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Abstract   

Trace analysis is one of major methods in dynamic analysis of reverse engineering. Run-

time information contained in traces can reveal extensive relationships of different com-

municating entities that would be less obvious if only static analysis of source code was 

performed. Traces can be of better assistance to understand a system when they display 

only high-level information– showing the essence of the behaviour of a system, as op-

posed to large masses of detail. However, most existing trace exploration systems cannot 

gracefully handle the size explosion problem that normally occurs, especially when trace 

data is captured and gathered over a long period. 

 

One step towards dealing with large traces is representing it using a schema developed in 

our laboratory called “Compact Trace Format” [1], where the whole trace is converted 

from a tree structure to a graph representation and only distinct nodes exist in it. Various 

filtering algorithms can then be applied to this model, and as a result, some nodes that are 

of less interest to a user can be filtered out and only those that help in understanding will 

be displayed.  

 

In this thesis we have done three things: Firstly we implemented a tool based on the 

above approach. Secondly, as part of the tool we implemented a dynamic trace-loading 

scheme allowing a user to navigate through a large trace more rapidly. Instead of loading 

a whole tree for exploration, the loading algorithm only retrieves the part of the tree 

needed by the current display window. With this method, not only can the size explosion 

be conquered, but performance and responsiveness requirements can also be achieved. 

The third item achieved is to implement a special tree widget as part of the tool. This ex-

tends the UI of standard tree widgets, and is aimed to help users quickly navigate the 

trace and further aid them in understanding part of the system in which they are inter-

ested.  
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Chapter 1 Introduction 

The domain of this research is the field of software reverse engineering; in this field, 

relevant information is extracted from the system and presented to a software engineer 

who needs to carry out some maintenance tasks to an existing system. To facilitate under-

standing of a system, two methodologies, static analysis and dynamic analysis are often 

used. We focus on trace analysis, a form of dynamic analysis. 

 

Trace analysis is a form of dynamic analysis used to understand the behaviour of com-

plex systems. However, the size of traces often becomes an obstacle because of the time 

and the memory required to process them, as well as the time required by software engi-

neers to manipulate them. 

 

Our research will investigate how traces can be explored by a software engineer to help 

him or her understand the subsystem under investigation. 

1.1 Motivation 

During our interactions with software engineers in QNX1, problems dealing with large 

traces arise. Traces are generally captured over a relatively long period of time and have 

millions lines of data representing message sends or procedure calls. Handling these 

traces can not only take a long time and require very large amount of physical memory; 

but also tend to overwhelm software engineers visually due to the sheer volume of data. 

Also large traces make navigation actions, such as zooming and panning, very slow [2]. 

 

A similar situation also exists in other contexts where there is a requirement for handling 

large data sets. For example, in the biomedical area, large biological trees need to be ef-

fectively displayed, compared and identified [3]. This thesis will explore several issues, 

                                                 
1 QNX Software Systems sponsored this research in conjunction with the National Capital Institute of Tele-
communications. 
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primarily related to the user interfaces of tree exploration widgets, which could perhaps 

also be useful in these other contexts. 

 

Based on the aforementioned observations, the main research objectives of this thesis can 

be summarized as follows: 

• Finding effective techniques to deal with exploring large traces. 

• Designing specific user interface controls to visualize and explore large traces. 

• Implementing an appropriate tool to help software engineers understand traces. 

• Validating the techniques and the tool through a series of studies.  

1.2 Related Work 

1.2.1 Program Comprehension 

Program comprehension, also known as program understanding, is a central activity in 

software maintenance [4]. Before a software engineer can make changes to an existing 

system, at least part of the system needs to be understood. In fact, correct understanding 

is necessary for various tasks including: fixing the system’s defects, code optimization, 

reuse, and legacy system migration. However, human understanding is a complicated 

learning process and is less studied because of its multi-disciplinary characteristics [5]. 

To do a good job of developing tools for program comprehension, it is necessary to in-

vestigate how the mental processes of software engineers work when carrying out main-

tenance tasks, and then to build tools that facilitate these mental activities. We must also 

evaluate any resulting tools with real users. 

1.2.2 Processing Large Data Sets 

Many visualization systems work well with a moderate amount of data, but they do not 

scale well to extremely large data sets [6]. Not only does data loading become slow, but 

data processing and the computation of visualizations also take longer to complete [7]. 

Zooming a detailed view out to a global level view can be used to identify useful applica-

tion structures. However, this can become ineffective if response time becomes too slow. 
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Many areas, such as medicine, and data mining also have to deal with large data sets [3, 

8], and have developed sophisticated special-purpose tools with adequate response time. 

Many tool developers, however, want to build applications using the standard widgets 

available in GUI toolkits available with programming languages (for example, Swing in 

Java, or SWT in Eclipse). The standard list or tree-oriented widgets were not, however, 

designed to deal with truly massive amounts of data.  A major objective of this thesis will 

be to overcome this limitation. 

1.2.3 Visualization Techniques 

Visualization has been proved to be effective in helping human understanding [9, 10]. As 

a result, a plethora of visualization techniques exist in various contexts. We investigated 

different visualization techniques and how they can be used in trace visualization. How-

ever, we will selectively introduce those techniques that are widely used in the area of 

reverse engineering, particularly focusing on tree-structured data as found in traces. 

1.3 Thesis Contributions 

Our research activities have been focusing on effective visualization and navigation of 

very large software execution traces. To conquer the size explosion of large traces, a dy-

namic data-loading algorithm has been developed which only retrieves nodes needed for 

the current window as a user navigates through the tree. Instead of generating the whole 

tree for visualization, the dynamic data loading algorithm will only retrieve and render 

those tree nodes that are required in the current window. A new tree widget that displays 

this dynamic tree has also been constructed. This gives a similar look and feel as the tra-

ditional tree widget but additionally supports quick filtering of nodes so the user can 

more effectively explore the traces.  

 

In this thesis, we have achieved the following: 

• We have demonstrated the effectiveness of a new tree browsing capability in Java 

that allows for only those parts of the tree that are currently needed to be managed 

by the user interface. 
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• We have shown the effectiveness of a tree browser UI that, in addition to the 

standard + and – icons to expand and collapse tree nodes, has a ~ icon which can 

show sub items that are partly hidden by some filtering algorithms. 

 

• We have identified the requirements for building an effective reverse engineering 

tool and developed a tool called SEAT (Software Exploration and Analysis Tool) 

that addresses the requirements. We also conducted several studies to evaluate the 

usefulness of the tool.  

 

Our research can be of interests to several groups of people: 

 

• Software engineers can use the trace analysis tool SEAT to help understand the 

dynamics of the analyzed system. 

 

• Software designers who need to circumvent traditional user interface widgets 

when facing large data sets can use the dynamic loading technique and the tree 

widget in user interfaces they are designing.  

 

• Individuals in disciplines other than computer science who need to dynamically 

process large data sets can also use the facilities we have developed. 

 

Our work may also contribute to those who conduct usability testing of novel user de-

signed widgets and evaluate the benefit of new widgets vs. existing ones. 

1.4 Thesis Outline 

The thesis will begin with a background literature review in Chapter 2. Four areas related 

to our research are surveyed, including reverse engineering, program comprehension, 

visualization techniques of large data sets, and trace exploration tools. 

 

In Chapter 3, we will discuss the challenges with dealing with large traces, and focus on 

requirements for dynamic data loading and trace. 

 Chapter 1 Introduction  4 



 

 

In Chapter 4, we will identify requirements for building reverse engineering tools and the 

design of SEAT, a tool encompassing the new widget that addresses the challenges de-

scribed in Chapter 3.  

 

In Chapter 5, we will explain in detail how the dynamic loading algorithm works. 

 

In Chapter 6, we will describe the design of a special user widget with additional features 

that support trace exploration using the dynamic loading methodology. 

 

In Chapter 7, we will present the evaluation of our tool through user testing.  

 

We will conclude in Chapter 8 and present suggested future work. 
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Chapter 2 Background 

2.1 Introduction 

In this chapter, we will discuss the following areas that are related to this thesis: 

 

• Reverse engineering  

• Program comprehension  

• Visualization techniques for large data set 

• Trace exploration tools and formats 

2.2 Reverse Engineering 

Chikofsky provided the following definition for reverse engineering [11]:  

 

"Reverse engineering is the process of analyzing a subject system to identify the system’s 

components and their inter-relationships and to create representations of the system in 

another form or at a higher level of abstraction". 

 

Reverse engineering investigates techniques and tools to help software maintenance. It 

helps software engineers who explore the software systems determine where modifica-

tions should be done. In order to successfully carry out maintenance tasks, the target sys-

tem or at least part of it must first be understood [12]. As a result, reverse engineering is 

summarized as focusing on “understanding the code.” [13]. However, the code does not 

contain all the needed information for understanding the system [12]. Other knowledge, 

such as architecture and design tradeoffs often only exists in the minds of people since 

they are typically not well documented. Therefore, reverse engineering techniques are 

needed to build a descriptive view of the system at various levels of abstraction.  

 

 Chapter 2 Background  6 



 

In reverse engineering, there are often two complementary ways for understanding an ex-

isting system: static analysis and dynamic analysis. 

 

Static analysis deals with source code, and it is the process that evaluates a system or 

component using code, structure, architecture and documentation without executing the 

program [14]. Static analysis includes techniques such as manual inspection, automated 

program analysis and data flow analysis [15]. The advantage of static analysis is that it 

can provide information about software by giving objective measurements [15]. Control 

flow, complexity metrics and class relations can all be extracted. The static model ex-

tracted can also be used to verify that architectural design guidelines are followed [16]. 

 

While static analysis does not necessitate actual execution of the software, dynamic 

analysis involves running the system formally under controlled circumstances and results 

are often known and expected before running the system [17]. Dynamic analysis gener-

ally captures various kinds of run-time information, with the goal of understanding the 

dynamic characteristics of a design (execution sequences and relative time ordering of 

events) [18]. Profiling is one of the techniques often performed in dynamic analysis: this 

involves periodic sampling of what is being executed. Tracing on the other hand involves 

recording all the events that occur in the system; the events recorded could be statement 

execution, routine calls or inter-process message sends.  

 

Dynamic analysis tends to be less favoured than static analysis because of the difficulties 

in information gathering, the size of the information gathered, and consequent difficulties 

in the interpretation of this information. Collecting dynamic information often needs spe-

cial settings in source code or the environment; these can be cumbersome in many situa-

tions. Also the data collected can be extremely large which makes interpreting it and ex-

tracting useful information a daunting task. As a result, compared with pervasive static 

analysis tools, such as those available in IBM’s Rational products, dynamic tools tend not 

to be widely used even though they could be a great aid to understanding. The causes of 

bugs and system irregularities may be most easily found through dynamic approaches, 

especially in legacy systems that are process centric rather than data centric [19]. There-
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fore we need ways to allow software engineers to somehow find and absorb dynamic in-

formation despite the aforementioned difficulties.  

2.3 Program Comprehension 

Program comprehension is the process of understanding a program with the purpose of 

performing further tasks such as fixing bugs, refactoring code, and porting code to differ-

ent platforms. Program comprehension is important for several reasons: most develop-

ment projects do not involve writing a program from scratch but instead start from exist-

ing components and frameworks. High turnover of large projects often results in intro-

ducing developers that are new to the systems and these developers need to familiarize 

themselves with the structure of the new systems before they can make changes or add 

new functionality. Lack of documentation or poor documentation, such as outdated ones 

that cannot reflect the latest design prevent developers from effectively comprehending 

the existing systems and force them to dig into source code to understand how a system is 

really designed. Other activities such as debugging are also comprehension-related.  

2.3.1 Understanding Complex Systems 

Understanding existing software systems is known to be a key issue in the area of soft-

ware reverse engineering. Compared with understanding simple “programs”, software 

engineers need to comprehend large complex software systems, which include not only 

data and algorithms, but also components and architectures. Knowledge of architectural 

concepts is key to understand legacy software and in designing new software. Such con-

cepts include subsystem structures, layered structures, inheritance hierarchies, etc. How-

ever, several difficulties arise in understanding: these include lack of abstraction, lack of 

documentation, mixed programming languages, the scaling problem (difficulties that in-

crease with size in a greater-than-linear manner) and unclear tool semantics (inability of 

tools to address understanding issues, and conflicts of concepts of different tools in ad-

dressing similar problem) [20].   

 

The good news to maintainers is that we do not need to understand the whole system be-

fore changes can be made. Through the observation of software engineers’ work prac-
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tices, Lakhotia concludes that changes are often within a relatively small amount of func-

tionality at a time and therefore it is not always necessary to understand the design of the 

whole system in order to make correct changes [21]. From the perspective of traces, this 

means that only events that correspond to a programmer’s interest need to be further stud-

ied. 

2.3.2 Human Cognitive Model 

Exploring how human mental processes work can help us understand program compre-

hension better. The process of how humans understand code has been extensively inves-

tigated [22]. Often software engineers use programming knowledge, domain knowledge 

and various strategies to understand a new piece of program [23]. For example one might 

rely solely on source code to extract syntactic abstractions. Researchers have proposed 

several models for program comprehension and have concluded that software engineers 

will try to construct mappings through mental models during a program understanding 

process [5]. A mental model is defined as “an internal, working representation of the 

software under consideration” [5]. 

 

Cognitive models are often used to represent the mental processes software engineers use 

and the interactions that happen between humans and machines. They correspond to the 

mental models used by software engineers as they form a mental representation of the 

program under study. In research about how human beings acquire knowledge, several 

cognitive models have been proposed: 

 

1. In the top-down model the software engineer formulates hypotheses and decomposes a 

system into subsystems to form a deeper and deeper understanding of the system and its 

functionalities. Thus the mental model is composed of a hierarchy of goals and plans and 

it represents knowledge about an application domain. It is often used when code is famil-

iar [24].  

 

2. Brooks extended the top-down model and proposed a theory that describes program-

ming as a process of constructing mappings from a problem domain to the programming 
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domain, with some possible intermediate domain [25]. The theory states that, “Compre-

hending a program involves reconstructing part or all of these mappings”. The recon-

struction process is driven by creation, confirmation, and refinement of hypotheses. 

 

3. The bottom-up approach begins with reading source code and mentally constructing a 

series of higher-level abstractions called chunks by synthesizing details. A program 

model is constructed through clustering basic program text to build control flow level ab-

stractions [26]. 

 

4. Mayrhauser proposed an integrated model based on the previous models and defined it 

with four components: the top-down, situation and program models and the knowledge 

base [27]. In this model, the knowledge base which contains entities like text structures, 

plans, hypothesis, and rules of discourse, is necessary to construct the other three models. 

The top-down model is invoked when the type of code is familiar, and the model repre-

sents high-level functionality of a subsystem. Whereas a program model is built from bot-

tom up when the code is new and the model mainly consists of disjointed flow-level func-

tionality synthesized from code. The situation model is an intermediate model represent-

ing functional knowledge and is also constructed from bottom up but is higher than the 

program model. Typically, a chuck of code will correspond to a functional description in 

the situation model. The integrated model often exploits all the three sub models and they 

may be active at any time during the comprehension process. For example, when under-

standing a piece of the system when building a program model, a software engineer may 

find some code that indicates a hypothesis, and will therefore change to the top–down 

model. To support the hypothesis, several sub-goals may be generated leading to switches 

to the other two models. Two dynamic elements are often used in this process: chunking 

to create new, higher-level structures from lower level chunks, and cross-referencing to 

relate two different levels of abstraction together. 

 

The consensus in the program comprehension community is that the integrated model is 

closer to how human mental processes work. 
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2.4 Visualization Techniques for Large Data Sets 

Price defined software visualization as "the use of the crafts of typography, graphic de-

sign, animation, and cinematography with modern human-computer interaction technol-

ogy to facilitate both the human understanding and effective use of computer software” 

[28].  

 

Visualization is a heavily employed technique in software engineering. Generally, it uses 

colours, shapes, space and text to provide the user with a model of the software. For ex-

ample, system architecture can be depicted using class diagrams and interactions can be 

represented as sequence diagrams. Hendrix concluded that effective software visualiza-

tions could provide measurable benefits in program comprehension [29]. 

 

To satisfy the need to visualize large data set, different visualization techniques have 

been proposed. 

2.4.1 SeeSoft 

SeeSoft [30] is primarily used to visualize text-based files such as source code (See Fig-

ure 1). It maps each row of text into a line with the colour denoting a statistic of interest. 

The statistics can be any attributes derived for the source, such as revision history or exe-

cution frequency. The main advantage of SeeSoft is that it can dramatically reduce the 

size of the representation so interesting visual patterns may be found and these patterns 

often relate to attributes that are repeated in data. 
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Figure 1 SeeSoft showing editing history of source files 

 

Because 2D views of SeeSoft can only express limited attributes and relationships, 3D 

extensions have been proposed to support visualization of multiple attributes at the same 

time [31]. Elements of visualizations include polycylinders, height, depth, colour, and 

position. User interactions support navigation, scale and rotation in each direction. 

