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Abstract 

This thesis introduces a grounded theory of the discourse structure that professional 

software engineers use while explaining software. The ‘Snapshot Theory’ relates how the 

snapshot is the critical moment and fundamental building block in the discourse structure. 

We built Snapshot Theory by applying a rigorous qualitative data analysis research 

methodology, known as grounded theory, on observational data of professional software 

developers explaining software architectures. We developed a research methodology, 

qualitative analysis tools and case data in support of our investigation. We present two 

versions of our theory, the grounded theory tied to evidence, and our interpretation of the 

applied theory in pattern form, as cognitive patterns. We intend cognitive patterns to 

facilitate the development of software tool features based on Snapshot Theory. 
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Chapter 1: Introduction 
 

Chapter 1 Introduction 
In this thesis, our primary contribution to the software engineering literature is a 

theory2 that describes how software engineers explain software. We call this Snapshot 

Theory. A snapshot represents an interval or moment in the development of a software 

model when the model is cohesive or conceptually whole. This thesis builds on prior 

research [13, 61, 80, 112] in which researchers derived the comprehension processes of 

software developers from the developers’ explanations. 

The research presented in this thesis will be useful to software tool developers because 

designing is explaining: a deeper appreciation of how developers explain software through 

snapshots can lead to improvements in software tool design and software processes. The 

research also contributes the field of program understanding. Other important contributions 

include the qualitative methodology we used to develop Snapshot Theory, a qualitative 

analysis tool we call Qanal, and the presentation of Snapshot Theory as cognitive patterns. 

We will outline each of these contributions in the following subsections, but we begin 

with a short fictional narrative to illustrate the importance of Snapshot Theory: 

While attending a data structures course, a student named Ann cannot 

understand her professor’s software explanation. As her professor models the 

procedure for the insertion of a node at the end of a list, Ann reconstructs his model 

in her notes. In preparation for her final examination, Ann reviews her notes but 

cannot fathom the meaning of the model. Ann asks her peer Andrew for help and 

Andrew provides Ann with his notes for her study. Ann for the first time understands 

the previously foreign concepts. She is taken aback by Andrew’s note-taking 

approach: by tentatively observing the discussion before a critical moment, Andrew 

recorded snapshots in the professor’s explanation. As Ann compares her notes with 

Andrew’s, she realises the professor’s final representation lacks details she needs to 

effectively understand it; snapshots provide these details. Andrew explains how he 

could identify snapshots based on the behaviour of the professor. Ann improves her 

approach to learning. 

                                                 
2 See glossary, pg. 180, for a definition of “theory”. 
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When Ann graduates, she joins a telecommunications company. The regularity 

of software explanation in informal whiteboard sessions astounds her. While in 

school, she did not anticipate this level of interaction among peers. Informal 

whiteboard sessions highlight the software architecture (i.e. high-level aspects of 

the systems such as the overall organization, the decomposition into components, 

the assignment of functionality to components, and the way the components interact 

[18]). She cannot work two days without engaging a peer in a design discussion 

where the whiteboard is absolutely necessary. What is particularly striking to Ann 

is that snapshot behaviour is exhibited by all of her peers. Even when her peers 

provide lateral or weak snapshots, Ann recognizes the existence of the snapshots 

and thus enriches her understanding of a complex telecommunication system.  

When Ann leaves the telecommunications company for another company that 

develops software tools for professional software developers, she is not surprised to 

discover snapshot behaviour in another organization. She also discovers that 

snapshots relate to one another and relate to a more complete snapshot that 

contributes to high-level understanding. Ann realises that snapshot behaviour is 

pervasive and wonders if software tool features could better support snapshot 

behaviour. Since this challenge is open-ended, a concrete methodology would help 

her execute her investigation. 

This dissertation addresses a similar challenge. 

1.1 The First Problem: Software Explanation 

What is the discourse structure by which software professionals explain software?  

This question is central to this thesis and answering it may facilitate the design of 

software tools that explicitly support that structure. If we can uncover a discourse structure 

that developers naturally use, we can build tools grounded in developers’ natural 

behaviour. 

The main contribution of this thesis is Snapshot Theory, in which the “snapshot” is a 

critical moment in the discourse structure. In the development of this theory, we asked the 

following research questions: 
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• What cues can allow an observer to identify a snapshot? 

• What is the composition of the discourse structure leading up to the snapshot? 

• How does this discourse structure leading up to a snapshot begin? 

