
University of Ottawa, Computer Science Technical Report TR-97-07

1

Architecture of a Source Code Exploration Tool:
A Software Engineering Case Study1

Timothy C. Lethbridge & Nicolas Anquetil

School of Information Technology and Engineering (SITE)
150 Louis Pasteur, University of Ottawa, Canada

tcl@site.uottawa.ca, anquetil@csi.uottawa.ca

Abstract

We discuss the design of a software system that
helps software engineers (SE’s) to perform the
task we call just in time comprehension (JITC)
of large bodies of source code. We discuss the
requirements for such a system and how they
were gathered by studying SE’s at work. We then
analyze our requirements with respect to other
tools available to SE’s for the JITC task. Next,
we walk through system design and the object-
oriented analysis process for our system, discuss-
ing key design issues. Some issues, such as
dealing with multi-part names and conditional
compilation are unexpectedly complex.

1 Introduction

The goal of our research is to develop tools to
help software engineers (SE’s) more effectively
maintain software. By analyzing the work of
SE’s, we have come to the conclusion that they
spend a considerable portion of their time explor-
ing source code, using a process that we call just-
in time program comprehension. As a result of
our analysis, we have developed a set of require-
ments for tools that can support the SE’s.

In section 2 we present our analysis and the
requirements; we also explain why other tools do
not meet the requirements. In section 3, we pres-
ent our design for a system that meets the re-
quirements. Since there is not space for
exhaustive design details, we focus on key issues

1 This work is supported by NSERC and Mitel

Corporation and sponsored by the Consortium for
Software Engineering Research (CSER). The IBM
contact for CSER is Patrick Finnigan.

that we believe would be of interest to others
who are building tools.

Our motivations for writing this paper are
twofold:

• To contribute to the state of knowledge about
software engineering tools by presenting re-
quirements and how we have addressed prob-
lems. We believe there are not enough papers
in the public domain that present issues in
software architecture – most such writings can
only be found in inaccessible software design
documentation.

• To improve the state of research practice in
this area by highlighting aspects of our re-
search that we feel are important. Such areas
include performing effective analysis of the
SEs’ task by studying real SE’s, and focusing
on tools for which there are demonstrable re-
quirements.

2 Development of Require-
ments for the System

Requirements for the tool have been determined
by the careful study of SE’s in real working envi-
ronments [10]. In this section we briefly discuss
how the requirements were derived. We then pres-
ent and explain the software engineering task we
are addressing and key tool requirements. Finally
we explain why other tools are not able to fulfill
these requirements.

2.1 Studying Software Engineers
to Determine Requirements

Many software engineering tools are developed
by people who have ‘good ideas’, or by people

University of Ottawa, Computer Science Technical Report TR-97-07

2

responding to particular needs expressed by SE’s
(perhaps themselves).

We believe, however that a proper scientific
and engineering approach should instead start
with detailed observation of the work practices of
SE’s. Furthermore, as Von Mayrhauser and
Vans point out [15], the SE’s studied must be
developing significant software systems in an
industrial setting.

In our approach, we analyze such things as
the detailed tasks the SE’s perform (especially
work-arounds they are forced to perform due to
lack of adequate tools) and the constraints of their
work environment. This approach has much in
common with Vicente’s cognitive work analysis
methodology [14].

Development of tools is driven by this analy-
sis; the tools are then validated by testing
whether they actually improve the productivity of
the working SE’s.

We have used the following techniques to
study SE’s:

• General interviews about SEs’ process, product
and tools.

• Series of interviews held every few weeks for
lengthy periods, where we discuss what SE’s
have done since the last interview.

• Observation sessions where we record what we
observe the SE’s doing.

• Automatic logging of the SEs’ use of all tools
available to them.

• Sessions where we walk through tools feature-
by-feature.

Most of our work has taken place at Mitel Cor-
poration, although we have also worked with
people in several other companies. For more
detail, see [4, 5, 12].

2.2 The Software Engineering
Task that We Address: Just in
Time Comprehension of
Source Code

Almost all the SE’s we have studied spend a con-
siderable proportion of their total working time
in the task of trying to understand source code
prior to making changes. We call the approach
they use Just in Time Comprehension (JITC)
[11]; the reason for this label will be explained
below. We choose to focus our research on this

task since it seems to be particularly important,
yet lacking in sufficient tool support.

The ‘changes’ mentioned in the last paragraph
may be either fixes to defects or the addition of
features: The type of change appears to be of
little importance from the perspective of the ap-
proach the SE’s use. In either case the SE has to
explore the system with the goal of determining
where modifications are to be made.

A second factor that seems to make relatively
little difference to the way the task is performed
is class of user: Two major classes of users per-
form this task: Novices and experts. Novices are
not familiar with the system and must learn it at
both the conceptual and detailed level; experts
know the system well, and may have even writ-
ten it, but are still not able to maintain a com-
plete-enough mental model of the details. The
main differences between novice and expert SE’s
are that novices are less focused: They will not
have a clear idea at which items in the source
code to start searching, and will spend more time
studying things that are, in fact, not relevant to
the problem. It appears that novices are less fo-
cused merely because they do not have enough
knowledge about what to look at; they rarely set
out to deliberately learn about aspects of the sys-
tem that do not bear on the current problem. The
vision of a novice trying to ‘learn all about the
system’, therefore seems to be a mirage.