2.4.2 Focus + Context Visualization 

Focus + Context [32] visualization is another approach that is aimed to maximize the use 

of the display resource (See Figure 2). It tries to present all the data in one screen to give 

the user an overview, but at the same time, distorting the representation so that data in 

focus will be displayed in more detail while data at the edge of focus is blurred. One ex-

ample of this technique is the hyperbolic tree browser [33]. 
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Focus + Context supports automatic calculation of the degree of user interest. If a node is 

clicked or expanded, that node becomes the focus node; the degree of interest of sibling 

nodes is calculated according to their distances from the focused node. The technique 

uses different node sizes to show the importance of nodes.  

 

 

Figure 2 Focus + Context visualization 

 

When displaying a large volume of information, the drawback is that information distant 

from the focus will become so small that it cannot be perceived. A second concern is 

speed: a change of focus results in a need to recalculate and redraw the whole layout [34].  

2.4.3 Multiple Views 

The Multiple Views technique uses two or more views to visualize various aspects of the 

same entity [35]. These views are often correlated and synchronized to provide the user 

with more visual aid. A global view is often used to display system-level information and 

different auxiliary views can display various facets of interest through synchronization 

with the global view. By displaying the data in multiple ways, a user may understand the 

information through different perspectives [36, 37]. Also the information contained in 

 Chapter 2 Background  13 



 

individual views can be integrated into a coherent image of the data as a whole by the 

tool user. The direct benefit is improved user performance. 

2.4.4 TreeMap 

TreeMap [38] visualizes hierarchical structures by a space filling and dividing technique 

(See Figure 3). It starts with a rectangle area to denote the root node, and then in each 

level, children will divide the space allocated to their parent. Information in intermediate 

levels is not clear in this visualization. If only attributes at leaf level are of interest, this 

technique can be a choice. 

 

 

Figure 3 TreeMap visualization of 1 million items 

2.4.5 ConeTree 

ConeTree [39] is a three-dimensional tree representation (See Figure 4). It presents hier-

archical information either horizontally or vertically. It draws one node at the apex of the 

cone and all the children nodes in the circular base of the cone. The children nodes are 

drawn in layers and overlaid in depth to minimize the visual clustering of nodes. The 
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primary goal of the core tree approach is to present the whole hierarchy with minimum 

scrolling or no scrolling required. But experiments  [40] showed that when the total num-

ber of tree nodes exceeds 1000, the display becomes too cluttered to be effective. 

 

 

Figure 4 ConeTree visualization of a directory structure 

 

To overcome the limitation of ConeTree, fsviz is proposed to augment ConeTree with 

different graphical and interaction techniques to scale to larger hierarchies while main-

taining user control [41].  It makes better use of colour, shape and text to designate dif-

ferent types of objects. A layout algorithm based on scaling each cone, and a focus + con-

text view is used to address the degree of interest as discussed in section 2.4.2. The proc-

ess that brings some nodes to the focus and others to the edge is also animated.  

 

The challenge for visualization using three dimensions is how to best exploit its capabili-

ties. A consensus has not yet been reached about whether 3D is more effective and under-

standable than 2D [41]. 
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2.4.6 T2.5D 

T2.5D [42] is a technique to conquer the expensive animation for 3D and the space limi-

tations of 2D (See Figure 5). It displays nodes in both highlighted and dimmed modes. 

The highlighted nodes are those the user is currently interested in and they are displayed 

in the foreground to be viewed and navigated with ease. The dim nodes are displayed in 

z-order to provide a 3D effect and they allow the user to get an idea about the overall 

structure of the hierarchy. The labels of background nodes are overlapped, but a tool-tip 

like popup can help ease the problem. A node can be switched between background and 

foreground by user selection. 

 

 

Figure 5 T2.5D visualization of large decision trees 

2.4.7 Nested Graph View 

Nested graph view is another way to present complex hierarchical information. SHriMP 

proposes nested interchangeable views to represent the organization of the software at 

different levels of abstraction. The nesting feature of nodes depicts the hierarchical struc-

ture of the software (See Figure 6)[43]. The primary nested view employs fish-eye tech-
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niques to provide context cues, such as in the top-down strategy. It is built on the idea 

that a system can be divided into subsidiary systems recursively. The division finally 

leads to a hierarchy with a nesting relationship of containment. The zooming interface in 

SHriMP incorporates the hypertext browsing metaphor so different views can be browsed 

through links; animation and panning are used to keep continuous user orientation when 

the focused view is changed.  

 

Figure 6 A SHriMP view showing the architecture of a software package 

2.4.8 Animation  

Animation is often used in visualization to promote human understanding. It is often used 

to clearly show to the user the differences between two consecutive states of the display. 

Animation is helpful in preserving the user’s mental map between successive displays.  

However, proper use is important to ensure its usefulness, such as reducing the amount of 

information handled by the user and maximizing the pertinent information for the user’s 

task [44]. Ideally, the picture should depict all and only the information the user’s tasks 
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require. To alleviate the cognitive effort needed to understand the animation, and to in-

crease effectiveness of tools, animation should be complemented by automatic presenta-

tion algorithms and graphic legends to convey the visualization syntax. An example sys-

tem is TKSee visualizer described in Wang’s thesis [45].  

2.5 Trace Definition and Context 

In this section, we will describe the traces used in this thesis in more detail as well as 

trace analysis techniques and how they are used in reverse engineering.   

2.5.1 Trace 

A trace, also called a program trace, or execution trace, following definition as found in 

[14], is: 

 

“A record of the sequence of instructions executed during the execution of a computer 

program. It often takes the form of a list of code labels encountered as the program exe-

cutes.”  

 

Besides execution sequences, a trace can also contain relative time ordering and location 

of various types of events that occur during program execution [18]. The temporal infor-

mation is imperative for a multi-threaded system where threads need synchronization to 

accomplish certain tasks. In software visualization, a trace can typically be laid on a time 

axis and be scrolled back and forth by manipulating a scroll bar to show different parts of 

data. [46]. This approach is necessary because the trace is often so large that not all data 

can be visualized in the same screen. The location information in a trace, such as package 

names, class names and method names, can be used to identify corresponding source 

code that relates to current trace. 

 

Traces belong to the domain of dynamic analysis. Different aspects of complex software 

systems, especially runtime information, can be understood through trace analysis. His-

torically, the primary motivation for tracing program execution is to capture performance 

behaviour. The objective was to identify the parts of the program that consume the most 
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processing time and become bottlenecks [47]. The benefit of execution traces is that once 

created, they can be used for multiple visualization needs from different perspectives. A 

subset of the information can be extracted for visualization based on given time interval 

instead of using a whole trace. Therefore the user of a saved trace can choose to visualize 

any points of interest in the trace. 

2.5.2 Trace Data Collection 

There are different ways to collect an execution trace without affecting the functionality 

of a system:    

• Code instrumentation: probes are inserted into the source code, outputting infor-

mation when needed. Instrumentation can be done automatically through tool 

support or through a built-in language facility. For example, in AspectJ, pointcuts 

can define where data will be gathered [48]. 

• Modified environment: a modified version of run time environment is used, such 

as a modified Java Virtual Machine, to gather data automatically at given execu-

tion points. 

• Programming interface:  data can be either queried or notified using an API or the 

underlying operating system. An example of a tool that does this is the Java De-

bugging Interface. 

2.5.3 Difficulties in Trace Analysis 

The main difficulty in dealing with traces is their size. With today’s fast computers, even 

tracing just a few seconds of execution can result in a trace that contains millions of steps. 

Systems left to accumulate traces for several minutes can generate traces that are billions 

of lines long. It is difficult to represent these large traces in an efficient way and allow for 

the manipulation of them with an appropriate response time. An expected response time 

for today’s software tools is almost instantaneous response for actions such as hiding or 

showing parts of the trace.  

 

Presenting a visualization of an entire trace is also complicated. Trying to understand all 

that happened during the execution results in a heavy cognitive load. 
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2.6 Trace Exploration Tools 

The approach that most trace exploration and visualization tools adopt can be decom-

posed into three steps [49, 50, 51, 52]: 

• Gather raw trace data. 

• Represent data using an internal model; this includes format conversion, event or-

dering, and generation of summary statistics. 

• Analyze the data in various ways and present the result on the screen for the user. 

 

These tools depend heavily on filtering to reduce the data size. For example, filtering by 

time, by name space, by depth of events in the call tree hierarchy, etc. They also depend 

heavily on visualization techniques to help understanding. 

 

Some of the tools that are representative in dealing with large traces are discussed here. 

2.6.1 ISVis  

Jerding proposed the idea to save the trace as a directed acyclic graph (DAG), and his 

tool, ISVis (See Figure 7), belongs to the category of multiple view tools [53]. Identical 

sequences of calls, called patterns, are detected and represented uniquely in the DAG. In 

ISVis, a large data set is mapped into a small display window, called the information mu-

ral. The information mural is primarily an extension of SeeSoft and uses visual attributes 

such as colour and intensity to represent information density. It can be used as a global 

view and gives the user the context to support further browsing and searching tasks. Also 

patterns within a trace can be visually identified from the information mural representa-

tion. Interactions are displayed in a detailed view as a message-flow diagram. 
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Figure 7 ISVis with a Information Mural view and Scenario view 

2.6.2 Almost 

The design goal of Almost [54] is to help programmers quickly get enough knowledge 

about the structure of a system so that they can make small to medium changes. Almost 

has a linear view that shows the step-like method calls of a trace. The horizontal axis of 

the linear view represents temporal information, while the vertical axis shows a method 

call and all its ancestor calls with different colours. This view supports panning, zooming 

and filtering. To address the space utilization problem, a spiral view is developed (See 

Figure 8), however the usefulness and intuitiveness of this view needs further validation. 

 

To synchronize multiple views, time points are used. At a certain time, the focused view 

works as a controller and sends out synchronization information to other views connected 

to it. Another kind of view available is the code view. This is a SeeSoft-like view to dis-

play code structure, but it does not connect to other views. 
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Figure 8 The Almost trace visualization tool with different views 

2.6.3 Paraver  

Paraver (See Figure 9) is a visualization tool used for program understanding and per-

formance optimization for parallel environment. It is designed to address the need to have 

a global perception of a system with multiple CPUs and then switch to a quantitative 

analysis of problem details [46].  

 

Paraver provides a minimal set of views based on the idea that a different view is only 

needed if it can provide a different type of information. The views include a graphic view 

for overall behaviour of an application through time, a textual view for extreme detail and 

an analysis view for quantitative data.  
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Figure 9 Pavarer with a process view, source code view and thread view 

 

Paraver is designed with the capability of efficiently handling large traces and simultane-

ous visualization of several traces so comparisons can be made among the traces: e.g. 

traces of two versions of a system, or behaviour on two machines can be done. Paraver 

specifies a trace format and some mechanisms for how the trace records and the values 

will be processed in the visualization. An ASCII trace file contains records that describe 

the absolute time of an event in a thread of parallel code. Every record specifies the ob-

ject to which it refers (indicating application task and thread) and the absolute time at 

which it happens. For each type of record, some additional fields can be encoded as de-

sired by the user. These records are: 

• State records include an integer value that is usually referred to as the thread state 

or resource information.  
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• Event records include a user event type and a user event value that marks the en-

try or exit of a code block. 

• Communication records include a communication tag and a communication size 

that represents a point-to-point communication between a sender and a receiver. 

 

The structure of trace file in Paraver typified data organization of trace tools. A trace file 

also associates with some other files which configure environments, such as colours, 

number of states, state labels and row labels. These files are used by the trace file to fa-

cilitate visualization.  

2.6.4 Hyades 

Hyades is the Eclipse Test & Performance Project with the aim to “build a generic, exten-

sible, standards-based tool platform” for testing, tracing/profiling, tuning, logging, moni-

toring, and analysis [55]. Because most current trace tools are incompatible with each 

other, functionality reuse and tool interoperability are nonexistent. The Hyades project is 

organized to address this integration issue by defining a common data model based on the 

Eclipse Modeling Framework (EMF), data collection infrastructure, environment support 

and a common user interface (See Figure 10). Based on the framework support of the 

overall Hyades platform, Tracing and Profiling Tools sub project provides specific data 

collection for trace model, and different viewers for visualizing data from the model.  

 Chapter 2 Background  24 



 

 

Figure 10 System architecture of Hyades 

 

Hyades uses agents to collect data from a remote System Under Test (SUT) and serializes 

model data and resources to XMI by default. Remote Agent Controllers (RAC), residing 

on both the client and host side, allow a client to launch new process on the host side. 

Corresponding to the control channel and data channel in Figure 10, there are two inter-

faces: the test control interface and the data collection interface. Because raw trace data 

gathered from agents can be encoded in any format, a parser extension point is defined so 

users can develop and contribute their parser implementation to the platform. Therefore, 

regardless of trace format, relevant information can be extracted by the parser and sent to 

the internal trace model.  

 

Internally, Hyades uses a set of EMF based models to store execution traces, statistical 

data structures, as well as test case definitions and execution histories. The trace meta-

model allows capturing data within a thread, across threads, processes and even ma-

chines. It allows correlations of events and method calls across different boundaries and 

statistical data are also contained to eliminate subsequent calculation expenses. The goal 
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of Hyades is to defined a common trace model and unify the proprietary trace models in 

one theme, and thus to improve tool interoperability. 

 

When initially launching the tool, the user can specify filter criteria so only data from 

within the given scope is captured; for example, the scope may be limited to certain 

packages. On top of the trace model, there are various views that extract data and display 

them as different diagrams. These views can be used to analyze data and assist in under-

standing of program behaviour. The views include Statistical Views of object references, 

package/class/method coverage, and memory usage (See Figure 11). There are also views 

that display different diagrams, such as execution flow, sequence diagrams (See Figure 

12). The views can also be dynamically refreshed as Hyades receives additional data 

from the underlying system.  

 

Besides visualizing traces, Hyades can also generate a test case from the trace data and 

re-run the test if necessary. Another main area is for performance monitoring and analy-

sis. In the same manner as the trace model, these models are also EMF based and Hyades 

provides a set of widgets to produce SVG based graphics for various charting styles.  
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Figure 11 Hyades code coverage statistics from a trace 
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Figure 12 Hyades sequence diagram generated from a trace 

2.6.5 VARE 

VARE (Visualization Architecture for REuse) [56] is an architecture (a set of tools) that 

allows web-based visualization of remotely executing software. The remote data are ex-

changed through SOAP messages using HTTP connections. The trace data are repre-

sented in XML format and saved in a native XML database on the VARE server. To sup-

port different visualization goals, execution traces are encoded using XML based lan-

guage XTE (eXtensible Trace Execution) and static information is represented in another 

XML language RCD (Reusable Component Description). XTE stores the runtime infor-

mation of RCD components. 

 

On the client side, the user can manage activities that are associated with creating and 

viewing visualizations. A specific visualization can also be stored into a visualization re-

pository so they can be retrieved at a later time. The advantage of VARE is that only 
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relevant information needs to be extracted from the native XML database to create visu-

alizations.  

  

VARE uses standard UML diagrams, such as class and sequence diagrams to present the 

structure and interactions found in the execution trace. These diagrams are rendered 

through SVG in a web browser.  

2.6.6 ARE 

ARE [57] is a special-purpose dynamic analysis tool to convert Java reflective (dynamic) 

calls to real object and method names that exist in a trace. When object and method 

names are invoked using the Java Reflection API, such as “class.newInstance()” or 

“method.invoke()”, as is commonly done in tools, displaying the reflective method names 

will result in an unreadable trace. To facilitate a better understanding of the application, 

ARE replaces these reflective calls with actual class or method names. For example, 

“class.newInstance()” may be changed to “new TraceLoader()”, and “method.invoke()” 

may be changed to “TraceLoader.open()”. Besides the execution traces, it also takes into 

account the actual parameters of each invocation. Therefore, analysis can be concentrated 

to focus on those method invocations that involve passing a certain object. This also en-

ables the understanding of how data are exchanged between threads. 

 

ARE uses a layered architecture and employs AspectJ to instrument Java applications. A 

tracing aspect identifies each object instantiation and method invocation and forwards 

this to the recording layer. The recording layer incorporates filtering capabilities and re-

cords data of interest to a database. This trace aspect can either be weaved at the program 

level for the whole application or be tuned to weave only a subset of classes. 

 

ARE also supports tracking how a single object is being used by the system, including 

objects passed in aggregate or child objects or as a wrapper. This can provide a variety of 

insights into the execution because it only reports events to the object of interest.  

2.7 Related Tool Evaluations 
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Pacoine et al. evaluated five dynamic visualization tools focusing on their presentation 

capabilities: AVID, Jinsight, jRMTool, Together ControlCenter diagrams and Together 

ControlCenter debugger. The tools were evaluated on a number of program comprehen-

sion and reverse engineering tasks using the JHotDraw framework. The tasks included 

identification of software structure, design pattern extraction, function localization, etc. 

The diagramming techniques were categorized into graphs, UML diagrams and message 

sequence charts (MSC). The abstraction levels that the tools supported were classified 

into low, medium and high. The results revealed that level of abstraction affected the suc-

cess of a tool to certain tasks. It showed that no dynamic visualization tools can respond 

to all the questions in the tasks and implied that tools were not adequate in isolation to 

support software comprehension [58].  

