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Abstract

There is a demand in software engineering for
automatic design recovery tools. An impor-
tant part of this activity consists of cluster-
ing �les into subsystems representative of the
\lost" design. Most of the research in this do-
main considers the body of the code; trying to
cluster together �les which are conceptually
related.
We, on the other hand, are trying to auto-

matically cluster �les using their names. This
source of information seems to better match
the organization of the legacy system we are
studying. We show that this informal source
of information can give results comparable
with what source code can provide.

1 Introduction

Maintaining legacy software systems is a
problem which many companies face. To help
software engineers in this task, researchers

�This work is supported by NSERC and Mitel

Corporation and sponsored by the Consortium for

Software Engineering Research (CSER).

are trying to provide tools to help recover the
\lost" design structure of the software system
using whatever source of information is avail-
able. An important part of this activity con-
sists of clustering �les into subsystems. This
allows software engineers to concentrate on
the parts of the system in which they are most
interested, and provides a high level view of
the system.

In general, existing research focuses on the
source code as the place from which to ex-
tract design concepts. However, various re-
searchers [15, 16] have raised an important
question: Is it possible to actually lift the
very low abstraction information available in
the source code to the level of design?

We do not actually answer this question,
rather, we take the opposite approach and try
to show that one can extract design informa-
tion from a more abstract source: �le names.
We evaluate the design quality of subsystems
extracted from a legacy software system us-
ing �le names; we show show that the quality
is comparable to what an analysis of source
code can provide.

We �rst give an overview of our project.
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We explain how we were led to consider �le
names as a criterion for subsystem extrac-
tion. We also summarize and compare var-
ious methods of automatically clustering �les
based on their name.

In the second part of the paper, we mea-
sure the design quality of the subsystems ex-
tracted using two well accepted metrics: co-
hesion and coupling. We show that the de-
sign quality of the subsystems (in terms of
cohesion and coupling) is dependent on the
quality of the �le name decomposition.

2 File clustering

We will now set the context in which our cur-
rent experiments took place: How we were
led to consider �le names as a criterion for
�le clustering, how we perform the clustering
and what are some earlier results.

2.1 Choice of �le name source

We work on a project whose primary goal
is to bridge the gap between academic re-
search and industrial needs. The software
system we study is large (1.5 million LOC,
3500 �les) and old (over 15 years). Nobody
in the company fully understands it anymore,
yet it is the subject of much ongoing enhance-
ment and is very important to the company.

Our goal is to build a conceptual browser
for this legacy software system. This activity
implies clustering semantically related �les.
Files can be clustered along many dimen-
sions, one of which is the design structure.
One can try to recover the design structure
using a top-down or a bottom-up approach
([13]). The top-down approach consists of an-
alyzing the domain to discover its concepts
and trying to match parts of the code with
them. It is less popular, because it implies ex-
tracting knowledge from experts during long

interviews and it is also domain speci�c which
limits its potential for reuse.
The bottom-up approach consists of clus-

tering closely related parts of the code and
assuming they correspond to design concepts.
The preferred way to perform this is to look
at the code.
For example, in [5], Lakhotia lists 22 cri-

teria for �le clustering, among which all but
one is based on code. Also, the 1995 Work-
ing Conference on Reverse Engineering had a
special track entitled \Analysis of Non-Code
Sources" (three papers); there has been no
subsequent similar exercise.
However the assumption that code pro-

vides the only useful source of information
for �le clustering does not match our own ex-
perience. Before trying to cluster �les, we
asked the software engineers to give us exam-
ples of subsystems they were familiar with.
Four software engineers provided us with 10
subsystems covering 68 �les.
Studying each subsystem, it was obvious

that their members displayed a strong simi-
larity among their names. For each subsys-
tem, concept names or concept abbreviations
like \q2000" (the name of a particular subsys-
tem), \list" (in a list manager subsystem) or
\cp" (for \call processing") could be found in
all the �le names. We showed by experiment
that the use of �le names is actually the best
criterion to recover the example subsystems
[1].
In the context of a conceptual browser, �les

names o�er many advantages over code:

� they are more concise and therefore allow
more in-depth analysis,

� they are not limited to code �les or can
easily deal with di�erent implementation
languages,

� they are not limited to a particular de-
sign point of view of the system,
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� they refer to application domain con-
cepts in a more direct way; hence the
clusters are readily understandable by
the software engineers.