We observe that SE’s repeatedly search for
items of interest in the source code, and navigate
the relationships among items they have found.
SE’s rarely seek to understand any part of the
system in its entirety; they are content to under-
stand just enough to make the change required,
and to confirm to themselves that their proposed
change is correct (impact analysis). After work-
ing on a particular area of the system, they will
rapidly forget details when they move to some
other part of the system; they will thus re-ex-
plore each part of the system when they next
encounter it. This is why we call the general
approach, just-in-time comprehension (JITC).
Almost all the SE’s we have studied confirm that
JITC accurately describes their work paradigm –
the only exceptions were those who did not, in
fact, work with source code (e.g. requirements
analysts).

University of Ottawa, Computer Science Technical Report TR-97-07

3

2.3 List of Key Requirements for
a Software Exploration Tool

We have developed a set of requirements for a
tool that will support the just-in-time compre-
hension approach presented in the last section.
Requirements of relevance to this paper are listed
and explained in the paragraphs below. Actual
requirements are in italics; explanations follow in
plain text.

The reader should note that there are many
other requirements for the system whose discus-
sion is beyond the scope of this paper. The fol-
lowing are examples:
• Requirements regarding interaction with con-

figuration management environments and other
external systems.

• Requirements regarding links to sources of
information other than source code, such as
documentation.

• Requirements about features that allow SE’s to
keep track of the history of their explorations
(e.g. so they can push one problem on a stack
while working on a subproblem).

• Detailed requirements about usability.

Functional requirements. The system shall:

F1 Provide search capabilities such that the user
can search for, by exact name or by way of
regular expression pattern-matching, any
named item or group of named items that are
semantically significant2 in the source code.

The SE’s we have studied do this with high
frequency. In the case of a file whose name
they know, they can of course use the oper-
ating system to retrieve it. However, for
definitions (of routines, variables etc.) em-

2 We use the term semantically significant so as

to exclude the necessity for the tool to be required to
retrieve ‘hits’ on arbitrary sequences of characters in
the source code text. For example, the character
sequence ‘e u’ occurs near the beginning of this
footnote, but we wouldn’t expect an information
retrieval system to index such sequences; it would
only have to retrieve hits on words. In software the
semantically significant names are filenames,
routine names, variable names etc. Semantically
significant associations include such things as
routine calls, file inclusion.

bedded in files, they use some form of search
tool (see section 2.4).

F2 Provide capabilities to display all relevant
attributes of the items retrieved in require-
ment F1, and all relationships among the
items.

We have observed SE’s spending consider-
able time looking for information about
such things as the routine call hierarchy, file
inclusion hierarchy, and use and definitions
of variables etc. Sometimes they do this by
visually scanning source code, other times
they use tools discussed in section 2.4. Of-
ten they are not able to do it at all, are not
willing to invest the time to do it, or obtain
only partially accurate results.

Non-functional requirements. The system
will:

NF1 Be able to automatically process a body of
source code of very large size, i.e. consisting
of at least several million lines of code.

As discussed in section 2.1, we are concerned
with systems that is to be used by real in-
dustrial SE’s. An engineer should be able to
pick any software system and use the tool to
explore it.

NF2 Respond to most queries without percepti-
ble delay.

This is one of the hardest requirements to
fulfill, but also one of the most important.
In our observations, SE’s waste substantial
time waiting for tools to retrieve the results
of source code queries. Such delays also in-
terrupt their thought patterns.

NF3 Process source code in a variety of pro-
gramming languages.

The SE’s that we have studied use at least
two languages – a tool is of much less use if
it can only work with a single language. We
also want to validate our tools in a wide va-
riety of software engineering environments,
and hence must be prepared for whatever lan-
guages are being used.

University of Ottawa, Computer Science Technical Report TR-97-07

4

NF4 Wherever possible, be able to interoperate
with other software engineering tools.

We want to be able to connect our tools to
those of other researchers, and to other tools
that SE’s are already using.

NF5 Permit the independent development of user
interfaces (clients).

We want to perform separate and independent
research into user interfaces for such tools.
This paper addresses only the overall archi-
tecture and server aspects, not the user inter-
faces.

NF6 Be well integrated and incorporate all fre-
quently-used facilities and advantages of
tools that SE’s already commonly use.

It is important for acceptance of a tool that it
neither represent a step backwards, nor re-
quire work-arounds such as switching to al-
ternative tools for frequent tasks. In a survey
of 26 SE’s [5], the most frequent complaint
about tools (23%) was that they are not in-
tegrated and/or are incompatible with each
other; the second most common complaint
was missing features (15%). In section 2.4
we discuss some tools the SE’s already use
for the program comprehension task.

NF7 Present the user with complete information,
in a manner that facilitates the JITC task.

Some information in software might be
described as ‘latent’. In other words, the
software engineer might not see it unless it
is pointed out. Examples of such
information are the effects of conditional
compilation and macros.

Acceptable limitations:

L1 The server component of the tool may be
limited to run on only one particular plat-
form.

This simplifies implementation decisions
without unduly restricting SE’s.

L2 The system is not required, at the present
time, to handle object oriented source code.

We are restricting our focus to SE’s working
on large bodies of legacy code that happens
to be written in non-object-oriented lan-
guages. Clearly, this decision must be
subsequently lifted for the tool to become
universally useful.

L3 The system is not required, at present, to
deal with dynamic information, i.e. informa-
tion about what occurs at run time.

This is the purview of debuggers, and
dynamic analysis tools. Although it would
be useful to integrate these, it is not
currently a requirement. We have observed
software engineers spending considerable
time on dynamic analysis (tracing, stepping
etc.), but they consume more time
performing static code exploration.