• How does an observer know when the snapshot has occurred? 

• How does the snapshot contribute to other snapshots? 

• How does the snapshot contribute to the overall explanation? 

1.2 The Second Problem: The Methodology to be Used 

The formation of the above research questions led us to a second problem. What 

methodology will we use to enable us to answer these research questions? 

To address this problem, we used qualitative research methods that incorporate 

concepts of the grounded theory method typically used in sociological research. Grounded 

theory is a rigorous process for the development of theories from observational data, 

particularly observations of people. We propose that applying a deep, evidence-based 

understanding of human activities in software engineering can lead to the creation of better 

tools and processes. 

We designed a process that involves the use of multiple stages of data collection, as 

well as the refinement and interrelationship of categories of information. The data-capture 

phase of our study consisted of videotaped interview sessions on-site at Mitel Corporation 

and IBM. The goal of data collection is to gather open-ended, emerging data. Our process 

includes several analytical steps that traverse the process from theory building to theory 

presentation. The results (or “outputs”) of each research step are inputs for the next step. 

The steps are as follows: data preparation, initial analysis, topical analysis, category 

analysis and theory building. 

In Chapter 3, we present the pilot study we used to uncover many of the challenges we 

faced in developing our methodology. Our complete methodology is presented in Chapter 4 

and constitutes a distinct contribution to the empirical software engineering community. 

It is worthwhile to note that when we started our inquiry, we did not have the above 

problems in mind. We were initially interested in studying the diagrams and diagrammatic 

techniques used by professional software developers; in particular we were interested in the 
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extent to which they tend to use the Unified Modeling Language (UML) or a hybrid of 

diagrammatic techniques not found in UML. Only once we started to gather data did we 

realise its richness, and the need to understand its discourse structure. The latter became 

our primary problem. 

To solve the primary problem we needed to develop a rigorous methodology (our 

second problem), software instrumentation to support our qualitative analysis, which we 

call Qanal, and a succinct way to present our results (our third problem, discussed below). 

Our investigation led us to generate an abstract theory of discourse; in other words, our 

interest broadened to include elements of communication other than just diagrams. 

1.3 

                                                

The Third Problem: Reporting the Results 

While building our Snapshot Theory, we encountered a third problem: how will we 

report our results in order to be both scientifically valid and accessible to readers? There 

are two sides to the exposition of theoretical work in software engineering. First, the 

researcher’s perspective: software researchers must know the genesis of a theory so they 

can assess its validity3. Second, the practitioner’s perspective: software professionals 

require generalized yet practical approaches that allow them to apply the theories in a 

meaningful way. 

Part of the results-reporting problem derives from the approach widely used by those 

of us researching software engineering tools. We build tools, and sometimes these are 

based on empirical studies that yield theories of user cognition, but the theories are 

embedded in the tools themselves. Sometimes we publish papers based on either the 

theories or the tools, but these may focus on describing the research for the consumption of 

other academics, rather than making it accessible to the tool designer. Aside from some 

broad guidelines, there is a weak link between the ideas and the actions or considerations 

the designer requires to build tools, or tool features, that are based on these ideas. As a 

result, the designer builds tool features that exhibit theory replicas. The replicas are 

superficially similar to the original theories, but do not capture the essence or deep 

understanding of the original. This recalls cargo-cult design [50]; Melanesians used straw 

 
3 In contrast with sociological research, where there is more reverence for the text of the theory –theories in that discipline 

are based more on their face value 

4 



Chapter 1: Introduction 
 

and bamboo to build imitation airports, control towers and landing strips, reasoning that if 

they built exact replicas of the white man’s artefacts, they would receive the same benefits 

– the cargo. 

To address these problems in a research environment requires the careful balance of 

two different groups of practitioners. Firstly, academics require methodological rigour and 

transparent results. How can scientists otherwise demonstrate that cognitive theories are 

well-grounded? Secondly, professionals require simple but appropriate guides to apply the 

cognitive theories in an appropriate context. Clearly, these dual requirements can be at 

odds. In Chapters 5 and 6, we reconcile these ideas. In Chapter 5, we present our theory as 

mandated by the grounded theory approach, and in Chapter 6 we present the application as 

cognitive patterns. 

Cognitive patterns are patterns4 inspired by the work of Christopher Alexander [8, 9] 

and analogous to the notion of design patterns [52] – patterns of which the software 

engineering community is already aware. We define a cognitive pattern as follows: A 

cognitive pattern is a structured exposition of a solution to a recurring cognitive problem in 

a specific context through which readers gain understanding. 