2.2 File name decomposition

methods

Having decided to use �le names to clus-
ter �les, we de�ned a method to automati-
cally extract the concepts \hidden" in the �le
names. This is done in two steps which we
will only summarize here. A more in depth
description of this part may be found in [2].
We de�ne an abbreviation to be any sub-

string of a name that denotes a concept.
It may be an application domain term (e.g.
\q2000"), an English word (e.g. \list") or an
abbreviated form of a word (e.g. \svr" for
server).
As a rule, it is more di�cult to �nd the ab-

breviations composing a �le name than com-
posing an identi�er. File names rarely con-
tain \word markers" (underscore characters,
hyphens, or capital letters). Also the abbre-
viations they use are much shorter and more
cryptic, some being only one or two charac-
ters long.
To stress the di�culty of the task, we

wish to point out that for those who are
not experts in the particular software sys-
tem (such as ourselves), manually �nding the
right decomposition of certain �le names im-
plied looking at the contents of the �les (their
comments and identi�er names), at the exter-
nal documentation or at other related �les.
We studied several sources and approaches

for extracting abbreviations [2]. By taking
comment words that are also substrings of �le
names, as well as all substrings common to
several �le names, we were able to �nd on
average 88% of the abbreviations composing
a �le name.
This metric indicates how good we are in

�nding all the abbreviations composing a
name. One would say that we have a good
recall (on precision and recall, see for exam-
ple [11]).

A simple way to achieve good recall con-
sists of extracting all the possible substrings
composing a name. But the result would be
useless because we would not know which of
the substrings are the right ones. Therefore,
in order to have good precision, we also want
to extract only the actual abbreviations (con-
cepts) composing a name. Improving the pre-
cision is more di�cult because it implies fo-
cusing on the right abbreviations whereas we
don't know which ones are right. We were
able to get a precision rate of 84%.

The next section presents various name de-
composition methods, along with the mea-
sured recall and precision of these methods.

2.3 Methods' precision & recall

Starting from the best result we obtained (re-
call 88%, precision 84%) we tried to improve
it by exploring alternatively in two directions:

� We tried to improve the precision by �l-
tering out the abbreviations that did not
seem right.

� We tried to improve the recall by \re-
including" abbreviations that could be-
long to a name but where discarded in
the initial process.

Some of our results are given by the curve
in �gure 1; this shows a series of speci�c name
decomposition methods (1 to 8). The initial
(and best) result is point (1). Subsequent re-
sults, by themselves, are not very good; there-
fore we will not explain the details of each de-
composition method. However, we would like
to emphasize some points which may prove
useful for subsequent discussions:
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Figure 1: Precision and recall of di�erent
name decomposition methods (curve). The
boxes give the respective average cohesion
and coupling of the extracted abbreviations
for each method. Cohesion and coupling for
(5) are given by the left column, for (7) by
the right column.

� (2) and (3) are derived from (1), by try-
ing two slightly di�erent ways of �ltering
out supposedly wrong abbreviations (to
improve precision).

� (4) is also derived from (1) by trying to
improve recall.

� (5) and (6) are derived from (3) by trying
to improve recall.

� And �nally, (7) and (8) are derived from
(6) by �ltering out \wrong" abbrevia-
tions (to improve precision).

3 Cohesion & coupling of

abbreviations

Our goal was not to extract good \design"
subsystems1. We were primarily interested in

1The notion of \subsystem" implicitly refers to the

design, but the way we extract them introduces some

confusion.

extracting meaningful \concepts" (i.e. abbre-
viations) and associating the right �le names
with them. However, it turned out that these
concepts gave relatively good results with re-
gard to cohesion and coupling.
We �rst restate some basic notions of the

two metrics cohesion and coupling. Then we
present and analyze our results. We will �n-
ish with a discussion on the correlation be-
tween the quality of the abbreviations auto-
matically extracted as well as their average
cohesion and coupling.