2.4 Why Other Tools are Not Able
to Meet these Requirements

There are several types of tools used by SE’s to
perform the code exploration task described in
section 2.2. This section explains why, in gen-
eral, they do not fulfill our requirements:

Grep: Our studies described in section 2.1 indi-
cated that fully 25% of all command executions
were of one of the members of the grep family
(grep, egrep, fgrep, agrep and zgrep). Interviews
show that it is the most widely used software
engineering tool. Our observations as well as
interviews show that grep is used for just-in time
comprehension. If SE’s have no other tools, it is
the key enabler of JITC; in other situations it
provides a fall-back position when other tools are
missing functionality.

However, grep has several weaknesses with
regard to the requirements we identified in the last
section:

• It works with arbitrary strings in text, not se-
mantic items (requirement F1) such as rou-
tines, variables etc.

• SE’s must spend considerable time performing
repeated greps to trace relationships
(requirement F2); and grep does not help them
organize the presentation of these relation-
ships.

University of Ottawa, Computer Science Technical Report TR-97-07

5

• Over a large body of source code grep can take
a large amount of time (requirements NF1 and
NF2).

Search and browsing facilities within
editors: All editors have some capability to
search within a file. However, as with grep they
rarely work with semantic information. Advanced
editors such as emacs (used by 68% of a total of
127 users of text-editing tools in our study) have
some basic abilities to search for semantic items
such as the starts of procedures, but these
facilities are by no means complete.

Browsing facilities in integrated devel-
opment environments: Many compilers now
come with limited tools for browsing, but as
with editors these do not normally allow brows-
ing of the full spectrum of semantic items.
Smalltalk browsers have for years been an excep-
tion to this, however such browsers typically do
no not meet requirements such as speed (NF2),
interoperability (NF4), and multiple languages
(NF3). IBM’s VisualAge tools are to some ex-
tent dealing with the latter problem.

Special-purpose static analysis too ls :
We observed SE’s using a variety of tools that
allow them to extract such information as defini-
tions of variables and the routine call hierarchy.
The biggest problems with these tools were that
they were not integrated (requirement NF6) and
were slow (NF2)

Commercial browsing tools: There are
several commercial tools whose specific purpose
is to meet requirements similar to ours. A par-
ticularly good example is Sniff+ from Take5
Corporation [13]. Sniff+ fulfills the functional
requirements, and key non-functional require-
ments such as size [NF1], speed [NF2], multiple
languages [NF3], its commercial nature means
that it is hard to extend and integrate with other
tools.

Program understanding tools: University
researchers have produced several tools specially
designed for program understanding. Examples
are Rigi [6] and the Software Bookshelf [3]. Rigi
meets many of the requirements, but is not as
fast [NF2] nor as easy to integrate other tools

[NF6] as we would like. As we will see later it
differs from what we would like in some of the
details of items and relationships. The Software
Bookshelf differs from our requirements in a key
way: Before somebody can use a ‘bookshelf’ that
describes a body of code, some SE must organize
it in advance. It thus does conform fully with the
‘automatically’ aspect of requirement NF1.

3 Issues in System Design

In this section we examine several issues in sys-
tem design for the software exploration tool.

3.1 The Need for a Precompiled
Database

Figure 1 shows an architecture for the simplest
possible software exploration system. Such a
system processes the source code on demand,
whenever an application program makes a query.
This is the way tools such as grep function.

Clients
(User Interfaces

and other
analysis tools)

Parsers

Source Code
File

Figure 1: Simple data flow diagram of a
system that lacks a database.

In an architecture like figure 1, it would be pos-
sible to create new parsers (requirement NF3) and
user interfaces (requirement NF5). Also, some
user interfaces might bypass parsers for certain
operations (e.g. simply displaying code).

Clearly however, such a system can not be
fast enough to simultaneously meet requirements
F1, F2, NF1 and NF2. This is because some
operations have to process much or all of the
source code files before returning an answer.
Hence there must be a precompilation process
that generates a database of information about the
software. Such an architecture is shown in figure
2. Discussion about the schema of the database–
and how we can make the database fast enough–is
deferred to section 4.

In figure 2, we have shown two API’s, one
each for writing and reading the database. Discus-
sion of these is deferred to sections 5.1 and 5.2

University of Ottawa, Computer Science Technical Report TR-97-07

6

respectively. The latter contains basic calls that
provide all the facilities applications need to sat-
isfy requirements F1 and F2.

Clients
(User Interfaces

and other
analysis tools)

Parsers

Source Code
File

Database

DBMS

Write-API
data Read-API

data

Figure 2: Modified version of figure 1,
with the addition of a database to represent
information about the source code.

3.2 The Need for an Interchange
Format

Since third-party parsers are to be used, as shown
in figures 1 and 2, we should impose a constraint
that these parsers must make calls to a common
write-API. However since we also want to allow
the system to interoperate with other tools that
independently produce or consume data about
source code (requirement NF4), then we need to
develop an interchange format. Changes to the
architecture to accommodate this are shown in
figure 3.

TA++
Files

Parsers

DBMS

3rd party tools
that read

TA++

3rd party tools
that generate

TA++

Interchange
format (TA++)

Interchange
format

 (TA++)

Interchange
format (TA++)

Write-API
data

TA++
Parser

Read-API
data

TA++
Generator

Figure 3: Expansion of part of figure 2 to
show the use of an interchange format.

We call our interchange format TA++ because
it uses a generic tuple-attribute syntax called TA
developed by Holt [2]. We are working with his
group on various tools that will interoperate.
TA++ is described in more detail in section 5.3.

TA++ is generated by all programming lan-
guage parsers. It is directly piped into a special
TA++ parser which builds the database (although
storage of TA++ in files or transmission over
network connections is also anticipated). Our
system also has a TA++ generator which permits
a database to be converted back to TA++. This is
useful since TA++ is far more space-consuming
than the database thus we don’t want to unneces-
sarily keep TA++ files.