 

Hamou-Lhadj et al. conducted a survey of trace exploration tools and techniques. The 

focus was on how big traces are represented and reduced in these tools and how abstrac-

tions are achieved. The tools included Shimba, ISVis, Ovation, Jinsight, Program Ex-

plorer, AVID, Scene, and Collaboration Browser. The results indicated that there was a 

lack of proper representation of large traces. Most tools supports pattern detection and 

matching in reducing the size of traces but there were no further experiments on their ef-

fectiveness. Some tools also implemented the same techniques using different terminol-

ogies; this indicated the lack of a much-needed framework for trace analysis [59]. 

2.8 Trace Formats 

2.8.1 Classification 

Different trace encoding formats have been introduced in accompanying trace tools. Gen-

erally, formats can be divided into three categories: 

2.8.1.1 Proprietary formats 
A proprietary format is only used by a specific tool; the format is only understood and 

interpreted by the tool. Converters are needed if trace data is to be shared among different 

tools. 
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2.8.1.2 Self-descriptive formats 
To alleviate the incompatibility problems of different trace formats and tools, self-

descriptive formats have been invented. These include instructions on how to interpret the 

format. The two representatives we will consider are TDL and SDDF. 

 

TDL [60] is a Trace Description Language that enables users to access and decode data in 

an execution trace file. TDL assumes that event data in a trace file is a generic abstract 

data structure. It defines that a trace file will have the following hierarchy: event trace / 

trace segment / trace record / record field. Therefore, the main differences between dif-

ferent trace formats are record fields. Besides predefined field types, it also includes user 

defined identifiers and the interpretations for the values of that fields. The user will de-

scribe the meaning of all the data elements in a description file using TDL. At runtime, a 

system will first load the description file and then use it to further decode a trace. 

 

SDDF format (Self-Defining Data Format) [61] does not have separate description file as 

in TDL; instead it contains a header section in each trace file that describes various type 

of records in the trace. Parsing the trace records is dependent on the header information. 

A trace file in SDDF format typically includes a group of record definitions in the header 

section, and a subsequent sequence of tagged data records. The tag indicates the type of 

the record, and a parser can interpret record using a particular record definition. 

2.8.1.3 General format 
To satisfy broader needs and promote interoperability of reverse engineering tools, dif-

ferent general formats have been proposed to support data exchange. 

 

GXL is a standard exchange format for graphs [62]. Its development was particularly mo-

tivated by the need to enable interoperability among reverse engineering tools, such as 

code parsers, data flow analysis tools, and software visualization tools. GXL was devel-

oped based on the observation that much of the information about software systems can 

be best represented as a mathematical graph – and if this is done, then the mathematical 

power of graph algorithms can be employed. The drawback of GXL is that it is verbose- 

that is, a large number of tags is required to describe even a small graph. Furthermore the 
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use of XML tags will make it even more verbose and this will lead to performance impli-

cations.  

 

The Hyades project, introduced in section 2.6.4, also addresses the interoperability issue 

and provides a model in an XML based format. The drawback of these general formats is 

the performance issue in representing large traces.  

 

The current tendency is towards the general standard format for data exchange and tool 

interoperability as addressed by the Hyades project. But for any encoding scheme of a 

trace, the key is determining the patterns that are used to encode the information of inter-

est [63].  

2.8.2 Rationale 

The rationale we use for adopting a specific format lies mainly in our application context. 

For a format to be useful, it must contain the following attributes: 

2.8.2.1 Dealing with size 
As introduced in previous chapters, our research is motivated by the size explosion prob-

lems of large traces. Three main techniques are often used to deal with the size problem: 

filtering [64], sampling [65, 66, 67] and compression [68, 69]. Trace filtering will discard 

all redundant information from original trace when references map to those defined in a 

filter. Trace sampling only stores data for relatively short intervals. The drawback of 

these techniques is that they may not be able to represent the exact program behaviour 

because of loss of information. Only trace compression can both reduce the size of a trace 

and retain all the information from the trace. Because raw trace data can accumulate 

quickly and can take up gigabytes on average for ASCII based formats [68], a format 

should not only ease requirements for data storage, but also assist in accessing the infor-

mation contained in large traces.  

 

To effectively handle large traces, we need a model with an encoding scheme that can 

represent the whole trace – even those with millions of lines. Another benefit of a model 
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is that summary information can be saved and queried easily to assist performance analy-

sis. A trace format should ease all these tasks. 

2.8.2.2 Facilitating visualization 
One goal of trace analysis is to visually present the result to end users to help them de-

termine attributes of the system under consideration. Besides helping model representa-

tion of large traces, the designers of a format need also to consider how easy the format 

can be mapped to a visual representation.  

2.9 CTF (Compact Trace Format) 

CTF (Compact Trace Format) was introduced by Hamou-Lhadj and Lethbridge based on 

the idea that common subtree in traces can be shared and represented only once [1]. CTF 

is a lossless format because it does not discard any events or method calls recorded in 

trace capture phase. The metamodel of CTF is shown in Figure 13. 

 

The CTF format represents a trace using a Directed Acyclic Graph (DAG). The DAG can 

be built by traversing the tree in post-order to identify identical sub trees and represent 

each exactly once in the DAG. Multiple threads can be considered similarly as a forest of 

call trees; they share the sub tree pattern when generating the DAG form. The resultant 

graph is composed of root nodes of all the threads. 
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Figure 13 CTF metamodel 
 
A further step, building on the DAG approach is to compress a sequence of calls using 

the Sequitur algorithm into the form of a context-free grammar [70, 71]. This grammar 

reflects its input’s hierarchical structure and can give back original trace data when fully 

expanded. 

 

The DAG representation has the following properties: 

• The descendents of any node form a tree when traversed. 
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• The ancestors of any node form an inverted tree when traversed. (Because this 

DAG is ordered, traversal must be done in this order.) 

 

The DAG structure emphasizes reuse of hierarchy structures. It forbids two nodes from 

having more than one distinct path between them. DAGs are constructed based on the 

observation that the information in different places in the hierarchy has a high degree of 

correlation (repetition) [53]. 

2.9.1 Filtering Algorithms and CTF 

One goal of CTF is to represent large traces for data exchange. Filtering algorithms can 

process CTF formatted traces to hide implementation details. A filtering algorithm can be 

applied to a whole trace or part of it; it can filter some parts of trace and identify the main 

high-level properties [72]. There are three types of filtering techniques that can be used 

on a trace.  

• Pattern matching  

• Detection of utility routines 

• Automatic detection of abstract operations 

2.9.1.1 Pattern matching 
Pattern matching is used to group similar sequences of events as execution patterns. Be-

cause identical subtrees are already identified and organized in CTF, finding such pat-

terns can be done very quickly. Besides exact matching, other matching criteria have 

been used such as ignoring the order of calls, ignoring the number of repetitions, and lim-

iting comparison to certain depth. Other comparison of tree similarity can also be found 

[73]. 

2.9.1.2 Detecting utilities 
Utilities are those routines and classes that help the implementation of the system’s func-

tionality but whose details can normally be ignored when understanding how the system 

works. Removing utilities would therefore not affect the comprehension process [69]. 

Normally, statistical information can be used to help determine whether something is a 

utility. For example, if a method has a high fan-in (the number of methods that call this 
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method), low fan-out (the number of methods called by this method) and is called from 

places scattered throughout the system, then it can be a good candidate to be a utility. 

However, the difficult part about creating methods to detect utilities is the need to con-

duct empirical evaluations to ensure the utilities detected are valid from the perspective of 

software developers. 

2.9.1.3 Detecting abstract operations 
An abstract operation is an operation that can be implemented in different ways depend-

ing on the context where it is defined. Polymorphism is a typical way for implementing 

abstract operations. In procedural languages, similar naming convention for routine 

names can also indicate a common abstract operation [74]. 

2.9.2 Comparison of CTF Model and Hyades Model  

CTF model is specifically designed to enable program understanding tools exchange 

traces of method calls, which form a natural hierarchy. On the other hand, Hyades trace 

model is based on sequential logs of events; it focuses more on trace-to-test conversion 

and automatic testing instead of program understanding. For example, a process can have 

several threads, and a thread invokes a series of methods (method attributes and invoca-

tion attributes are separated). Clearly, DAG based CTF model is not directly supported by 

the trace model from Hyades. However, a trace using CTF model can be built upon in-

formation extracted from a trace using Hyades model. Extra information found in Hyades 

model, such as temporal information, correlation between threads, etc. can also supple-

ment CTF model. The direct benefit is that we will no longer be concerned about trace 

capture and format conversion and raw trace data persistence, which are provided by the 

Hyades platform.  

 

On the other hand, traces encoded in CTF format can also be manipulated to generate the 

original trace. Because a CTF model is a directed acyclic graph, traversing the graph in 

pre-order will reproduce the trace as a tree of method calls.  

 

As a result, CTF format traces can be constructed from Hyades traces and CTF is com-

plementary to Hyades. 
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2.10   Summary 

From the previous review, we can draw the following conclusions: 

 

Trace analysis is a crucial method in reversing engineering to understand interactions be-

tween participating components. It allows the software engineer to study the run-time 

domain of an actual program execution, and gain precise information which would oth-

erwise be unavailable if only static analysis approaches were used.  

 

Human understanding of programs uses a mixed combination of top-down and bottom-up 

approach, with a tendency towards the intermediate level of abstraction between the ap-

plication domain and implementation details. Tools should therefore facilitate human 

cognitive models by providing different views, different abstraction levels, and the ability 

to switch among them. 

 

Visualization techniques can help users understand the system. However one question 

relating to visualization is what kind of pictures should be drawn. The preferred philoso-

phy is to use standard diagrams (such as UML) before inventing new ones [75].  

 

Trace exploration tools can help users understand the abstractions of a system and obtain 

summaries of its dynamic behaviour. Some tools can generate sequence diagrams or the 

like, while others can generate class diagrams [76, 77]. This functionality provides good 

support for abstraction. Many trace visualization systems [49,78] focus on the time taken 

to perform some operations and how the systems respond to real-time changes. This can 

help identify performance problems. However, when understanding large complex sys-

tems, software engineers must focus more on system-level behaviour and structure in-

stead of details such as CPU time. Therefore, trace exploration tools need to support ex-

traction of high-level information from traces. 

 

The Hyades project is the most promising one for laying out a framework for tool integra-

tion and interoperability. Furthermore, it allows reverse engineering tools to interact with 

other tools, such as IDEs. As supported by different tool evaluations and experiments [58, 
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59, 79], such integration is crucial in precisely evaluating and comparing the effective-

ness of reverse engineering tools. Only through a high level of integration with develop-

ment environments are reverse engineering tools likely to be adopted. 
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Chapter 3 Challenges 

There are many challenges in building an effective and usable tool for reverse engineer-

ing; these include dealing with the large size of traces, and providing effective navigation 

capabilities. This chapter will investigate these challenges and discuss how to address 

them in building efficient tools. 

3.1 General Challenges 

3.1.1 Difficulties in Empirical Studies of Software Engineering Tools 

Redmiles pointed out that there are several potential obstacles in doing controlled empiri-

cal studies on tools [80]. These studies require an integration of various disciplines, in-

cluding psychology, sociology and software engineering. Second, the effectiveness of a 

tool is often difficult to be measured precisely. Third, market considerations are often the 

driving force of such development, rather than the scientific question of what works best 

for software engineers.  

3.1.2 Tool Adoption 

Most reverse engineering tools attempt to create an environment in which the tool itself 

has dominant control [13]. This approach hinders the easy integration of reverse engi-

neering tool with other commonly used development tools. Therefore, in order to increase 

the adoption, the tools first need to be interoperable with other software engineering tools 

or need to be integrated into commonly used development platforms. Also there are many 

other factors that affect tool adoption, such as costs, benefits and risks [81]. The adoption 

problem mainly originates from different perception of tool developers and end users, 

where the developers are convinced that the tool has value, but the end users are not. 

3.1.3 Understanding Advantages and Disadvantages of New Emerging 
Media 
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Effectiveness of emerging visualization techniques, such as animation and 3D visualiza-

tion, and their impact on humans should be further studied and validated. To minimize 

the side effects of new visualization techniques, human-centered visualizations should 

always be adopted [82]. Therefore, we need to better understand human behaviours, in-

cluding how people interact with information, how they perceive the information both 

visually and non-visually, and how human minds work when searching for information. 

3.2 Challenges in Our Research Context 

From the background review presented earlier, we can see that many trace-related tools 

have been built using a variety of techniques. Also, experiments with these tools have 

produced many guidelines that can be used to direct succeeding tool development. How 

to make a good synthesis and create a general set of guidelines remains a challenge. 

3.2.1 Our Research 

Our current research focuses on effective handling of large traces – those with millions of 

lines. We will develop ways to quickly load traces and present traces so that a software 

engineer can easily understand and manipulate them, with the ultimate goal being to im-

prove the productivity of software engineers as they solve maintenance problems, par-

ticularly in real time systems. To help understanding, we will abstract away non-essential 

aspects of traces, such as calls to utilities, or accesses to architectural components of the 

system in which a software engineer is not interested. 

 

The main practical result we expect to achieve is a working tool in Eclipse that incorpo-

rates a variety of algorithms that are used to filter trace events to improve understandabil-

ity. The tool would have a user interface for browsing traces and a control panel that 

would allow the software engineer to fine-tune various aspects of the filtering. From a 

scientific perspective, the main result will be a better understanding of how traces can be 

filtered, explored and visualized so that software engineers can be helped in understand-

ing a system. 

3.2.2 Challenges in Large Trace Exploration 
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During the analysis of requirements and further brainstorming with software engineers, 

we have uncovered a number of requirements that raise very interesting research chal-

lenges that need to be addressed in order to build an effective tool for dynamic analysis of 

large software systems. Some of these challenges can be found in [83]. 

 

More specifically, the following challenges relating to performance and user interface are 

discussed. 

3.2.2.1 Effective trace loading and processing techniques  
Traces need to be efficiently loaded and processed in order for a tool to be adopted. Ac-

cording to a well-researched usability design guideline, the system response time for a 

loading operation in order to keep a user’s attention focused on the current functionality 

should be at most 10 seconds [84]. Beyond that time, the user may lose patience and do 

some other task, or think the system is no longer responding.  Part of the solution to this 

performance problem is to adopt CTF as our model for representing all the needed data. 

As discussed in [1], CTF has performance advantages as compared to competing formats 

because it is designed to be quick to parse and does not require re-loading repeated pat-

terns.  

3.2.2.2 Modularity of the analysis framework 
As discussed in the previous chapter, different filtering algorithms can be applied on 

traces to reduce the apparent complexity. Each algorithm can have its specific require-

ments for input parameters and interface elements. In order to allow general initialization 

and loading of the algorithms, a framework must be defined so existing and future algo-

rithms can be easily integrated. 

3.2.2.3 Design of a user interface widget that loads only what is needed 
Many user interface elements for displaying large amounts of information build a com-

plete representation of the display in memory, and then make only sections of it visible 

through user interactions. However, in the filtering context, when the user changes the 

parameters of any of the filtering algorithms, these changes will cause the reconstruction 

of the entire internal display, despite the fact that only a tiny fraction will be visible.  
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Therefore, a new type of browsing widget that will generate the visual part of the display 

is needed. When the user scrolls, uses page up/down keys, expands the window or modi-

fies the content of the display, any necessary new model data will be loaded dynamically 

and the new part of the display will be quickly generated. The widget also needs to sup-

port long scroll jumps, for example quickly scrolling to the bottom of a large tree and 

displaying the relevant section of tree nodes.  

3.2.2.4 Supporting additional expanded states for a node 
Traditionally a non-leaf tree node has two states: expanded or collapsed. In our trace ex-

ploration context, because various filtering algorithms can be applied to the trace, some 

nodes in the trace can be hidden if they meet certain criteria. As a result, in certain explo-

ration point, a non-leaf node can have the following three states: collapsed, that is, all the 

child nodes are not displayed; fully expanded, that is, all the child nodes are shown; and 

partially expanded, meaning some or all the children are hidden by some filtering algo-

rithm, so only part of children are currently displayed.  

 

Supporting this additional state will be very useful, we propose, in helping the user to 

conduct effective trace exploration. We consider the following application scenario: A 

user applies some filtering algorithms to a trace, some child nodes of a sub tree A are fil-

tered and become hidden, but the user still wants to further look at the details of sub tree 

A. Instead of revoking all the algorithms that filter the trace to make all children of sub 

tree A visible, a mechanism is needed to quickly switch the filtered nodes between visible 

and invisible at the node level without affecting filtering algorithms that are in effect.  

3.2.2.5 Integration with development environments such as Eclipse and Hyades 
One factor that can significantly increase usability of a trace tool is integrating the trace 

browsing facilities with a standard integrated development environment (IDE), such as 

Eclipse. Researchers developing SHriMP [79] have shown the necessity for such integra-

tion. The result of their experiments indicates that without such integration, precise 

evaluation of the effectiveness of a reverse engineering tool is infeasible. 
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Eclipse is a universal platform that can be extended by plugins and is now widely used by 

tool providers. Integration with Eclipse has the following advantages: 

 

The end user can reuse the extensive supply of current IDE features, such as facilities to 

program in C++ and Java. Fully featured IDE features are available free. The user will 

often be actively programming while exploring traces. 

 

Enhanced tool usability. There has been much effort to improve the usability and accessi-

bility of Eclipse’s interface. If designed according to the guidelines, a tool can greatly 

benefit from current user interface design expertise. 

