

Document Engineering of Complex

Software Specifications

Mehrdad Nojoumian

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the Master of Science degree in Computer Science

Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

University of Ottawa

© Mehrdad Nojoumian, Ottawa, Canada, 2007

Abstract

The research presented in this thesis aims at document engineering of complex

specifications, of which the UML Superstructure Specification (version 2.1) is our initial

target. Document engineering deals with principles, tools and processes that improve our

ability to create, manage, and maintain documents [40].

Our motivation is that such specifications are dense and intricate to use, and tend to

have complicated structures with lots of repetitive, or ‘boilerplate’ material. End users

cannot use them efficiently because of the general complexity of the document.

Our objective and main contribution in this thesis is therefore to create an approach

that allowed us to re-engineer PDF-based documents, and to illustrate how to make more

usable versions of electronic documents such as specifications, conference proceedings,

technical books, etc so that end-users to have a better experience with them.

The first step was to extract the logical structure of the document. Our initial

assumption was that, many key concepts of a document are expressed in this structure,

which includes the headings of the chapters, sections, subsections, etc. We demonstrated

this by analyzing some data, and created a special-purpose parser to generate a well-

formed XML document with various types of tags.

In the next phase, we created a user interface for end users by generating a multi-

layer HTML version of the document to facilitate document browsing, navigating, and

concept exploration.

Although our targeted document was the UML Superstructure Specification, we

chose a general approach for most phases of our work including format conversions,

logical structure extraction, text extraction, hypertext generation, etc. Therefore, by

minor adjustments we can process other complex documents to gain our mentioned

goals. We also established the major infrastructure for a new document engineering

framework.

 ii

To my wife, Sareh, my mother, Fatemeh and my father, Mehdi, with deepest love

 iii

Acknowledgements

My most sincere appreciation goes to my supervisor Professor Timothy C.

Lethbridge for all the knowledge and experience I gained from him. His valuable

support, patience and kindness were my motivations for research progress. Also, many

thanks given to Professor Bran Selic for his positive feedback.

I would also like to express my gratefulness to my family; my dear wife, mother and

father who were always there for me at worst times, my sister and brother, Mahboubeh

and Peyman, whom their kindness has always been cheering.

This work was supported by the IBM Ottawa Software Lab. I would like to express

my thanks to them as well.

 iv

Table of Contents

Abstract ..ii

Acknowledgements...iv

Figures..vii

Tables..viii

1 Introduction..1

1.1 Definitions and technologies.. 2

1.2 Motivation and research questions... 4

1.3 Contributions.. 5

2 Literature Review...7

2.1 Document structure analysis .. 7

2.2 Existing document analysis systems.. 8

2.3 Leveraging tables of contents .. 10

2.4 Knowledge extraction .. 11

2.5 Ongoing research on XPath ... 12

3 Document Transformation ...14

3.1 Conversions.. 16

3.2 Criteria ... 17

3.3 First stage of evaluation... 18

3.4 Second stage of evaluation... 19

4 Logical Structure Extraction ..22

4.1 Data analyses to provide evidence for our initial assumption 22

4.2 First refinement approach: Stack-based parser .. 30

4.3 Second implementation approach: Bookmarks 31

5 Text Extraction to Create Initial Hypertext Pages ...37

5.1 Checking well-formedness... 38

5.2 Generating a valid schema ... 41

5.3 Producing multiple outputs .. 43

 v

5.4 Connecting generated outputs sequentially ... 48

5.4.1 Connecting pages using XPath expressions..................................... 48

5.4.2 Connecting pages using a programming approach 50

5.5 Forming major document elements ... 53

5.5.1 Anchors in long pages.. 53

5.5.2 Figures.. 55

5.5.3 Tables... 57

5.5.4 Lists.. 59

6 Concept Extraction and Cross Referencing ...61

6.1 Concepts extraction.. 61

6.1.1 UML class hierarchy extraction... 63

6.1.2 UML package hierarchy extraction ... 65

6.2 Cross referencing ... 67

7 Experimental Result and Architecture of the Framework70

7.1 Re-engineering of various OMG specifications 70

7.2 Assessment of generated HTML Interfaces... 72

7.3 Initial architecture of the proposed framework.. 74

8 Conclusions and Future Work ...76

References..79

Appendix A: List of Acronyms..84

Appendix B: Logical Structure Extractor ..85

Appendix C: First Java Parser..88

Appendix D: XSLT Codes...91

 vi

Figures

Figure 1. Bookmarks of the UML superstructure specification .. 15
Figure 2. A sample figure in XML format .. 20
Figure 3. A sample table in XML format.. 20
Figure 4. A sample nested list in XML format.. 20
Figure 5. A sample figure in HTML format.. 21
Figure 6. A sample table in HTML format ... 21
Figure 7. A sample nested list in HTML format ... 21
Figure 8. The 50 most frequent words in the document headings... 28
Figure 9. Frequency of the 50 heading words as found in the words extracted from the entire document.................... 28
Figure 10. The 24 most frequent words in the document index .. 28
Figure 11. First data collection (smaller surface) and their frequency in the document as a whole (bigger surface) 29
Figure 12. First data collection (bigger surface) and their frequency in the document index (smaller surface) 29
Figure 13. State machine for sample headings.. 32
Figure 14. Logical structure extracted in XML format ... 35
Figure 15. Logical structure model in the protégé 3.2.1.. 36
Figure 16. A nested list spread over two pages 5-6 (UML Spec. v2.1)... 39
Figure 17. A complex table spread over two pages 163-164 (UML Spec. v2.1)... 39
Figure 18. A list with two columns spread over two pages 205-206 (UML Spec. v2.1)... 40
Figure 19. Schema component representations: “Book” & “Chapter”.. 41
Figure 20. Schema component representation: “Figure”... 42
Figure 21. Schema component representation: “Table” .. 42
Figure 22. Schema component representation: “List”... 42
Figure 23. Table of contents showing distinct types of navigation paths.. 48
Figure 24. Top of a long page in our first design, showing links to internal anchors.. 53
Figure 25. Heading tags structure in the XML document ... 54
Figure 26. Figure tag structure in the XML document.. 55
Figure 27. Screenshot of the Altova StyleVision for importing figures .. 56
Figure 28. Table tag structure in the XML document ... 57
Figure 29. Screenshot of the Altova StyleVision for importing tables.. 58
Figure 30. List tag structure in the XML document .. 59
Figure 31. Screenshot of the Altova StyleVision for importing lists... 60
Figure 32. Headings of the UML specification (v2.1), containing UML concepts ... 62
Figure 33. Part of tagging structures in the XML document ... 63
Figure 34. Headings are among the most frequent words in the entire document... 71
Figure 35. Initial architecture of the proposed document engineering framework.. 75

 vii

Tables

Table 1. Different conversions of Chapter 7 of the UML 2.1 specification .. 16
Table 2. Statistical summary related to the heading and index words... 23
Table 3. The 50 most frequent words in the document headings .. 25
Table 4. Frequency of the 50 heading words from Table 3 as found in the words extracted from the entire document 26
Table 5. The 24 most frequent words in the document index ... 27
Table 6. Different kinds of headings... 31
Table 7. Sample XML tags in the UML superstructure specification ... 36
Table 8. Some document navigation paths related to the figure 18... 49
Table 9. Re-engineering of ten OMG specifications... 71

 viii

1 Introduction

Published electronic documents, such as specifications, are often rich in knowledge,

but that knowledge is often complex and only partially structured. This makes it difficult

for human beings to make maximum use of the documents.

The objective of this thesis is to develop an approach by which a typical published

specification can be made more usable to the end user. We achieve this by reverse

engineering the document, and then generating a new hypertext document that makes the

knowledge more explicit, and facilitates searching, browsing, comparison and other

operations needed by end users.

As a case study, we applied our approach to version 2.1 of the UML Superstructure

Specification, as published in PDF format. However, we ensured that all aspects of our

work are as general as possible, so the same approach can be applied to other

specification documents. We chose the UML specification because it is important to

software engineering, and since members of our research group have studied it in depth

and have experienced frustrations with it.

Our overall approach is an example of document engineering, and is divided into two

distinct phases:

The first phase of our approach is to extract the document’s logical structure and

core knowledge, representing the result in XML (Extensible Markup Language). This

result consists only of content information and excludes irrelevant details of the original

document’s presentation. Capturing the content in XML allows for easy exploration and

 1

editing of data by XML editors and other tools, and allows generation of the new

presentation to be a separate responsibility (achieved in Phase 2). The first task in phase

1 is to use a Commercial Off-The-Shelf (COTS) tool to convert the input PDF file into a

format we can more readily work with. We conducted an experiment to see which one

would generate the best XML the next task was to parse the output of the COTS tool to

clean up the XML and tag knowledge that was only simple semi-structured plain text in

the original document.

The second phase of our approach is to produce a usable new document presentation

that includes facilities for navigating the important relationships in the data. In our case

study these include an ability to navigate metamodel class diagram and package diagram

relationships. We achieved this by using XPath and XQuery technologies, discussed

below.

We anticipate that if the developers of specifications published their documents in

the format we developed, it would greatly assist end users of the specifications. In the

next subsection, we present some major definitions and technologies that are important

to our research.

1.1 Definitions and technologies
In general, document processing can be divided into two phases: document analysis

and document understanding. A document has several layers of structure. Extraction of

the geometric structure (including entitles such as pages, blocks, lines, and words) is

referred to document analysis. Mapping this structure into a logical structure (including

titles, headings, abstract, sections, subsections, footnotes, tables, lists, explicit cross-

references, etc.) is referred to document understanding [1]. Extracting concepts

embedded in the document structure, such as realizing that the names of some sections

represent concept names, and the cross-references represent relationships among the

concepts, is a form of knowledge acquisition.

From the structural point of view, a document can be unstructured, semi-structured

or structured. A plain text document with nothing marked other than the normal

 2

conventions of natural language (e.g. a period at the end of a sentence) would be

considered unstructured. A document with tags dividing it into paragraphs, headings,

and sections would be considered semi-structured; most web pages are of this type. A

document in which all the elements are marked with meta-tags, typically using XML,

would be considered structured. A structured document can be represented as a tree,

with leaf nodes representing very small snippets of textual content. In practice, software

specification documents fall somewhere on the continuum between semi-structured and

structured. However, the markup is usually noisy.

When more structure is imposed on a document, the resulting richer representation

allows computers to make use of the knowledge directly. Unstructured documents or

sections have to rely on natural language understanding technology before the

knowledge can be used. One of the major advantages of electronic documents is that we

can partition them into a hierarchy of physical components, such as pages, columns,

paragraphs, lines, words, tables, figures, etc or a hierarchy of logical components, such

as titles, authors, affiliations, sections, subsection, etc. This structural information can be

very useful in information extraction and knowledge acquisition.

In the next few paragraphs, we describe some of the W3C (World Wide Web

Consortium) definitions and technologies that we use throughout the thesis.

XML is a general-purpose markup language which supports a wide variety of

applications and its major purpose is to facilitate the sharing of data across different

information systems, especially systems connected via the internet. In XML, tags are not

predefined and everyone has to define his/her own tags. It is a human and machine-

readable format and can present the most general data structures [35].

An XML Schema describes the structure of an XML document. A document written

in XML Schema language is also referred to as an XSD (XML Schema Definition).

XML Schema is a new and more powerful schema language that is the successor of

DTD (Document Type Definition) [36].

Since XML is a content-driven language, it does not carry any information about

how to display the data; therefore as a solution, XSL (Extensible Stylesheet Language)

can be used to manipulate the XML data, typically extracting information from it or

converting it into HTML (Hyper Text Markup Language) or other formats such as PDF

 3

(Portable Document Format), RTF (Rich Text Format), etc [37].

For access to the divisions of an XML document we can apply XPath (XML Path

language) technology which makes it possible to extract every part of an XML file.

XPath expressions can refer to all or part of the text, data and values in XML elements,

attributes, etc [38]. XQuery (XML Query Language) is a language which has some

programming features and is designed to query collections of XML data. It is

semantically similar to SQL (Structured Query Language) [39]. In the next section, we

present our major motivation and research questions.

1.2 Motivation and research questions
The motivation for our work is that complex documents such as software

specifications are not as usable as we believe they should be. The following are some of

our observations:

They are large, dense and intricate to use. They are too large for all but the most

dedicated to read from end-to end, so most users will skim them or look things up when

needed. However, readers will often have to jump backwards and forwards many times

to follow cross references. For example, in the UML specifications, there are definitions

of metaclasses. Each of these has inherited properties that come from metaclasses that

may be in other ‘packages’. It is hard for people to understand the context of one of the

metaclasses.

They tend to have lots of repetitive, or ‘boilerplate’ material: If a user is interested in

one type of information, then he or she nevertheless has to wade through lots of other

information. Many headings are repeated over and over again obscuring subtle details.

Numerous concepts tend to be connected only implicitly: It is not easy to follow

references to the place where the reference points.

The documents are published using a format that mimics legacy paper documents:

Although PDF is an excellent way of rendering a paper document faithfully in electronic

form, and has some built-in navigation capability; the use of PDF does not take

advantage of modern computational capabilities. In particular, it is now best practice to

 4

separate presentation from content, and PDF publication formats do not allow for this.

The above issues led are to formulate the following research questions:

Research question 1: How can we re-engineer a PDF-based specification in as

general and straight-forward way as possible?

Research question 2: What facilities are needed for end-users to have a better

experience with a specification?