Data in TA++ format, as well as data passed
through the DBMS write-API, are both merely
lists of facts about the software as extracted by
parsers.

3.3 The Need for a Query
Language

Although the read-API provides basic query fa-
cilities, an API doesn’t easily lend itself to com-
posite queries, e.g. “Tell me the variables
common to all files that contain calls to both
routine x and routine y.” For this, a query lan-
guage is needed, as illustrated in figure 4. Dis-
cussion of this language is in section 5.4.

DBMS

Clients
(User Interfaces

and other
analysis tools)

Query
Engine

Query
response

Read-API
data

Read-API
data

Figure 4: Expansion of part of figure 2 to
show a query engine.

3.4 The Need for Auxiliary
Analysis Tools

The architecture discussed so far presupposes that
all data needed by clients comes from two
sources:

• The precompiled database of facts about the
source code.

• Unprocessed source code itself.

However, although the database contains com-
prehensive information about source code objects
and their relationships, there are certain data
whose storage in the database would not be ap-
propriate, but which is still needed to satisfy

University of Ottawa, Computer Science Technical Report TR-97-07

7

requirements F1, F2 and NF6. These include, but
are not limited to, the following:

• Details of the complete syntax tree (or just the
control flow) within a file. We concluded in
design issue A that a precompiled database is
necessary to store system-wide data; however
intra-file information can be rapidly enough
obtained at query time, while still satisfying
requirement NF2.

• Data to permit full-text keyword or regular
expression searches of such aspects of a system
as comments. We believe that these are best
stored in an information retrieval system that
is optimized for that purpose. Also we believe
that traditional grep can be effectively in-
corporated within our architecture when it is to
be used within a single file or routine.

• Conceptual knowledge about the system (with
pointers into the source code). See [9] for a
discussion of this.

Figure 5 shows how auxiliary analysis tools are
incorporated into our architecture. Figure 6
shows the composite data flow diagram, combin-
ing figures 2 through 5.

Source Code
File

Clients
(User Interfaces

and other
analysis tools)

Auxilliary
Analysis Tools

Figure 5: Expansion of part of figure 2 to
show the incorporation of auxiliary analy-
sis tools that have their own precompila-
tion facilities, or are fast enough not to
need precompilation.

4 Database Design Issues

In this section we examine key issues that arose
during the design of the database. Most involve
design of the schema, although some problems
forced us to think about parsing strategies.

We will use the OMT modeling notation and
methodology of Rumbaugh et al. [8], although

decisions about the actual implementation para-
digm will be deferred to section 4.10

TA++
Files

Parsers

Database

Source Code
File

DBMS

Clients
(User Interfaces

and other
analysis tools)

3rd party tools
that read

TA++

3rd party tools
that produce

TA++

Auxilliary
Analysis Tools

Query
Engine

Interchange
format (TA++)

Query
response

Interchange
format

 (TA++)

Interchange
format (TA++)

Write-API
data

TA++
Parser Read-API

data

Read-API
data

TA++
Generator

Figure 6: Final data flow diagram for the
system. Composite of figures 2 through
5.

4.1 Initial Lists of Classes and
Associations.

To fulfill requirement F1, we must ascertain all
classes of named items in the source code
(restricting ourselves to non-object-oriented
languages as permitted by limitation L2). In
section 3.4, we considered how to deal with
words in comments and syntax-tree issues that
have no impact across the boundaries of files. We
are therefore left, upon initial analysis, with the
following objects of interest:

a) Source code files
b) Routines
c) Variables
d) Types
e) Constants
f) Fields

The following associations are then of interest:

a) Locations of definitions
b) Locations where defined objects are used
c) File inclusion (really a special case of b)
d) Routine calls (another special case of b)

4.2 Recursive Hierarchy of Source
Units

Figure 7 presents a simplistic object model relat-
ing source files and routines. We can improve
this by recognizing that routines are just smaller
units of source. We thus derive the recursive dia-

University of Ottawa, Computer Science Technical Report TR-97-07

8

gram shown in figure 8. See [7] for a discussion
of this design pattern3.

SourceFile Routine
includes callscontains

Figure 7: Very simple object model for
representing information about source
code. This is the starting point for subse-
quent discussions. Attributes are not con-
sidered at this stage of analysis.

Note that a potential extension to figure 8 would
be additional subclasses of SourceWithinFile,
such as blocks.

SourceUnit

SourceWithinFileSourceFile

RoutineSource

includes

calls

contains

Figure 8: Modification of figure 7 using
a recursive framework. This recognizes
that not only files can contain routines,
but so can routines thmnselves in some
languages. Other kinds of items can be
defined at any level of source unit.

4.3 References vs. Definitions

In figure 8, the call hierarchy is represented by
pointers from RoutineSource to RoutineSource.
Upon careful thought however, it should be clear
that this relationship should not be reflexive.

Consider routine R1, in which a call is made
to R2. We know R1 exists, but we don’t know
for sure that R2 exists – there may be an error, or
the code may be incomplete (yet to fulfill re-
quirement NF7, we still need to record the infor-
mation). All we know about R2 is that there
exists a reference to something with that name.
This principle extends to file inclusion, and
reference to variables and types (which may be
externally defined) etc.

In the database, we therefore create a funda-
mental distinction between objects that we know
exist (SourceUnit and Definition) versus refer-

3 In the more popular design pattern book by

Gamma et al[1], this is really an inverse Composite,
because the root of the hierarchy is recursion-
limiting case, instead of leaves.

ences we know are made (ReferenceExistence).
Figure 9, illustrates how this division is imple-
mented as an inheritance hierarchy in the
database.