3.1 Cohesion & coupling

One can measure the design quality of mod-
ules by evaluating their cohesion and coupling
(see for example [12]).

Cohesion measures the amount of interac-
tion between the members of a module.
A good module should exhibit high co-
hesion, which implies that there are a lot
of interactions between its components.
This ensures that the module performs
only one activity and that all the com-
ponents of a module are useful to it.

Coupling measures the amount of interac-
tion between the members of a module
and the outside. A good module should
exhibit low coupling, which implies that
there are few interactions between the
components of the module and the out-
side (one can also say that the module
has a small interface). This ensures that
modifying the module will not have too
much impact on the outside and vice-
versa.

In our case, the modules for which we will
measure cohesion and coupling are subsys-
tems composed of a set of �les. We used
the cohesion and coupling metrics de�ned in
[4, 10]:
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Cohesion is computed as the average simi-

larity between all the �les in the subsys-
tem.

Coupling is computed as the average simi-

larity between any �le in the subsystem
and any �le outside it.

Similarity is computed as the Euclidean
distance between characteristic vectors
describing each �le. A characteristic vec-
tor counts the references to a particular
user de�ned type within the �le it de-
scribes.

In the following experiments, each abbrevi-
ation is considered to de�ne a subsystem. All
the �le names from which the abbreviation
was extracted are member of the associated
subsystem. Note that an abbreviation may
be substring of a �le name and yet not be ex-
tracted from that particular name. This can
happen when the �le name is broken down
in such as way that the abbreviation in ques-
tion is considered to be either part of a larger
abbreviation, or else is split into two abbre-
viations.

3.2 Cohesion/coupling mea-

sured

Considering again �gure 1; for each name de-
composition method, the boxes show average
cohesion and coupling for the subsystems ex-
tracted.

One can observe that the results are rea-
sonably good. Most name decomposition
methods exhibit an average cohesion signif-
icantly higher than the average coupling.

But these results are still quite far from
what may be obtained using code as a source
of information. In �gure 2 we give the average
cohesion/coupling of subsystems in a number
of di�erent cases:
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Figure 2: Comparing Cohesion/Coupling for
all abbreviations of the names and for the �rst
abbreviation (potentially marking the design
subsystems). The numbers refer to the name
decomposition methods in �gure 1.

Code : Subsystems are obtained by cluster-
ing �les which are most similar accord-
ing to a code criterion. Because we did
not want to give an unfair advantage to
the code experiments, the similarity be-
tween �les is computed using several dif-
ferent criteria for the cohesion/coupling
metrics and the clustering. One exper-
iment uses reference to global variables
(labeled \gv") and the other uses cross
routine calls (labeled \rc").

Example Subsystems : These are the sub-
systems given to us by the software en-
gineers.

Random Subsystems : These are three
sets of randomly generated subsystems.
Each one contains 1000 subsystems with
a size x+100

x+1
where x is a randomly gen-

erated number between 0 and 50. These
�gures have been chosen to approxi-
mately match the con�guration of the
code subsystems.

All abbreviations : These are the results
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already presented in �gure 1. There is
however a minor di�erence on the actual
subsystems taken into account (see be-
low).

It is somehow unfair to compute cohesion
and coupling for all the abbreviations com-
posing a name because not all of them mark
design subsystems. For example, in the name
\listdbg", the �rst abbreviation \list" marks
the subsystem whereas the second one \dbg"
(for debug) marks another concept.
This led to the last set of experiments:

First abbreviation : These are the very
same name decomposition methods as
the \all abbreviations" set, but consider-
ing only the �rst abbreviation extracted
for each �le name.

Note that the \�rst abbreviation"
heuristic sometimes proves wrong. For
example �les \qlistmgr" and \istaud"
are also members of the \list" subsys-
tem, but they have an extra initial letter
which goes against the heuristic.