1.3 Contributions
The following is a list and brief description of the key contributions of our work for

document engineering. The first three contributions are related to the value in the

process of doing document engineering and the last one presents the value in the final

result.

Contribution 1: A technique for capturing document structure and knowledge

effectively from a PDF file. We experimented with conversions using different COTS

tools to select the best file transformation, extracted document’s logical structure in

XML format, and proved our key reasons for the logical structure extraction. We further

processed this using a parser written in Java. We encountered problems such as mis-

tagging related to the conversion phase and lack of well-formed characteristic of our

XML file. We overcame these problems and generate a well-formed XML document

with various types of meaningful tags.

Contribution 2: Various techniques for text extraction. We experimented with

numerous methods to create hypertext pages and produce the initial HTML user

interface for end users. We also applied the latest W3C technologies for concept

extraction and cross referencing to improve the usability of the user interface.

 5

Contribution 3: A general approach for document engineering. Although our

targeted document was the UML Superstructure Specification, we chose a generic

approach for most phases of our work including format conversions, logical structure

extraction, text extraction, hypertext generation, etc. Therefore, by minor adjustments

we can process other complex documents. We also established the major infrastructure

for a document engineering framework.

Contribution 4: Significant values in the final result. After showing how to create a

more useful format of a document, we demonstrate the usability of our final outcome

such as better navigating and scrolling structure, efficient learning, faster downloading,

easier printing, monitoring, coloring, and cross referencing among various documents.

The rest of the thesis is organized as follows. Chapter 2 reviews the existing

literature on document analysis and document engineering. Chapter 3 presents the

properties of our targeted document and focuses on various document transformations.

Chapter 4 demonstrates two experimental results for the document’s logical structure

extraction and our reasons for such an extraction. Chapter 5 focuses on text extraction to

create multi-layer hypertext pages. Chapter 6 improves the created user interface by

concept extraction and cross referencing. Chapter 7 provides some experimental results

and the architecture of the proposed document engineering framework. Chapter 8 gives

our final conclusions and suggested future work. Finally, in the last part Appendices

have been included. For full access to all implementations you can visit the following

homepage: http://www.site.uottawa.ca/~tcl/gradtheses/mnojoumian/

 6

http://www.site.uottawa.ca/%7Etcl/gradtheses/mnojoumian/

2 Literature Review

In this section, we review document structure analysis, relevant existing systems,

leveraging Table of Contents (ToC), knowledge extraction, and ongoing researches with

respect to XPath technology in order to form a clear vision of these areas.

2.1 Document structure analysis
Klink et al. [1] present a hybrid and comprehensive approach to document structure

analysis. Their approach is hybrid in the sense that it makes use of layout (geometrical)

as well as textual features (logical) of a given document.

In [2], Mao et al propose numerous algorithms to analyze the physical layout and

logical structure of document images (images of paper documents) in many different

domains. The authors provide a detailed survey of diverse algorithms in the following

three aspects: physical layout representation, logical structure representation, and

performance evaluation.

Summers [3] explains an approach for finding a logical hierarchy in a generic text

document based on layout information. The logical structure detection has two

problems, segmentation and classification. The first one separates the text into logical

pieces and its algorithm relies totally on layout-based cues, while the second one labels

the pieces with structure types and its algorithm uses word-based information.

Tsujimoto and Asada [4] represent the document physical layout and logical

 7

structure as trees. They characterize document understanding as transformation of a

physical tree into a logical one. Blocks in the physical tree are classified into head and

body and in the logical tree are categorized into title, abstract, sub-title, paragraph,

header, footer, page number, and caption. They tested their algorithm on 106 pages from

various sources and reported “94 out of 106” logical structure recognition accuracy.

Lee et al. [5] provide a syntactic method for sophisticated logical structure analysis

which transforms multiple page document images with hierarchical structure into an

electronic document based on XML format. Their proposed parsing method takes text

regions with hierarchical structure as input.

Liang [6] presents a unified document structure extraction algorithm that is

probability-based for scanned document image pages. He also developed a system that

detects and recognizes special symbols (Greek letters, mathematical symbols, etc.) on

technical document pages that are not handled by the current systems.

Conway [7] uses page grammars and page parsing techniques to recognize document

logical structure from physical layout. The physical layout is described by a set of

grammar rules. Each of these rules is a string of elements specified by a neighbor

relationship such as above, left-of, over, left-side, and close-to. For describing the

logical structure a context-free string grammars are used.

In [8], Aiello et al. provide a framework for analyzing color documents of complex

layout. In this framework, no assumption is made on the layout. The proposed structure

combines two major sources of information: textual and spatial. It also uses shallow

natural language processing tools, such as partial parsers, to analyze the text.

In the next subsection, we demonstrate many remarkable document analysis and

understanding systems.

2.2 Existing document analysis systems
In [9] a document analysis system named WISDOM++ (Wise System for Document

Management) is presented. This processing system operates in five steps: document

analysis, document classification, document understanding, text recognition with optical

 8

character recognition, and text transformation into HTML/XML format.

Ishitani [10] proposes a new system for document transformation using OCR

(Optical Character Recognition) to produce various XML files from printed documents.

In the first step, document elements such as title, authors, abstract, headings, paragraphs,

lists, captions, tables and figures are extracted from document images and in the second

step, the structure of document elements is extracted and described by a DOM

(Document Object Model) tree, which is an ordered tree where each node is either an

element or a text node.

In [11] Ishitani also presents a document logical structure analysis system based on

emergent computation which is a key concept of artificial life. The system includes five

basic modules: typography analysis, object recognition, object segmentation, object

grouping, and object modification. The document image is first segmented into text

lines. After that, they are classified into various types. The classified text lines are then

grouped and classified into logical components.

Dengel and Dubiel [12] describe a system named DAVOS which is capable of both

learning and extracting document logical structure. This system can learn document

structure concepts. The structural concepts are represented by relation patterns and a

geometric tree is used to represent the concept language.

Niyogi and Srihari [13] present a system called DeLoS for document logical

structure derivation. They develop a computational model according to a rule-based

control structure. In this system, knowledge about the physical and logical structures of

various types of documents is encoded into a knowledge base. The system has three

types of rules: knowledge rules, control rules, and strategy rules. The control rules

manage the application of knowledge rules and the strategy rules define the usage of

control rules. First of all, the document is segmented then segmented blocks are

classified. Finally, the classified blocks are input into the DeLoS system and a logical

tree structure is derived.

Kreich et al. [14] provide an environment called SODA (System for Office

Document Analysis) for document analysis. They use a bottom-up approach to group

connected components into text blocks, then find lines within each text block and words

within each line. The physical layout and logical structure knowledge are also stored in a

 9

knowledge base. Finally, document objects are matched to the layout and logical

information in the knowledge base. A match is considered successful if its confidence

measure is greater than a particular threshold.

In [15], Nakagawa et al. proposes a mathematical knowledge browser which helps

people to read mathematical documents. Using this browser, printed mathematical

documents can be scanned and recognized. Then the meta-information (e.g. title, author)

and the logical structure (e.g. section, theorem) of the documents are extracted.

In the next subsection, we explain the analysis of table of contents for document

understanding and logical structure extraction.

2.3 Leveraging tables of contents
Déjean and Meunier [16] describe a technique for structuring documents according

to the information in their tables of contents. In fact, the detection of the ToC as well as

the determination of the parts it refers to in the document body rely on a series of

properties that characterize any ToC.

He et al. [17] propose a new technique for extracting the logical structure of

documents by combining spatial and semantic information of the table of contents. They

exploited page numbers and numbering scheme to compute the logical structure of a

book. Their method is not a general approach because of the observed diversity of page

or section numbering and ToC layout.

Lin et al. [18] propose a method for analyzing the logical structure of books based on

their tables of contents by layout modeling and headline matching. In general, the

contents page holds accurate logical structure descriptions of the whole book. In this

approach, text lines are first extracted from the contents page, and OCR is then

performed for each text line. The structures of the page number, head, foot, headline,

chart and main text of the text page are analyzed and matched with information obtained

from the contents page.

Lin and Xiong [19] introduce a new approach to explore and analyze ToC based on

content association. Their method leverages the text information in the whole document

 10

and can be applied to a wide variety of documents without the need for analyzing the

models of individual documents. NLP (Natural Language Processing) and layout

analysis are integrated to improve the ToC tagging.

Satoh et al. [20] propose a system where ToC pages of academic journals were

converted into bibliographic database by image segmentation and understanding

techniques. They use training data to learn decision trees for various kinds of journals.

Bourgeois et al. [21] describe a statistical model for document understanding which

uses both text attributes and document layout. In this model, probabilistic relaxation,

which is a general method to classify objects and to repetitively adjust the classification,

is used as a recognition method for understanding the table of contents and discovering

the logical structure.

In the next subsection, we provide a quick literature review on knowledge extraction

and relevant tools and approaches.

2.4 Knowledge extraction
Crowder and Sim’s [22] goal is to capture relevant knowledge from legacy

documents. Firstly, they converted the legacy documents to XML documents where the

output is semantically tagged. Once in an XML form, the data can be easily transformed.

They describe the development of tools to automate the process of converting legacy

documents to XML documents. They also show that XML versions of legacy documents

provide better results than a basic text search over the identical documents.

In the past decade, most work on extraction has been focused primarily on factual

information. Only in recent years have we witnessed a growing interest in subjective

texts such as evaluative ones. The general problem that Carenini et al consider in [23] is

how to effectively extract useful information from large corpora of evaluative text.

Cyre [24] developed a tool for knowledge extraction. The process is to begin with a

basic ontology and extract Conceptual Graphs from text in the domain of interest.

During this process, the ontology is augmented by the knowledge engineer. In this

approach, the user scans the text and creates conceptual graphs from sentences or other

 11

expressions, and joins the individual graphs into a knowledge-base.

In [25], Cohen and Jensen assume that structured documents are represented with the

document object model. Their approach to information extraction is based on a DOM

tree. An element node has an ordered list of zero or more child nodes, and contains a tag

(such as “table”, “h1”, or “li”) and attributes (such as “href” or “src”). A text node is

normally defined to contain a single text string.

Sakamoto et al. [26] show their recent results in knowledge discovery from semi-

structured texts which contain heterogeneous structures represented by labeled trees. The

aim of their study is to extract useful information from documents on the Web.

The approach presented by Vargas-Vera et al [27] describes a semantic annotation

tool for extraction of knowledge structures from web pages through the use of simple

user-defined knowledge extraction patterns.

IKRAFT (Interactive Knowledge Representation and Acquisition From Text) [28] is

an interactive tool to elicit from users the rationale for choices and decisions as they

analyze information used in building a knowledge base. Starting from raw information

sources, most of them originating on the Web, users are able to specify connections

between selected portions of those sources.

In [29], Henzinger and Lawrence discuss methods for extracting knowledge from the

web by randomly sampling and analyzing hosts and pages, and by analyzing the link

structure of the web. By this approach, much interesting information can be extracted,

such as the distribution of interest in different areas, the nature of competition in

different categories of sites, and the degree of communications among countries.

In the last part of this section, we present a quick literature review with respect to the

latest researches on XPath technology.

2.5 Ongoing research on XPath
In the context of query systems, change detection in XML documents, filtering them,

and XPath decision problems are the most significant issues. In [30], a customizable

change detection approach for XML documents is presented. This method performs

 12

change detection and XPath based filtering of XML document; filtering means the

extraction of those elements that we are interested in.

Qeli and Freisleben [31] also present the design and implementation of a system for

filtering XML documents. Their method works based on XPath expressions and Aspect

Oriented Programming (AOP) which is a dynamic programming approach for

embedding of simple paths into XPath expressions.

Geneves and Layaida [32] present a sound and complete decision procedure for

XPath decision problems such as equivalence (whether two queries return the same

result), overlap (whether the intersection of two expressions is non-empty), containment

(whether the result of a query is included in the result of another one), and coverage

(whether an expression contained in the union of several expressions). They propose a

unifying logic for XML, illustrate how to translate major XML concepts such as XPath

into this logic, and show how XPath decision problems can be solved.

In [33], a logic-based structure for the static analysis of XPath is proposed. In

particular, they propose an appropriate logic for effectively solving XPath decision

problems. They also demonstrate a translation of a large XPath fragments into the

mentioned logic.

What is missing now is a clear characterization of the expressive power of XPath. In

fact, Core XPath cannot express queries with conditional paths such as: “does a child

step, while test is true at the resulting node”. Marx [34] adds conditional axis relations to

Core XPath and illustrates that the resulting language, called conditional XPath, is as

expressive as FOL (First Order Logic).

As we have seen, there is remarkable ongoing research related to XPath technology.

We will take advantage of XPath expressions and the XQuery language to extract hidden

concepts from UML Superstructure Specification.

In the next chapter, we present the experimental results with respect to the first phase

of our research (document transformation).

 13

3 Document Transformation

The document we targeted, the UML superstructure specification (version 2.1), is a

large specification in PDF format with 771 pages. It has almost 2200 headings with a lot

of nested lists, hyperlinks, figures, tables, etc.

What was our motivation for analyzing PDF documents? First of all, people do not

have access to the original word-processor formats of the documents much of the time.

When documents are published to the web, an explicit choice is usually made to render

the result as PDF or HTML to guarantee that everyone can read it (without having to

have Microsoft Word, FrameMaker, etc.) and so that people can not so easily create a

new version of the document that appears to be an official version. Moreover, PDF

format has some useful features that make it semi-structured; for example it often

contains “bookmarks” created from headings to enable a user to navigate a document.