1.4 Summary 

                                                

In this thesis we tackle the three problems described above. We describe the design 

and execution of a qualitative study of software explanation, the interpretation of results 

generated through qualitative analysis, and the exposition of theoretical constructs from our 

results in pattern form. 

The grounded theory approach requires the researcher to clarify bias so the reader can 

determine if the account and results are reasonable. In Chapter 7, we describe the threats to 

validity. Then, in the concluding chapter of this thesis, Chapter 8, we provide a discussion 

of interpretations, implications and future directions while evaluating the respective 

contributions of Snapshot Theory, our process methodology and cognitive patterns. 

In the next chapter, we will describe our work at greater depth through an exploration 

of the prior research in software comprehension and empirical software engineering.
 

4 See glossary for definition of “pattern” and “pattern language”. 
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Chapter 2 Literature Review 

2.1 

2.2 

Introduction 

Software researchers study the activities of software professionals to achieve 

improvements to software process and software tools. Software explanation is a pivotal and 

observable yet poorly explored activity that combines speaking and sketching. The goal of 

software explanation is software understanding (either the explainer’s understanding or that 

of his/her audience). Related empirical studies of software explanation may be found in the 

software-comprehension and software-diagram literature. Because of the paucity of earlier 

work on this topic, we need a research methodology that will allow us to generate a theory 

based on data from the ground up, i.e. a grounded theory. In order to address the challenge 

of constructing a grounded theory, we review methods for reporting our research. We will 

focus on the aspects of the reviewed topics that relate to the problems stated in the first 

chapter. 

Empirical Software Engineering 

Software researchers study the activities of software professionals to achieve 

improvements to software process and software tools. 

In “The Role of Experimentation in Software Engineering” [17], Victor Basili suggests 

that progress in software engineering depends on our ability to understand the relationship 

between various process characteristics and product characteristics, e.g., what algorithms 

produce efficient solutions relevant to certain variables, what development processes 

produce what product characteristics and under what conditions. Basili states that, “models 

are built with good predictive capabilities based upon a deep understanding of the 

relationship between process and product.” Scientific fields, e.g. physics, have progressed 

because of the interplay between two groups – theorists (who build models that predict 

events that can be measured) and experimentalists (who observe and measure). A recurring 

theme in many scientific fields is a pattern of modeling-experimenting-learning-

remodelling. 
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One way to build a cognitive model5 is through “software anthropology” field study 

techniques [79]. The application of field study techniques can result in the derivation of 

requirements for software tools, the improvement of software engineering work practices 

and the construction of new theories or hypotheses that can then be subjected to formal 

experimental validation. To determine typical behaviour, a researcher may “observe users, 

keep quiet, and let the users work as they normally would without interference” [99, pp. 

18]. A second technique is simplified thinking aloud [99, pp.199-206], in which 

participants verbalize their thoughts while they perform a task. The verbal utterances allow 

the observer to determine why the participant is doing something in addition to what the 

participant is doing. 

The talk-aloud (or think-aloud) protocol involves participants completing a task of 

solving a problem while they verbalise their thought processes [102]. In cognitive 

psychology, this technique has been used to evaluate comprehension processes in chess 

players and mathematicians. This technique has been used extensively to evaluate the 

cognitive processes employed by computer programmers; we review this in Section 2.4. 

Subjects are encouraged to speak freely while their verbalized thoughts are captured for 

subsequent analysis [83]. Ericsson and Simon [46] argue that, if the verbal data is produced 

concurrently and if the subjects’ report on what enters their minds (rather than reporting 

explicitly on their comprehension processes) then the data produced is reliable. According 

to Russo et al. [116], talk-aloud verbal protocol provides the “richest source of a 

programmer’s mental state.” 

In the past, researchers were criticized for basing their field studies on so-called 

“backyard research” [37]. Backyard research refers to studying students or novice 

programmers performing artificial tasks. There are two primary arguments against 

backyard research. First, since systems under study are small, the results are not scaled to 

adapt easily to large systems. Second, studying novices is inconsequential to industrial 

practice. Field studies with industrial participants in a natural setting are a reasonable way 

to address such issues. 