 

The tool developer can reuse modelling tools and other tools in the same environment. 

There are many development tools available on the Eclipse platform, for example, vari-

ous UML tools. Therefore, a developer does not need to start from scratch when such a 

feature is desired. Required features provided by other plugins can be easily reused. 

 

Despite these benefits, we discovered that, making a tool seamlessly integrated with the 

Eclipse platform and other plugins so the user can have a common look and feel is a de-

manding task. We had to call upon an Eclipse expert to criticize our earlier UI designs; 

this allowed us to adjust some of the decisions we made so our tool would feel more 

Eclipse-like. 

3.3 Summary 

Some of the challenges can also be formulated into tool requirements. We will address 

these challenges in the following chapters, and propose our solutions to them. 
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Chapter 4 Architecture of SEAT  

This chapter will introduce SEAT (Software Exploration and Analysis Tool), a tool en-

compassing the new widget and dynamic loading techniques. We will describe how it is 

constructed to tackle the challenges discussed in previous chapters. 

4.1 Desired Features for A Trace Analysis Tool 

Based on analysis of research in related fields and evaluations of various tools, we pre-

sent a group of requirements for a Reverse Engineering tool. 

4.1.1 Facilitate Program Comprehension 

Our high-level research objective is to help software engineers understand existing sys-

tems through manipulation of captured traces. Through studying of mental models of 

human understanding, we know we need to support both exploring the architecture or 

high-level abstractions embodied in a trace, as well as the low-level details of the source 

code. Intermediate level abstractions need to be visible as well [27].  

 

Requirement 1: The tool needs to support high level abstraction, intermediate level ab-

straction and source code navigation. 

 

Soloway et al. [24] characterize software-understanding activities as a series of inquiries, 

during which the maintainer reads some code, asks a question about this code, conjec-

tures a hypothesis, and then searches the code and other documentation to confirm the 

conjecture. Often the information needed to confirm a hypothesis is disseminated across 

the system; so an effective tool should provide mechanisms to locate code that program-

mers are interested in precisely and quickly through search support. The tool should also 

be flexible to facilitate the situation when programmers need to change their hypothesis 

or backtrack to an earlier hypothesis. Searching activities can reflect how a programmer 
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traces basic software artifacts and constructs his mental models. According to Lethbridge, 

a code exploration tool should meet two functional requirements: (1) a user should be 

able to search for software artifacts by arbitrary strings or regular expressions and  (2) 

display attributes of retrieved artefacts, such as the call hierarchy [85]. 

 

Requirement 2: The tool needs to support broad search capabilities, including basic 

search, customizable search, wildcard search, regular expression search and with search 

history being traced. 

4.1.2 Visualization 

Visualization is about rendering large data sets on the screen. An ideal visualization sys-

tem should allow understanding of detailed information while always providing a global 

context [34]. However, such a global view that displays all the trace data in one screen is 

difficult to generate. On the other hand, because of restrictions of human cognition and 

perception, humans can only understand and absorb a small volume of information in-

stead of the whole visually compelling representation. Therefore, current strategies focus 

on fragmenting the view of the information and providing a set of correlated views so a 

user can explore detailed information about a trace if desired. 

 

Requirement 3: The tool needs to support the global view of the trace being explored and 

various views of data slices from different perspectives. 

 

As discussed in Chapter 3, to reveal high-level behaviour of a system, different filtering 

techniques are introduced to filter uninteresting events, so implementation details are 

hidden. Interesting entities, such as patterns and utilities should be easily highlighted and 

distinguishable. It should be noted that such operations should be accomplished within 

appropriate time, such as 10 seconds according to general usability design guidelines. 

 

Requirement 4: The tool needs to support filtering of events, highlighting events that 

have specific attributes using colours or shapes. 
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4.1.3 Exploration 

Exploration should facilitate users in finding specific information. When a user is explor-

ing a large information space, it is easy to lose orientation [33]. Facilities should be there 

to keep user oriented so the user can always be aware of his position with in the data set. 

One strategy is to provide an indication of the current location in the global view if such a 

view is available as discussed in Requirement 3. An alternative is to provide landmarks 

so the user can keep track of previous steps and go back when necessary. Providing 

landmarks is often proposed as an aid to navigation so interesting information is always 

discriminable [86].  

 

Requirement 5: The tool needs to support user orientation, such as the position in the 

global view; this concept is also known as landmarks. 

 

When developers want to navigate to artifacts that are related to the current one, they are 

forced to switch to different views or even to switch between tools. Switching is disori-

enting and it breaks the streamline of the exploration path [87]. As a result, a developer 

loses his or her current position with respect to the exploration task.  

 

Requirement 6: The tool needs to minimize view switching when a user is carrying out a 

task. 

4.1.4 Other Features 

Data may come from various sources and be saved to various destinations, such as a file, 

network connection [55], database [56]. 

 

Requirement 7: The tool needs to be extensible to support different sources and destina-

tions. 

 

A session allows a user to save current work and return to it without losing anything pre-

viously done. This includes: views and their positions, layout and algorithms applied, cur-
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rent visualization context, etc. It also needs to record existing knowledge gained so far for 

future maintenance and reference [22]. 

 

Requirement 8: The tool needs to support workspace and session persistence so a user 

can continue previous work at a later time.  

 

Handling large data sets with real-time response is the main motivation of our research. 

Most existing tools cannot effectively handle very large traces; therefore, their usefulness 

is severely discounted into solving real-world problems. 

 

Requirement 9: The tool needs to be able to handle traces with millions of lines of data 

easily and effectively, including loading and saving. 

 

The last item discussed here is tool adoption problem. For real tool adoption, both utility 

and usability need to be experimented with end users. Utility means the system can help 

users to accomplish the general tasks encountered in maintenance. If a tool is not useful 

in this aspect, it will be less likely to be used. The tool also needs to be designed with us-

ability carefully considered; this includes aesthetics, feedback, responsiveness, learnabil-

ity, error handling, etc. Another aspect that can promote the acceptance of a tool is it 

closely integrated with a development IDE, especially a development environment with 

which the user is familiar [79]. 

 

Requirement 10: The tool needs to adopt user centered design and can be integrated eas-

ily with an IDE and other tools to increase its adoption. 

4.2 Overview of SEAT 

Based on tool requirements described in the previous section, we built a prototype tool, 

SEAT, on Eclipse platform for exploring large execution traces. Figure 14 shows the 

overall flow of information using SEAT. The tool manipulates traces in CTF (Compact 

Trace Format) and displays them using the new tree widget we have developed. To help 

the user extract useful information for a trace, SEAT incorporates several trace filtering 
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techniques. An analyst can filter a trace to the level where he or she can understand im-

portant aspects of its structure so complexity of the trace is greatly reduced.  

 

 

Figure 14 Data flow in SEAT 

 

Figure 14 also shows one possible way for generating traces of routine calls, which is 

based on source code instrumentation. It should be noted that some filtering algorithms 

could refer to data based on static analysis of source code, for example, method fan-in 

and fan-out, used in determining utility methods. 

4.3 Eclipse 

Eclipse is an open source software tool platform. It has gained great popularity with its 

successful Java development environment. This section will describe the core functional-

ity of Eclipse platform and how its plugin infrastructure facilitates tool integration. 

 

The Eclipse platform is developed based on the concept of plugins. A plugin is a basic 

unit of functionality that can be treated separately on the platform. On the Eclipse plat-

form, except for a small kernel that starts the system, all the functionality is provided 

through plugins. A plugin has a manifest file that describes the plugin in XML. The mani-

fest file defines the runtime library required for the plugin, as well as extensions provided 

by the plugin that contribute to extension points defined by the platform and other plugins. 
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A plugin can also declare any number of extension points so other plugins can provide 

customized functionality. 

 

Besides the runtime environment, the core infrastructure of Eclipse platform includes re-

source management, a GUI workbench, debugging and team support. To facilitate user 

interface development, Eclipse platform provides two sets of widgets: Standard Widget 

Toolkit (SWT) and JFace. SWT is a graphics library that use native window system wid-

gets but in an OS-independent manner. JFace is a high-level interface toolkit based on 

SWT that simplifies common UI programming tasks. It provides APIs for editors, view-

ers, wizards, preferences, and so on. Most of the time when we are dealing with complex 

widgets, such as tables, or trees, the JFace API ought to be used. The SWT API is used 

when basic widgets are used, or when a special user widget needs to be developed.  

 

When developing a plugin on the Eclipse platform, we need to consider two aspects: 

which extensions the plugin will provide to the platform and which extension points are 

defined for this plugin so other plugins can contribute. Typically, a plugin will provide 

extensions to platform extension points, such as “org.eclipse.ui.editors”, 

"org.eclipse.ui.views", so data can be displayed in customized editors and views. Java 

implementations that extend the platform API are needed so the platform runtime can 

discover the extensions when the Eclipse platform launches. When a plugin defines its 

own extension points, the plugin must be responsible to find and handle extensions itself. 

Therefore, the plugin will typically define some common interfaces to be used as its API, 

and extensions to it can be discovered by querying the Eclipse platform plugin registry. 

4.4  SEAT on Eclipse Platform 

SEAT provides several extensions to the Eclipse platform. It includes a multiple page 

editor for visualizing traces, several views to help trace exploration, and preference set-

tings to control data visualization. SEAT also defines an extension point, called 

“seat.algorithm” so other plugins can contribute filtering algorithms besides those pro-

vided by default. Figure 15 is a screen shot of SEAT. We can see that the workbench is 

divided into four parts. The upper left is the navigator where all the traces and their parent 
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projects are displayed. The upper right area is the default editor area where a trace can be 

explored in several independent explorations concurrently using a multiple-page editor. 

The lower left is the control panel used to manipulate the global parameters that can af-

fect display of all traces. A properties view that displays attributes of the trace and the 

current node is also stacked in this area. The lower right area is a set of auxiliary views to 

help view repetition patterns, utility methods, search result and bookmarks.  

 

Figure 15 SEAT screenshot 

 

SEAT integrates several filtering algorithms to reduce the complexity of traces. Filtering 

algorithms are independent of the user interface, and they are exposed to SEAT by exten-

sion point mechanism provided by Eclipse platform. Each algorithm is described in an 

XML configuration file and will be loaded by SEAT in runtime. On Eclipse the work-

bench, an algorithm is represented as both an icon in the tool bar and a menu item of a 

main drop-down menu.  Besides automatic filtering by algorithms, SEAT also allows 

 Chapter 4 Architecture of SEAT  50 



 

user oriented filtering so a user can select nodes and subtrees and hide them from the 

trace manually. Users can also specify a filtering criteria and the trace will be filtered 

based on the user input. All tree nodes marked by users, either manually or by algorithms, 

are highlighted by different colours and can be quickly hidden and shown in the editor. 

Filtering is done at model level and new data is retrieved and rendered after filtering. 

Compared with the traditional approach that filters data at the user interface level, our 

filtering and rendering technique does not require a heavy amount of refresh inside the 

user interface widget (i.e. a complete replacement of the content of the UI widget), so it 

has a major advantage from performance perspective. According to our experiment on an 

IBM P4 2.8G PC with 760M RAM, loading time for a trace with 2 million lines is about 

8 seconds, and filtering time is about 5 seconds for a filtering algorithm.  

4.5 Architecture 

The architecture of SEAT can be divided into several components: I/O, algorithm, dy-

namic tree loading, editor, and views. We will discuss each component in detail.  

4.5.1 I/O Component 

In the following, we will describe some of the classes involved in I/O. Figure 16 presents 

a class diagram containing the details of these classes. 
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Figure 16 Class diagram for trace I/O 

 

The input trace can come from different sources. As discussed in [83], possible sources 

include a flat file, a TCP stream, a database, etc. The interface ITraceSource defines the 

general signature to which a source implementation should conform. A basic implemen-

tation, TraceSource, is provided with abstract open() and close() methods. Therefore, a 

further extension like StreamSource has to be provided. StreamSource takes an Input-

Stream when constructed, disregarding where the stream comes from. So a file stream, a 

memory byte stream or a TCP stream can benefit from this implementation. A trace dele-

gates its initialization and data loading to an abstract TraceLoader through its open() 

method. A TraceLoader is aware of the format of a trace and will be responsible to con-

struct a CTF trace model.  

 

There are various ways to construct a CTF trace model by a TraceLoader and the con-

struction is done through coordination of a TraceLoader and an ITraceSource. By default, 
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a subclass of TraceLoader, called MethodInvocationTraceLoader will load traces in CTF 

format from a stream interface which is created by a CTF-aware trace capture system. 

However, typically a trace capture system will encode traces sequentially as events or 

method calls when they are generated as the system runs. Traces saved in this way need 

to be converted to CTF format using converters if they are to be loaded by the default 

loader. Another way is subclassing of TraceLoader so the new loader can construct a 

CTF trace model directly from sequential traces. With either approach, the algorithm that 

does the transformation is linear if the degree of the tree is a constant [1]. We have devel-

oped a trace converter to convert sequential traces to CTF traces with O(n) complexity 

based on subtree signatures. Some experiments were done on an IBM P4 2.8G PC with 

760M RAM. The following table lists the size of traces and the time used to convert them 

to CTF format. 

 
No. Original Trace File Size (KB) Total Method Calls Conversion Time (sec)  

1 3,345 85,406 2 

2 15,718 219,507 2 

3 14,636 385,434 6 

4 22,705 631,530 4 

5 29,127 742,812 4 

6 94,862 2,409,740 14 

Table 1 Trace size and conversion time  

 

Besides construction of Trace model in memory, a TraceLoader can also gather informa-

tion about a trace and save it in a TraceState. A TraceSession is used to save the current 

user session and recover it when reloaded. Exploration is used to support different user 

interactions and contains mostly state information so multiple explorations of the same 

trace are supported. A session will be created for each Exploration. 

4.5.2 Algorithm Component 

The algorithm component deals with the visual representation of all the filtering algo-

rithms from the model. SEAT defines an Eclipse extension point called “seat.algorithm” 

so additional algorithms can be easily added without modifying the source code.  
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A newly developed algorithm must implement the IAlgorithm interface so it can both ap-

ply the filtering algorithm to filter the trace and revoke the filtering. An abstract class, 

called Algorithm which implements IAlgorithm, is provided to ease integration of a new 

algorithm into the framework (See Figure 17). If an algorithm has the capability to proc-

ess a subtree and not just an entire trace, it can also implement ICompressNode interface. 

But that is not compulsory.  

 

After the algorithm has been developed, the next step is to describe its attributes and pa-

rameters in a “seat.algorithm” extension point. The basic attributes of an algorithm in-

clude id, name, and implementation class, icon representing itself, description, category 

and an index. The category attribute identifies the kind of trace an algorithm can handle 

as either object-oriented or routine or both. The index represents a unique id of the algo-

rithm and is used to identify the algorithm so exploration states of the current trace can be 

restored between persistent sessions. For example all filtering algorithms that are effec-

tive can be saved and restored at the next session easily. An improvement of the current 

approach would to calculate the unique index based on some attributes of an algorithm; 

the calculation would need to return same index all the time. An optional attribute for an 

algorithm is parameter, with which a user can define several input parameters for a given 

algorithm. Other optional attributes are pre-process class and post-process class for the 

algorithm. They can include any supplementary processing including UI related settings 

for the algorithm and will be loaded automatically. A schema for the “seat.algorithm” ex-

tension point definition can be found in Appendix B. 

 

When a new filtering algorithm is developed and added as an extension to the extension 

point described above, it will be represented as an IConfigurationElement in the Eclipse 

platform. AlgorithmDescription will extract attributes from IConfigurationElement and it 

stands for a high level representation of an algorithm extension.  The parameters of an 

algorithm that are defined in the extension will be parsed into Parameter objects.  
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For user interface, an algorithm will be visually displayed as an AlgorithmAction, which 

extends Eclipse Action class and can be displayed as both a menu item and a toolbar but-

ton. Also we aggregate all the AlgorithmDescriptions into an AlgorithmList so their states 

can be managed in a central place. Another interface aspect is to allow the user to load 

parameters of an algorithm into a preference page and modify them.  Parameters of each 

algorithm are grouped into an instance of the AlgorithmPreference class. 

 

Figure 17 Class diagram for algorithm loading 

4.5.3 Dynamic Trace Loading 

TreeNode (See Figure 18) contains basic interface-related attributes, such as name, type, 

icon name, and description. It also realizes the parent/children relation. However, in a 

CTF trace model, all repeated nodes and subtrees will be only created once. Therefore a 

single node will have several parents and represent events that occur in different places in 

a tree. So a node object from a CTF model cannot clearly identify which exact event it 

stands for. This leads us to employ an edge-based approach to uniquely identify an event 
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from the trace model. We use UniquePath to represent an event that occurs at a specific 

place in a tree. UniquePath essentially comprises a series of edges from the root node to a 

given node in a CTF model. The dynamic loading algorithm will identify all nodes that 

should be visible in the current window, create corresponding UniquePath representa-

tions of these tree nodes, and construct a PartialTree with the UniquePaths. This Partial-

Tree can be further visualized by our new widget. Further explanation of the PartialTree 

and dynamic loading algorithm will be presented in Chapter 5, Dynamic Trace Loading 

Algorithm. 