SourceUnit Definition ReferenceExistence

SoftwareObject
objectId

(Vector)
allObjects

Figure 9: The top of the inheritance hier-
archy of software objects. The vector and
the objectId are discussed later.

Figure 10 gives examples of how
ReferenceExistence and other classes are related.
As suggested in section 3.4, if a SourceUnit
makes more than one reference with the same to
a given class of object (e.g. several calls to the
same routine) then only a single link is made to
the ReferenceExistence with that name. To find
out the total number of references in a file
therefore requires a run-time scan of that file.

SourceUnit

SourceWithinFileSourceFile

RoutineSource
includes

calls

contains

ReferenceExistence

FileInclusionExistence

RoutineCallExistence

Figure 10: Modification of figure 8 show-
ing separate references.

4.4 Dynamic References

One of the more difficult problems we have en-
countered is how to deal with situations where
pointers to routines can be manipulated. In such
cases, it becomes impossible to statically create a
complete call hierarchy. In limitation L1, we
accepted not to perform dynamic analysis; how-
ever in some programs, routines are almost all
called in this manner.

We have not adequately solved this problem. Our
proposed partial solution is to flag:

• routines whose name is assigned to a variable;
• variables that contain routine names

...so that explorers at least are aware of potential
complexity. This solution will not work, how-

University of Ottawa, Computer Science Technical Report TR-97-07

9

ever, with languages where routines can be called
from strings that are created at run-time.

4.5 The Many-to-One Relationship
Between Source Objects and
Names.

So far, none of the OMT diagrams above have
included the names of objects. A naive approach
would be to add ‘name’ as an attribute of
SoftwareObject (or perhaps of two or more less
abstract classes). However there are three prob-
lems with this:

Firstly, many objects can have the same
name (e.g. a variable and a routine, or two vari-
able in different scopes). Secondly, given a name
we want to be able to quickly find everything
with that name. Thirdly, some definitions can be
unnamed (e.g. a structure used within a more
complex type).

Figure 11, is thus an appropriate model for
names.

(HashTable)Name
string

Definition

ReferenceExistence

RoutineSource

SourceFile

Figure 11: Separating names from ob-
jects. The hash table is explained in sec-
tion

4.6 Multi-Part Names

Some references may not be to particular defined
items (e.g. simple variable and field names), but
rather to defined items qualified by field names.

For example, imagine file f1 contains refer-
ence a.b and file f2 contains references a.b.c, and
b.d. The components following the dots are field
names.

Figure 12 shows an object model that permits
the SE to search for particular qualified refer-
ences. E.g. the SE could find out that ‘a.b.c’
occurs in file f2. Unfortunately, there is likely to
be a combinatorial explosion of possible quali-
fied references.

An alternative approach, illustrated in figure
13, is to store the fact that ‘a’ is followed by ‘b’,
and ‘b’ by ‘c’ somewhere, but not to say in ex-
actly which files these qualifications occur. The

SE can still find out in which files the objects
themselves occur.

This second approach prevents a potential ex-
ponential increase in memory requirements. We
believe also that it meets requirements NF1, NF2
and NF7 because:

• It provides sufficient information for the sys-
tem to narrow the set of files for a fully quali-
fied search, such that the search can be quickly
done by scanning files at run-time for the par-
ticular pattern.

• Fully qualified searches will be relatively rarely
requested, compared to searches for variables
and fields.

a
b
a.b
c
b.c
a.b.c
d
b.d

f1

f2

SourceUnit DataUseExistence
refersToData

nextComponent

VariableUseExistenceFieldUseExistence

component

Figure 12: One approach to storing multi-
part names that permits searches for par-
ticular combinations of components. The
class diagram is at the left, and an exam-
ple instance diagram is at the right. This
example requires 15 objects and 16 links.

SourceUnit DataUseExistence
refersToData

a
b
c
b
d

f1

f2

usedWith

VariableUseExistenceFieldUseExistence

Figure 13: A less space-consuming way
of storing multi-part names that sacrifices
some search capability. This same
example as figure 12 needs only 7 objects
and 10 links. Note that b appears twice
because the first is a FieldUseExistence
and the second is a VariableUseExistence.

4.7 Conditional Compilation

Due to the presence of conditional compilation,
it is naive to think of a file containing a simple
series of definitions. In fact, when conditional
compilation is used, there can be a combinatorial
explosion of sets of distinct definitions logically
contained within the file.

Although only one of the possible sets of
definitions will be present each time code is
compiled, it is not acceptable (due to requirement

University of Ottawa, Computer Science Technical Report TR-97-07

10

NF7) to pick just one set to present to the SE
exploring code. He or she needs to know about
which sets are possible and what is the effect of
each set.

We have found this to be a particularly hard
problem to solve, because the design of parsers is
made significantly more complex (a parser for an
ordinary grammar for a language will fail because
conditional compilation statements can break up
the syntax at arbitrary points). The following is
the approach we favor:

• Pre-parse each file looking for conditional
compilation directives, and the boundaries of
top-level definitions that they break up.

• Reconstruct each file, building as many alter-
native top-level definitions as needed to ac-
count for all cases of conditional compilation.
Each top-level definition variant is then given
a modified name that reflects the conditions re-
quired for it to be compiled.

• A composite file, containing all top-level defi-
nition variants is then compiled in the normal
way.

4.8 Macros

Macros are similar to conditional compilation in
the sense that they can, at their worst, result in
arbitrary syntax (for example, in cases where
punctuation is included in the macro). Of course
it is very bad programming practice to create
trick macros that break syntax; however tools
like our system are all the more needed when
code is very obscure.