                                                 
5 The term ‘model’ is overloaded in this dissertation: we refer to the model of user behaviour discovered through 

empirical research as a cognitive model (see glossary for our terminology). 
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There are two reasons a researcher might want to build a cognitive model to support 

tool development. First, tool developers can use cognitive models to understand those who 

will be using their tools. Secondly – and the tools community often neglects this point – by 

helping tool developers understand their users, cognitive models may actually improve the 

developers’ own mental models. In the way that designers communicate through a user 

interface (a system image) to their users, users would ideally communicate with their 

designers through a “mental model image.” This may complement the way in which users 

contribute to a system’s design in requirements engineering [15] – a process not without 

problems [77, pp.5-13]. However, as users cannot communicate their “mental model 

images,” software researchers produce cognitive models, and thus buffer communication 

between users and their designers. In this way, researchers contribute to the development of 

software design. 

In our research, we perform the role of theorists who build cognitive models. The 

subject of our study of the activities of software professional is not the relationship between 

various process characteristics and product characteristics. Rather, we examine a process 

that developers regularly use – software explanation using a whiteboard6 – and we analyse 

and convey the structure of this pivotal activity with the goal of extending software 

modeling tools to support this behaviour. In order to examine the discourse structure with 

which software professionals explain software, we ask professional software developers in 

a natural setting to solve a problem (how to explain software architecture to a new hire) 

while conveying their mental state through the richness of verbal utterances. Our object is 

to construct new theories or hypotheses that, in future work, can be subjected to formal 

experimental validation. 

Researchers construct new theories using methods drawn from qualitative research, 

which we describe in the next section. 

2.3 

                                                

Qualitative Research 

Scientific theories have often started with qualitative research: the study of 

behavioural regularities in everyday situations, for example, software explanation in 

 
6 Informal whiteboard sessions are a form of impromptu meeting in which software engineers gather to communicate 

about software through diagrams. 
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whiteboard sessions. Qualitative research involves the assembly, clustering, and 

organization of text, perceptions and social acts gathered through observation, interviews 

or documents in order to permit the contrasting, comparison, and analysis of patterns 

within them. A researcher expresses the results of qualitative research as “patterns” or 

“languages” or “rules.” 

Qualitative research involves three major operations: description (the context of study 

including participants’ words), analysis (systematically identifying key factors and 

relationships), and interpretation (making sense of meaning in context). Harper [59] 

suggests that in addition to words, researchers can also acquire images as descriptive data 

that are still subject to interpretation. 

As the computer science and software engineering fields have developed, there has 

been a trend towards quantitative research. Well-executed qualitative research [119, 120] 

will, however, always be important to generate new theories. Research can also mix aspects 

of both approaches (a.k.a. mixed methods research [33]) – for example, the collection of 

descriptive statistics about qualitative categories; such statistical analysis can be used to 

derive patterns from the data, which can then be subjected to further qualitative analysis. 

Two examples of statistical analysis include log-linear modeling (validation of hypotheses 

through estimation frequencies and comparison of frequencies with observed values) and 

Lag Sequential Analysis (LSA), which involves “determining whether or not the frequency 

of a given category is independent of the frequency of another category” [112]. LSA can be 

used to determine the random component of these patterns, helps to analyse the stability of 

the patterns, and requires less data than log-linear modeling to be significant. In our 

research, we restricted our inquiry to a qualitative approach without introducing 

quantitative analysis. 

Qualitative research has many branches, including ethnography and grounded theory. 

In our research we, as a rule, followed the extended source book by Miles and Huberman, 

Qualitative Data Analysis [93]. 

The following are the features of qualitative research that tend to cross all branches of 

inquiry: 

• There is prolonged contact with the field; multiple waves of data collection. 
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• The researcher is the main measurement device and is explicit about his or her role 

in the context under study. 

• The research attempts to capture data on local actors “from the inside.” 

• The research isolates certain themes that should maintain their original form 

throughout the study. 

• Multiple interpretations are possible, but some are more compelling for theoretical 

reasons. 

The following are some of the analytic techniques typical of qualitative research. They 

are used across all branches of inquiry, but are most apparent in ethnography and are used 

in an extended form in grounded theory: 

• Condense multiple data sources from observations or interviews by tagging 

categories of meaning using codes. 

• Reduce data (e.g. focus or discard) such that “final” conclusions can be drawn and 

verified. This may involve the construction of tables or charts that help us to 

understand what is happening, how to analyse or take action based on that 

understanding. 

• Transcribe remarks or rationale to codes. 

• Sort or rearrange coded sequences to “identify similar phrases, relationships 

between variables, patterns, themes, distinct differences between subgroups, and 

common sequences.” 