However, a computer can also easily use this information to extract the structure.

Figure 1, shows sample bookmarks of the UML specification. The general structure

of this document consists of parts, chapters, sections, subsections and keyword-headed

sub-subsections. The names of some of these correspond to concepts such as

‘Abstraction’ and ‘Associations’.

One of our major goals is to extract the document’s logical structure, as discussed in

Chapter 1. As we mentioned, many key concepts of the targeted specification are

expressed in this structure. By extracting the structure and representing it as XML, we

can form a good infrastructure for our subsequent objectives.

 14

 Figure 1. Bookmarks of the UML superstructure specification

We approached the structure extraction problem as a two-stage problem. In this

chapter we describe the first step: Transforming the raw input into a format more

amenable to analysis. The second step, extracting and refining the structure, is the topic

of the next chapter.

To extract the logical structure of the document, we experimented with

transformations using various existing tools to see to what extent each could facilitate

the extraction process. Since our targeted document is a large specification, we started

 15

with much smaller documents. Firstly we performed various conversions using a

simplified sample file which had similar properties to the target document. Then we

analyzed a single chapter, Chapter 7, before moving on to process the first 219 pages,

which covered the first 9 chapters.

3.1 Conversions
Table 1 shows the tools we used for conversion and the formats we experimented

with. We just used some popular input formats (DOC, PDF, etc) and applied different

tools in this respect such as “Adobe Acrobat Professional 7.8”, “Microsoft Word 2003”,

“Stylus Studio® 2007 XML Enterprise Suite”, and “ABBYY PDF Transformer 1.0”. In

this table, we excluded transformations with similar results.

Table 1. Different conversions of Chapter 7 of the UML 2.1 specification

Input Format (Size) Tools for Conversions Output Format (Size)

DOC (34.5) Microsoft Office Word 2003 TXT (2.81)

DOC (34.5) Microsoft Office Word 2003 RTF (55)

DOC (34.5) Microsoft Office Word 2003 HTML (40.7)

DOC (34.5) Microsoft Office Word 2003 XML (55)

DOC (34.5) Adobe Acrobat Professional 7.8 PDF (19) with Bookmarks

DOC (34.5) Adobe Acrobat Professional 7.8 PDF (15.9) without Bookmarks

PDF (19) with Bookmarks Adobe Acrobat Professional 7.8 HTML (6.38)

PDF (15.9) without Bookmarks Adobe Acrobat Professional 7.8 HTML (5.15)

PDF (19) with Bookmarks Adobe Acrobat Professional 7.8 XML (9.92)

PDF (15.9) without Bookmarks Adobe Acrobat Professional 7.8 XML (8.30)

PDF (19) with Bookmarks ABBYY PDF Transformer 1.0 HTML (19.2)

PDF (19) with Bookmarks ABBYY PDF Transformer 1.0 TXT (2.82)

In the next section, we define five major criteria for choosing the best

transformation; subsequently we evaluate these conversions according to these criteria.

 16

3.2 Criteria
Since we want to extract the document’s logical structure and convert it to XML, we

are most interested in an output format listed in Table 1 which can most facilitate this.

To select the best conversion, we defined a set of criteria based on the experiences we

gained during our experiments. These criteria are as follows:

(a) Generality: A format should enable the design of a general extraction algorithm

for processing other electronic documents.

(b) Low volume: We should avoid a format which contains of a lot of extra

unneeded material that is not related to the document content. This includes

information related to the presentation format, for instance, the position of

elements such as words, lists and paragraphs.

(c) Clean and understandable: Even if a format results in small files, it still might

not be adequate; it should also be clean and understandable. For instance,

formats which cleanly mark constructs such as paragraphs with a single marker

and that use carriage returns judiciously are easier to work with than formats that

don’t do this. For instance, some formats marked constructs with multiple

markers and were not even consistent about this.

(d) Similarity to XML: We prefer a format which has a similar structure to XML,

such as XML itself or HTML, because we want our final output of this step to be

in XML format.

(e) Having good Clues: A format should use markers which provide accurate and

good clues for processing and finding the logical structure, such as meaningful

keywords with respect to the headings: “LinkTarget”, “DIV”, “Sect”, “Part”, etc.

Sometimes, formats that contain a lot of extra data such as font, size, style and

position are more useful, while in other cases documents that are mostly text without any

much extra detail would be more useful. For example the extra data would be useful for

algorithms which detect headings of a document based on this information, whereas

style and font tags are of little use to our algorithm in Section 4.3. Hence, we would like

 17

to compromise among different kinds of formats to satisfy our mentioned criteria. In the

next section, we evaluate the presented transformations to define the best candidate.

3.3 First stage of evaluation
To narrow down the list of possible transformations to use, we evaluated every

transformation in Table 1 according to how they satisfy the above criteria. We

performed all the presented conversions on the UML superstructure specification. Our

observations are as follows:

DOC and RTF formats are messy, for example, they code figures among the contents

of the document while some formats such as HTML or XML put all the figures in a

separate folder in an image format. In addition, they store information related to the font,

size, style, etc of each heading, paragraph, sentence and even words beside them. This

information is not useful for us because they vary from document to document,

contradicting the generality property and increasing the potential for noise during

processing. In addition, if we extract HTML or XML formats from DOC/RTF, the

results also tend to have the same unneeded properties.

TXT format is very simple but does not give us any clues for processing and you

may not even find the beginning of the chapters, headings, tables, etc. Therefore, it does

not have a suitable structure for analysis.

PDF is complex itself, but after a conversion into HTML or XML by Adobe Acrobat

Professional 7.8, the result is very nice, especially in the case of PDF files which have

bookmarks. They are clean, low sized, with tagging structure and useful clues for

processing. They can even satisfy the generality property.

Therefore, our finalist candidates are HTML and XML formats extracted by Adobe

Acrobat professional 7.8 from the PDF file with bookmarks. In the next section, we

compare these two options.

 18

3.4 Second stage of evaluation
To further narrow our choice of transformation, we analyzed the following sample

parts of our target document using the two finalist candidates. These cover an array of

possible structures that appear repeatedly in the UML superstructure specification:

1) Sample paragraphs

2) Sample figures (e.g. figure 7.26)

3) Sample tables (e.g. table 2.1)

4) Complex tables which have figures and hyperlinks in their cells (e.g. table 12.1)

5) Complex nested lists which have complicated hierarchy structures (e.g. part 2.3)

To conclude, we found out the XML format is the best candidate for processing. Our

many assessments revealed that this format is more understandable and simple for

analysis. Moreover, in the XML style, each tag is in a line, so we can analyze and parse

the document line by line which is easier in compare to the HTML format in which we

have to explore the document character by character. In the next page, some of these

parts from two mentioned formats are presented.

In the next chapter, our experimental outcomes related to the logical structure

extraction are presented.

 19

Figure 2. A sample figure in XML format

Figure 3. A sample table in XML format

Figure 4. A sample nested list in XML format

 20

Figure 5. A sample figure in HTML format

Figure 6. A sample table in HTML format

Figure 7. A sample nested list in HTML format

 21

4 Logical Structure Extraction

After following the step described in previous chapter, we have our initial XML

document. However, aspects of the document structure (headings) still need to be

extracted. First of all, we would like to give some evidence for our reasons for the

logical structure extraction by some data analyses. Then, we discuss two implementation

approaches to finalizing our extraction of structure and evaluate our methods and the

reasons for failure in the first technique. Finally, we present our successful practice for

the logical structure extraction.

4.1 Data analyses to provide evidence for our initial

assumption
The main motivation to extract the logical configuration is the results which we

observed after analyzing the terminology found in the document headings, document

body, and document index. Our first assumption was that document headings, i.e. those

that appear in the table of contents, carry the most important concepts with respect to a

targeted document. This assumption seems particularly reasonable when we have a large

document with numerous headings. That is why people usually explore the table of

contents when they start working with a new document.

In the data analysis phase, first we created the following text files from the original

PDF document in order to isolate headings, document body, and document index:

 22

1. A text file consisting of document headings (almost 2200 headings)

2. A plain text file for the whole document excluding headings and index part

3. A text file for the document index

Afterward, we used some simple Unix commands to count and sort all words in the

mentioned text files, in a case-insensitive manner and considering plural words as

singular ones. We also ignored some kinds of words such as verbs, prepositions,

numbers, etc. in our samples shown in Table 3 and Table 5.

In the initial stage, for the simplification of our data analysis, we just collected the 50

most frequent words in document headings, as shown in Table 3. After that, we

calculated the overall frequency of these words in the whole document, Table 4, and

then gathered the 24 most frequent words in the document index, Table 5. The reason for

selecting just 50 and 24 words was that, after these words the “Number of Occurrence”

parameter became 2 and consequently 1 for the rest of words which was a relatively long

list. We also did some statistical calculations on these data collections, which is

presented in the following table:

Table 2. Statistical summary related to the heading and index words

Heading

words: Table 3

Occurrences of frequent

header words in the main

text: Table 4

Index words:

Table 5

Number of Data 50 50 24

Minimum 3.000 18.00 3.0000

Maximum 296.000 1063.00 45.0000

Median 11.000 168.00 6.0000

Mean 36.880 304.36 8.9583

Standard Deviation 68.846 311.35 9.1008

Variance 4739.781 96936.77 82.8243

 23

As you can see in Table 2, the mean of the heading words (Table 3) is 36.88 while

the occurrence of the 7 most frequent words in the document headings are in the range of

[296,171], which shows a huge gap between the frequencies of these 7 words in

comparison to the other 43 words. This issue can be seen in the standard deviation

(68.846) of this data collection as well, which has a considerable difference with the

arithmetic mean of the mentioned data set. These seven words are among the most

important UML keywords.

The other interesting observation is, when we gathered the second data collection

which is the overall frequency of the first data set, these 7 words were still among the

most frequent words (Table 4), all found in the first 15 positions.

To go further beyond these seven words, and to better understand the distribution of

heading words in the document body, and to investigate our earlier assumption with

respect to the table of contents, we compared these 50 words with the most frequent

words of the whole document. In total, we collected almost 10,000 unique tokens in the

entire document for counting, and observed that all the words in the first data collection

(Table 3) were among the first 1,000 words of these unique tokens. This means that if

we rank the set of words in the whole document based on their frequency, the heading

words would be in the top level of this ranking scheme.

The last examination was about the document index. We collected the 24 most

frequent words from index section and observed that all of them were also found first 50

most frequent heading words. This shows that the document index could be a good

source of data collection for document engineering and concept extraction.

To make a solid conclusion for this part of our research, we extended the sample

population to more than 50 words for other documents. We also did such statistical

analyses on some other similar software specifications and observed the same results,

specifically, when the specifications were long documents with various headings. These

outcomes were our major motivation for extracting the logical structure of documents

based on their headings. We later on show how this extracted structure could be useful

for generating multiple hypertext pages and cross referencing all over the document.

 24

Table 3. The 50 most frequent words in the document headings

 # Frequent words # Frequent words

1 296 Generalization 26 11 BehaviorStateMachines

2 213 Description 27 10 Component

3 201 Semantic 28 8 StructuredActions

4 178 Association 29 7 Interface

5 172 Constraint 30 7 Dependency

6 171 Notation 31 7 CompleteStructuredActivities

7 171 Attribute 32 6 UseCase

8 45 Kernel 33 6 ProtocolStateMachines

9 22 IntermediateActions 34 6 ExtraStructuredActivities

10 21 Template 35 6 BasicBehaviors

11 21 BasicInteractions 36 5 Structure

12 18 Variation 37 5 InternalStructures

13 18 CompleteActivities 38 5 FundamentalActivities

14 17 Node 39 5 Collaboration

15 16 Profile 40 4 Property

16 16 Communication 41 4 Port

17 15 Class 42 4 Operation

18 14 CompleteActions 43 4 Enumeration

19 13 Diagram 44 4 Concept

20 13 BasicActivities 45 4 Classifier

21 12 SimpleTime 46 4 Action

22 12 IntermediateActivities 47 3 PowerType

23 12 Fragment 48 3 Package

24 12 BasicActions 49 3 Behavior

25 11 StructuredActivities 50 3 Artifact

 25

Table 4. Frequency of the 50 heading words from Table 3 as found in the words

extracted from the entire document

 # Frequent words # Frequent words

1 1063 Classifier 26 160 Structure

2 958 Association 27 131 Concept

3 881 Node 28 130 Communication

4 850 Behavior 29 112 CompleteActivities

5 844 Action 30 100 Fragment

6 843 Constraint 31 92 Variation

7 766 Notation 32 76 BasicActions

8 758 Attribute 33 69 BasicActivities

9 700 Package 34 67 Enumeration

10 690 Class 35 60 BasicInteractions

11 674 Semantic 36 54 IntermediateActions

12 518 Operation 37 50 UseCase

13 470 Diagram 38 50 StructuredActivities

14 427 Generalization 39 46 IntermediateActivities

15 391 Description 40 45 BehaviorStateMachines

16 390 Property 41 44 CompleteActions

17 382 Template 42 40 CompleteStructuredActivities

18 369 Component 43 37 PowerType

19 359 Interface 44 31 FundamentalActivities

20 279 Profile 45 28 BasicBehaviors

21 248 Kernel 46 24 StructuredActions

22 242 Port 47 24 SimpleTime

23 220 Dependency 48 23 InternalStructures

24 188 Collaboration 49 21 ExtraStructuredActivities

25 176 Artifact 50 18 ProtocolStateMachines

 26

Table 5. The 24 most frequent words in the document index

 # Frequent words # Frequent words

1 45 Kernel 13 6 BasicBehaviors

2 19 Template 14 5 ProtocolStateMachines

3 19 BasicInteractions 15 5 InternalStructures

4 17 Communication 16 4 Property

5 11 BehaviorStateMachines 17 4 Collaboration

6 10 Node 18 4 Classifier

7 10 Fragment 19 4 Class

8 9 SimpleTime 20 3 Port

9 8 Profile 21 3 Package

10 7 Interface 22 3 Operation

11 7 Dependency 23 3 CompleteActivities

12 6 UseCase 24 3 BasicActions

In the next page, the corresponding visual presentations with respect to the above

data collections and tables are demonstrated for superior understanding of these data

sets. The first diagram (Figure 8) shows the occurrence of 50 most frequent words in the

document headings, the second one (Figure 9), presents the overall frequency of the

mentioned 50 words in descending order, and the last one (Figure 10), illustrates the

occurrence of the first 24 frequent words in the document index.

