IOM con-

struct to both its de�nition and all its usages in the

AST. Both the IOM and the AST are updated, and the

graphical IOM is refreshed on the user screen. Transfor-

mations can be applied one-at-a-time or in batch. When

a suite of transformations is applied, each individual

one is checked within the context established by apply-

ing the preceding ones. This is the reason for updating

the IOM. The present version of STP lacks support for

transactions. However, the user can simulate such sup-

port simply by keeping a back copy of the system, and

reverting to it if one or more transformations in a suite

fail.

Finally, the user can generate the altered source �les

using a specialized printing visitor which traverses the

AST. The current prototype preserves the original com-

ments by attaching them to AST nodes, however they

may be moved slightly in the regenerated �les.

The whole procedure is illustrated in Figure 7.

10 Conclusion

Building a CASE tool requires a number of decisions

as to the modeling language used, the look and feel of

the user interface and the types of existing design and

programming tools which are best suited to speed the

development. This paper reported on the construction

of a CASE tool whose primary purpose is to demon-

strate the feasibility of an automated software evolution

approach. The tool is a prototype, that is to say that

functionality has taken precedence over speed of execu-

tion, robustness and handling of exceptional cases.

As of this writing a working version of STP has been

produced which has the capability of parsing substan-

tial Java 1.2 (or earlier) programs, displaying the un-

derlying class model in graphical form, carrying out au-

tomatic transformations, and generating revised source

code. It will require further testing and debugging to

assure smooth and consistent operation of these tasks.

Future directions for STP include:

1. Reverse engineering starting with binary class �les.

2. The use of type inference to discover the base type

of collection classes.

3. Automatic updating of serialized �les in concert

with the transformation of the object system which

saved them. This will allow transformed systems to

reload instances stored by earlier versions.

4. The expansion of the tool to work with object sys-

tems created by other languages such as C++.

Some C++ generation is already available.

5. Provision of an alternative user interface employing

industry standard UML [1].
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Abstract

APT (Automated Prototyping Tool-Kit)
is an integrated set of software tools that
generate source programs directly from
real-time requirements. The APT system
uses a fifth-generation prototyping
language to model the communication
structure, timing constraints, I/O control,
and data buffering that comprise the
requirements for an embedded software
system. The language supports the
specification of hard real-time systems
with reusable components from domain
specific component libraries.  APT has
been used successfully as a research tool
in prototyping large war-fighter control
systems (e.g. the command-and-control
station, cruise missile flight control
system, patriot missile defense systems)
and demonstrated its capability to
support the development of large
complex embedded software.

Keywords: APT, Automated
Prototyping, Real-Time Systems,
Command and Control, Formal Methods,
Evolution, Reuse, Architecture,
Components,  PSDL

1   INTRODUCTION

Software project managers are
often faced with the problem of inability
to accurately and completely specify

requirements for real-time software
systems, resulting in poor productivity,
schedule overruns, unmaintainable and
unreliable software. APT is designed to
assist program managers to rapidly
evaluate requirements for military real-
time control software using executable
prototypes, and to test and integrate
completed subsystems through
evolutionary prototyping. APT provides
a capability to quickly develop
functional prototypes to verify feasibility
of system requirements early in the
software development process. It
supports an evolutionary development
process that spans the complete life-
cycle of real-time software.

2   THE  AUTOMATED
PROTOTYPING TOOL-KIT (APT)

The value of computer aided prototyping
in software development is clearly
recognized.  It is a very effective way to
gain understanding of the requirements,
reduce the complexity of the problem
and provide an early validation of the
system design. Bernstein estimated that
for every dollar invested in prototyping,
one can expect a $1.40 return within the
life cycle of the system development [1].
To be effective, prototypes must be
constructed and modified rapidly,
accurately, and cheaply [8]. Computer
aid for rapidly and inexpensively



constructing and modifying prototypes
makes it feasible [10]. The Automated
Prototyping Tool-kit (APT), a research
tool developed at the Naval Postgraduate
School, is an integrated set of software
tools that generate source programs
directly from high level requirements
specifications [7] (Figure 1).
It provides the following kinds of
support to the prototype designer:

(1) timing feasibility checking via
the scheduler,

(2) consistency checking and
automated assistance for project
planning, configuration

management, scheduling,
designer task assignment, and
project completion date
estimation via the Evolution
Control System,

(3) computer-aided design
completion via the editors,

(4) computer-aided software reuse
via the software base, and

(5) automatic generation of wrapper
and glue code.