• Bring patterns, processes, commonalities and differences back to the field for the 

next wave of data collection. 

• Gradually construct a small set of generalizations that consistently appear in the 

data set. 

Qualitative research in human-oriented sciences such as many aspects of software 

engineering will often be interactive and require active involvement by the participants. In 

such studies, the researcher gathers information (e.g. interviews, observations) while asking 

open-ended questions of the participants in a natural or realistic setting. Such a setting 

allows the researcher to gain deeper insight into the actual experiences of the participants. 

Sensitivity to the participant’s time and effort is required; the researcher should not disturb 
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the ‘site’ more than necessary, and respect for the participants should be maintained 

throughout and beyond the life of the study. Qualitative research evolves as a study 

progresses (i.e. questions may be refined, data collection procedures may change). 

We provide significantly more detail regarding the practical application of qualitative 

research methodologies in chapters 3 and 4. In the next section, we relate how our research 

builds upon previous qualitative research in the discovery of comprehension processes. 

2.4 

                                                

Comprehension Processes 

By interacting with a product, an individual creates an understanding of that product in 

his or her mind. This understanding is the “mental model.” The process of creating the 

mental model is called the “comprehension process”7. 

Researchers can apply qualitative research methods to study software comprehension8. 

One strategy is to explore a developer’s mental model of a software system by having him 

or her present a detailed explanation of that system. Software explanation is a pivotal and 

observable yet poorly explored activity that links researchers to the cognitive patterns in 

their participants' minds. In the following, we will provide a review of the prior research, 

state the shortcomings of that research and describe how our research builds on that prior 

work. 

The philosophical underpinnings of comprehension processes originate in cognitive 

psychology. The call for process-oriented studies of programming may be found in many 

sources [24, 36, 41, 57, 84]. An account of experimental methods to derive comprehension 

processes of computer programmers from software explanation may be found in the work 

of software researchers [13, 61, 80, 112], which we review below. These researchers reason 

that knowledge of programmer comprehension processes can lead to improved software 

process and software documentation. In particular, some researchers reason that since 

software maintenance tasks are challenging, we can improve maintenance capabilities if we 

understand and support the comprehension processes that developers use for over 50% of 

the maintenance task [127]. These improvements can become manifest in the maintenance 

 
7 Synonyms include cognitive processes and cognitive activities. See glossary for definitions of “mental model” and 

“comprehension process”. 
8 See glossary for “comprehension (program / software) 

11 



Chapter 2: Literature Review 
 

process itself, in the design of documentation formats and guidelines and in the design of 

software tools. Even considering the sources we note, considerable work remains in the 

area of the comprehension processes of software developers. 

Comprehension processes have been a rich source of theory and methods for twenty 

years and beneficial to the program-comprehension community. Meaningful practical 

applications based on the theories tend to be developed many years after the theoretical 

contribution. The gap between theory and application is wide in this research area. In the 

following, we examine the theoretical contributions in more detail. 

The theory of comprehension processes in program comprehension originates in the 

work of Letovsky [80]. Letovsky studies comprehension processes at a meso-scale (tactics, 

on the order of seconds and minutes), as opposed to micro-scale (e.g. eye fixations, 

memory access) or macro-scale (strategies, on the order of minutes and hours). In the cited 

work, Letovsky collects think-aloud protocols from six professional programmers as they 

engage in a program-understanding task. Letovsky categorizes the ‘understanding’ portions 

(which are really software explanation portions) of the protocols analyses as: 

• Inquiries, that is, questions and conjectures (the richest source of insight into the 

subject's thought processes, i.e. confusion, questioning, hypothesizing and 

concluding); 

• Conversational exchanges with the interviewer (which reveal state of knowledge, 

but not cognitive events); and, 

• Reading or scanning behaviour (easy understanding of the intentions of code). 

Letovsky then analyses these explanation portions to provide evidence (sample data 

vignettes) for the following comprehension processes: 

• Plausible slot filling (to integrate new code objects into prior expectations); 

• Abduction (to hypothesize possible explanations for code objects); 

• Planning (to hypothesize possible implementations for known goals); 

• Symbolic evaluation (to determine what code does); 

• Discourse rules (to guess the meaning of code based on meaningful names or 

coding style); 

• Generic plans (to encode efficiency knowledge); 
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• Endorsement (level of confidence in assertion, that is, whether it is a guess or a 

conclusion). 