 27

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

N
um

be
r o

f o
cc

ur
re

nc
e

Figure 8. The 50 most frequent words in the document headings

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

N
um

be
r o

f o
cc

ur
re

nc
e

Figure 9. Frequency of the 50 heading words as found in the words extracted from

the entire document

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

be
r o

f o
cc

ur
re

nc
e

Figure 10. The 24 most frequent words in the document index

 28

The following diagram (Figure 11) shows the occurrence of the first 50 words in the

document headings and their corresponding overall frequency at the same time, it is

another representation of our earlier discussions with respect to the first data collection

and its first 7 frequent words.

Figure 11. First data collection (smaller surface) and their frequency in the

document as a whole (bigger surface)

This diagram (Figure 12) also demonstrates the relationship between the first 24

frequent words in the document index and their distributions in the header words.

Figure 12. First data collection (bigger surface) and their frequency in the

document index (smaller surface)

 29

4.2 First refinement approach: Stack-based parser
In this approach, we turned to writing simple java scanning code, Appendix C, to

scan for matching major tags, such as <Part>, <Sect> and <Div>, which Adobe Acrobat

Professional 7.8 used to open and close each part, chapter, section, etc of the document.

Consider the following simple structure of the document:

Using a straightforward stack-based parsing approach, we converted this into:

Unfortunately, after running the program for the different chapters and the whole

document as well, it failed. We found out that there is a considerable amount of incorrect

tagging. The tool opened each part, chapter, section, etc by “<Sect>” in a proper place of

the document but it closed all of these tags by “</Sect>” in the wrong places. The

problem was more crucial when we processed the whole document at once because of

the accumulative mis-tagging. Here, a sample of this detection is presented:

 30

Therefore, we could not extract the logical structure of the document by this simple

approach and decided to develop a new program which is more powerful and capable of

detecting such a wrong tagging. In the next part, our successful practice with

corresponding results is provided.

4.3 Second implementation approach: Bookmarks
In the second approach, we wrote a java-based parser which focused on a keyword,

“LinkTarget”, which corresponds to the bookmark elements created in the previous

transformation phase by Adobe Acrobat Professional 7.8. This keyword is attached to

each heading in the bookmark such as headers of parts, chapters, sections, etc.

Therefore, as a first step, we extracted all the lines containing the named keyword and

put them in a queue: “LinkTargetQueue”. We also defined different types of headings in

the UML superstructure specification with respect to its logical structure; you can see

this classification in Table 6.

Table 6. Different kinds of headings

T Sample Heading Type

1 Part I - Structure Part

2 7 Classes Chapter

3 7.3 Class Descriptions Section

4 7.3.1 Abstraction Subsection

5 Generalization, Notation, etc Keyword

6 Annex End part

7 Index Last Part

Then, we applied an algorithm which takes the “LinkTargetQueue” as its input; each

node of this queue is a line of the input XML file which has “LinkTarget” substring as a

keyword: “<P id="LinkTarget_111914">7 Classes </P>”. This algorithm extracts

 31

headings (7 Classes) and then defines their type by pattern matching according to Table

6 (Type: Chapter & T=2). Afterward, it applies a stack based approach for opening and

closing corresponding tags at the suitable place in the XML file. The implemented

algorithm in Java is attached in Appendix B.

By applying this logical analyzer, we extracted 2191 headings from the UML

Superstructure Specification (version 2.1) and created a new XML file for this

document. We also tested the other documents and specifications such as UML

Infrastructure (version 2.0); the extractions were well in all cases with 100% accuracy.

As an alternative solution for the extraction of headings, we can apply various

parsing packages as well. We require writing a comprehensive grammar for analyzing

the XML document; in particular, we need to parse the internal structure of some of the

tag-delimited data. Using the same keyword (“LinkTarget”) can significantly facilitate

the structure of our grammar for the extraction. The following are some examples of

heading texts that needed parsing:

7 Classes Number + Whitespace + Word

7.1 Overview Number + Period + Number + Whitespace + Word

7.2 Abstract Syntax Number + Period + Number + Whitespace + Word + Whitespace + Word

7.3.1 Abstraction Number + Period + Number + Period + Number + Whitespace + Word

In Figure 13, you can see the corresponding state machine with respect to the above

sample headings; “Next Line” is the acceptance state in this machine.

Figure 13. State machine for sample headings

 32

Procedure LogicalStructureExtraction(LinkTargetQueue)

F // a new XML file

L // a line: e.g.: <P id="LinkTarget_111914">7 Classes </P>

H // Heading: e.g.: 7 Classes

T // Type: e.g.: for the Chapters, T Chapter = 2

T Last member of the HeadingStack = 0

HeadingStack = empty

While (LinkTargetQueue != empty) do

Get “L” from the LinkTargetQueue

Extract the heading “H” from the “L”

Define heading's type: “T”

While (T =< T Last member of the HeadingStack) do

Pop “H” and “T” from the HeadingStack

Close the suitable tag w.r.t the popped “T”

If (HeadingStack == empty)

Break this while loop

End if

End while

Push the new “H” and “T” in the HeadingStack

Open new tags w.r.t the pushed “H” & “T”

End while

While (HeadingStack != empty) do

Pop “H” and “T” from the HeadingStack

Close the suitable tag w.r.t the popped “T”

End while

Return “F”

End procedure

 33

To trace the proposed algorithm, assume the following chapter, section and subsection

headings in the “LinkTargetQueue”:

1 Heading Chapter, T Chapter =2
2 Heading
2.1 Heading Section, T Section = 3
2.2 Heading
2.2.1 Heading Subsection, T Subsection = 4
2.2.2 Heading
2.3 Heading
3 Heading

The result would be as follows:

<Chapter number=”1”
</Chapter>
<Chapter number=”2”>

<Section number=”2.1”>
</Section>
<Section number=”2.2”>

<Subsection number=”2.2.1”>
</Subsection>
<Subsection number=”2.2.2”>
</Subsection>

</Section>
<Section number=”2.3”>
</Section>

</Chapter>
<Chapter number=”3”>
</Chapter>

 34

The extracted logical structure in XML format with respect to the UML

superstructure specification (version 2.1) is presented in the Figure 14. It consists of 4

major parts, 18 chapters and numerous concepts such as generalizations, description, etc.

We extracted 71 different tags in three categories (Structures, Blocks and Keywords)

which you can see some of them with their number of occurrence in Table 7.

Figure 14. Logical structure extracted in XML format

 35

Table 7. Sample XML tags in the UML superstructure specification

Structures # Blocks # Keywords #

<Part> 4 <P>: Paragraph 8228 <Associations> 177

<Chapter> 18 <Figure>: Figure 738 <Attributes> 171

<Section> 74 <Table>: Table 105 <Constraints> 172

<Subsection> 314 <TH>: Table Header 283 <Description> 202

 <TR>: Table Row 547 <Generalization> 296

 <TD>: Table Data 1721 <Notation> 169

 <L>: Lists 245 <Semantics> 179

 : List Item 765 etc

After extracting such a logical structure and creating the new XML file, we imported

our document into “Protégé release version 3.2.1”, which is an open source ontology

editor and knowledge base framework, in order to visualize our XML structure using the

commands available in its XML tab. In Figure 15, part of the logical structure model of

the document is presented using the Jambalaya feature of Protégé 3.2.1. In the next

chapter, we explain the XML schema generation for our extracted document.

Figure 15. Logical structure model in the protégé 3.2.1

 36

5 Text Extraction to Create Initial

Hypertext Pages

In this chapter, firstly we evaluate our document to be well-formed. Afterward, we

generate a valid XML schema with some schema component presentations in order to

show the configuration of several XML elements. Then, producing multiple outputs

along with connecting them together is illustrated. Finally, we address the formation of

the document’s key elements such as anchor links, figures, tables, and lists. The created

user interface consists of the following major elements:

• A page for the table of contents

• A separate page for each major headings (418 HTML pages)

• Hyperlinks for accessing to the table of contents, next and previous pages

• Two separate pages for the package and class hierarchy of the UML (v2.1)

• Various cross references all over the document

To increase the usability of the document and highlight specific classes of

information, we used different colors to present each of our XML elements.

 37

5.1 Checking well-formedness
Every XML document must be well-formed which means that it properly matches

opening and closing tags and abides by logical rules of nesting [36]. For well-formed

checking and validating, we used a tool named “Stylus Studio® 2007 XML Enterprise

Suite” which is an XML integrated development environment [41].

When we checked the well-formed property of the document we produced in

Chapter 4, we discovered two types of errors:

1. The first was related to the forbidden notations among XML tags such as “>”

(greater than) and “<” (less than) in mathematical equations.

2. The second error type, was incorrectly nested opening and closing tags in the

generated document in three situations: nested lists (Figure 16), complex

tables with figure and hyperlinks in their cells (Figure 17), and lists with two

columns (Figure 18) spread over multiple pages. There were few errors in

this respect; given the relatively small number in the large document the

solution we chose was to fix them by hand: moreover, we did not encounter

with such errors when we converted other PDF specifications such as the

final version of the current targeted document (which was a draft version) or

UML Infrastructure Specification.

Figures 11 to 13 also demonstrate the lack of usability, difficulty in browsing, and

general complexity of the original input document for end users.

 38

Figure 16. A nested list spread over two pages 5-6 (UML Spec. v2.1)

Figure 17. A complex table spread over two pages 163-164 (UML Spec. v2.1)

 39

Figure 18. A list with two columns spread over two pages 205-206 (UML Spec. v2.1)

 40

5.2 Generating a valid schema
In addition to checking for well-formedness, it is necessary in XML documents to

also check for validity, i.e. whether a document uses tags in a consistent manner with its

schema or not. “A valid document has data that conforms to a particular set of user-

defined content rules, or XML Schema, which describe correct data values and

locations” [36]. Most of the XML tools support automatic schema generation in addition

to the well-formedness checking, they also provide features for error detection during

validation procedure which makes it very easy to validate a schema. We firstly generated

an XML schema and then validated our extracted document with “Stylus Studio”. In

Figure 19 to Figure 22, some schema component representations are provided.

Figure 19. Schema component representations: “Book” & “Chapter”

 41

Figure 20. Schema component representation: “Figure”

Figure 21. Schema component representation: “Table”

Figure 22. Schema component representation: “List”

 42

5.3 Producing multiple outputs
To enhance the user interface efficiency and facilitate document browsing, we

decided to produce multiple outputs using the <xsl:result-document> element, and to

generate a small HTML page for each Part, Chapter, Section, and Subsection. This

resulted in 418 HTML files in total. The other alternatives were to create a big HTML

file, such as existing software specifications on the web, or create eighteen relatively big

HTML files for each chapter of our targeted document, such as our fist prototype design.

Our major motivations and objectives for the decision to create many small pages

were as follows:

• A better sense of ‘location’ when navigating cross-references: In a large

hypertext document one can use anchors (with the syntax

and linked to using) to allow jumping from section to

section. However, the result of jumping to a section in this manner places you

into the middle of a document. If the destination of the jump has a title that is

not clear, or is a section with a very small amount of text (i.e. a subsequent

section title is also visible in the browser after jumping), or is at the very end

of the document, the user can find it confusing to determine exactly where

they have arrived at. This issue can be even more confusing when the user

has stored such an anchor in a bookmark. On the other hand if the destination

of a jump is an entire hypertext page, the above problems go away.

• Less chance of the user getting lost: Users are less likely to get lost by

scrolling in small pages in comparison to long pages. In a long page, after

following a link a user may then move to some other part of the document

using a few ‘page down’ clicks or by searching. But then the user may not

know how to go ‘back’ to where they came from unless they happen to

remember the section number or title of the section they came from. Even

then they may have to search in order to return. The problem can be

 43

exacerbated if the user leaves a page alone in their browser for a period of

time after scrolling. If instead the document is organized as many small

hyperlinked pages, it becomes is simply a matter of hitting the ‘back’ button

in the browser.

• A less overwhelming sensation: A smaller document should help users to

manage larger amounts of information and understand the document more

efficiently.

• Faster loading: Users are not always interested in downloading the whole

document at once, especially when the document is fairly big.

• Easier printing: Users can print particular topics and pages in accordance to

their interests and demands.

• Statistical analyzing: It may be useful to calculate the most frequent page-

loads and the time which users stay in each page. This information could be

used to improve the UI and the specification itself, and to determine what the

most significant information is.

Creating small pages has one potential drawback, however: The ‘original order’ of

the document may be an asset worth preserving. This might be because the user is used

to reading linearly, or they may want to read through the whole document in a

systematic manner.