 

Figure 18 Class diagram for dynamic trace loading 

4.5.4 Editor 

Visualization of SEAT is driven by the Eclipse platform. SEAT uses multiple page edi-

tors (MultiTraceEditor class derived from MultiPageEditorPart class in the Eclipse plat-

form) for trace exploration. Each editor corresponds to a trace and each page contained in 

the editor corresponds to an exploration. Because the Eclipse platform only allows open-

ing exactly one editor for one set of input data, we use each page within a multiple page 

editor as a standalone exploration. Exploration statuses are cached in the page. A trace is 
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displayed in a TraceViewer (See Figure 19), which manages exploration states, label pro-

viders and listeners to support trace exploration and visualization. To visualize the differ-

ent statuses of trace nodes currently in the TraceViewer, customizable labelling and col-

ouring techniques are supported. A user can choose whether to add special characters to 

the filtered nodes, or which colours and images to use to display nodes with different at-

tributes. This is accomplished through standard decoration technique found in the Eclipse 

platform. 

 

 

Figure 19 An editor displaying a trace with filtered tree nodes highlighted 

 

TraceViewer extends another high-level JFace viewer, called PartialTreeViewer. Par-

tialTreeViewer bridges between the low level PictureTree rendering widget and the data 

model, in this case PartialTree. For example, it supports selection of tree nodes, accepts a 

new PartialTree and delegates refresh of the screen to the PictureTree widget. Picture-

Tree contains a rendering algorithm that draws the tree with exactly the same appearance 

as a traditional tree widget on the screen. Further explanation of PartialTreeViewer and 

PictureTree can be found in Chapter 6, New Tree Widget. 
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Other classes include parsers for different languages; they are called by the editor when 

the first exploration of a trace is loaded and are essential in the correct construction of the 

trace model. The parsers are also used to link a method call in a trace to the source code 

and extract data, such as comments for a method, from the source code. The diagram for 

editor and viewer are show in Figure 20. 

 

 

Figure 20 Class diagram for trace editor 

4.5.5 Views 

Views are typically used to navigate a hierarchy of information, open an editor, or display 

properties for the active editor.  
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SEAT has a Model view to display distinct nodes from a CTF model and the current 

states of these nodes (See Figure 21). The Model view is also used as a kind of feedback 

when a user explores a trace, such as by applying an algorithm. Nodes in a Model view 

can also be hidden and shown directly and changes will be reflected in the editor so all 

visual tree nodes corresponding to the selected model nodes will be refreshed.  

 

Figure 21 A Model view displaying nodes from a CTF model 

 

Pattern view (See Figure 22) is used to display reoccurrence patterns, that is repeated 

subtrees, identified during an exploration, and Utility view (See Figure 23) is used for 

displaying utility methods. Patterns and utilities can be promoted to the global level so 

different traces can share the results of an exploration. Where a trace is first loaded for 

exploration, it will check patterns and utility methods existing at the global level and will 

use them to filter nodes in current trace. 

 

 

Figure 22 A Pattern view displaying repeated node and subtrees identified in a trace 
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Figure 23 A Utility view displaying utility methods identified for the current session 

 

SEAT provides search ability by incorporating the Search view from the Eclipse search 

framework (See Figure 24). It supports both ‘exact’ and ‘contains’ matching. An intelli-

gent search capability was developed by Liu [88]; this scheme can help in assisting user 

exploration. Search history is recorded automatically and the user can easily return to a 

previous result. 

 

 

Figure 24 A Search view displaying all trace methods that starts with ‘is’  

 

A Bookmark view is also provided so the user can record the locations previously visited 

and return to it when necessary (See Figure 25). 
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Figure 25 A Bookmark view displaying saved locations during an exploration 

 

All views described above support navigation in the editor. When a node in a view is se-

lected, the editor will be refreshed automatically to reveal the first matched tree node. 

The user can further select to navigate to other matched tree nodes in turn if there is a 

multiple match. Model view, Pattern view, Utility view, Search view and Bookmark view 

correspond to ModelView, PatternView, UtilityView, SearchResultView and BookMark-

View class respectively in the diagram shown in Figure 26. 

 

 

Figure 26 Class diagram for different views in SEAT 
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Chapter 5 Dynamic Trace Loading Algorithm 

In Chapter 4, we introduced the architecture of SEAT and different subcomponents. In 

this chapter we will concern ourselves with trace loading techniques.  

 

In essence, a trace can be regarded as a tree structure. Trees are one of the most important 

data structures in real-world applications; and many types of data can be converted to 

trees. Widgets for displaying a tree exist in all major GUI toolkits, however they have a 

major problem: They require the whole tree structure to be modelled and passed to the 

widget. This leads to two inherent problems: time and space constraints. Specifically, 

those tree nodes that are currently invisible in the window need also to be processed.  

 

Our proposed approach to this problem is to only retrieve currently visible nodes for the 

UI tree using a dynamic trace-loading algorithm. The direct result of the algorithm is a 

tree that is only comprised of visible tree nodes and their linking parents. We call this 

tree, a PartialTree.  

5.1 Design Rationale 

The design rationale for PartialTree is program locality, i.e., many programs exhibit lo-

cality when accessing memory [89]: certain data are referred to repeatedly for a while, 

and then the programs shift focus to other parts of the data. The currently focused data is 

called the “working set”. In the working set model, the working set of a process refers to 

the minimum collection of its pages that must reside in the main memory for the process 

to run without ‘un-necessary’ page faults. This concept is utilized by many operating sys-

tems for performance enhancement. 

5.1.1.1 Why not cache? 
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It is difficult to determine which part of the tree to cache. With trees, unlike with linear 

data structures, such as lists, nodes of interest change quickly as users expand and col-

lapse nodes. Nodes can also be filtered by a filtering algorithm sparsely. Therefore, nodes 

in a cache will become obsolete quickly and the cache will be useless. 

 

The trace model or underlying storage may already have provided some kinds low-level 

cache for improved performance. For example, when retrieving nodes from a database, 

the database management system may already provide such facilities.   

 

Therefore, dynamic loading is a better choice. 

5.2 Concepts 

Node: A node is a vertex in a graph. A node, also called a model node, represents a dis-

tinct entity in a CTF model.  

 

Edge: If a node i is associated with node j, the association is called an edge from initial 

node i to the terminal node j. Extra information can be encoded in an edge, such as the 

number of repetition for a looped method call.  

 

Path:  A path is a traversal of consecutive nodes along a sequence of edges in a 

graph.  The node at the end of one edge in the sequence is also the node at the beginning 

of the next edge in the sequence.  The first node of a path is called root node and the last 

node in a path is called terminal node.  

 

UniquePath: A UniquePath is an implementation of path in Java using a list of edges. In 

a CTF trace model, a node can stand for occurrences of method calls in different places in 

a call tree. By giving only a node, one cannot clearly identify its exact location. There-

fore, we use UniquePath to represent a distinguishable tree node in a tree. In the follow-

ing sections, we use path and UniquePath interchangeably.  
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Subtree: A subtree of a tree is a tree node in that tree together with all its descendents. 

When a tree node in a tree has no children, it is called a tree node.  

 

PartialTree: A PartialTree is a tree generated as the user explores a trace dynamically, 

and contains only paths that are visible in the current view. It may also contain intermedi-

ate parent paths of visible paths that are used to link the tree structure, but these parent 

paths should be invisible to the user when visualized. 

 

Dynamic Loading Algorithm: Algorithm that constructs a PartialTree as the user is ex-

ploring the trace. 

5.3 Design of the Dynamic Loading Algorithm 

5.3.1 Overview of Design 

Dynamic loading is an independent layer between the trace model and trace visualization. 

Though it closely interacts with these two layers, our design guideline is to try to make it 

as reusable as possible. So it can communicate with different models and be rendered 

with various visualization techniques.  

5.3.2 UniquePath  

A UniquePath uses a list to remember the edges from root node to a terminal node in a 

model. Because in a model representation of a trace, such as in CTF, a node itself cannot 

be used to identify its location in a tree, UniquePath solves this problem by incorporating 

information of all edges from the root node to the terminal node. 

 

The most important methods of UniquePath are getPreviousSibling() and getNextSib-

ling(). A sibling path is the path that has same parent as the current path. These methods 

are used to extract data from the model and to construct a PartialTree when exploration is 

made. The current implementation uses the index of last edge in the list of a UniquePath 

to find its neighbouring edge and creates the required path. NULL will be returned when 

the desired edge does not exist. For example, the first edge will not have an edge before 
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it. The other two methods are createParentPath() and createChildPath() that are used to 

navigate through parent/child relation. The parent path of a UniquePath can be easily 

created by simply removing the last edge in the list of current UniquePath. A child path 

will be created by adding the child edge to the end of the edge list. If models other than 

CTF are used, these methods should be overridden.  

5.3.3 PartialTree 

IDynamicTree defines the interface for a dynamically loaded tree so that different imple-

mentations can be realized. PartialTree implements this interface and encapsulates the 

dynamic loading algorithm. We will first introduce the basic pieces of functionality pro-

vided in PartialTree to support dynamic data loading.  

5.3.3.1 Determine whether a path will be included in PartialTree construction. 
Visually hiding or showing a path depends on a combination of four conditions: a tree 

global setting that determines whether the filtered paths will be shown, a parent path set-

ting that overrides the global settings, the hide/shown state of the path itself, and user 

specified filter criteria at the model level. 

5.3.3.2 Cache expanded/collapsed state of a path. 
A hashtable is used to record those paths that are expanded so their children will be 

shown in the tree. Also the state of expansion is identified as either fully expanded or par-

tially expanded. The state is important in supporting additional features of the new widget 

that will be discussed later. 

5.3.3.3 Calculate the size of a complete tree based on the expand/collapse states 
of paths. 

The size is the total number of nodes of a tree if dynamic loading is not used. As will be 

seen in the design of the new widget, this size can be used to determine the presentation 

of the scrolling to help correct visualization. The calculation is based on the hashtable for 

expanded nodes. 

5.3.3.4 Calculate offset of current path to the root.  
The offset determines how many nodes are “before” this path starting from the root path. 

It is also used to help visualization by indicating the current position of user scrolling. 
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The algorithm iterates through the expanded nodes list and uses comparison to determine 

which node is before the current path and which is after or equal to it. 

5.3.4 Dynamic Loading Algorithm 

From a high-level view, the dynamic loading algorithm will search children, siblings and 

parent nodes from a model in turn to retrieve candidate paths and create the PartialTree 

using the retrieved paths. To construct a PartialTree, the dynamic loading algorithm uses 

the following steps: 

5.3.4.1 Forward skip n paths from a given path. 
Skipping is used to relocate the starting point for the next PartialTree. From the given 

path, n paths will be skipped to reach the new starting point and the new PartialTree will 

be constructed from the new position. In case there are not enough paths to be skipped, 

the algorithm will skip the maximum number that is available and return that number. 

Forward skipping consists of three consecutive steps and successive steps will only con-

tinue if a previous step has not found enough paths. 

 

1. Skip current path as a subtree. Each child path of current path will be skipped. The 

child path is treated as a subtree so the skipping is done recursively. This method will re-

turn with either the desired number of paths or the maximum number of path skipped in 

the subtree. 

 

2. Skip sibling paths. Sibling paths that are after the current path are skipped if not 

enough paths have been skipped in the previous step. Each sibling path is treated as a 

subtree and skipped using the skipping path method in step one. 

 

3. Skip sibling paths of all parent paths if not enough paths have been linked in pre-

vious step. Each parent path is skipped using the skip sibling method in step two until a 

given number of paths have been skipped or the root path has been searched. The sibling 

paths must be after the parent path. Repeat this step until the root path is done if no 

enough paths have been linked. 
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4. The number of paths skipped from these steps will be returned.  
 

5.3.4.2 Backward skip n paths from a given path. 
Backward skipping is used to relocate the starting point in the reverse direction. That is 

from the current location, it will find n paths before it and use that location as the starting 

point for the new PartialTree. The algorithm will also skip the maximum number that is 

available and return that number. This is comparable to the forward skipping which has 

three consecutive steps; backward skipping has only two steps since backward skipping 

will not skip the current path as a subtree as the first step. 

 

1. Skip sibling paths that are before the current path if not enough paths have been 

skipped. Each sibling path is treated as a subtree and calls skipping child path method 

described below. 

 

2. Skip sibling paths of all parent paths if not enough paths have been linked in the 

previous step. Each parent path is skipped using the skip sibling method in the previous 

step until a give n number of paths have been skipped or the root path has been found. 

The sibling paths must be before the parent path; Repeat this step until the root path is 

found if not enough paths have been linked. 

 

3. Skip child path. The method will skip a child path from largest index first instead of 

smallest index as in forward skipping. Each child path of the current path will also be re-

cursively counted and skipped. This skipping path method will be called by the skipping 

sibling path method.  

 

4. Return the total number of paths skipped backwards after all the skipping calls.  
 

5.3.4.3 Construct a New PartialTree from a given path. 
This is the core method of the loading algorithm and it calls other methods described in 

this section to construct a PartialTree from a given path. The method takes three parame-

ters: the starting path (the path that is used as a reference point), an offset from the start-
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ing path, and number of paths to be retrieved. The algorithm will use the starting path as a 

reference point, skip the number of paths indicated by the offset, and construct a Partial-

Tree with the given number of paths. 

 

1. Determine the new loading point. Depending on the offset, which can be positive or 

negative, the forward skip or backward skip method is called and current path will be 

move to a new location. All other paths will be retrieved starting from this location. 

 

2. Link paths to construct the PartialTree. The linking process is the same as the for-

ward skipping process except that it actually creates and links paths to construct the par-

tial tree instead of counting the numbers. Similarly the linking process also has three con-

stituent steps which include linking the current path as a subtree, linking sibling 

nodes and linking parent nodes until the desired number of paths is constructed. If there 

are not enough paths to be linked, the algorithm will process the maximum available. 

 

3. Return the root of the PartialTree created. 

5.4 Illustration of Dynamic Loading Algorithm 

To help better understanding the dynamic loading algorithm, a sample trace is given to 

show how a PartialTree is dynamically constructed.  

5.4.1 Sample Trace 

The sample trace is abridged from a real single-threaded trace without timing information 

(See Figure 27).  
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Figure 27 A sample trace 

The CTF formatted trace without timing information is shown in Figure 28: 
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Figure 28 Sample trace in CTF format without timing information 
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5.4.2 Illustration 

We make the following assumptions to simplify the illustration steps. First the tree is 

fully expanded, that is all the subtrees are expanded and all leaf tree nodes are visible as 

shown in Figure 27. Second we assume that the current window can display 10 tree nodes 

at most, so the PartialTree to be constructed will consist of 10 visible UniquePaths. We 

also use the word “node” to refer to the tree node for simplifying illustration only. It 

should not be confused with “model node” defined in 5.2. 

5.4.2.1 Construct the Initial PartialTree 
Initially, the PartialTree will be constructed from the root node. Therefore, node 1 is first 

included and its child nodes will be linked recursively. Because node 1 has two children, 

node 2 and node 6, they are retrieved recursively. Node 2 is then included. Node 3 is 

child of node 2 so both itself and its only child node 4 will be linked. After node 3 is 

done, its sibling node 5 is linked to node 2. Till now subtree node 2 is finished. Because 

there are still not enough nodes, the siblings of node 2 will be searched. Node 6 will also 

be linked recursively until 10 nodes are found. This initial PartialTree is marked as Par-

tialTree 1 in Figure 29.  

5.4.2.2 Forward Skip 6 Lines and Construct New PartialTree 
 Next we will skip 6 lines so the starting point for the new PartialTree is node 7. Forward 

skipping is similar to linking. Node 1 is first included and counted as 1. Then it child 

node 2 will be counted recursively. After node 2 is finished, the counter will be 5. Node 6 

will then be processed recursively to get extra node. Here only one extra node is needed 

to skip 6 nodes in all, so node 6 will be counted. After the desired number of nodes is 

counted, one extra node is skipped to reach the next starting point. Therefore, node 7, the 

first child of node 6, is set as the starting point of new PartialTree. Loading of new Par-

tialTree will start from node 7. 

 

Before construct new PartialTree, all intermediate parents of node 7 is first linked. They 

include node 1 and node 6. Next node 7 is linked to its directly parent node 6. Because 

node 7 has no children, its sibling, node 8, will be linked recursively until node 16 is 

reached. The process is similar to that described in 5.4.2.1. The new PartialTree is indi-

 Chapter 5 Dynamic Trace Loading Algorithm  71 



 

cated as PartialTree 2. Node 1 and node 6 are also marked with number 2 and indicate 

that they also belong to PartialTree 2. 

 

Long jump to the last page is also supported. The number of long jump steps is passed 

from user interface, such as scrollbar. Then new starting point from root node is first cal-

culated. The calculated value minus current starting point is the number of nodes to be 

skipped. The remaining steps will be the same as previously introduced.  The PartialTree 

and intermediate linking nodes are marked by 3. 

5.4.2.3 Backward Skip and Construct New PartialTree 
Suppose a PartialTree starting from node 14 is displayed and we will scroll backward so 

the new starting point is node 3. In this scenario, 11 nodes will be skipped in a backward 

move. 

 

The first step is to skip previous sibling as a subtree. In this case, node 12 is processed 

and its children will be skipped recursively starting from highest index to lowest index. 