The efficacy of APT has been
demonstrated in many research projects
at the Naval Postgraduate School and
other facilities.

Figure 1. The APT Rapid Prototyping Environment
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2.1 Overview of the APT Method

There are four major stages in the APT
rapid prototyping process: software
system design, construction, execution,
and requirements evaluation and/or
modification (Figure 2).

The initial prototype design starts with
an analysis of the problem and a
decision about which parts of the
proposed system are to be prototyped.
Requirements for the prototype are then
generated, either informally (e.g.
English) or in some formal notation.
These requirements may be refined by
asking users to verify their completeness
and correctness.

After some requirements analysis, the
designer uses the APT PSDL editor to
draw dataflow diagrams annotated with
nonprocedural control constraints as part
of the specification of a hierarchically
structured prototype, resulting in a
preliminary, top-level design free from

programming level details. The user may
continue to decompose any software
module until its components can be
realized via reusable components drawn
from the software base or new atomic
components.

This prototype is then translated into the
target programming language for
execution and evaluation. Debugging
and modification utilize a design
database that assists the designers in
managing the design history and
coordinating change, as well as other
tools shown in Figure 3.

2.2 APT as a Requirements
Engineering Tool

The requirements for a software system
are expressed at different levels of
abstraction and with different degrees of
formality. The highest level
requirements are usually informal and

Figure 2. Iterative Prototyping Process in APT
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imprecise, but they are understood best
by the customers. The lower levels are
more technical, precise, and better suited
for the needs of the system analysts and
designers, but they are further removed
from the user's experiences and less well
understood by the customers. Because of
the differences in the kinds of
descriptions needed by the customers
and developers, it is not likely that any
single representation for requirements
can be the “best” one for supporting the
entire software development  process.
APT provides the necessary means to
bridge the communication gap between
the customers and developers. The APT
tools are based on the Prototype System
Description Language (PSDL), which is
designed specifically for specifying hard
real-time systems [5, 6]. It has a rich set
of timing specification features and
offers a common baseline from which
users and software engineers describe
requirements. The PSDL descriptions of
the prototype produced by the PSDL
editor are very formal, precise and
unambiguous, meeting the needs of the
system analysts and designers. The
demonstrated behavior of the executable
prototype, on the other hand, provides
concrete information for the customer to
assess the validity of the high level
requirements and to refine them if
necessary.

2.3 APT as a System Testing and
Integration Tool

Unlike throw-away prototypes, the
process supported by APT provides
requirements and designs in a form that
can be used in construction of the
operational system. The prototype
provides an executable representation of
system requirements that can be used for
comparison during system testing. The

existence of a flexible prototype can
significantly ease system testing and
integration. When final implementations
of subsystems are delivered, integration
and testing can begin before all of the
subsystems are complete by combining
the final versions of the completed
subsystems with prototype versions of
the parts that are still being developed.

2.4 APT as an Acquisition Tool

Decisions about awarding contracts for
building hard real-time systems are risky
because there is little objective basis for
determining whether a proposed contract
will benefit the sponsor at the time when
those decisions must be made. It is also
very difficult to determine whether a
delivered system meets its requirements.
APT, besides being a useful tool to the
hard real-time system developers, is also
very useful to the customers. Acquisition
managers can use APT to ensure that
acquisition efforts stay on track and that
contractors deliver what they promise.
APT enables validation of requirements
via prototyping demonstration, greatly
reducing the risk of contracting for real-
time systems.