To prevent loss of the original order, we created “Previous” and “Next” hyperlinks in

each page and help the user to realize where he or she is, has been, and can go.

It is important to note that there is a logical limit to how finely one wants to break

down a large document into small hypertext pages (in the absurd extreme, one could

separate each paragraph). What we have done is limit the division to the subsection

level; this results in pages that still have several sub-subsection titles inside them. We

also created a few special ‘long’ pages. These include a table of contents, a page listing

all the UML packages (with the classes they contain), and a page listing all UML classes

alphabetically. Links to a package will link to an anchor within the packages page.

We also used color coding to help the user understand what type of information they

 44

are viewing. The following is the scheme:

In order to generate the separate hypertext pages, we applied “Saxon-B 8.9” [43],

which is an open source XSLT and XQuery processor developed by Michael Kay, the

editor of the XSLT 2.0 specification. Saxon versions exist for both .Net and Java; we

used the Java version with the following command to transform the targeted document

(UML.xml) by the XSLT code which we developed (UML.xsl):

java -jar saxon8.jar -t UML.xml UML.xsl.

In our document, each “Part” consists of a body as well as Chapters, Sections, and

Subsections inside of itself; each “Chapter” also consists of Sections and Subsections in

addition to its body, and so forth. Therefore, to exclude Chapters, Sections, and

Subsections from an HTML file which is just for the body of a “Part”, we had to create

a global template for each of these entities in our XSLT code, as you can see in the small

piece of our code in the next page, a global template is useful if an element occurs within

various elements or in various locations of the document.

The other significant issue was the naming of these output files. This procedure had

more importance when we wanted to link these files together and create the table of

contents; therefore, we used the following XPath function to name our outputs:

 45

concat (‘UML/’, @Number, ‘.html’)

This function concatenates three strings, creates a folder named “UML”, and puts each

HTML files in this folder. The “@Number” refers to the attribute of <Part>,

<Chapter>, <Section>, and <Subsection> elements. As a result, we named our HTML

outputs as follows: {e.g.: “I.html”, “7.html”, “7.1.html”, “7.2.html”, “7.3.html”,

“7.3.1.html”, “7.3.2.html”, “7.3.3.html”, etc}.

Since file names were created from the “@Number” attribute, we were able to thus

facilitate access to each of these files. For instance, by the following piece of XSLT code

we generated the related hyperlinks in the table of contents page:

 46

In the next section, we illustrate how to connect these files together by the

“Previous” and “Next” hyperlinks at the top of each page.

 47

5.4 Connecting generated outputs sequentially
In the earlier section, we generated 418 HTML pages for our document. In a later

section we will be creating contextual hyperlinks and tables of contents that will allow

direct jumping to various pages, however we would still like to link the pages together

by creating “Previous” and “Next” links in each page. This will allow the reader to

proceed through the document in its original sequence, should they wish to do that.

We applied two methods in this regard; in the first one we used XPath expressions

and in the second one we developed a java program along with a simple XSLT program.

5.4.1 Connecting pages using XPath expressions

To link the generated outputs, firstly we developed some XPath expressions to

connect each of these files together. In total, we had 16 navigation paths to go from

{Part, Chapter, Section, Subsection} to {Part, Chapter, Section, Subsection}. Figure 23

and Table 8 show ten unique combinations of these navigation paths.

1

2

10

93
8

4

5

6
7

Figure 23. Table of contents showing distinct types of navigation paths

 48

As you can see, we had to write diverse XPath expressions to cover all possible

permutations at a suitable place in the document.

Table 8. Some document navigation paths related to the figure 18

 From To From To

1 Subsection: 6.5.2 Section: 6.6 6 Section: 7.3 Subsection: 7.3.1

2 Section: 6.6 Part: I 7 Subsection: 7.3.1 Subsection: 7.3.2

3 Part: I Chapter: 7 8 Section: 7.1 Chapter: 7

4 Chapter: 7 Section: 7.1 9 Chapter: 7 Part: I

5 Section: 7.1 Section: 7.2 10 Part: I Section: 6.6

Now, we present a sample of our XSLT code and XPath expressions with respect to

the following situation. Assume that we would like to go from a “Chapter” to its

subsequent “Section” (e.g. from Chapter 7 to Section 7.1) or from a “Chapter” to its

next “Chapter” (e.g. from Chapter 7 to Chapter 8), the related XSLT code and XPath is

presented here:

 49

In this code, first we applied the following XPath condition which means that the current

place is a “Chapter” and its immediate descendant is a “Section” (e.g. 7.html):

 (local-name() = ‘Chapter’) and (descendant :: * / local-name() = ‘Section’)

Then, we used the following XPath function in the hyperlink’s address part to go from a

“Chapter” to its subsequent “Section” (e.g. 7.html to 7.1.html). This function means

that selecting the <Section> element, which is in the first position, extracts its attribute

named “Number”, and then concatenates it with “.html”:

 concat(. // Section [position()=1] / attribute::Number,'.html')

We also used the following XPath function in the hyperlink’s address part to go from a

“Chapter” to its next “Chapter” (e.g. 7.html to 8.html). This function means that selects

the following sibling, which is in the first position, extracts its attribute named

“Number”, and then concatenate it with “.html”:

 concat(following :: * [position()=1] / attribute::Number,'.html')

To connect all pages together, we developed various complex conditions and logical

expressions to cover all combinations. This method works very well but it does not

satisfy the generality property of our project. Diverse documents have different

navigation structure; moreover, this method would be more complicated when we have

numerous navigation paths. In the next part, we propose an easier method for connecting

our HTML outputs.

5.4.2 Connecting pages using a programming approach

In this method, first of all we extracted all elements’ attribute named “Number”

sequentially (1, 2, 2.1, 2.2, 2.3, …, 7, 7.1, 7.2, 7.3, 7.3.1, etc) by the following XSLT

code. Then we put them in a text file named “Num.txt” and developed a java program to

link our files together.

 50

We developed a java program for the following algorithm in our second approach:

Procedure Linker()

Num.txt // a text file consisting of all attributes

A1, A2 // variables

A1 = Read the first attributes from “Num.txt” file // (e.g. A1 = 1)

A2 = Read the second attributes from “Num.txt” file // (e.g. A2 = 2)

Call SetupLink (A1, A2) // (e.g. (1, 2))

A1 = A2 // (e.g. A1 = 2)

While (True) do

A2 = Read an attribute from “Num.txt” // (e.g. A2 = 3, A2 = 4, A2 = 5)

 If (End of the “Nume.txt”) Then

 Break this while loop

 End If

 Call SetupLink (A1, A2) // (e.g. (2, 3), (3, 4), (4, 5))

 A1 = A2 // (e.g. A1 = 3, A1 = 4, A1 = 5)

End while

End procedure

 51

Procedure SetupLink(X1, X2)

UMLFolder // a folder which consists of 418 HTML files

X1, X2 // arguments

Extract the X1.html and X2.html from UMLFolder

// (e.g. 7.3.1.html & 7.3.2.html)

Set “Next” Hyperlink in X1.html based on the X2 variable

// (e.g. in 7.3.1.html file “Next” hyperlink is equal to 7.3.2.html)

Set “Previous” Hyperlink X2.html based on the X1 variable

// (e.g. in 7.3.2.html file “Previous” hyperlink is equal to 7.3.1.html)

End procedure

In the next section, we demonstrate our presentation methods for different kinds of

document major elements and provide the related XSLT codes for the style sheet design.

 52

5.5 Forming major document elements
To construct the major document elements such as hyperlinks, figures, tables, and

lists, we developed various style sheets by XSLT programming and applied some tools

such as “Altova StyleVision® 2007 Enterprise Edition” which is a visual style sheet

designer for transforming XML and database content into HTML, PDF, and RTF output

[42]. In the next parts, a complete discussion with respect to the style sheets design for

document elements is demonstrated with relevant XPath expressions and XSLT codes.

5.5.1 Anchors in long pages

As mentioned earlier, we generated several ‘long’ hypertext pages, such a list of all

UML packages and a general table of contents.

In our first prototype, which consisted entirely of long pages, we facilitated browsing

and navigating by creating anchors for major elements within each page. As Figure 24

shows, we created a mini table of contents at the top of each page.

In the final version, which is divided into many small pages, the anchors are

retained, but links to them only are found in references to packages, which link to the

‘long’ page of all packages.

In XSLT, each anchor has a unique name; in the example shown in Figure 25 we

named them: “2.1”, “2.2”, “2.3”, and “2.4”.

Figure 24. Top of a long page in our first design, showing links to internal anchors

 53

Figure 25. Heading tags structure in the XML document

Now, we show how to create a dynamic hyperlink pattern for the created bookmarks

as we explained earlier. XSLT provides different methods for creating hyperlinks:

“Static” in which you have to refer to a specific page, “Dynamic” in which you can

refer to a node in an XML document, and “Static & Dynamic” which is the combination

of both of them. An anchor consists of two parts: number sign: # and the name of the

anchor.

To create a dynamic pattern for associating hyperlinks to their corresponding

anchors, we applied the following XPath function in the hyperlink’s address part:

“concat ('#', @Number)”

This function returns the concatenation of ‘#’ and a dynamic string which refers to the

<Section> element’s attribute: e.g. “2.1”, “2.2”, and so forth. Since we deliberately

named anchors as the <Section> element’s attribute, consequently each hyperlink was

connected to its corresponding anchor. In Appendix D, a portion of the XSLT code with

respect to the automatic association of dynamic hyperlinks to static bookmarks is

demonstrated.

 54

5.5.2 Figures

In this section, we present the automatic importation of figures. As we mentioned

before, our document has 738 figures. In the transformation phase, when Adobe Acrobat

Professional converted our document into an XML file, it also created a folder named

“images”, put all figures in this folder, and named them as follows: “UML_img_1.jpg”

to “UML_img_738.jpg”. In Figure 26, you can see the structure of the <Figure> element

which has two children: (1) <ImageData> with its “src” attribute, and (2) <Caption>.

Figure 26. Figure tag structure in the XML document

For the relevant style sheet design, as you can see in Figure 27, first we took out the

targeted chapter (Chapter 2: Conformance) and extracted the <Figure> element. Then,

we inserted a dynamic hyperlink inside of the “src” attribute by the following XSLT

code and XPath expression:

<xsl: value-of select=“string(.)”/>

This line of code selects the value of the “string(.)” which returns the string value of the

argument. The argument could be a number, Boolean, or node-set. Here it refers to the

current node by “dot”; as a consequence, it replaced the values of this attribute

(“images/UML_img_1.jpg”, “images/UML_img_2.jpg”…“images/UML_img_738.jpg”)

into the hyperlinks and imported all figures at the right places inside of the targeted

document. We also imported the related captions at the end of each figure by presenting

its text content.

 55

Figure 27. Screenshot of the Altova StyleVision for importing figures

This is the simplified template with respect to the dynamic importation of all figures.

 56

5.5.3 Tables

In this part, we illustrate how to create a dynamic pattern for importing all tables

with different sizes from the XML document. Figure 28 shows the <Table> element

structure, it has two children: a <Caption> element which consists of a plain text, and

<TR> elements (Table Row) which have two different children: <TH> elements (Table

Header) and <TD> element (Table Data).

Figure 28. Table tag structure in the XML document

Dynamic table creation is supported by XSLT programming. In these tables one of

the dimensions is fixed and the other one is dynamic, for example, the number of

columns is fixed but the number of rows is variable.

To create a dynamic pattern for importing our tables, first we created the relevant

caption and then selected the <TR> element, as you can see in Figure 29. Afterward, we

constructed a dynamic table with six columns and varying number of rows, because

tables of our document had at most six columns but much more rows. Figure 29 just

 57

presents the first column; we excluded the other five columns in this figure.

To import table headers (<TH>) and table data (<TD>), we applied the following

XPath function: “position ()”. This function returns the index position of the node that is

currently being processed. As an example, consider the first <TR> element in the Figure

28, if we apply “<TD> When: position () = 1 <TD>” then it returns “Level 1” string.

 We used each of the following expressions in a conditional branch through the first

column to the sixth one: position () = 1, position () = 2 … position () = 6. They imported

all relevant data at the corresponding table cells. If a table had, for instance, just four

columns then the last two columns did not appear.

Figure 29. Screenshot of the Altova StyleVision for importing tables

In Appendix D, the relevant XSLT code for dynamic tables is demonstrated.

 58

5.5.4 Lists

In this part, the style sheet design for lists is presented. Figure 30 shows the <L>

element structure for a simple list. As you can see, it has two grandchildren named:

<LI_Label> element and <LI_Title> element.

Figure 30. List tag structure in the XML document

To present a simple list, we first extracted <LI_Label> and <LI_Title> elements by

<xsl:for-each select="LI_Label"> & <xsl:for-each select="LI_Title">, and then

presented their contents, as shown in Figure 31. But for the nested lists, after extracting

the second <L> element, we applied the following XPath expressions:

child :: * [position()=1] for the first part of the nested lists

child :: * [position()=2] for the second part (nested part) of the nested lists

child :: * means select all children of the current node, and child :: * [position()=1]

means select the child which is in the first place, and so forth.

 59

Figure 31. Screenshot of the Altova StyleVision for importing lists

In Appendix D, a portion of the XSLT code with respect to the simple and nested lists

importation is demonstrated.

In the next chapter, we focus on development as well as improvement of the

designed user interface to increase its usability by concepts extraction such as UML

class and package hierarchies, and cross referencing all over the document.