The following are approaches to this
problem:

• Parse code that has already been preprocessed.
The drawback to this is that information is lost
– and thus requirement NF7 is not met.

• Preprocess only those top-level definitions
where syntax is broken by macros. Treat all
other macros as constants or function calls.
This is the approach we favor.

4.9 Access to Global Starting
Points in the Database.

To fulfill the speed requirement (NF2), there
must be a way to rapidly access objects by name

and unique object-id (unique handles which can be
manipulated by other programs). These require-
ments explain the vector and hash table objects
in figures 9 and 11.

Figures 14 and 15, complete the system’s ob-
ject model and show a couple of extra vectors
that optimize routine and file enumeration.

TypedDefinition

DatumDef
isConst

TypeDef

Field

EnumeratedTypeDef RecordTypeDef

EnumerationConst

TypeUseExistence

usedAsTypeOf

Definition
Name

RoutineSource

formalArgs

declaredAs
formalArgsIn

StandaloneDefinition
startChar
endChar
startLine
endLine

SourceUnit

defines

Figure 14: Complete Definition hierarchy.

ReferenceExistence

RoutineCallExistence

DataUseExistence

FileInclusionExistence

ManifestConstExistence

TypeUseExistence

FieldUseExistence

Name

TypedDeclaration

RoutineSource

usedAsTypeOf

RoutineSource

SourceFile

usedAsReturnTypeOf

potentiallyCalledBy

potentiallyIncludedIn
includes

calls

SourceUnitrefersToData

foundInSource

VariableUseExistence
usedWith

Figure 15: Complete ReferenceExistence
hierarchy..

University of Ottawa, Computer Science Technical Report TR-97-07

11

4.10 Database Logical Format

Although we used object-oriented modeling for
our database schema, the issue of logical format
(paradigm) for the database implementation re-
mains. The key decision here is whether to use a
relational or object oriented approach. We chose
the latter for the following reasons:

• Relational databases are useful when one is
uncertain about the types of queries that will
be made. One can create interesting joins to
mine new data out of the database. In our case,
however, we are confident of the relatively lim-
ited number of simple queries that will be
needed.

• Object oriented databases are useful when the
data naturally involves inheritance. We observe
this in our model. Inheritance is hard to model
in a relational database.

• Object oriented databases are more practical
when typical queries will hop from object to
object many times. In a relational database,
such queries would require many joins; how-
ever, in an object-oriented database one can
simply follow pointers.

4.11 Database Physical Format

Having decided to use an object oriented database,
the next decision is which product to use. We
noted the following factors when making the
decision:

• The database will be written once, by the
parser, and read concurrently by many people.

• There is, therefore, no requirement for locking
to allow for concurrent updates.

• The database will be very large (on the order of
100-200 MB) for typical systems.

• As requirement NF2 states, access must be
fast.

These factors indicate that we do not need or
want the overhead of a full database product.
Instead we adopted a simpler solution: We use
the Unix mmap facility, which allows a file to
be mapped into virtual memory. When a database
is being built, C++ objects are allocated from
this region of virtual memory, and are thus
written to the file. When somebody then wants
to access the database, they merely remap the

database into virtual memory and all the C++
objects are available again.

To make this scheme work, we designed a
general-purpose facility (an improvement over
the standard gnu memory-mapping package) that
wraps around mmap and provides replacements
for malloc, free etc. and allows the memory map
file to dynamically grow and shrink as objects are
created and destroyed.

This solution makes programming very sim-
ple. The programmer can completely ignore the
issue of persistence, except to make calls to map
and unmap the database. This is a tremendous
improvement over the normal situation where
much programming effort goes into designing
methods to input and output each object.

The biggest difficulty with this solution was
overcoming limitations of C++ compilers. The
GNU compiler, and others, add an extra hidden
field to each object that points to the virtual table
(which allows dynamic binding). The virtual
table appears at a different place every time
changes are made to the system and it is recom-
piled. This renders database files with old mem-
ory-mapped objects invalid (their virtual table
pointers point to the wrong place).

We overcame this problem by encapsulating
all the database access code in a Unix shared ob-
ject. Now all the other parts of the system can be
recompiled and linked, but as long as the shared
object is untouched, databases remain valid.

5 Language and Interface
Design Issues

In this section we highlight important features of
the various languages and interfaces that we de-
veloped as part of this work. Due to space, we
are not able to give complete syntaxes and se-
mantics, but we plan to include additional details
as attachments in the CD-ROM version of this
paper (distributed separately from the printed
CASCON proceedings).

All of these languages and interfaces have
been designed to allow various parts of the sys-
tem to be independently developed, and to allow
others to add facilities to the system.

University of Ottawa, Computer Science Technical Report TR-97-07

12

5.1 The Database Read-API

The read-API is one of the two external interfaces
to the DBMS, as illustrated in figures 2, 3, 4 and
6. It is designed to allow programs to ask simple
questions about the objects in the database
schema (figure x).

The following are interesting design issues:

Datatypes manipulated by the API: The
DBMS is written in C++, however for flexibility
the Read-API is designed to be linked to both
C++ and C programs. C++ programs communi-
cate through the API using specific C++ classes,
whereas these become opaque references when a
C program uses the API. The only thing a C
program can do is pass one of the opaque refer-
ences back through the API.

Among the C++ classes that form arguments
to Read-API functions are:

• Each of the concrete classes described in the
database schema.