This will result in that the last child deep in the subtree structure will be counted first. 

Node 12 only has one child, node 13. Node 13 will be counted as one. Then node 12 is 

counted. All siblings before node 12 is counted in turn until the parent, node 8, is 

reached. Because no enough nodes have been found, node 7 and node 6 will be skipped 

as sibling node and parent node of node 8. Then node 2 will be skipped as the sibling of 

node 6 and the search is done by skipping the last child, node 5. Node 3 will also be re-

cursively skipped by skipping its last child first. The only one, node 4, is counted, and the 

new starting point is positioned to node 3. 

 

From node 3, a new PartialTree will be constructed by forward linking. The result is Par-

tialTree 4. Node 1 and node 2 are also marked as being the intermediate parents in the 

PartialTree. 

 

5.4.3 When New PartialTree Construction Occurs 
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There are different actions from user interface that may cause a new PartialTree being 

constructed. For example, when a user navigate in the trace editor, using either keyboard 

or mouse, a PartialTree will be created and rendered for each movement. Expanding and 

collapsing a subtree will also cause new tree nodes to be displayed or hidden. When fil-

tering algorithms or user defined filtering criteria are applied or invoked, a new retrieval 

will occur to reflect changes. A global setting change, such as do not hide filtered tree 

nodes, will also cause the editor to be refreshed and thus results in a new PartialTree to 

be created. 

 

No matter which way causes a new PartialTree construction, the process is same. The 

dynamic loading algorithm will first test whether a model node will be included in the 

retrieval or not. Because the algorithm works on model nodes, the memory footprint of 

PartialTree is very small and performance of overall tree manipulation is improved. 
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Figure 29 Sample trace with different PartialTrees marked for illustration 
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Chapter 6 New Tree Widget  

Trees are a convenient hierarchical structure to organize large data sets. By partitioning 

data into different level of groups, we can examine data sets at different level of abstrac-

tion methodically [90]. We can move down the hierarchy if interesting features appear, or 

go up if sufficient information about sub trees has been collected. This chapter will de-

scribe the design of a new tree widget called PictureTree that utilizes the dynamic data 

loading techniques presented in Chapter 5. 

6.1 Classification of Tree Layout Possibilities 

There are many visualization methods for a tree structure depending on the requirements 

and domain. Some of these are described below and illustrated in Figure 27. 

 

• Simple text layout: indented list, like Windows Explorer. 

 

• Traditional graphic layout: parent-child link drawing 

 

• Containment tree:  Instead of representing a tree as nodes and links, a tree is rep-

resented as a containment-TreeMap [38]. In this representation, children nodes are 

displayed in the space of a parent node. Space for a parent node is divided hori-

zontally and vertically for all direct children and the division is repeated until leaf 

nodes are reached. TreeMaps are effective in presenting unusual patterns at the 

leaf level [51]. 

 

• Radial layout: This involves displaying the root node at the center with all chil-

dren scatter around. Layout algorithms can be applied to place different level of 

children. This view can be zoomed out to display a large number of nodes, but the 
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drawback is that it cannot clearly display the hierarchy of the tree as intuitively as 

other approaches.  

 

• Collapsible Cylindrical Trees [91]: Child nodes are drawn on the surface of rotat-

ing cylinders, which will be automatically displayed, or hidden depending on their 

three-dimension position. Each label is drawn on a facet. If the number of child 

nodes outnumbers the facets, the remaining nodes will be mapped and drawn dy-

namically. At any time, only one expanded cylinder is drawn on the right side of 

the current cylinder. The right side cylinder is the set of child nodes of the focused 

node from the parent cylinder, and all other cylinders are squeezed. 

 

• 3D ConeTree: This uses cones to represent subtrees and draws one node at the 

apex and all its children nodes in the circular base of the cone. Refer to the Chap-

ter 2 for details. 

 

Auxiliary techniques such as animation [45], zooming and focus + context [32] are also 

often used. 
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Figure 30 Different tree layout and visualization techniques 

6.2 Requirements for Tree Layout  

The most influential guidelines for drawing trees are those originally proposed for draw-

ing binary trees, but which are applicable to all trees [92]: 

 

• A parent should be drawn above its children. 

• Nodes at the same level should lie along a horizontal line or vertical line. 

• A sub tree should look the same regardless where it is drawn.  

 

Another set of requirements for aesthetically displaying hierarchical information such as 

tree is summarized as follows [93]: 

• Allow adequate space between nodes to display readable information 

• Allow users to understand the relationship between a node and its surrounding 

context. 

• Allow users to find elements in the hierarchy quickly. 

 Chapter 6 New Tree Widget  77 



 

• Allow the whole information space to fit into a bounded region. This requirement 

is desirable to eliminate the need for scrolling. 

6.3 Existing Solutions 

An example of a tree-browsing tool that avoids loading all the data into memory is Vir-

tual TreeView [94]. It is a tree control based on the event concept and defers data loading 

until absolutely necessary. Though it is very efficient in loading thousands of nodes, 

when the number of nodes reaches the millions, the widget ceases to response when it is 

evaluated. 

 

SpaceTree [95] is based on the conventional tree node-link layout, but adds dynamic 

zooming features that lay out branches of a tree to best fit the available screen space. 

Branches that cannot fit on to the screen are summarized and indicated as a triangle at the 

side of the parent nodes. The shading of the triangle corresponds to the children’s size, 

and the height corresponds to the depth of the sub tree; the width indicates the average 

width. Animation techniques are employed to reflect change of focus. When a new focus 

is selected, the SpaceTree evaluates how many new branches will be opened, trims the 

branches that overlap with the new branch and then centers the new tree. To help user 

orientation, SpaceTree uses all the previous focus nodes as landmarks, and highlights this 

path using the colour blue. Users can navigate the tree by clicking the triangle to show 

branches, or by clicking arrows to move among parent, children and siblings.  However, 

SpaceTree loads all the nodes required for visualization into the memory at once. 

6.4 Design Decisions for the New Widget 

The following are some problems with existing widgets on the Eclipse platform motivate 

us to develop a new tree widget instead of using the old ones. 

• The existing technology cannot handle large data. Filtering is done at the user in-

terface level, not the backend model level. When filtering needs to be done in a 

user interface widget, data are first created. The result is slow response and rela-

tively high memory requirements. 

 Chapter 6 New Tree Widget  78 



 

• The behaviour of a tree control can not be fully controlled as desired by users be-

cause some operations on tree control are delegated to the underlying operating 

system and the operating system gets the priority to do processing first. Therefore, 

described feature cannot be realized. 

• Operations during trace exploration require extra states to be represented by a 

node that are not supported by traditional widgets. Most technologies either con-

sider a node to either have all its children hidden, or all of them displayed (i.e. us-

ing the plus/minus icons). As discussed earlier, there is a need to show in addition 

that a subset of children are displayed. 

 

Different layouts for tree rendering were compared and investigated to create the new tree 

widget. However, our decision had to be based on supporting the expected tasks [94]. Be-

cause of the limitations of screen space, we decided that only a portion of a tree will be 

displayed. Other nodes may be out of the view, pruned to be invisible or displayed in the 

background. We decided to use the simple text layout that is most familiar to the users 

and is widely used. Another consideration is that we want to be able to substitute the new 

tree widget as transparently for the users as possible.  

6.5 Design of PictureTree 

The PictureTree class is developed in Eclipse platform using SWT. SWT is a set of com-

ponents that deliver native look and feel functionality for the Eclipse Platform. Applica-

tions developed using SWT API are fully portable to different platforms because SWT is 

implemented in Java. Another benefit of SWT is that SWT-based applications can inter-

act with platform-specific features. 

6.5.1 Tree Navigation 

By studying the existing tree widgets in different platforms, we determined that users 

navigate tree widgets by using the following keys and mouse clicks. (The term page used 

hereafter refers to a fixed amount of tree nodes that is rendered in the window of a wid-

get).  
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• Home: display the first page starting from the first node (root). 

• End: display the last page to the last node. 

• PageUp: reveal the previous page, if not enough nodes can be retrieved, display 

the first page from the root. 

• PageDown: reveal the next page, if not enough nodes can be retrieved, display the 

last page. 

• ArrowUp: Move the current selection up if it is not the first visible node in the 

page; otherwise, move the page up so one previous node in the tree is visible, and 

select it. 

• ArrowDown: Move the current selection down if it is not the last visible node in 

the page; otherwise, move the page down by one so one subsequent node in the 

tree is made visible, and select it. 

• ArrowLeft: If current node is an expanded subtree, collapse the subtree; other-

wise, move the selection to the parent node; if the parent node is not visible in the 

current window, make it the first visible node in the window. 

• ArrowRight: If current node is not a subtree, do nothing. If the current node is an 

expanded subtree, go to its first child node; otherwise, expand the current node. 

• Backspace: move to the parent node of the current node; reveal it as the first visi-

ble node if it was not already visible. 

• Mouse Click: If the user clicks on a label, select it as the current node; if the user 

clicks on an expand/collapse icon, expand or collapse the subtree respectively. 

• Mouse Click+Ctrl: Make a selection of multiple non-contiguous nodes; the node 

selected by mouse click is marked as the current node. 

• Mouse Click+Shift: make selection on multiple contiguous nodes from a previous 

selected node to the node selected by mouse click.  

 

PictureTree will support all the common features described above. 

6.5.2 New Features 

One novel feature of this new widget is supporting subtree level filtering through an addi-

tional expanded state, called ‘partially expanded’. We made the decision to implement 
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this based on the observation that software engineers need constantly to change their 

ideas and assumptions when exploring traces. For example, a software engineer may 

want to hide all the filtered tree nodes. When exploring a specific subtree, he or she may 

wish to see all the tree nodes of the subtree, including those marked filtered so he or she 

can have all the interaction details. 

 

When a subtree is first displayed, it is in collapsed state. When a user wants to expand the 

subtree to visit its children nodes, the icon that represents the new state will change to 

either ‘–‘ icon or ‘~’ icon depending whether there are children nodes being hidden by 

any filtering algorithms. If no children nodes are marked filtered, ‘-‘ icon will be dis-

played for the subtree. Otherwise, ‘~’ icon will be used to indicated some children cannot 

be seen. By using Ctrl+Click, the user can switch between these two icons, and refresh 

children nodes respectively. 

 

The states of a subtree node in the new widget are depicted as in Figure 28. A leaf node 

does not have these states. 

 

Figure 31 State diagram of a subtree node 
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6.5.3 PictureLabel 

PictureLabel is a basic visual item used to render a UniquePath in a PartialTree. It con-

tains the icon representing the expanded state, the icon standing for the path, the fore-

ground colour, the background colour and the path as its associated data elements. Pic-

tureLabel only contains information for visualization so it is independent of any render-

ing method. If another representation of the tree is to be used, such as a drawing algo-

rithm that is different as PictureTree in 6.5.4, no change in PictureLabel is needed. 

6.5.4 PictureTree 

The new tree widget is called PictureTree and it extends the Canvas class of SWT on the 

Eclipse Platform. Canvas is the starting point for a drawing-related widget that is portable 

to different platforms. PictureTree is designed to simulate the interface of a Tree widget 

in SWT. It supports selection of tree nodes, querying of tree attributes like first item and 

node count, and adding listeners. Mouse/Keyboard functionalities as described in 6.5.1 

are supported so it looks exactly like a traditional Tree widget provided by the Eclipse 

platform. State changes of a node are captured using the onMouseDown() method which 

switches the icon of a subtree between +, - and ~.  

 

To ease the incorporation of other visualization methods, all the code that renders the tree 

is encapsulated into a single onPaint() method. Input to the drawing method is the Par-

tialTree, which contains all the nodes to be drawn by a layout. To reduce blinking be-

tween two drawings, double buffering is used.  

 

One of the challenges in rendering is correct positioning of the scrollbar to indicate cur-

rent location according to the size of the entire tree. Accurate calculation of position is 

necessary to ensure the user has a proper understanding of where he or she is in the tree. 

Because the functionality of a PictureTree is visualization, it delegates the calculation to 

the model – PartialTree so other visualizations may also benefit from this model/view 

separation. PictureTree will query PartialTree to get the offset of the first node to the 

root and adjust the position the syncScrollBars() method. 
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6.6 Design of PartialTreeViewer 

PartialViewer is a JFace viewer which is based on the PictureTree widget. 

6.6.1 Difference between A Viewer and A Widget 

A viewer acts as an adapter of a low level widget, provides additional feature such as 

sorting, filtering, and event listeners. All viewers belong to the JFace package instead of 

SWT. A JFace viewer consists of an SWT widget (e.g. Tree, Table, etc), plus domain ob-

jects and acts as a bridge between them. A viewer is able to sort and filter domain objects, 

as well as updates the widget when your domain objects change. This is realized by in-

heriting and re-implementing ViewerSorter and ViewerFilter classes provided by the plat-

form and adding them to the viewer. If you use a SWT widget directly, you have to con-

vert your objects into the strings and images expected by the widget API because SWT 

widgets have no knowledge of your domain.  

6.6.2 Eclipse TreeViewer Architecture 

The base class for all high level JFace viewers is derived from the Viewer class, which 

defines an input of data to be displayed, and selection of support capabilities.  Each 

viewer has an associated SWT widget. This widget can be created automatically in the 

constructor of the Viewer class, or explicitly by creating it first and supplying it to the 

viewer in its constructor. The Viewer class is defined as abstract because the main control 

type, input and selection cannot be determined at this point. When a new input is set, the 

inputChanged() method will be called which defaults to empty. 

 

Based on Viewer, the class ContentViewer handles the model data through IContent-

Provider and ILabelProvider interfaces. IContentProvider mediates between the viewer's 

model and the viewer itself so any data change in the model will be notified to the 

viewer. One of the main reasons to provide a content implementation is to avoid data du-

plication. For example, if the data to be rendered exists in a model, a content provider can 

be used to retrieve them instead of creating them. ILabelProvider provides interfaces to 

get the text and image for the label of a given element in the model. The Viewer class de-

fines a generic infrastructure for handling model input, updates and selections. 
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StructuredViewer is an abstract implementation of structure-oriented viewers, such as 

trees, tables, lists. It supports user defined sorting, filtering and updating. Starting from 

StructuredViewer, all subclasses of Viewer class begin to have a hashtable that contains a 

map from model elements to visible interface items. But by default this cache capability 

is turned off. When turned on, the hashtable can improve the performance by caching 

visible items; but at the same time it will increase memory requirements for huge data set. 

Raw data will be returned by the getElements() method defined in the IStructuredCon-

tentProvider interface. The filter() method will check and decide whether a visual ele-

ment can pass a list of filters before rendering it.  

 

For a TreeViewer, when first created, the required child nodes are queried from ITree-

ContentProvider of the model, depending on the level of nodes to be expanded. Tree con-

trol in TreeViewer will create interface elements by wrapping visual attributes such as 

images and colours around the model children. The interface element is called TreeItem. 

In the next step, these TreeItem children will be filtered and sorted if a sorter exists. Tree 

control further delegates the actual rendering to the underlying operating system.  

 

Inside the Tree control, an array is used to keep track of all the expanded nodes and their 

children including those filtered. Collapsing a node and will not delete its nodes. In the 

case of a structural change, such as deletion of some nodes, the corresponding data in the 

array will be emptied but the array will not reduce in size.  This incremental array can be 

one of the problem sources for large trees. 

 

The Tree control is designed to closely depend on the operating system, and passes all the 

data to the operating system.  The operating system needs the whole tree for rendering. 

As a result the problem dealing with a large tree will eventually occur.   

6.6.3 PartialTreeViewer 

We decided therefore to extend ContentViewer and create a viewer called PartialTree-

Viewer for PictureTree. Though from a high-level view, PartialTreeViewer is a kind of 
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TreeViewer, it is from StructuredViewer in the Viewer hierarchy, that the filter function-

ality is added into the framework.  

 

PartialTreeViewer adds support for double click listeners, selection, and refreshing. It 

also supports label providers, colour providers, and expand icon providers to adjust and 

control the rendering of tree on the screen.  

 

Based on PartialTreeViewer, we implement another viewer called TraceViewer. Trace-

Viewer is developed with the direct association with the trace model based on CTF for-

mat. Because we need to support explorations of different parts of a trace at the same 

time, we use an Exploration class internally to store all the state information of the cur-

rent trace. Each TraceViewer has an associated Exploration and a dynamic tree will be 

displayed in it. A TraceViewer also has a label provider to supply decorated label names, 

images for its nodes, and a color provider to determine foreground and background colors 

of nodes. Images and colors are determined by attributes from the trace model, such as 

whether a node is filtered, is a pattern, is a utility, or is highlighted. 

 

TraceViewer will be used in an editor for trace exploration and visualization.  
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Chapter 7 Evaluation  

This chapter discusses the experiment used to evaluate the effectiveness of the new wid-

get and the tool.  

7.1 Goal of Evaluation 

As described in Chapter 3, our current research focuses on effective handling of large 

traces, especially those with millions of lines. Our goal is to test whether SEAT can help 

a software engineer easily understand and manipulate large traces. To be specific, this 

user evaluation will address the following three questions: 

 

1. Identify the usefulness of the new widget and any potential usability problems 

that exist in the tool.  