2.5 A Platform Independent User
Interface

The current APT system provides two
interfaces for users to invoke different
APT tools and to enter the prototype
specification. The main interface (Figure
3) was developed using the TAE+
Workbench [11]. The Ada source code
generated automatically from the graphic
layout uses libraries that only work on
SUNOS 4.1.X operating systems. The
PSDL editor (Figure 4), which allows
users to specify the prototype via
augmented dataflow diagram, was



implemented in C++ and can only be
executed under SUNOS 4.1.X
environments. A portable
implementation of the APT main
interface and the PSDL editor was
needed to allow users to use APT to

build PSDL prototypes on different
platforms. We choose to overcome these
limitations by reimplementing the main
interface (Figure 5) and the PSDL editor
(Figure 6) using the Java programming
language [2].

The new graphical user interface, called
the Heterogeneous Systems Integrator
(HSI), is similar to the previous APT.
Users of previous APT versions will
easily adapt to the new interface. There
are some new features in this
implementation, which do not affect the
functionality of the program, but provide
a friendlier interface and easier use. The
major improvement is the addition of the
tree panel on the left side of the editor.
The tree panel provides a better view of
the overall prototype structure since all

of the PSDL components can be seen in
a hierarchy. The user can navigate
through the prototype by clicking on the
names of the components on the tree
panel. Thus, it is possible to jump to any
level in the hierarchy, which was not
possible earlier.

3   A SIMPLE EXAMPLE:
PROTOTYPING A C3I
WORKSTATION

Figure 3. Main Interface of APT Release 2.0

Figure 4. PSDL Editor of APT Release 2.0

Figure 5. Main Interface of the new APT

Figure 6. PSDL Editor of the new APT



To create a first version of a new
prototype, users can select “New” from
the “Prototype” pull-down menu of the
APT main interface (Figure 7). The user
will then be asked to provide the name

of the new prototype (say “c3i_system”)
and the APT PSDL editor will be
automatically invoked with a single
initial root operator (with a name same
as that of the prototype).

APT allows the user to specify the
requirements of prototypes as augmented
dataflow graphs. Using the drawing tools
provided by the PSDL editor, the user
can create the top-level dataflow
diagram of the c3i_system prototype as
shown in Figure 8, where the c3i_system
prototype is modeled by nine modules,
communicating with each other via data
streams. To model the dynamic behavior
of these modules, the dataflow diagram
is augmented with control and timing
constraints. For example, the user may
want to specify that the
weapons_interface module has a
maximum response time of 3 seconds to
handle the event triggered by the arrival
of new data in the weapon_status_data
stream, and it only writes output to the
weapon_emrep stream if the status of the
weapon_status_data is damage,
service_required, or out_of_ammunition.
APT allow the user to specify these
timing and control constraints using the
pop-up operator property menu (Figure

9), resulting in a top-level PSDL
program shown in Figure 10.
To complete the specification of the
c3i_system prototype, the user must
specify how each module will be
implemented by choosing the
implementation language for the module
via the operator property menu. The
implementation of a module can be in
either the target programming language
or PSDL. A module with an
implementation in the target
programming language is called an
atomic operator. A module that is
decomposed into a PSDL
implementation is called a composite
operator. Module decomposition can be
done by selecting the corresponding
operator in the tree-panel on the left side
of the PSDL editor.

APT supports an incremental
prototyping process. The user may
choose to implement all nine modules as
atomic operators (using dummy

Figure 7. Creating a new prototype called C3I_System



components) in the first version, so as to
check out the global effects of the timing
and control constraints. Then, he/she
may choose to decompose the
comms_interface module into more

detailed subsystems and implement the
sub-modules with reusable components,
while leaving the others as atomic
operators in the second version of the
prototype, and so on.

Figure 9. Pop-up Operator Property Menus

Figure 8. Top-level Dataflow Diagram of the c3i_system.