• A series of special Iterator classes. Iterators are
objects that return one item at a time from a
collection. The read-API returns an iterator to
allow a client to traverse the elements of an as-
sociation. We had to create a sophisticated gen-
eral-purpose hierarchy of iterator classes to
provide such facilities as nested iteration (one
iterator calls another internally) and sequential
iteration (a special iterator that calls a sequence
of iterators to logically concatenate two lists).
Iterators are important in this system so that
clients can display partial results of a query as
soon as they are available. They are also
important for relational operators in the query
language (section 5.4).

Categories of functions in the Read-
API: The Read-API can be subdivided as fol-
lows:

• Four functions that provide all that is neces-
sary to query the associations. The four func-
tions are:

cdbGetObjectListThatReferToObject()
cdbGetObjectListReferedByObject()
cdbGetObjectListThatDefineObject()
cdbGetObjectListDefinedByObject()

The first two traverse the refers/referred-by as-
sociations in either direction, while the second
traverse the defined-in/defined-by associations
in either direction4.

They all return an iterator and take as argu-
ments 1) an object that is the starting point for
links to be traversed, and 2) a class that con-
strains the links to be traversed. For example, I
could ask for all the ‘refers-to’ links from a
RoutineSource to class ReferenceExistence in
general, in which case I would get a list con-
taining routines, variables, types etc. On the
other hand I could ask for the ‘refers-to’ links
from a RoutineSource to a more specific class
such as RoutineCallExistence, in which case I
would be asking about one level of the call hi-
erarchy, and would get a subset of the results
of the former query.

The above design allows for a small number
of functions to efficiently handle a large num-
ber of types of query.

• About 20 functions to request simple attributes
of each class of object.

• Four functions perform global searches
(efficiently using the hash table, or, for regular
expressions, less efficiently using the vectors)
over all objects or all objects of a class. They
return an iterator.

• Several miscellaneous functions to connect to
a database and obtain global statistics (e.g. the
number of instances of each class).

5.2 The Database Write-API

The Write-API is somewhat simpler than the
Read-API. Although it was designed to be used
by a variety of programs, it is only used by the
TA++ parser in our current architecture (Figure
6). It contains the following types of functions:

• One function to create each concrete class. Ar-
guments are the attributes of the class. Return
value is the new object.

• Generic functions to add links of refers/referred-
by and defines/defined-by associations. A sin-
gle call to one of these functions creates both
directions of the association.

4 Although there are various different associa-

tion names, they can be divided into these two cate-
gories.

University of Ottawa, Computer Science Technical Report TR-97-07

13

5.3 TA++

As discussed in section 3.2, we designed an inter-
change format to allow various different program
comprehension tools to work together (e.g. shar-
ing parsers and databases).

The TA language [2] is a generic syntax for
representing the nodes and arcs. Here are some
key facts about it:

• Each TA file has two sections.
• The first ‘fact tuple’ section defines the legal

nodes and instances of binary relations (arcs)
between the nodes. Each line of this section is
a 3-tuple containing the relation, and the two
nodes being related.

• There are certain special relations built-in to
TA. For example there are relations to define
the ‘scheme’ of allowable node types. Also
there is the relation ‘$instance’, which relate a
new node to its type.

• The second ‘fact attribute’ section of a TA file
contains a separate syntax to specify attributes
of nodes.

For our system, we adopted TA with no
changes whatsoever. This means that any pro-
gram capable of processing TA in general can
read our interchange format. However TA++ is
restricted in the sense that it require a specific
‘scheme’. The scheme defines the set of valid
node types (the concrete classes in our database)
with their allowable attributes. Our system there-
fore cannot read generic TA because it requires
that the TA++ file be limited to our specific
scheme.

The following is an example of TA++:

FACT TUPLE:
$INSTANCE flistaud.pas SourceFile
$INSTANCE audit_str_const_1 DatumDef
defines flistaud.pas audit_str_const_1

FACT ATTRIBUTE:
audit_str_const_1 {
 startChar = 1883
 endChar = 1907
 isConst = 1 }

Two objects are first defined. This is followed
by a tuple that declares that the datum
audit_str_const_1 is defined in file flistaud.pas.
The final section specifies where in the file the
definition can be found, and that the definition is
in fact a constant (as opposed to a variable).

It should be clear that blocks of TA++ code
map fairly directly to calls to the Write-API. The
key difficulty is one of ordering:

• Ensuring that all the information about attrib-
utes of objects has been obtained before the ob-
ject is created.

• Ensuring an object is defined before instances
of relations are made that need it.

5.4 The Query Language

As discussed in section 3.3 we designed a text-
oriented query language for our system. This
permits:

• Complex nested queries
• Communication using simple pipes, sockets

etc.

The query language processor simply calls the
Read-API to do most of the work. The following
is a description of the queries:

• Responses to most queries are lists of objects,
one per line. Each object is represented by a
unique object-id (an integer, see figure 9), so
that objects with the same name can be
distinguished. The object-id is followed by
several key attributes: such as a code
representing its class and its name. These
attributes are redundant since the ‘info’ query
provides this information; however it is
nevertheless useful for clients since they
almost always want this information.

• The following are basic query formats that re-
turn object lists. If result-class is omitted in
any of the following then SoftwareObject is
assumed. Parentheses may be used to group
when necessary.

<result-class> <name>

Returns objects of that class with that name.

<result-class> reg <pattern>

Returns objects that match the pattern. Grep
patterns are used. If pattern is empty, then all
objects of the class are returned.

 <result-class> <association> <query2>

Returns all objects that are in the given rela-
tion to the objects retrieved as a result of
query2.