2. Obtain evidence indicating whether trace processing with the tool can reach an 

acceptable performance level (based on user tasks performed and time taken).  

3. Identify whether the tool can help understanding. 

7.2 Methodology 

Our study followed general guidelines and approaches for usability testing [84]. These 

included designing training material, tasks and the questionnaire, recruiting test partici-

pants, conducting testing, and analyzing test results. 

7.2.1 Test Participants 

In order to identify whether the tool can effectively help software engineers understand a 

system, we decided to recruit participants and asked them to manipulate the traces from 

these systems using our tool. According to usability studies, at least five participants are 

needed to generate a reliable result [84].  
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We recruited 10 software developers; some were graduate students and others were soft-

ware engineers from industry. We called them ‘participants’. All the participants had 

software engineering, graphical interface design and programming experience. 

7.2.2 Test Preparation 

Before the study started, we developed a quick guide for the tool that a participant can 

refer to during the study. In this guide, basic concepts are explained so novice partici-

pants can familiarize themselves with the tool.  

 

Tasks can be divided into three main categories to cater to the goal described in previous 

section: 

 

• Featured oriented tasks. These tasks allow a participant to explore various func-

tionalities provides by the tool. 

 

• Performance oriented tasks. These tasks include exploring traces using both the 

traditional tree widget and the newly designed widget and comparing their per-

formance. 

 

• Goal oriented tasks. We provide a high level goal, such as understanding what a 

subtree is doing, and let a participant determine answers by exploring in whatever 

way they see fit. 

 

We designed 11 questions for the questionnaire. Most of them related to the tasks that the 

test participants had conducted. We also provided some general open-ended questions to 

get their subjective opinions of the tool and their overall exploration experience. The total 

list of the questions can be found in Table 4. 

7.2.3 Study Process 
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Participants performed three activities: training, using the tool, and completing a ques-

tionnaire.  

 

First the participants were asked to sign the informed consent form (See Appendix C). 

Then in the training phase, we provided them a copy of the instruction guide and showed 

them how to use the software for about 10 minutes; they were allowed to ask any ques-

tions they wished.  

 

Participants were then asked to explore several traces using this tool and were asked to do 

certain tasks such as selecting different filtering algorithms to compare their effective-

ness, and finding patterns inside the trace.  

 

Each session took approximately 45 minutes to complete and was videotaped. We also 

took notes. If a participant spent more than four minutes on a task and could not find a 

solution, we considered that the task failed and went to the next one. Participants could 

also ask questions about the tool and the tasks during any activity. 

 

At the end of each session, participants were asked to complete a questionnaire in which 

they were asked to state their opinions about several assertions using a typical Likert 

Scale with options: Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree. 

The questionnaire also included questions about the background of participants, includ-

ing:  

  

• The number of years they have spent as a software developer. 

• Whether they have had a little, a moderate amount, or a lot of experience in the 

Eclipse platform. 

• Whether they have had a little, a moderate amount, or a lot of experience working 

with traces or dynamic analysis. 

 

The participants were also asked orally to give any other feedback they may have to the 

researcher. 
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7.2.4 Traces and Systems being traced 

In our evaluation, we collected traces from three subject systems. One is a remote test and 

debug environment developed by C. Two other systems are java based, one is a open 

source data mining tool and the other is a test and monitor tool. 

 

Traces of various sizes are selected for the test. The following table lists some of the 

traces we specifically used in the test. 

 
No. Original Trace File 

Size (KB) 

Total Method Calls Trace File Size in 

CTF Format (KB) 

Distinct Method Calls 

1 3,345 85,406 344 225 

2 15,718 219,507 522 850 

3 14,636 385,434 1,536 294 

4 22,705 631,530 270 1,734 

5 29,127 742,812 3,796 72 

6 94,862 2,409,740 10,070 344 

Table 2 Trace size 

 

We also obtained other traces with total method calls greater than 1 million. But in the 

experiment some smaller traces are chosen instead because the tool using the TreeViewer 

provided by Eclipse platform will sometimes cause “Out of Memory” error and crash. 

7.3 Analysis of Study Results 

7.3.1 Time to Perform the Tasks 

On average, the participants have 5.8 years of experience in software development, with 

little to moderate knowledge of the Eclipse IDE and dynamic analysis concepts. The test 

was conducted on an IBM P4 2.8G PC with 760M RAM. The version of Eclipse was 

2.1.1. The result for tasks completion time is shown in the following table. During the test 

design, we intended the participant to finish the test within 30 minutes. Therefore each 

task would take about one and half minutes on average. Considering the different diffi-

culties of the tasks, we allowed a maximum of four minutes for a task. If a participant 
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could not finish a task or needed assistance to finish a task, we consider the task as failed. 

Table 3 is a list of tasks with their completion time and 95% confidence intervals for the 

true mean time the tasks would take.  

 
N
o. 

Task 
Cate-
gory 

Task  Aver-
age 
Com-
pletion 
Time(s
ec) 

Stan-
dard 
Devia-
tion 

Low 
limit of 
95% 
confi-
dence 

High 
limit 
of 
95% 
confi-
dence 

No. of 
partici
pants 
failed  

1 Open Trace Exploration perspective and 
open the trace called trace3.ctf in weka 
project 

26 5 14 37 0 

2 Identify for the nodes labeled 
“weka.classifiers.IBk.buildClassifier” 
using Model view. Hide the nodes labeled 
“weka.classifiers.IBk.buildClassifier” 
from the tree 

113 16 78 148 0 

3 Restore the hidden nodes in previous step 11 2 6 16 0 
4 Hide the methods that belong to the class 

“weka.core.Instances” 
97 25 39 155 1 

5 Search for the nodes that contain methods 
that start with “is” in the tree 

97 10 74 120 0 

6 Select any method and open the source 
code that corresponds to it 

42 14 10 74 0 

7 Find out the number of nodes the trace con-
tains as well as the number of distinct 
methods 

125 13 95 155 2 

8 Hide all accessing methods by executing 
the filtering algorithm called “Hide Access-
ing Methods” 

44 13 13 74 0 

9 Cancel the effect of the previous filtering 
algorithm (i.e. show all accessing methods) 

13 2 7 19 0 

1
0 

Hide all constructors by executing the fil-
tering algorithm called “Hide Construc-
tors and Destructors” 

7 2 4 11 0 

1
1 

Cancel the effect of the previous filtering 
algorithm (i.e. show all constructors of the 
trace) 

8 3 2 14 0 

1
2 

Detect patterns of execution that occur in 
the trace 

24 6 12 37 0 

1
3 

Change the system's settings so nodes that 
are marked as hidden will not be shown by 
default 

118 16 83 153 0 

1
4 

 
 
 
 
 
 
 
 
 
 
Fea-
ture 
Ori-
ented 
Tasks 
(1-14) 

Select subtree called 
“weka.classifiers.Evaluation.evaluateMo
del” and show all the children nodes includ-
ing those marked hidden 

92 29 25 159 2 

1
5 

 
 
 
Per-

Open the following traces in both versions 
of SEAT: qnx1.ctf in qnx project, TT1-
stat.ctf in toad project, and trace5.ctf in 
weka project.  

109 10 86 132 0 
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1
6 

Close all the traces in both versions of 
SEAT. Open trace4.ctf in weka project. 
Search for methods starting with “evalu-
ate” and jump to the source code of an oc-
currence of a “evaluate…” method using 
both versions of SEAT 

108 17 71 145 0 

1
7 

Apply the following filtering algorithms on 
trace4.ctf using both versions of SEAT: 
“Hide Accessing Methods”,“Hide Im-
plementation of Polymorphic Methods”, 
and “Detect Patterns” 

76 21 29 123 0 

1
8 

In both versions of SEAT, try to hide 
enough nodes so only the very top levels of 
the tree are visible (i.e. about 30-40 nodes) 
and all the rest hidden 

87 21 38 136 1 

1
9 

for- 
manc
e Ori-
ented 
Tasks 
(15-
19) 

Close all the opened traces, restart Eclipse 
and open trace6.ctf(2 million nodes) in 
weka project using both versions of SEAT. 

24 5 12 35 0 

2
0 

Imagine you are trying to explain the trace 
to someone: Use whatever mechanisms 
explained to you during the training session 
that can help you get rid of nodes you think 
are the least important, resulting in a dis-
play that shows the 'essence' of the trace. 

134 20 81 181 0 

2
1 

 
 
Goal 
Ori-
ented 
Tasks 
(20-
21) 

Now, explain to the investigator what the 
system was doing when the trace was col-
lected. You may need to show or hide 
nodes as you do this - use whatever mecha-
nisms are available in the tool. 

N/A N/A N/A N/A N/A 

Table 3 Tasks and their completion time. 

 

Task 21 in Table 3 relates to the previous experience of a participant on the target system 

that the trace is gathered. The aim of this task is to test whether a participant can explain 

what the traced system is doing so it is not included in the calculation of the average 

completion time. For the remaining 20 tasks, their average completion time is 68 seconds. 

As we can see from Table 3, the standard deviations of some tasks are very high, which 

indicates a great difference of task completion for different participants. This is due to the 

different experience of participants, while some are familiar with Eclipse platform, others 

are not. The high limits of the confidence interval for all tasks are below 200 seconds, 

therefore, we can say that we are 95% confident that participants will finish tasks within 

about 3 minutes. 

 

For the last task in the list, Task 21, only those participants familiar with the target sys-

tem being traced are required to finish it. Five participants who do have previous experi-
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ence with the target system can give a brief description on what the trace is doing. Be-

cause we cannot collect data for Task 21 from all participants, there is potential threat to 

the validity of test result, especially for the result of Task 21. But we think the threat is 

minimized because five participants performed the task and according to usability stud-

ies, five participants is the minimum number to generate a reliable result [84].  

7.3.2 Usability Problems 

During the experiment, some usability problems are found and they are summarized in 

Table 4. 

We categorize the usability problems using four scales [96]: 

1. Severe. The problem prevents the accomplishment of a task. 

2. Moderate. The problem causes measurable delay and user frustration. 

3. Minor. The problem has some adverse effect on usage. 

4. Suggestive. The problem suggests an improvement of the system. 
No. Usability Problem Severity 
1 Order of nodes in Model view is not clear. minor 
2 Multiple occurrences of same method name (different subtrees) in Model view are 

causing confusion. 
moderate 

3 Search scope is not clear. It is better to add more options. minor 
4 Statistics of trace in Property view is hard to find. severe 
5 Refresh should appear in main menu instead of context menu, it’s hard to find. minor 
6 After a setting changes, users prefer nodes to be hidden immediately instead of current 

approach, which keeps current subtree status. 
suggestive 

7 Scope difference of an algorithm on main menu and context menu is not obvious. moderate 
8 A legend of the meaning of colors should be put in Control Panel View. suggestive 
9 Feedback to users after an operation needs to be more obvious, besides node changes 

in the Model view. 
minor 

10 Some users have difficulties in finding where to make setting changes. suggestive 
11 Using Ctrl+Click to switch hidden children of a subtree is not obvious to first time 

user. 
moderate 

Table 4 Usability problems and their severity scale 

 

There is one usability problem about the property view in the ‘severe’ category. We use 

the view to display properties of traces. However, some of participants took a long time 

to initially find the desired information and they experienced frustration. Three usability 

problems fall in the moderate category. They include: lack of distinction of subtrees with 

the same method name, lack of indication of the scope of an algorithm applied (a subtree 

or the whole tree), and switching hidden children using Ctrl+Click. There were also four 
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minor problems and three suggestive problems. The results can be used to improve the 

future version of the tool. 

7.3.3 Performance Issues 

In order to test the performance of the tool, an initial prototype that uses JFace Tree-

Viewer provided by Eclipse Platform was compared with SEAT. The purpose was to in-

vestigate and compare which mechanism exhibits better performance. The tasks corre-

sponding to test performance are numbered from 15 to 19 in the task list. 

 

However, performance data of the old version of the tool cannot be exactly gathered be-

cause the old version constantly experienced “Out of Memory” errors, although some of 

traces are well below one million items. Of the five tasks that are used to compare per-

formance, four tasks therefore cannot be done (effectively they take infinite time). On the 

other hand, looking at the average completion time for tasks15 to 19 in Table 3, we can 

see that the version that uses the new widget can accomplish all the tasks in two minutes. 

Especially for task 19 and also task 20, a trace (No. 6 in Table 2) with more than two mil-

lion nodes was used. From task completion time in Table 3, we can see that the high limit 

of 95% confidence for task completion time is 181 seconds.  

 

Below, we will also raise performance issued arising from the subjective questionnaire. 

7.3.4 Questionnaire Analysis 

In the background survey, we found participants have 5.8 years of experience in software 

development on average, with a standard deviation of 3.8. Four participants had devel-

opment experience less than five years, four other participants had experience between 5 

and 10 and the last two had more than years experience. Most of them were not advanced 

users of the Eclipse platform. Five had little experience on the platform and five are in-

termediate level users.  Lastly they had little to moderate knowledge of dynamic analysis. 

Four participants had little knowledge of dynamic analysis and six participants had mod-

erate knowledge of it.  
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The questionnaire was formulated using multiple-choice questions and the answers of 

participants are divided into five possible responses on a scale from totally disagree to 

totally agree. We assigned these a numerical value to allow simple analysis: 

1. Totally disagree 

2. Disagree 

3. Average 

4. Agree 

5. Totally agree 

 

We decided that the desired value for an answer we considered positive should be at least 

4, whereas desired value for a negative answer is at most 2. The descriptive statistics re-

sulting from the questionnaire are presented in Table 5. Note that the upper bound of the 

confidence interval would necessarily be 5; data items above this are marked as *. The 

real upper bound would be 5. 

 
No. Question Average 

Scale 
Standard 
Deviation 

Low 
Limit of 
Conf. 
Interval 

High 
Limit of 
Conf. 
Interval 

1 I feel very comfortable when using this tool. 4.2 0.25 3.64 4.76 
2 Overall, I feel the tool is very easy to learn and to 

use. 
4.0 0.33 3.25 4.75 

3 I think the tool needs to be made more efficient. 3.1 0.23 2.57 3.63 
4 I think the tool feedback - after performing the op-

erations - is clear. 
4.2 0.20 3.75 4.65 

5 The new widget has a faster response time than the 
old widget. 

4.8 0.13 4.50 5.10* 

6 The old widget is easier to use than the new widget. 1.9 0.28 1.27 2.53 
7 I am able to effectively manipulate the trace using 

the new widget. 
4.0 0.39 3.11 4.89 

8 The new widget allows me to more quickly explore 
a trace than the old. 

4.7 0.21 4.22 5.18* 

9 I prefer the old widget because it is standard. 1.8 0.25 1.24 2.36 
10 I would prefer to use the new widget for trace ex-

ploration, as opposed to the old. 
4.7 0.16 4.23 4.97 

11 The new widget adds very little new capability. 2.8 0.36 1.99 3.6 

Table 5 Result of questionnaire. 

 

As we can see from Table 5, three questions achieve a low confidence interval limit 

greater than 4 showing a high level of certainty that the typical user would respond posi-
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tively to them. These questions relate to the fast response time of new widget, and per-

formance gains of the new widgets. Four questions have a low confidence interval limit 

above 3, which also indicate a high user preference. They mostly deal with the overall 

experience of participants in using the tool. 

 

For questions regarding the capabilities added by the new widget (such as 6, 9 and 11), 

the results show low values. However these questions were deliberately negatively ex-

pressed regarding the new widget so participants needed to think before answering. We 

can invert the data and conclude that the new widget did add interesting features. Consid-

ering all the factors, we can conclude that new widget will have a scale above 3 from sub-

jective opinions of test participants.  

 

For question 3, we only obtained an average rating, which indicates that the users would 

like the tool to be more efficient. We think this is partly because some usability problems 

prevent some of the users from effectively accomplishing the tasks. 

7.4 Summary 

The above results can be summarized as follows. In terms of objective performance data 

(tasks completion time), the tool can meet performance requirements. Most tasks can be 

finished within three minutes on average. For a large trace with more than two million 

nodes, the tool can handle it in appropriate time.  

 

For subjective data, we compute confidence interval at 95%. For most questions, we ob-

tain responses that indicate the participants strongly agree with positive statements (or 

strongly disagree with negative statements) about the tool. The result is also supple-

mented by the fact that the old widget would be impractical for handling large traces be-

cause of out of memory errors and its slow response.  

 

The overall results indicates that the performance issue is well addressed by the results of 

this thesis, but there are still some relatively small usability improvements to consider 

that could make the tool more usable.  
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Chapter 8 Conclusion and Future Work  

In the previous chapters, we have presented our solution in dealing with large traces. This 

chapter summarizes our research and findings. Future work for improvement is also pre-

sented. 

8.1 Review of the Research 

Our research is motivated by difficulties in handling large traces when performing soft-

ware dynamic analysis. Currently problems exist both in modeling large traces and visu-

alizing them. 

 

To effectively support exploration and visualization of large traces, a trace format called 

Compact Trace Format was proposed in our research lab. Our first step in addressing 

largeness is to represents traces using the CTF model; this involves sharing common sub 

trees and converting the trace to a directed acyclic graph. 