In one case, the \example subsystems",
there are only 10 subsystems covering 68 �les
(out of more than 1800). To try to have a
common base on which to compare all the re-
sults, we did not consider all subsystems in
the other experiments. Rather, we only took
into account those subsystems which included
at least one \example �le" (i.e. a �le belong-
ing to an example subsystem). The experi-
ments are still dissimilar in that the other ex-
periments include on average 76 subsystems
covering 613 �les.
Before commenting the results, we want to

make a last point:
In the �gure, the ideal point is the lower

right corner, with high cohesion and low cou-
pling. Please note that the scales are not the
same for cohesion and coupling. If they were,
the results would all appear closer to the ideal

than they do here because they would all be
located in the lower half of the graph.
From this �gure, we see that:

� The code clustering methods (rc and gv)
perform very well, although one could
object that they yield a high degree of
coupling. However, given our experi-
ments, it seems to be intrinsic to the
measures of our system that a better
cohesion always goes with a slightly in-
creased coupling.

These sets of experiments are intended
to give an \absolute upper bound" com-
parison base.

� The example subsystems also give good
results. We already mentioned that
these subsystems are clearly based on a
�le naming convention. The results are
slightly worst than in the preceding case,
since we have lower cohesion and higher
coupling.

One should not pay too much attention
to the bad coupling for the example sub-

systems, the very small size of this ex-
periment does not allow to draw any sig-
ni�cant conclusion.

This experiment is intended to give an-
other \upper bound" comparison base,
that focuses on the �le naming conven-
tion.

� The random subsystems have, as one
would expect, the same cohesion and
coupling (' 0:215) that corresponds to
the average similarity of any two �les in
the system.

This is considered to be a \lower bound"
comparison base.

� The results for all abbreviations (e.g.
name decomposition methods 1, 2 and 3)
are signi�cantly better than completely
random experiments.
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� Despite the problem we mentioned, the
�rst abbreviation heuristic, de�nitely
proves useful and gives better cohe-
sion/coupling.

In the case of name decomposition
method 1, one could even argue that the
results are comparable to the code re-
sults, considering that it is closer to the
\ideal" point (lower coupling).

The cohesion results for name decompo-
sition methods 1, 2, 3, 7 and 8 are better
than with the example subsystems, but
we already mention that we can not ac-
tually deduce much from this.

It seems clear from these experiments that,
in our system, �le naming convention is a
valid criterion to extract good design subsys-
tems.

3.3 Cohesion/Coupling versus

Precision/Recall

If we compare the precision and recall rates of
each name decomposition method (�gure 1)
and the corresponding average cohesion and
coupling of the extracted abbreviations (�g-
ure 2), one can observe some interesting facts:

� The best precision (name decomposition
method 1) corresponds to the best aver-
age cohesion/coupling.

� Pairs of name decomposition methods
2/3 and 7/8 have close precision/recall
and close cohesion/coupling.

� The pair 5/6 has close precision
(not recall) and similarly close cohe-
sion/coupling.

We are not sure yet if these paired similar-
ities are due to some correlation between av-
erage cohesion/coupling of the abbreviations
and the precision/recall of the name decom-
position methods or if they are due to the
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Figure 3: Precision of name decomposition
methods versus cohesion of the abbreviations.

fact that each pair includes very close meth-
ods. We mentioned earlier that 2 and 3 are
derived from 1, while 5 and 6 are derived from
3 and 7 and 8 are derived from 6.

Some facts point toward a correlation be-
tween the precision of the name decomposi-
tion methods and the average cohesion of the
abbreviations:

� In �gure 1, the name decomposition
methods in increasing order of precision
are: 6, 5, 4, 8, 7, 2, 3 and 1. This is very
similar to the order that may be found
when looking at �gure 2 (from the worst
results on the left toward better ones on
the right).

� The two metrics (cohesion and precision)
are strongly correlated. The correlation
coe�cients from data in �gure 3 are:
0.78 if we consider all abbreviations and
0.98 if we consider only the �rst abbre-
viation.