 60

6 Concept Extraction and Cross

Referencing

In the first part of this chapter, first we present the related methods for concept

extraction from our targeted document, UML Superstructure Specification; these

concepts include UML class and package hierarchies. We apply logical expressions

using XPath and XSLT to extract such concepts. Although this part has been designed

specifically for the UML specification, it can give us a general view of how to perform

concept extraction from other documents.

In the second section of the chapter, we present related works for cross referencing

all over the document. We illustrate how we extracted almost three hundred keywords to

use in the proposed cross referencing algorithm, implemented in Java. These hyperlinks

help users to jump from one page to another in order to gather more information as

required.

6.1 Concepts extraction
In this section, we present the concept extractions from our XML document. As we

mentioned in previous chapters, there are numerous UML concepts in headings, this

issue was one of our major reasons for the logical structure extraction of the document.

As an example, Figure 32 shows class descriptions with respect to the “Components”

 61

and “Composite Structures”; it also presents the packages which these classes belong to

using “from” as a keyword. Since we tagged this information as chapter, section, and

subsection headings, therefore using XPath expressions and XSLT code we extracted the

class and package hierarchies of the UML Superstructure Specification (v2.1) in two

separate pages for our final user interface. In the next part, we illustrate our methods for

such extractions.

Figure 32. Headings of the UML specification (v2.1), containing UML concepts

 62

6.1.1 UML class hierarchy extraction

In this subsection, we explain how to extract the UML class hierarchy from our

XML document. The main clue that we used in our extraction code was the “Class

Descriptions” which is a keyword string for the UML class hierarchy detection. For this

reason, we applied the following XPath expression inside of the <Section> element

(Figure 33, arrow-I) to take out all UML classes:

 Child :: * [position() = 1] / starts-with(. , ‘Class Descriptions’)

This expression means select the first child of the <Section> element which its content

starts with “Class Description” (Figure 33, arrow-II, <Name> element). By this logical

expression we only selected sections that present some descriptions about UML classes.

After that, we applied the following expression in order to define the title of a class set:

 preceding-sibling :: * [last()]

This expression means select the preceding sibling of the <Section> element which is in

the last place (Figure 33, arrow-III, <Name> element). As you can see in Figure 33,

<Section 9.3> has three preceding-siblings: <Section 9.2>, <Section 9.1>, and <Name>

which is the last one. Finally, we moved to the <Subsection> element (Figure 33

<Subsection 9.3.1>) and extracted contents of the <Name> element (e.g. “Class”) and

the <Reference> element (e.g. StructuredClasses). We also linked this UML class to its

relevant hypertext page by the <Subsection> element’s attribute (@Number):

concat(@Number , ‘.html’) e.g. 9.3.1.html

Figure 33. Part of tagging structures in the XML document

 63

The XSLT code with respect to the above explanation for the UML class hierarchy

extraction is presented here:

In the next subsection, we present a portion of the XSLT code for the UML package

hierarchy extraction.

 64

6.1.2 UML package hierarchy extraction

To extract the UML packages, we used the <Reference> element which was inside

of the <Subsection> element. The <Reference> element was created by the “from” as a

keyword string during the logical structure extraction in Chapter 4. For instance, in order

to extract all classes belong to the “Actions” package we applied the following

expression inside of the <Subsection> element:

contain(Reference,‘Actions’) = true() and

contain(Reference,‘CompleteActions’) = false() and

…

contain(Reference,‘StructuredActions’) = false()

The “contain(string-1 , string-2)” function, returns true if string-1 contains string-2,

otherwise it returns false. Therefore, the above XPath expressions mean select

subsections whose <Reference> element contains “Actions” but are not

“CompleteActions” or “StructuredActions”, etc. As you can see, we excluded other

packages whose names overlapped with “Actions” package (we had such a string

similarity just for two packages: “Actions” and “StructuredActivities”, for the rest of

packages we simply used just one contain function). The other alternative was to use the

“starts-with(string-1,string-2)” function which returns true if string-1 starts with string-

2, otherwise it returns false. Finally, we extracted the <Name> element which carried the

class names of the “Actions” package, and then linked each of these classes to its

relevant hypertext page. A portion of the XSLT code with respect to the above

description for the UML package hierarchy extraction is presented here:

 65

We generated a simple script that would execute the above code repeatedly, plugging

in each of the package names where ‘Actions’ appears.

In the next section, the related approach for cross referencing all over the document

is presented to improve the usability of the final user interface.

 66

6.2 Cross referencing
To facilitate document browsing for end users, we developed some XSLT and Java

code to generate hyperlinks for major document keywords all over the created user

interface. These words consist of class names as well as package names. As we

mentioned previously, since these keywords were among document headings each of

them had an independent hypertext page (such as 285 class names) or anchor link (such

as 36 package names) in the final user interface. We generated the following XSLT code

to produce the related strings for UML class names, used in cross referencing algorithm:

 67

This code selects sections that consist of UML class descriptions and then generates a

string, which is made from the following six substrings, for every UML class:

Name + @ + Name +

For instance, for “Abstraction” is a class name, so it generated the following string:

Abstraction@Abstraction

We applied a similar approach to generate related strings for package names, for

example, the following string is generated for the “Actions” as a package name:

Actions@Actions

As you can see, we isolated keywords from their corresponding hyperlinks by the “@”

character. We also listed all of these strings in a text file named “UniqueKeywords.txt”,

and then applied the algorithm in the next page (CrossRef), implemented by Java, for

cross referencing.

To generalize this cross referencing approach for other documents, one can simply

extract all headers (which have an independent hypertext page or anchor link) with their

corresponding hyperlinks in the “UniqueKeywords.txt” file, and then use the “CrossRef”

procedure.

In the next chapter, the experimental results and the initial architecture of a proposed

document engineering framework are illustrated.

 68

Procedure CrossRef()

UML // a folder consisting of 418 hypertext pages

F // a hypertext file

UniqueKeywords.txt // a text file consisting of the mentioned strings

L // a line: e.g.: Abstraction@Abstraction

S1, S2 // string variables

While (True) do

 F = Extract a new hypertext page from UML folder

 If (all 418 hypertext pages are extracted) Then

 Break this while loop

 Else

 While (end of the “UniqueKeywords.txt” file) do

Get a new “L” from the text file // read a new line

Split “L” into two strings from “@” character

S1 = first part of the “L” // Abstraction

S2 = second part of the “L” // corresponding links

If (find S1 in F in one place or many places) Then

Replace All (S1, S2)

// replace all S1 strings with S2

 End If

 End while

 End If-Else

End while

End procedure

 69

7 Experimental Result and

Architecture of the Framework

In this chapter, we present experimental results on various specifications and address

usability of generated hypertext pages by comparing them to the original PDF

documents. We also illustrate the initial architecture of a document engineering

framework with the re-engineering capability of PDF based documents.

7.1 Re-engineering of various OMG specifications
As we mentioned, our first targeted document for processing was the UML

Superstructure Specification. For further examination, we selected some other software

specifications from Object Management Group (OMG) homepage with different number

of pages and headings, the final result of this assessment is demonstrated in Table 9.

In this evaluation, for each of these documents we generated a separate hypertext

page for its headings in addition to a page for the table of contents. To increase the

usability of outcomes, we did cross referencing all over hypertext pages by detecting

headings in each of these pages and connecting them to their corresponding entries. For

instance, if the “AssociationClass” is among headings, certainly we have an independent

hypertext page for that, and consequently hyperlinks for this phrase in all other pages

where it appears. To avoid ambiguity, we filtered some phrases with common substrings

 70

such as “Association” & “AssociationClass” and removed phrases which had many

independent pages.

Table 9. Re-engineering of ten OMG specifications

Original
OMG
Spec.

of PDF
Pages

of
Headings

Headings
Used in

Cross-Ref

of
Tokens in
Doc Body

of
Tokens in
Headings

Data
Analysis
Results

of
HTML
Pages

CORBA 1152 787 662 13179 702 15.1% 788
UML Sup. 771 418 202 10204 378 12.2% 421

CWM 576 550 471 6434 463 13.2% 551
MOF 292 61 52 6065 92 8.0% 62

UML Inf. 218 200 122 4329 176 9.3% 201
DAIS 188 135 102 3051 151 12.6% 136
XTCE 90 18 18 3075 26 2.6% 19
UMS 78 69 59 1937 94 22.7% 70

HUTN 74 88 83 2264 144 9.8% 89
WSDL 38 17 17 1106 36 16.3% 18

Furthermore, for each of these specifications we sorted document and heading tokens

based on their frequency in two separate lists, defined positions of heading tokens

among document tokens: [P1… PN], and determined how important headings are:

MP: Mean of [P1…PN]

NDT: Total number of document tokens

Percentage = (MP * 100) / NDT

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

Figure 34. Headings are among the most frequent words in the entire document

 71

Figure 34 shows that headings are among the most frequent words in the entire

document. In the lower diagram we just evaluated headings which their number of

occurrence were bigger that two but in the higher diagram we assessed entire headings.

As we mentioned in previous chapters, this conclusion was our major motivation for:

• Extracting the logical structure of documents based on their headings

• Generating a separate hypertext page for each heading

• Detecting major concepts among document headings

• Cross-referencing by detection of headings in the entire hypertext pages

All mentioned experiments verify that our approach is repeatable for all documents

and is not overly labour intensive. We just spent few minutes on each of these

documents after transformation phase to deal with some mis-tagging problems in order

to generate the initial well-formed XML format, the rest of our engineering procedures

and software modules are totally automatic.

Our re-engineering method also has some limitations. Although most created

software components apply a general approach but we can just process PDF based

documents with bookmarks because of the transformation step. If we use an alternative

solution to generate the preliminary XML file then we can process other formats such as

DOC, RTF, etc. Moreover, the concept extraction module does not apply a generic

approach; we used this component only for some specifications and would like to

address this issue as one of our major future works. In the next part, we investigate the

usability of our final results.

7.2 Assessment of generated HTML Interfaces
In this part, we address the usability of generated HTML interfaces.. We also

compare the HTML interfaces generated by our framework with the HTML format of

the specifications that can be provided directly by Adobe Acrobat Professional. This tool

made a long hypertext page for each of those specifications along with anchors for

headings at the top of each output.

 72

After some evaluations, we detected the following benefits in our outcomes which

did not exist in the original PDF formats or Adobe-Generated HTML formats:

 Navigating: To be able to define previous, current, and next locations and go

forward and backward by sequential browsing of headings.

 Scrolling: It would be confusing to scroll a long hypertext page containing

hundreds of topics, headings, and cross references. Moreover, page boundary in

the PDF version makes it difficult to follow up related materials spread over

various pages such as a big table or a programming code.

 Learning: Humans can better handle small amount of information presented in a

single hypertext page which are related to a unique topic.

 Monitoring: To define a set of hypertext pages which have been downloaded

several times and are probably more interesting (They also get high ranking in

popular search engines such as Google, Yahoo, etc), and distinguish professional

users from regular ones who browse the document randomly.

 Downloading: Specifications, conference proceedings, technical books, etc are

not like novels. In the other word, we do not need to provide the whole document

at once, the better idea is to provide the table of contents as a menu for users and

then let them to select whatever they require. In a large scale assessment this

issue decreases the Internet traffic to a considerable amount.

 Printing: To be able to print all materials related to a single topic or heading

easily without having the entire document.

 Referencing: Cross-referencing among various specifications or documents

which carry common concepts, definitions, headings, and materials. For

example, connecting UML Superstructure Specification to the UML

Infrastructure Specification wherever it is necessary.

 Coloring: To be able to use different colors to present various classes of

information and highlight some significant parts of the document automatically.

To address deficiency of the final result, we should say that our final user interfaces

are not totally clean like the original PDF formats since we had a few wrong tag-

 73

recognitions during the conversion phase by Adobe Acrobat, for example, some lists

have been recognized as table cells or many extracted pictures are not clean. Moreover,

if the targeted document has small number of headings in comparison to the total

number of document pages, such as MOF in Table 9, then generated hypertext pages

would be very long and some of the mentioned usability will not be satisfied.

In the next part, the preliminary structure of our proposed document engineering

framework is demonstrated.

7.3 Initial architecture of the proposed framework
As we went further by re-engineering of more software specifications and technical

documents, we modified our software components and ended up with the initial

architecture of a specific document engineering framework which takes a PDF document

with bookmarks and generates corresponding XML and HTML versions of the

document. We do believe that Adobe can use our approach in order to generate a more

useful HTML version of a document. This architecture is demonstrated in Figure 35. We

also would like to address engineering lessons we learned during this framework design:

• Generating a clean XML file from PDF images requires complicated features

to recognize each document element correctly and deal with mis-tagging,

page boundary and that sort of things.

• Remarkable role of latest technologies in engineering tasks, for instance, we

applied XPath 2.0 vs. parsing packages which was a high level interaction

close to human’s language for concept extraction.

• Data analysis can facilitate the document engineering process, form a better

understanding, and construct robust rules for such a processing.

During the entire development phase, we encountered with some low level

challenges such as generating multiple hypertext pages by Saxon, detecting errors in

XSTL programming, creating complicated XPath expressions, and so on. In the last

chapter, final conclusions and proposed future work are presented.