Letovsky claims a complete mental model of a program should contain specification 

(the top layer: program goals), implementation (the bottom layer: actions and data 

structures), and annotation (an intermediary layer: the reasoning that links goals to actions 

and data structures). 

Following Letovsky, Arunachalam and Sasso [13] study the comprehension processes 

six experts use when they perform software design recovery. The researchers produce a 

cognitive model of program comprehension in which they outline the following 

comprehension processes: 

• Explanation generation (working hypothesis regarding presence, function, or 

structure of salient program component); 

• Confirmatory association (additional features associated with working hypothesis); 

• Explanation validation (determines validity of working hypothesis); 

• Recording (written expression of explanation validation); 

• Representation execution (transforms feature or recording into standardized 

symbolic representation); 

• Synthesis (integration of distinct program elements with explanations of their 

purpose, mappings and representations). 

In another study, Herbsleb et al. [61] study the patterns of interaction between the 

internal workings of individual minds and the rich artefacts (e.g. diagrams and prototypes) 

in the environment. Their work aims to assess the claims regarding the way in which 

object-oriented (OO) design is thought to enhance the functioning of software development 

teams. The research method is ethnography: in this study, researchers collect data from 

time sheets, videotapes of design meetings, meeting minutes, weekly interviews and 

general surveys. Aside from other analyses, the researchers perform an in-depth analysis of 

six videotapes of design meetings. Analysis proceeds according to a pre-defined coding 

scheme9 of 22 categories of activity (the reliability behind the categories is described in 

                                                 
9 We provide background information on coding schemes in Section 4.3 and we describe the coding scheme from our 

main study in Section 4.3.2. 
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more detail elsewhere [104], as is the coding scheme [62]). The researchers draw two 

relevant conclusions. First, adopting OO methods promotes effective communication, 

among team members, which requires less clarification. Second, OO design encourages a 

deeper inquiry into the reasoning underlying design decisions but less inquiry into 

requirements. 

Robillard et al. [112] study the cognitive activities in team work. The goal of this study 

is to develop good practices by the comprehension of current software development 

activities, namely those found in technical review meetings. The researchers develop a 

coding scheme (not shown here). Then, they code the dialogues and mine the results to 

discover four categories of dialogue types, or cognitive activities, which they claim form 

the basis of technical review meetings. These four cognitive activities are: 

• Review (cycles of evaluating-justifying activities); 

• Conflict resolution (reject-evaluate-justify activities that indicate diverging opinions 

on criteria or solution evaluation); 

• Alternative elaboration (sequences of development activities); 

• Cognitive synchronization (request-inform-hypothesize activities that indicate 

participants share a common representation of design solutions or evaluation 

criteria). 

The researchers suggest meetings dedicated to cognitive synchronization may improve 

the software engineering process. They further state that a thorough investigation of actual 

behaviours is required to better understand the intrinsic characteristics of meetings and 

provide the knowledge to assess current practices or render these practices more suitable to 

the practitioner’s needs. 

To this point, we have described how the study of comprehension processes has been a 

rich source of theory and methods. The four studies we have reviewed involve the 

development of cognitive theories from protocols in which study participants explain 

software. In the following, we will examine the relationship between cognition and 

explanation in more detail and consider further lines of research. 

It is important to note that Letovsky was not “inside the programmer's mind” and 

could not identify cognitive events from the mind itself. He analysed fragments of software 
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explanation to find recurring behavioural patterns that provided clues about (not directly 

observable) internal cognitive events that indicated software understanding. He tagged data 

with explanation codes and built “crude theories of the mental representations and 

processes that produce questions and conjectures.” [80] 

Comprehension process research, of the type we present in this thesis, typically 

follows Letovsky’s method of discovering comprehension processes based on software 

explanation. Doing so relies on two assumptions. The first assumption is that in the task 

assigned, the programmer manipulates their mental model. The second assumption is that 

verbal protocols of professional programmers explaining software provide a close 

approximation to “a trace on the subjects’ thought processes.” [80] We will now examine 

the ways in which we can improve upon the prior research. 

Let us investigate the first assumption, that the task that is set for participants allow 

them to manipulate their mental model10. Letovsky sets a task for participants: to plan a 

modification to a program and think aloud while they interpreted print-outs of source code. 

Arunchalam and Sasso set a task for participants: to think aloud while they studied an 

assembler program until they understood it well enough to explain its function and 

implementation to another programmer. Herbsleb et al. did not set explicit tasks: the 

researchers recorded and analysed actual design meetings with multiple team members 

over a long period of time. Similarly, Robillard et al. recorded and analysed team 

environments in the context of technical review meetings. 