OPERATOR c3i_system
SPECIFICATION

DESCRIPTION
{This module implements a simplified version of
a generic C3I workstation.}

END
IMPLEMENTATION

GRAPH

DATA STREAM
-- Type declarations for the data streams in the graph go here.

CONTROL CONTRAINTS
OPERATOR comms_links OPERATOR weapons_interface

PERIOD 30000 MS TRIGGERED BY SOME
weapon_status_data

OPERATOR navigation_system MINIMUM CALLING PERIOD 2000 MS
PERIOD 30000 MS MAXIMUM RESPONSE TIME 3000 MS

OUTPUT
OPERATOR sensors weapons_emrep

PERIOD 30000 MS IF weapon_status_data.status =
damaged

OPERATOR weapons_systems OR weapon_status_data.status =
PERIOD 30000 MS service_required

OR weapon_status_data.status =
out_of_ammunition

END

Figure 10. Top-level Specification of the c3i_system



To facilitate the testing of the
prototypes, APT provides the user with
an execution support system that
consists of a translator, a scheduler and a
compiler. Once the user finishes
specifying the prototype, he/she can
invoke the translator and the scheduler
from the APT main interface to analyze
the timing constraints for feasibility and
to generate a supervisor module for each
subsystem of the prototype in the target
programming language. Each supervisor
module consists of a set of driver
procedures that realize all the control
constraints, a high priority task (the
static schedule) that executes the time-
critical operators in a timely fashion, and
a low priority dynamic schedule task that
executes the non-time-critical operators
when there is time available. The
supervisor module also contains
information that enables the compiler to
incorporate all the software components
required to implement the atomic
operators and generate the binary code
automatically. The translator/scheduler
also generates the glue code needed for
timely delivery of information between
subsystems across the target network.

For prototypes which require
sophisticated graphic user interfaces, the
APT main interface provides an
interface editor to interactively sculpt the
interface. In the c3i_system prototype,
we choose to decompose the
comms_interface, the
track_database_manager and the
user_interface modules into subsystems,
resulting in hierarchical design
consisting of 8 composite operators and
twenty-six atomic operators. The user
interface of the prototype has a total of
14 panels, four of which are shown in
Figure 11. The corresponding Ada

program has a total of 10.5K lines of
source code. Among the 10.5K lines of
code, 3.5K lines comes from supervisor
module that was generated automatically
by the translator/scheduler and 1.7K
lines that were automatically generated
by the interface editor [9].

4  CONCLUSION

APT has been used successfully as a
research tool in prototyping large war-
fighter control systems (e.g. the
command-and-control station, cruise
missile flight control system, missile
defense systems) and demonstrated its
capability to support the development of
large complex embedded software.
Specific payoffs include:

(1) Formulate/validate requirements
via prototype demonstration and
user feedback

(2) Assess feasibility of real-time
system designs

(3) Enable early testing and
integration of completed
subsystems

(4) Support evolutionary system
development, integration and
testing

(5) Reduce maintenance costs
through systematic code
generation

(6) Produce high quality, reliable
and flexible software

(7) Avoid schedule overruns

In order to evaluate the benefits derived
from the practice of computer-aided
prototyping within the software
acquisition process, we conducted a case
study in which we compared the cost (in
dollar amounts) required to perform
requirements analysis and feasibility
study for the c3i system using the 2167A



process, in which the software is coded
manually, and the rapid prototyping
process, where part of the code is
automatically generated via APT [3]. We
found that, even under very conservative
assumptions, using the APT method
resulted in a cost reduction of $56,300, a
27% cost saving. Taking the results of
this comparison, then projecting to a

mission control software system, the
command and control segment (CCS),
we estimated that there would be a cost
saving of 12 million dollars. Applying
this concept to an engineering change to
a typical component of the CCS software
showed a further cost savings of
$25,000.

Figure 11. User Interface of the c3i_system
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