 74

Text Extraction by XSLT Programming & XPath Expressions

PDF Documents
with Bookmarks

Subsequent Result
and Diagrams

Hypertext Version
of the Document

Consequent Result
in a New Page

Transforming the
Doc by Adobe

XML: Extracting
Logical Structure

Producing Multiple Hypertext Pages

Producing Table of Contents

Generating Heading Numbers Used in Linker Component

Generating Headings & Their Corresponding Hyperlinks
Used in Cross Referencing Component

Extracting Document Concept

Extracting Document Headings

Extracting Document Body without Headings

Linking Hypertext
Pages

Filtering
Headings

Analyzing
Document Data

Searching the
Document

Cross
Referencing

Figure 35. Initial architecture of the proposed document engineering framework

 75

8 Conclusions and Future Work

In this thesis we have described an approach to taking a raw PDF version of a

published specification, and converting this into a hypertext document that will be much

more useful to end users. As an intermediate step, we generated a clean XML document

with meaningful tags, and then generated from this a series of html documents

constituting the final system.

The key contributions of the thesis are 1) to illustrate methods for re-engineering a

PDF-based specification in a general way, and 2) to demonstrate how to make a more

usable HTML version of a document so that end-users to have a better experience with

software specifications. Our major goals were to make a complex document more usable

by allowing navigation of both its structure, and also of semantics described by the

document (e.g. in this case the UML class diagram relationships and package diagram

relationships).

The first phase involved document analysis to better understand the structure of the

document and establish a good infrastructure for our later objectives. We experimented

with processing using a variety of tools and formats for transformation and extracted the

logical structure of our document in the XML format; we also illustrated our reasons for

such an extraction by some statistical analyses.

In the second phase, we generated multiple hypertext pages for end users to facilitate

document browsing, navigating, and concept exploration. We applied the latest W3C

technologies such as XSLT and XPath expressions and learned that although using these

 76

technologies we can parse every XML document, it would be more usable if the created

XML document has strong logical relationships among its elements and attributes

similar to the XML document we produced (e.g. if the first child of a <Section> element

contains the ‘Class Descriptions’ string then you can detect UML classes & packages in

grandchildren of that <Section> element and so on, as you can see in Figure 33). That is

because of the excellent logical capabilities that XPath and XQuery expressions provide

for processing XML documents while other kinds of parsers may not supply such a

valuable ability. As a consequence, we do believe that people in charge of software

specifications can enrich their documents by embedding such a mentioned logical

relationship and meaningful keywords inside headings, paragraphs, etc.

To conclude, since we considered the generality of every module that was generated,

except the concept extractions which needs further research, we ended up with the idea

of creating a new “Document Engineering Framework” for complex specifications and

documents. Therefore, we are looking forward to do research in the following areas as

future work:

• To produce the mentioned tool we need to extract the initial XML document

independently from Adobe Acrobat which also generated some incorrectly

nested opening and closing tags. We are also interested to extract such an

XML document from other formats such as DOC, RTF, HTML, etc.

• To automate the concept extractions or at least create some Human Computer

Interaction (HCI) features for the detection of the logical relationships among

headings (as you can see in Figure 32) and creation of the corresponding

XPath expressions or simplified logical expressions by humans. This should

be done to extend the generality of the project to the concept extractions

module for other software specifications and documents. We intend to focus

on the hidden concepts found in the remaining natural language elements,

and consequently perform knowledge acquisition from software

specifications. For instance, we would like to capture lists of all bi-grams, tri-

 77

grams and quad-grams with their frequency of occurrence. The most frequent

of these, after excluding those that are simply stop words, will give us a sense

of the terminology and concepts in the document as a whole and present a

sense of the key topics in each chapter, section and subsection. We would

like to do related-phrases analysis for relationships between the concepts

identified in the terminological analysis. For example, patterns such as “X is

a kind of Y”, “X has a Y”, etc.

• To apply our framework to numerous other software specifications and

complex documents for exploring potential problems and research questions

that may arise.

• To extend our current statistical and data analysis to hundreds of software

specifications by an automatic document analyzer. We believe that

leveraging mathematical analysis can facilitate the document engineering

process, give us a better understanding of the document structures, and

forming robust rules and regulations for such a processing.

• To do usability studies for improving our current methods and discovering

users’ demands. Only by such an investigation we can have a deep

understanding of users’ difficulties; moreover, this exploration can enhance

the quality of the final user interfaces that we generate. For instance, we can

add a Frame-like interface with a tree control on the left that shows the

overall structure of a document in order to improve the navigability of the

final hypertext pages or create features that allow a user to add values to a

document and share it with others such as annotations, cross references, links

to related documentations, and so on.

Using the above approaches, we can establish a better infrastructure to increase the

understanding of complex specifications and make them more usable for end users.

 78

References

[1] S. Klink, A. Dengel, and T. Kieninger, “Document structure analysis based on

layout and textual Features”, in Proceedings of International Workshop on Document

Analysis systems, Brazil, 2000, pp. 99-111.

[2] S. Mao, A. Rosenfeld and T. Kanungo, “Document structure analysis algorithms:

A literature survey”, in Proceedings of SPIE Electronic Imaging, Vol. 5010, USA, 2003,

pp. 197-207.

[3] K. Summers, “Automatic discovery of logical document structure”, PhD Thesis,

Cornell University, 1998.

[4] S. Tsujimoto and H. Asada, “Understanding multi-articled documents”, in

Proceedings of 10th International Conference on Pattern Recognition, USA, 1990, pp.

551–556.

[5] K. Lee, Y. Choy and S. Cho, “Logical structure analysis and generation for

structured documents: A syntactic approach”, IEEE Transactions on Knowledge and

Data Engineering, Vol. 15, No. 5, 2003, pp. 1277-1294.

[6] J. Liang, “Document structure analysis and performance evaluation”, PhD

Thesis, University of Washington, USA, 1999.

[7] A. Conway, “Page grammars and page parsing: A syntactic approach to

document layout recognition”, in Proceedings of International Conference on Document

Analysis and Recognition, Japan, 1993, pp. 761–764.

[8] M. Aiello, C. Monz and L. Todoran, “Combining linguistic and spatial

 79

information for document analysis”, in Proceedings of RIAO Content-Based Multimedia

Information Access, France, 2000, pp. 266-275.

[9] O. Altamura, F. Esposito and D. Malerba, “Transforming paper documents into

XML format with WISDOM++”, International Journal on Document Analysis and

Recognition, vol. 4, 2001, pp. 2-17.

 [10] Y. Ishitani, “Document transformation system from papers to XML data based

on pivot XML document method”, in Proceedings of the Seventh International

Conference on Document Analysis and Recognition, Vol.1, Scotland, 2003, pp. 250-255.

[11] Y. Ishitani, “Logical structure analysis of document images based on emergent

computation”, in Proceedings of the Fifth International Conference on Document

Analysis and Recognition, India, 1999, pp. 189-192.

[12] A. Dengel and F. Dubiel, “Computer understanding of document structure”,

International Journal of Imaging Systems and Technology, Vol. 7, 1996, pp. 271–278.

[13] D. Niyogi and S. N. Srihari, “Knowledge-based derivation of document logical

structure,” in Proceedings of International Conference on Document Analysis and

Recognition, Canada, 1995, pp. 472–475.

[14] W. Cohen and L. Jensen, “A structured wrapper induction system for extracting

information from semi-structured documents”, in Workshop on Adaptive Text Extraction

and Mining, USA, 2001.

[15] K.Nakagawa, A.Nomura, and M.Suzuki, “Extraction of logical structure from

articles in mathematics”, 3rd International Conference on Mathematical Knowledge

Management, Poland, 2004, pp. 276-289.

[16] H. Déjean and J. Meunier, “Structuring documents according to their table of

 80

contents”, in Proceedings of the ACM Symposium on Document Engineering, United

Kingdom, 2005, pp. 2-9.

[17] F. He, X. Ding and L. Peng, “Hierarchical logical structure extraction of book

documents by analyzing tables of contents”, Document Recognition and Retrieval XI, in

Proceedings of SPIE-IS&T Electronic Imaging, SPIE Vol. 5296, 2004, pp. 6-13.

[18] C. Lin, Y. Niwa, and S. Narita, “Logical structure analysis of book document

images using contents information”, in Proceedings of International Conference on

Document Analysis and Recognition, Germany, 1997, pp. 1048–1054.

[19] X. Lin and Y. Xiong, “Detection and analysis of table of contents based on

content association”, Journal on Document Analysis & Recognition, 2005, pp. 132-143.

[20] S. Satoh, A. Takasu, and E. Katsura, “An automated generation of an electronic

library based on document image understanding”, in Proceedings of 3rd International

Conference on Document Analysis and Recognition, Vol. 1, Japan, 1995, pp. 163-166.

[21] F. Bourgeois, H. Emptoz and S. Bensafi, “Document understanding using

probabilistic relaxation: Application on tables of contents”, Sixth International

Conference on Document Analysis and Recognition (ICDAR), USA, 2001, pp. 508-512.

[22] R. Crowder and Y. Sim, “An approach to extracting knowledge from legacy

documents”, in Proceedings of ASME International Design Engineering Technical

Conferences and Computers & Information Engineering Conference, USA, 2004, 7 pp.

[23] G. Carenini, R. T. Ng, and E. Zwart, “Extracting knowledge from evaluative

text”, in Proceedings of the 3rd International Conference on Knowledge Capture,

Canada, 2005, pp. 11-18.

[24] M. Henzinger and S. Lawrence, “Extracting knowledge from the WWW”, in

 81

Proceedings of the National Academy of Science, Vol. 101, USA, 2004, pp. 5186-5191.

[25] J. Kreich, A. Luhn, and G. Maderlechner, “An experimental environment for

model based document analysis”, in Proceedings of 1st International Conference on

Document Analysis and Recognition, France, 1991, pp. 50–58.

[26] H. Sakamoto, H. Arimura, and S. Arikawa, “Knowledge discovery from semi-

structured texts”, Progress in Discovery Science, Germany, 2002, pp. 586-599.

[27] M. Vargas-Vera, E. Motta, J. Domingue, S. Shum, and M. Lanzoni,

“Knowledge extraction by using an ontology-based annotation tool”, in Proceedings of

the Knowledge Markup and Semantic Annotation Workshop, Canada, 2001, pp. 5-12.

[28] Y. Gil and V. Ratnakar, “IKRAFT: Interactive Knowledge Representation and

Acquisition from Text”, in Proceedings of the 13th International Conference on

Knowledge Engineering & Knowledge Management, Spain, 2002, pp. 27-36.

[29] W. R. Cyre, “Knowledge Extractor: A tool for extracting knowledge from text”,

in Proceedings of Fifth International Conference on Conceptual Structures (ICCS),

USA, 1997, pp. 607-610.

[30] E. Qeli, J. Gllavata and B. Freisleben, “Customizable detection of changes for

XML documents using XPath expressions”, in Proceedings of the ACM Symposium on

Document Engineering, Nethelands, 2006, pp. 88-90.

[31] E. Qeli and B. Freisleben, “Filtering XML documents using XPath expressions

and Aspect-Oriented Programming”, in Proceedings of the ACM Symposium on

Document Engineering, Netherlands, 2006, pp. 85-87.

[32] P. Geneves and N. Layaida, “Comparing XPath Expressions”, in Proceedings of

the ACM symposium on Document engineering, Netherlands, 2006, pp. 65-74.

 82

[33] P. Geneves and N. Layaida, “A System for the static analysis of XPath”, ACM

Transactions on Information Systems, Vol. 24, No. 4, 2006, pp. 475–502.

[34] M. Marx, “Conditional XPath: The first order complete XPath dialect”, in

Proceedings of the twenty-third ACM Symposium on Principles of Database Systems,

France, 2004, pp. 13-22.

[35] Extensible Markup Language (XML): Version 1.1 (Second Edition), W3C

Recommendation, 16 August 2006, http://www.w3.org/TR/xml11/

[36] XML Schema Part: 0-Primer, 1-Structures, and 2-Datatypes (Second Edition),

W3C Recommendation, 28 October 2004, http://www.w3.org/TR/xmlschema-1/

[37] XSL Transformations (XSLT): Version 2.0, W3C Recommendation, 23 January

2007, http://www.w3.org/TR/xslt20/

[38] XML Path Language (XPath): Version 2.0: W3C Recommendation, 23 January

2007, http://www.w3.org/TR/xpath20/

[39] XML Query Language (XQuery): Version 1.0, W3C Recommendation, 23

January 2007, http://www.w3c.org/TR/xquery/

[40] ACM Symposium on Doc Engineering, http://www.documentengineering.org/

[41] Stylus Studio® Corporate: http://www.stylusstudio.com/

[42] Altova Company: http://www.altova.com/

[43] XSLT and XQuery Processing: http://www.saxonica.com/

 83

http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xpath20/
http://www.w3c.org/TR/xquery/
http://www.documentengineering.org/
http://www.stylusstudio.com/
http://www.altova.com/
http://www.saxonica.com/