Our research is more in the spirit of the research of Letovsky and Arunchalam and 

Sasso: we interviewed a single software developer at a time, rather than a team, and 

because we asked explicit questions, we had a higher degree of control over the study than 

the studies of Herbsleb et al. and Robillard et al. Letovsky identified participant inquiries 

as “the richest source of insight into the subject’s thought processes.” We extend this line 

of reasoning in our study: by structuring our interview to regularly prompt inquiry 

moments we should receive the richest response.  

O’Brien [103] criticized cognitive studies in which researchers carry out “tightly 

controlled experiments in an artificial environment” and argued for the observation of real 
                                                 
10 The prior work does not make the explicit point that the goal of software explanation is software understanding. 
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activities in real situations. Unlike the research of Letovsky and Arunchalam and Sasso, we 

investigated a task that is consistent with the software developer’s daily agenda, regular 

communication activities and natural environment. 

In each of the prior studies, the basis for the task allowing the participant to manipulate 

their mental model is that participants perceive and interact with external stimuli, access 

short- and long-term memory and use external memory to store and organize explanation 

information. However, it is highly doubtful that this basis for mental-model manipulation 

can be determined by the protocol alone. This leads us to the second assumption, that 

protocol analysis provides the closest approximation of programmers’ thoughts. This 

assumption is widely received but contains the flaw that software explanation is enhanced 

through speaking and sketching. Software explanation may be possible without sketching, 

but in our research we found that sketching was an intrinsic facet of explanation. An 

analysis of software explanation should therefore simultaneously address both speaking 

and sketching activities. One source that supports this theory is the “Mind’s Eye 

Hypothesis,” which states that “there is a close relation between the kinds of diagrams 

people draw on paper and their mental images.” [109] Because we study the protocol in 

addition to the diagrams, we enhance the prior research and not only get a closer 

approximation of our participants’ comprehension processes, but are also more likely to 

find events that accurately represent the participant’s manipulation of their mental model. 

Arunchalam and Sasso set a goal to “uncover cognitive patterns in protocol data that 

reflect program comprehension,” a goal that characterizes the state of comprehension-

process research. In our approach, we too seek to uncover cognitive patterns, but we make 

the critical distinction that software explanation constitutes both speaking and sketching. In 

the following section, we support the study of the sketching side of explanation through an 

examination of why empirical research of diagrams in software engineering is timely and 

relevant. 

2.5 The sketching side of software explanation 

Empirical research in software diagrams is timely and relevant because software 

engineers increasingly depend on software tools to support graphic representations (e.g. 

UML [3]), but such tools may not be grounded in the way software engineers actually use 
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diagrammatic representations. Cognitive analysis of UML is an interesting and beneficial 

research area of diagrammatic reasoning11 that merits investigation [40]. In this section, we 

justify the examination of diagrams in software engineering. 

There is evidence that diagram and visualization tools have been notably ineffective to 

date [130]. Software engineering is becoming increasingly model-driven12 [4, 42, 65]. The 

purpose of a software model is to provide an abstract representation of a system that allows 

humans to deal with software complexity by reasoning and communicating about smaller, 

modularized representations. It follows that tools that support software models must cull 

software complexity by supporting the reasoning and ability to communicate modularized 

representations. Diagrammatic reasoning has been of interest for centuries and the last 

decade has seen a sharp increase in the computational and cognitive perspectives of 

diagrams (e.g. [56, 58, 97]). 

We observed that many software engineers in our fieldwork avoid using 

representational tools. When asked to describe their system they use a variety of 

approaches not necessarily found in UML. Software engineering tools tend to be awkward 

to use. Tool developers do not currently have the knowledge of what makes tools easy to 

use that would allow them to develop more effective tools. 

Why are diagrams useful? Larkin and Simon [75] describe a theory (later confirmed by 

Cheng [29]) of cognitive processes involving manipulation of spatial structures to help 

scientists control the search for a solution to a problem. The importance of this widely-

cited work is that graphic representations such as diagrams are useful because they are 

analogous to the world they represent and therefore do the ‘heavy lifting’ in the recognition 

process. 