(<query>) <operator> <query>

University of Ottawa, Computer Science Technical Report TR-97-07

14

Returns objects by composing queries. Opera-
tor and means find the intersection of the two
queries; operator or means find the union; op-
erator - means set difference

• There are some special flow-control directives
that allow clients to obtain partial answers to
lengthy queries and then decide if they want
more. These take advantage of the iterators
built into the Read-API (see section 5.1).

first <n> query

Requests the system to return only the first n
responses.

next <n>

Requests more responses, if any, to the last
query.

• The only other important queries are as fol-
lows. These cannot be composed.

info <object-id>

Returns the attributes in a format similar to
TA++

classinfo <class-id>

Provides statistics about the class in general
(e.g. number of instances).

6 Conclusions and Future
w ork

SE’s spend a considerable portion of their time
performing just-in-time program comprehension.
To assist them, they need a fast, open and inte-
grated tool that allows them to explore the rela-
tionships among all items of interest in a body
of source code of arbitrary size.

In this paper we discussed the design of such
a system. We highlighted the need for a scientific
approach to work analysis so as to effectively
define the requirements. We then discussed design
issues such as the following:

• Information about software needs to be stored
in a database for fast access, and also exchanged
with a variety of tools using a low-level fact-
language as well as a high-level query lan-
guage.

• A database schema needs to handle the recur-
sive nature of program source code, the distinc-
tion between references and definitions, as well

as the various complexities in the way that
program objects are named.

• Parsers that extract data from source code for
use in the database have to intelligently deal
with conditional compilation and macros. Pars-
ing becomes more complex than when simply
designing a compiler because it is important to
show the SE all alternative parses before macro
expansion.

• An object oriented database that lacks the over-
head of most commercial DBMS products is
needed to deliver sufficient responsiveness.

The design process described in this paper has
opened several areas for potential future research.
Of particular interest are effective syntaxes for
interchange and query languages, and how to deal
with conditional compilation in a program under-
standing tool. A separate issue, not discussed in
this paper, is designing an effective user inter-
face.

Acknowledgments

We would like to thank the SEs who have par-
ticipated in our studies, in particular those at
Mitel with whom we have worked for many
months. We would like to thank the members of
our team who have developed and implemented
the ideas discussed in this paper: Abderrahmane
Lakas, Sue Rao and Javed Chowdhury. Janice
Singer has been instrumental in the studies of
SE’s. We also acknowledge fruitful discussions
with others in the Consortium for Software
Engineering Research, especially Ric Holt now
of the University of Waterloo.

About the Authors

Timothy C. Lethbridge is an Assistant Professor
in the newly-formed School of Information
Technology and Engineering (SITE) at the Uni-
versity of Ottawa. He teaches software engineer-
ing, object oriented analysis and design, and
human-computer interaction. He heads the
Knowledge-Based Reverse Engineering group,
which is one of the projects sponsored by the
Consortium for Software engineering Research.
Prior to becoming university researcher, Dr.
Lethbridge worked as an industrial software de-
veloper in both the public and private sectors.

University of Ottawa, Computer Science Technical Report TR-97-07

15

Nicolas Anquetil recently completed his
Ph.D. at the L’Université de Montréal and is now
working as a research associate and part time
professor in SITE at the University of Ottawa.

The authors can be reached by email at
tcl@site.uottawa.ca and anquetil@csi.uottawa.ca
respectively. The URL for the project is
http://www.csi.uottawa.ca/~tcl/kbre

References

[1] Gamma, E., Helm, R., Johnson, R and
Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-
Wesley, 1995

[2] Holt, R., An Introduction To TA: The Tu-
ple-Attribute Language, Draft, to be pub-
lished. www.turing.toronto.edu/~holt/
papers/ta.html

[3] Holt, R., Software Bookshelf: Overview
And Construction, www.turing.toronto.edu/
~holt/papers/bsbuild.html

[4] Lethbridge, T. and Singer, J, Strategies for
Studying Maintenance", Workshop on Em-
pirical Studies of Software Maintenance,
Monterey, November 1996.

[5] Lethbridge, T. and Singer J., Understanding
Software Maintenance Tools: Some
Empirical Research, Submitted to: Work-
shop on Empirical Studies of Software
Maintenance (WESS 97), Bari Italy, Octo-
ber, 1997.

[6] Muller, H., Mehmet, O., Tilley, S., and
Uhl, J., A Reverse Engineering Approach
to Subsystem Identification, Software Main-
tenance and Practice, Vol 5, 181-204, 1993.

[7] Pree, W., Design Patterns for Object-Ori-
ented Software Development, Addison-
Wesley 1995

[8] Rumbaugh, J., Blaha, M., Premerlani, W.,
Eddy, F., Lorensen, W., Object-Oriented
Modeling and Design, Prentice Hall, 1991

[9] Sayyad-Shirabad, J., Lethbridge, T. and
Lyon, S, A Little Knowledge Can Go a
Long Way Towards Program Understanding,

International Workshop on Program Under-
standing, Dearborn, MI., 1997.

[10] Singer, J and Lethbridge, T, To be
determined, Submitted to CASCON 1997

[11] Singer, J., and Lethbridge, T. (in prepara-
tion). Just-in-Time Comprehension: A New
Model of Program Understanding.

[12] Singer, J. and Lethbridge, T, Methods for
Studying Maintenance Activities, Workshop
on Empirical Studies of Software Mainte-
nance, Monterey, November 1996.

[13] Take5 Corporation home page,
http://www.takefive.com/index.htm

[14] Vicente, K and Pejtersen, A. Cognitive
Work Analysis, in press

[15] von Mayrhauser, A and & Vans, A., Pro-
gram Comprehension During Software
Maintenance and Evolution, Computer, pp
44-55, Aug. 1995