Appendix A: List of Acronyms

AOP Aspect Oriented Programming

COTS Commercial Off The Shelf

CSS Cascading Style Sheets

DOM Document Object Model

DTD Document Type Definition

FOL First Order Logic

HTML Hyper Text Markup Language

IKRAFT Interactive Knowledge Representation and Acquisition From Text

NLP Natural Language Processing

OCR Optical Character Recognition

PDF Portable Document Format

RTF Rich Text Format

SODA System for Office Document Analysis

SQL Structured Query Language

ToC Table of Contents

UI User Interface

UML Unified Modelling Language

W3C World Wide Web Consortium

WISDOM Wise System for Document Management

XML Extensible Markup Language

XPath XML Path Language

XQuery XML Query Language

XSD XML Schema Definition

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

HCI Human Computer Interaction

 84

Appendix B: Logical Structure Extractor

public static void LogicalStructureExtraction(String[] inputStrings)
{

boolean startAnalysis=false;
int indexOfLinkTarget; // "LinkTarger" is a key word
int indexOfFirstHeader;
int indexOfBeginingOfHeaders;
int indexOfEndOfHeaders;
int stackPointer=-1;
int[] tempStack = new int[1000];
String lineSt="";
String tempStHeaders="";
String tempHeaderNumberFive="";
String [] analyzedHeader={"","","",""};

try{ // Read the INPUT FILE
FileReader inputFileReader = new FileReader(inputStrings[0]);
BufferedReader inputFileBuffer = new BufferedReader(inputFileReader);
while(true){ // Until the end of the input file

li tFil
if(lineSt==null){ // End of the input file
neSt=inpu eBuffer.readLine();

 break;
 }
 indexOfLinkTarget=lineSt.indexOf("LinkTarget");
 if(indexOfLinkTarget!=-1){
 if(startAnalysis!=true){
 indexOfFirstHeader=lineSt.indexOf(inputStrings[1]);
 if(indexOfFirstHeader!=-1){
 startAnalysis=true;
 System.out.println("\n"+inputStrings[1]);
 analyzedHeader=headersAnalysis(inputStrings[1]);
 stackPointer ++;

tempStack[stackPointer]=Integer.parseInt(analyzedHeader[0]);
writeUMLFile("<Chapter
Number="+(char)34+analyzedHeader[1]+(char)34+">"+

 (char)10+"<Name>"+analyzedHeader[2]+"</Name>"+(char)10);
 }
 }
 else{
 indexOfLinkTarget=indexOfLinkTarget+10;
 indexOfBeginingOfHeaders=lineSt.indexOf(">",indexOfLinkTarget);
 indexOfEndOfHeaders=lineSt.indexOf("<",indexOfBeginingOfHeaders);
 indexOfBeginingOfHeaders ++;
 indexOfEndOfHeaders --;

tempStHeaders=lineSt.substring(indexOfBeginingOfHeaders,indexOfEn
dOfHeaders);

 if(tempStHeaders.compareTo("Index")==0){ // End of the processing
 break;
 }
 System.out.println("\n"+tempStHeaders);
 analyzedHeader=headersAnalysis(tempStHeaders);

while

 85

((Integer.parseInt(analyzedHeader[0])<=tempStack[stackPointer])||
(Integer.parseInt(analyzedHeader[0])==6 &&
tempStack[stackPointer]==3))
{

 if(tempStack[stackPointer]==1){
 writeUMLFile("</Part>"+(char)10);
 }
 else if(tempStack[stackPointer]==2){
 writeUMLFile("</Chapter>"+(char)10);
 }
 else if(tempStack[stackPointer]==3){
 writeUMLFile("</Section>"+(char)10);
 }

else if(tempStack[stackPointer]==4){
 writeUMLFile("</Subsection>"+(char)10);
 }
 else if(tempStack[stackPointer]==5){

tempHeaderNumberFive=tempHeaderNumberFive.replace((char)32,(char)
95);

 writeUMLFile("</"+tempHeaderNumberFive+">"+(char)10);
 }
 else if(tempStack[stackPointer]==6){
 writeUMLFile("</Annex>"+(char)10);
 }
 stackPointer --;
 if(stackPointer==-1){ // Stack is empty
 break;
 }
 }
 stackPointer ++;

tempStack[stackPointer]=Integer.parseInt(analyzedHeader[0]);
 if(Integer.parseInt(analyzedHeader[0])==1){

writeUMLFile("<Part Number="+(char)34+analyzedHeader[2]
+(char)34+">"+(char)10+"<Name>"+analyzedHeader[3]+"</Name>"
+(char)10);
}

 else if(Integer.parseInt(analyzedHeader[0])==2){
writeUMLFile("<Chapter Number="+(char)34+analyzedHeader[1]
+(char)34+">"+(char)10+"<Name>"+analyzedHeader[2]+"</Name>"
+(char)10);
}

 else if(Integer.parseInt(analyzedHeader[0])==3){
writeUMLFile("<Section Number="+(char)34+analyzedHeader[1]
+(char)34+">"+(char)10+"<Name>"+analyzedHeader[2]+"</Name>"
+(char)10);
}

 else if(Integer.parseInt(analyzedHeader[0])==4){
writeUMLFile("<Subsection Number="+(char)34+analyzedHeader[1]
+(char)34+">"+(char)10+"<Name>"+analyzedHeader[2]+"</Name>"
+(char)10+"<References>"+analyzedHeader[3]+"</References>"
+(char)10);
}

 else if(Integer.parseInt(analyzedHeader[0])==5){
analyzedHeader[1]=analyzedHeader[1].replace((char)32,(char)95);
writeUMLFile("<"+analyzedHeader[1]+">"+(char)10);

 tempHeaderNumberFive=analyzedHeader[1];

 86

 }
 else if(Integer.parseInt(analyzedHeader[0])==6){

writeUMLFile("<Annex Number="+(char)34+analyzedHeader[2]
+(char)34+">"+(char)10+"<Name>"+analyzedHeader[3]+"</Name>"
+(char)10);

 }
 }
 }
 else{
 if(startAnalysis==true &&

lineSt.compareTo("<Part>")!=0&&lineSt.compareTo("</Part>")!=0 &&
lineSt.compareTo("<Sect>")!=0&&lineSt.compareTo("</Sect>")!=0 &&
lineSt.compareTo("<Div>")!=0 && lineSt.compareTo("</Div>")!=0 &&

 lineSt.compareTo("")!=0 &&
lineSt.compareTo("</TaggedPDF-doc>")!=0 &&
lineSt.compareTo("<P>UML Superstructure Specification</P>")!=0){

 writeUMLFile(lineSt+(char)10);
 }

}
} // End of the WHILE loop (End of the file)
while(stackPointer!=-1){ // We have to empty the "stack"
if(tempStack[stackPointer]==1){
writeUMLFile("</Part>"+(char)10);
}
else if(tempStack[stackPointer]==2){
writeUMLFile("</Chapter>"+(char)10);
}
else if(tempStack[stackPointer]==3){
writeUMLFile("</Section>"+(char)10);
}
else if(tempStack[stackPointer]==4){
writeUMLFile("</Subsection>"+(char)10);
}
else if(tempStack[stackPointer]==5){
tempHeaderNumberFive=tempHeaderNumberFive.replace((char)32,(char)95);
writeUMLFile("</"+tempHeaderNumberFive+">"+(char)10);
}
else if(tempStack[stackPointer]==6){
writeUMLFile("</Annex>"+(char)10);
}
stackPointer --;
}
inputFileReader.close();
} // End of the TRY
catch(FileNotFoundException e){
System.out.println("Unable to Open INPUT File");
}
catch(IOException e){
System.out.println("Unable to Close INPUT File");
}
}

 87

Appendix C: First Java Parser

public static void readUMLFile(String f_Name,int numChar)
{

int fileChar;
int tempInt=0;
int stackPointer=0;
boolean flagSpaceChar=false;
String firstTags="<html>";
String lastTags="</html>";
String tempStDiv="";
String tempStHeader="";
int [] tempStack = new int[100];

writeUMLFile(firstTags+(char)10);
try{ // Read the INPUT FILE
 FileReader inputReader = new FileReader(f_Name);
 fileChar=inputReader.read();
 while(fileChar!=-1){ // It is not end of the FILE
 if(fileChar==60){ // 60 = "<"
 for(int i=0;i<4;i++){
 fileChar=inputReader.read();
 tempStDiv=tempStDiv+(char)fileChar;
 }
 if(tempStDiv.equals("div ")){
 while(true){
 fileChar=inputReader.read();
 if (fileChar==62){ // 62 = ">"
 fileChar=inputReader.read();
 if(fileChar >= 49 && fileChar <= 57){ // 1 .. 9
 do{
 if(fileChar!=13 && fileChar!=10 && fileChar!=555){
 tempStHeader=tempStHeader+(char)fileChar;
 if(fileChar==32){ // 32 = Space
 flagSpaceChar=true; // I saw the first SPACE
 }
 }
 fileChar=inputReader.read();
 if(flagSpaceChar==true && fileChar==32){ //I saw the second SPACE
 fileChar=555; // To skip first IF in the DO loop
 }

else // (flagSpaceChar == False || fileChar!=32)
 if(flagSpaceChar==true){ // Just one SPACE or last SPACE
 flagSpaceChar=false;
 }
 }while(fileChar!=60); // 60 = "<"
 tempInt=headersAnalysis(tempStHeader);
 tempStack[stackPointer]=tempInt;
 stackPointer++;
 tempStHeader="";
 break; // Exit from WHILE(true)
 } // End of the IF ("1 .. 9")

 88

 } // End of the IF ("62")
 } End of the WHILE(true) //
 }else // End of the IF ("div ")
 if(tempStDiv.equals("/div")){
 stackPointer --;
 if(tempStack[stackPointer]==0){
 writeUMLFile("</Chapter>"+(char)10);
 }
 else if (tempStack[stackPointer]==1){
 writeUMLFile("</Section>"+(char)10);
 }
 else{ // periodCounter==2 like 1.2.3
 writeUMLFile("</Subsection>"+(char)10);
 }
 } // End of the IF ("/div")
 tempStDiv="";
 } // End of the IF ("<")
 fileChar = inputReader.read();
 } // End of the WHILE loop (End of the file)
 inputReader.close();
} //
catch(FileNotFoundException e){

End of the TRY

System.out.println("Unable to Open INPUT File");
}
catch(IOException e){
System.out.println("Unable to Close INPUT File");
}
writeUMLFile(lastTags);
}
// *** ****** ***
public static int headersAnalysis(String tempStHeader)

* * ***

{
 int lengthHeader;
 int periodCounter=0;
 int firstIndex=0, secondIndex=0;
 char tempChar=' ';
 String firstPartHeader="";
 String secondPartHeader="";
 String thirdPartHeader="";
 lengthHeader=tempStHeader.length();
 firstIndex=tempStHeader.indexOf(" ");
 for(int i=0;i<firstIndex;i++){
 tempChar=tempStHeader.charAt(i);
 if(tempChar==46){ // Period "."
 periodCounter ++;
 }
 firstPartHeader=firstPartHeader+tempChar;
 }
 firstIndex ++; // To skip the "space" for the next while loop
 while(firstIndex<lengthHeader){
 tempChar=tempStHeader.charAt(firstIndex);
 if mpChar==40){ (te
 break;
 }
 secondPartHeader=secondPartHeader+tempChar;
 firstIndex ++;

 89

 }
 secondIndex=tempStHeader.indexOf(" (");
 if(secondIndex!=-1){ // Found the " ("
 secondIndex=secondIndex+7; // To skip the " (from "
 while(secondIndex<(lengthHeader-1)){
 tempChar=tempStHeader.charAt(secondIndex);
 thirdPartHeader=thirdPartHeader+tempChar;
 secondIndex ++;
 }
 }
 if(periodCounter==0){

writeUMLFile("<Chapter Number="+(char)34+firstPartHeader+
(char)34+">"+(char)10+"<Name>"+secondPartHeader+"</Name>"
+(char)10);

 }
 else if (periodCounter==1){
 writeUMLFile("<Section Number="+(char)34+firstPartHeader+
 (char 34+">"+(char)10+"<Name>"+secondPartHeader+"</Name>")

+(char)10);
 }
 else{ // periodCounter==2 like 1.2.3
 writeUMLFile("<Subsection Number="+(char)34+firstPartHeader+
 (char)34+">"+(char)10+"<Name>"+secondPartHeader+"</Name>"+
 (char 10+"<References>"+thirdPartHeader+"</References>")

+(char)10);
 }
 return periodCounter;
}

 90

Appendix D: XSLT Codes

Hyperlinks: Automatic association of dynamic hyperlinks to static bookmarks

 91

Tables: Dynamic table structure

 92

Simple and Nested Lists: List Structure

 93

	1 Introduction
	1.1 Definitions and technologies
	1.2 Motivation and research questions
	1.3 Contributions

	2 Literature Review
	2.1 Document structure analysis
	2.2 Existing document analysis systems
	2.3 Leveraging tables of contents
	2.4 Knowledge extraction
	2.5 Ongoing research on XPath

	3 Document Transformation
	3.1 Conversions
	3.2 Criteria
	3.3 First stage of evaluation
	3.4 Second stage of evaluation

	4 Logical Structure Extraction
	4.1 Data analyses to provide evidence for our initial assumption
	4.2 First refinement approach: Stack-based parser
	4.3 Second implementation approach: Bookmarks

	5 Text Extraction to Create Initial Hypertext Pages
	5.1 Checking well-formedness
	5.2 Generating a valid schema
	5.3 Producing multiple outputs
	5.4 Connecting generated outputs sequentially
	5.4.1 Connecting pages using XPath expressions
	5.4.2 Connecting pages using a programming approach

	5.5 Forming major document elements
	5.5.1 Anchors in long pages
	5.5.2 Figures
	5.5.3 Tables
	5.5.4 Lists

	6 Concept Extraction and Cross Referencing
	6.1 Concepts extraction
	6.1.1 UML class hierarchy extraction
	6.1.2 UML package hierarchy extraction

	6.2 Cross referencing

	7 Experimental Result and Architecture of the Framework
	7.1 Re-engineering of various OMG specifications
	7.2 Assessment of generated HTML Interfaces
	7.3 Initial architecture of the proposed framework

	8 Conclusions and Future Work