� The two name decomposition methods
(1 and 4) which are not paired (approach
di�erent from the other), do �t in this
correlation scheme.
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For the reason we already mentioned, it
seems natural that the \�rst abbreviation"
results be better: all abbreviations do not re-
fer to design subsystems.
This correlation between the cohesion

of the abbreviations and the precision of
the name decomposition methods extracting
them re-enforce the idea that these abbrevi-
ations do mark design subsystems. Having
more precise name decomposition methods
implies extracting mostly good abbreviations
(even if we must extract fewer of them). As-
suming abbreviations do mark design subsys-
tems, these good abbreviations in turn pro-
duce a better cohesion.
A better recall could not have this e�ect.

This suggests that one should concentrate
on having a good precision which is unfor-
tunately more di�cult.

4 Conclusion

Discovering subsystems in a legacy software
system is an important research issue. While
studying a legacy telecommunication soft-
ware system, and the software engineers who
maintain it, we discovered their de�nition of
subsystems was mainly based on the �les'
names. This goes against the commonly ac-
cepted idea that the body of the code is the
sole reliable source of information when per-
forming �le clustering.
This raises some issues that we will address

now.

4.1 Generality of this organiza-

tion scheme ?

If �le names are actually marking subsystems
in the software we are studying, is there any
chance to generalize the results to other sys-
tems?
We do not think that the system we are

working on is such an exception. Other au-
thors already noticed that �le names can con-
stitute good markers of design subsystems
[9, 14]. However, in these two works, the �le
name decomposition was manual.

It seems unlikely that companies can suc-
cessfully maintain huge software systems for
years with constantly renewed maintenance
teams without relying on some kind of struc-
turing technique. We do not pretend naming
convention is the sole solution to �le organiza-
tion, but it is one possibility. Hierarchical di-
rectories is another commonly used approach
(e.g. in the Linux project [6]).

Other works also use high abstraction level
sources to cluster �les [7, 8]. These sources
(external documentation for [7], comment
and identi�er names for [8]) proved irrelevant
in our system [1].

To our knowledge, none of these works
tried to assert the design quality of the sub-
system decomposition obtained.

4.2 Usefulness of the �le name

criterion ?

This is the major issue we wish to address:
what can be the utility of a tool which only
discovers subsystems that have been explic-
itly marked in the �le names?

It is true that using �le names we are only
\re-discovering" subsystems that have been
explicitly put there. This seems to be op-
posed to the usual approach which aims at
recovering a lost design.

We believe that this vision is erroneous.
For large systems with thousands of in-
teractions between �les, the GIGO2 rule

2A computer, to print out a fact,

Will divide, multiply, and subtract.

But this output can be

No more than debris,

If the input was short of exact.

{ Gigo (from the \fortune" program)
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(Garbage-In, Garbage-Out) would certainly
apply. That is to say if nobody explicitly and
repeatedly tried to organize the �les, there
will be no subsystem discovery at all.

This claim is supported by the following
research: in [3], Carmichael et al. applied a
design-extraction tool to a recently developed
system. The system was medium sized (300
KLOC, 200 �les) and described as a \rea-
sonably well designed and well constructed
piece of software". Despite having all these
advantages, the experiment showed that the
extracted design was easily perturbed by a
few minor implementation decisions.

If the design extraction can be perturbated
by minor implementation aws even in fresh,
well designed software, one can doubt, auto-
mated tools would discover modules from old,
huge software, unless these modules were ex-
plicitly and deliberately enforced during the
maintenance.

Therefore the question seems rather to be:
what can be the utility of a tool which only
discovers subsystems that have been explic-
itly marked?

Other researchers [15, 16] have already ex-
pressed doubts about the tractability of auto-
matic design recovery based on code source.
One of their conclusions was that it does not
rule out the utility of the all approach. Au-
tomatic design recovery techniques can still
prove useful in:

� helping the software engineers to redis-
cover a design organization they don't
quite remember,

� helping the software engineers to respect
a design they don't fully \understand".

We believe that this goal can be bet-
ter achieved by relying on many di�erent
sources of information (including code and
�le names).
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