 

Next, we developed a dynamic loading algorithm which loads trace data as the user ex-

plores the trace. The algorithm will generate a new dynamic tree called PartialTree in 

each step as the user traverses the trace. The PartialTree reflects the current focus of the 

user and only include nodes for current window. 

 

We also built a new tree widget on the Eclipse platform to visualize the dynamic tree. A 

trace exploration and visualization tool, called SEAT, was developed to verify our re-

search findings. The tool is developed according to guideline requirements we believe to 

be imperative for any reverse engineering tool. We obtained positive results about the 

tool through a basic user evaluation.  

8.2 Functionalities of SEAT That Address the Requirements 
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SEAT is designed with consideration of the tool requirements described in Section 1 of 

Chapter 4. SEAT supports user-oriented exploration. During exploration, a user can ex-

plicitly hide and show nodes, identify utility methods and expand and collapse subtrees. 

We will see how SEAT addresses the tool requirements in the following paragraphs. 

 

Requirement 1: The tool needs to support high level abstraction, intermediate level ab-

straction and support source code navigation. 

 

Currently SEAT does not have a view that represents high-level abstraction of a trace, 

such as a use case diagram or a sequence diagram [97]. But these diagrams are can be 

easily obtained through reverse engineering the source code and are often provided by the 

IDE if source code that generates traces is available. UML plugins from other providers 

can fulfill this requirement [98]. A simplified trace with less-important nodes filtered by 

different algorithms after explorations and patterns have been identified can be viewed as 

the intermediate level of abstraction. SEAT can automatically parse source code if it is 

available and supports source code navigation. That is, the user can directly jump to a 

method definition in the Eclipse Java editor from a trace editor window. 

 

Requirement 2: The tool needs to support broad search capabilities, including basic 

search, customizable search, wildcard search, regular expression search and with search 

history being traced. 

 

SEAT supports the Eclipse search framework and automatically keeps a search history. 

Instead of searching the huge graph space, SEAT accelerates search using the internally 

saved distinct node set for CTF trace model and the set is very small. After a node is lo-

cated, all the occurrences of that node in the graph are identified using the inverted tree 

property of the trace DAG as described in Section 2.9. 
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Requirement 3: The tool needs to support a global view of the trace being explored and 

various views of data slices from different perspectives. 

 

As the focus of our research, SEAT currently only supports a view of a portion of the 

trace tree using our specifically designed widget. A global view of the trace is not sup-

ported in this prototype yet, except to the extent that the user can use different algorithms 

that filter away almost all the methods of the trace, except the essence. One possible ap-

proach is to use an “Information Mural”-like view [53] and map the trace to it.  

 

Requirement 4: The tool needs to support filtering of events, highlighting events that 

have specific attributes using colours or shapes. 

 

SEAT supports quick filtering of traces through filtering algorithms. Different colouring 

and labelling schemes are supported to provide visual rendering of different nodes. 

 

Requirement 5: The tool needs to support the user’s orientation, such as the position in 

the global view; this concept is also known as landmarks. 

 

Same as the disadvantage described in Requirement 3, SEAT does not have a global view 

for a trace and it only has a bookmark view used for this purpose. At any time during the 

exploration, interesting points can be bookmarked explicitly and these points can be re-

turned to easily. The bookmark view may also be extended to allow automatically adding 

points of interest. 

 

Requirement 6: The tool needs to minimize view switching when a user is carrying out a 

task. 

 

Currently, as an Eclipse plugin, SEAT takes the advantage of Eclipse’s editor-centered 

strategy. An editor is the main working area for trace exploration and navigation. All the 

user interactions are initiated and visualized in the editor. The trace editor also supports 

switching to source code when desired. There are different supplementary views that help 
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exploration, but they can be turned off. Because views in the Eclipse platform are ar-

ranged in a way that they will never overlap and hide editor area, a user can always con-

centrate on the trace and source code editor for an exploration task. 

 

Requirement 7: The tool needs to be extensible to support different sources and destina-

tions. 

 

SEAT defines the ITraceSource interface to support different trace sources. By default, 

SEAT currently supports input from a stream, such as file input. The stream input inter-

face is available to facilitate development of a variety of input forms. Data from stream 

can be in pre-calculated CTF format, or raw trace format. As seen in the Class diagram 

for trace I/O (Figure 16), the actually trace construction is delegated to a trace loader.  

 

Requirement 8: The tool needs to support workspace and session persistence so a user 

can continue previous work at a later time.  

 

SEAT has a TraceSession class devoted exclusively for trace persistence. States of an ex-

ploration can be easily gathered and recreated when the trace is loaded again. For exam-

ple, filtering algorithms that are effective on the current trace can be recorded and re-

applied when trace is loaded. However, a concrete persistence implementation is not real-

ized yet. 

 

Requirement 9: The tool needs to be able to handle traces with millions of lines of data 

easily and effectively, including loading and saving. 

 

Our main research has been motivated and focused on the handling of large traces. We 

address the problem by representing a trace using the CTF model. Evaluation of the per-

formance of SEAT is discussed in Chapter 7 – Evaluation. 

 

Requirement 10: The tool needs to adopt user centered design and can be integrated eas-

ily with an IDE and other tools to increase its adoption.  
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We implement SEAT in the Eclipse open source platform so it can be easily integrated 

with other tools. SEAT itself defined an extension point for filtering algorithms as well so 

other developers can contribute their algorithms easily. Also we have called in an Eclipse 

expert to comment on and suggest improvements for the interface of our tool. 

8.3 Contributions in a nutshell 

To conquer the size problem encountered when exploring large traces, we developed a 

novel data loading algorithm and a tree browsing widget that can both be used in any 

scenario where a user needs to work with a massive tree.  We developed these in the con-

text of an Eclipse based tool and verified that they operate with an appropriate response 

time. The algorithm and widget can be used in user interface design when there is a large 

tree-structured data set that needs to be processed.  

8.4 Future Work 

Our research has been focusing on single thread traces. This limits its applicability in 

multi-threaded, distributed environments. Future studies could investigate how to extend 

the current trace model and adapt it to contain multi-thread support. For example, a future 

system could include more signatures, such as machine, process, and thread names.  

 

The new widget and the tool, SEAT, based on our research need further experimental 

evaluation. The effectiveness of novice features of the widget needs to be further tested in 

an industry environment where software engineers are exploring real traces.  

 

Another enhancement to both current and future versions of SEAT would be to integrate 

with the Hyades project. A direct benefit would be seamlessly integration with other trace 

tools.  
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Responding to model changes, visualization also needs to address how to display multiple 

threads at same time, and how to compare multiple traces using dynamic data–loading 

techniques. 
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Appendix A: SEAT Evaluation Instructions 

 

Introduction 
SEAT (Software Exploration and Analysis Tool) is tool that aims to help software main-

tainers understand a large software system by analyzing its execution traces.  

 

SEAT user interface is based on Eclipse platform and consists mainly of a multiple-page 

trace editor and a set of auxiliary views. The trace is displayed in the trace editor in the 

form of a tree structure. The auxiliary views are used to display different kinds of infor-

mation such as pattern, statistical data and so on. Auxiliary views can be opened auto-

matically in trace perspective or by selecting Window > Show View menu.  

 

SEAT implements a variety of algorithms that can be used to filter the displayed trace. 

Some of these algorithms require the setting of some parameters. This can be done by 

selecting Window > Preferences > Trace Preference. 

 

Purpose 
The purpose of the testing is to evaluate the effectiveness of the tool. The result will be 

used to improve SEAT and guide future research. 

 

Concepts 
Primary concepts requiring some explanation for this user study include: 

o Execution Trace: The result of executing a software system. There are different 

types of traces. SEAT supports traces of method calls. 

o Filtering Algorithm: An algorithm that filters out some components from the 

trace depending on a set of criteria. For example, a user can choose to filter out 

utility components. 

o Compact Trace Format (CTF): Represents the format used to store trace data. 
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o Trace Pattern: Similar sequences of events that occur in a non-contiguous way in 

the trace. 

o View: An Eclipse window. 

 

Operations 
Typical software operations for SEAT include: 

o Open Trace Perspective 

o Select Window > Open Perspective > Other 

o In “Select Perspective” dialog, select Trace Exploration 

o Open a view 

o Select Window > Show View > Other 

o In “Show View” dialog, click Trace Exploration and select desired view 

o Open a trace 

o In “Navigator” view, double click on a .ctf trace file 

o Apply/Cancel an algorithm on the trace 

o When a ctf file is opened in a trace editor, the Algorithm toolbar and the 

Algorithms menu list available algorithms. 

o To apply an algorithm (an operation that filters nodes): 

� Select Algorithms > “An Algorithm” 

� Click on an algorithm icon in the Algorithm toolbar 

o To cancel an algorithm, simply deselect that algorithm in either menu or 

toolbar 

o Apply an algorithm on a subtree of trace 

o Right-click on a subtree node 

o From the node’s context menu, select  “An Algorithm” 

o Hide a group of nodes 

o Select Algorithms > Hide Nodes or 

o Select Hide Nodes from Algorithm toolbar 

o In the “Hide Matched Nodes” dialog, enter the filter condition and click 

OK 

o Hide selected nodes 
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o Select node(s) 

o From the nodes’ context menu select Hide 

o Hide/Show nodes through Model view 

o Select model node(s) 

o Check/uncheck Hidden field of selected nodes 

o Identify patterns 

o Select Algorithms > Detect Patterns or 

o Click on Detect Patterns icon in the Algorithm toolbar 

o Mark utility 

o Select node(s) 

o From the nodes’ context menu, select Mark as Utility Method 

o Remove utility 

o In “Utility” view, select nodes to be removed 

o Click Remove Selected icon in local toolbar of the view  

o Add bookmark 

o Select nodes to be book marked 

o From the nodes’ context menu, select Add Bookmark 

o Search 

o Select Search > Search menu 

o In “Search” dialog, select Trace Search page 

o Enter condition and click Search button 

o Open a new exploration 

o Right click in editor and select New Exploration on Same Trace 

o Open source code 

o Double-click on the method name of a node if source code is available 

o Show trace and node properties 

o  Open “Property” view and relevant data will be displayed  

o Refresh editor 

o Right click in editor and select Refresh  

o Change settings 

o Select Window > Preferences > Trace Preference 
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o Refresh editor to reflect changes 

o Switch between fully/partially expand state of a subtree:  

o Select a subtree node, and Ctrl+Click 

 

Appendix A: SEAT Evaluation Instructions  117 
 



 

Appendix B: Schema of “seat.algorithm” Exten-
sion Point 

<?xml version='1.0' encoding='UTF-8'?> 

<!-- Schema file written by PDE --> 

<schema targetNamespace="seat"> 

<annotation> 

      <appInfo> 

         <meta.schema plugin="seat" id="algorithms" name="Trace Compression Algo-

rithms"/> 

      </appInfo> 

      <documentation> 

         [Enter description of this extension point.] 

      </documentation> 

   </annotation> 

 

   <element name="extension"> 

      <complexType> 

         <sequence> 

            <element ref="algorithm" minOccurs="1" maxOccurs="unbounded"/> 

         </sequence> 

         <attribute name="point" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 
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         <attribute name="id" type="string"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="name" type="string"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

      </complexType> 

   </element> 

 

   <element name="algorithm"> 

      <complexType> 

         <sequence> 

            <element ref="parameter" minOccurs="1" maxOccurs="unbounded"/> 

            <element ref="description"/> 

         </sequence> 

         <attribute name="name" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="id" type="string" use="required"> 
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            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="index" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="class" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="category" type="string"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="preprocess" type="string"> 

            <annotation> 

               <documentation> 
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               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="postprocess" type="string"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="icon" type="string"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="targetView" type="string"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

      </complexType> 

   </element> 

 

   <element name="parameter"> 

      <complexType> 

         <attribute name="name" type="string" use="required"> 

            <annotation> 
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               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="id" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="type" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

         <attribute name="default" type="string" use="required"> 

            <annotation> 

               <documentation> 

                   

               </documentation> 

            </annotation> 

         </attribute> 

      </complexType> 

   </element> 

 

   <element name="description" type="string"> 

   </element> 
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   <annotation> 

      <appInfo> 

         <meta.section type="since"/> 

      </appInfo> 

      <documentation> 

         [Enter the first release in which this extension point appears.] 

      </documentation> 

   </annotation> 

 

   <annotation> 

      <appInfo> 

         <meta.section type="examples"/> 

      </appInfo> 

      <documentation> 

         [Enter extension point usage example here.] 

      </documentation> 

   </annotation> 

 

   <annotation> 

      <appInfo> 

         <meta.section type="apiInfo"/> 

      </appInfo> 

      <documentation> 

         [Enter API information here.] 

      </documentation> 

   </annotation> 

 

   <annotation> 

      <appInfo> 

         <meta.section type="implementation"/> 
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      </appInfo> 

      <documentation> 

         [Enter information about supplied implementation of this extension point.] 

      </documentation> 

   </annotation> 

 

   <annotation> 

      <appInfo> 

         <meta.section type="copyright"/> 

      </appInfo> 

      <documentation> 

          

      </documentation> 

   </annotation> 

 

</schema> 
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Appendix C: Informed Consent Form 

Title of the study: Visualization and Navigation of Large Traces.  

 

Name of Researcher: Lianjiang Fu   Phone: (613) 562-5800 x6428, 

Department/School: SITE      

Faculty: Engineering     E-mail: lfu@site.uottawa.ca 

Institute: University of Ottawa 

 

Name of Researcher: Abdelwahab Hamou-Lhadj Phone: (613) 562-5800 x6688, 

Department/School: SITE      

Faculty: Engineering     E-mail: ahamou@site.uottawa.ca 

Institute: University of Ottawa 

 

Supervisor: Dr. Timothy Lethbridge  Phone: (613) 562-5800 x6685, 

Department/School: SITE    Fax.:     (613) 822-5473  

Faculty: Engineering     E-mail: tcl@site.uottawa.ca 

Institute: University of Ottawa   Position: Associate Professor 

 

Invitation to Participate: I am invited to participate in the research study conducted by 

Lianjiang Fu, master’s student, who is supervised by Dr. Timothy Lethbridge, of the Fac-

ulty of Engineering, and assisted by Abdelwahab Hamou-Lhadj, PhD student. The project 

is funded by NCIT and QNX Software Systems. 
 
Purpose of Study: I understand that the purpose of the study is to evaluate the usability 

of, and identify problems in, a software system entitled Software Exploration and Analy-

sis Tool (SEAT). 
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Participation: The study is conducted in English and my participation will consist essen-

tially of the following: I will be trained for about 10 minutes to use the software. Then I 

will be asked to use a software system for about 30 minutes, performing specific tasks 

with the software, as requested by the students. During this time, I will be asked to talk 

out loud to the best of my ability, describing what I am thinking and doing. At the 

end of the session I will be asked some questions about my experiences and background 

for about 5 minutes; some of questions will be on paper. The session will be videotaped.  

The session will be conducted individually and not in a group format.   

Risks: I understand that this activity may cause me mild frustration and stress if the 

software proves difficult to use or does not perform as expected. I have been assured 

by the researchers that every effort will be made to minimize these occurrences by stop-

ping a task if it becomes too difficult. I understand that it is the software and not me 

that is being evaluated, and that when I have difficulties, it is the fault of the software, 

not me.  

Voluntary Participation: I understand that participation is strictly voluntary. I am free to 

withdraw from the study at any time. I may also refuse to perform any task or answer any 

question. I may also request that the video camera be turned off at any time. If I choose to 

withdraw, all data gathered until the time of withdrawal will be completely erased.  

Confidentiality: I have received assurance from the researchers that the information I 

will share will remain strictly confidential. I understand that the contents will be used 

only for identifying usability problems of SEAT and that my confidentiality will be pro-

tected. The videotapes will only be viewed by the researchers listed above and Dr. 

Lethbridge. The videotapes will be erased upon completion of the researcher’s thesis, and 

all other data will be deleted after five years.  

Anonymity: My anonymity will be protected at all times. The researchers assure me that 

I will not be identified in any publications. If any quotes are used, neither my name nor 

any identifying contextual information will be mentioned.  
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If I am a QNX employee, I understand that my manager has given permission for me to 

participate. I also understand that my manager will not be informed of whether  I partici-

pate or not. 

 

Conservation of data: The videotapes and questionnaires will be initially stored by Mr. 

Fu in his office at the university. Following analysis, they will be stored in Dr. 

Lethbridge’s office until completion of the thesis.  The derived data will be stored on Dr. 

Lethbridge’s computer in his university officefor 5 years after the time of publication.  

The investigators, Lianjiang Fu and Abdelwahab Hamou-Lhadj will have access to the 

data along with their supervisor Dr. Lethbridge. 

 

Acceptance: I agree to participate in the above research. I understand that by accepting to 

participate I am in no way waiving my right to withdraw from the study.     

 

If I have any questions, I may contact any of the researchers. If I have any ethical con-

cerns regarding my participation in this study, I may contact the Protocol Officer for Eth-

ics in Research, University of Ottawa, Tabaret Hall, 550 Cumberland Street, Room 159, 

Ottawa, ON (613) 562-5841 or ethics@uottawa.ca. 

 

There are two copies of the consent form, one of which is mine to keep. 

 

 

Participant's signature:  (Signature)  Date:  (Date) 

 

 

Researcher's signature:  (Signature)  Date: (Date) 
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