The study by Butcher and Kintsch [27] addresses why diagrams improve memory and 

learning. The goal of the study was to determine if the comprehension processes of learners 

who use text and diagrams differs from learners who use text only, and whether diagram 

complexity influences comprehension processes. In pursuit of this goal, the researchers 

                                                 
11 See glossary for definition of “diagrammatic reasoning” 
12 Thus, we assume software engineers will use, should use, or do currently use modeling languages (e.g. UML); 

however, these assumptions require empirical evidence. 
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apply protocol analysis to develop a coding scheme which may be useful for other 

researchers who empirically study diagrams. They score propositions as paraphrases (those 

that reflect information from current materials), elaborations (connections to prior 

knowledge), monitoring statements (comprehension monitoring), or self-explanation 

inferences (synthesizing or integrating materials). The researchers find diagrams effective 

when they induce learners to employ the comprehension processes necessary for deeper 

understanding. 

Suwa and Tversky [132] address the reasons designers draw sketches. The authors 

indicate that external representations relieve memory load in two ways: they provide 

external tokens for the elements that must otherwise be kept in mind, and they serve as 

visual-spatial retrieval cues. The authors conjecture the reason designers use sketches is as 

follows: 

In developing ideas for new projects, designers do not draw sketches to 
externally represent ideas that are already consolidated in their minds. Rather, 
they draw sketches to try out new ideas, usually vague and uncertain ones. By 
examining the externalizations, designers can spot problems they may not have 
anticipated. More than that, they can see new features and relations among 
elements that they have drawn, ones not intended in the original sketch. These 
unintended discoveries promote new ideas and refine current ones. This process 
is iterative as design progresses. 

This quote underlines the central role of the sketch in iterative design. Designers build 

external representations to support the design process. Designers continually rebuild 

external representations as development proceeds. With these two postulates, we propose 

that the temporal details of diagrams are important. Ader et al. [6] also suggest that 

temporal details may generate new research hypotheses. 

A consideration of the temporal details of diagrams may offer a clue to practitioner’s 

general apathy towards software diagrams. The weakness of diagrams may be that although 

they offer deep insight, such insight is often for only a limited period of time. James Cordy 

informally stated during a workshop discussion [2], “Once you have absorbed a diagram’s 

content, two minutes later, it may not be of interest again for the rest of your life.” This 

opinion reminds the reader that the temporal quality exists, though it may exist in a 
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transitory state, and leads us to consider the temporal details of software explanation as the 

central phenomenon in our empirical study. 

Software researchers investigating comprehension processes have not yet studied the 

sketching aspect of software explanation. A study of the temporal details of software 

explanation is novel and we need a qualitative research methodology that will allow us to 

generate a theory from the ground up: a “grounded theory.” 

2.6 

                                                

Building a theory of software explanation from the ground up 

Grounded theory research [55, 93, 131] is a rigorous qualitative research methodology 

in which the researcher develops theories that are ‘grounded’ in observational data, in 

particular the observation of people. Several software researchers have already developed 

theories by using grounded theory methods [28, 107, 123]. We need such theories in 

software engineering (c.f. Schank’s Theory of Natural Language Understanding [121]), 

since a deep evidence-based understanding of human activities can lead to the development 

of better tools and processes. Historically, development of such tools and processes has 

been primarily based on “folk knowledge” – beliefs that lack scientific validation [140, 

pp.21]. We adopt the key tenets of grounded theory in Chapter 3 and Chapter 4. 

Some of the key tenets of grounded theory are: 

• Researchers should generate open-ended data by asking open-ended questions. 

• Researchers should perform theoretical sampling. This means the selection of study 

participants from a wide variety of groups or people13 – in our case, different people 

who are involved in software comprehension. 

• Researchers should avoid preconceptions regarding theoretical outcomes. More 

specifically, they should avoid biased interpretations of the data, interpretations 

derived from concepts in the literature. The theory must emerge from the data. 

Typically, grounded theory researchers perform a literature review only when the 

process of making assumptions and interpretation of data is underway or complete. 

 
13 We sampled two groups. Within these groups, we achieved variety by sampling both experts and novices, and 

people with specific domain knowledge. Our research, following similar work described Section 2.4, has a 
reasonable variety of individuals for demonstrating the process. 
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• Researchers must analyse data using an empirical, repetitive and on-going process 

that involves continual reflection. They ask analytical questions, organize the 

information into coded categories, adjust existing categorizations and record 

observations and information that will aid further analysis. This standard grounded 

theory approach is called the constant comparative approach. 

• Researchers must focus on a single or central phenomenon regardless of the widely 

varying and interesting details the data may present. 

• In sociology, researchers report their results as lengthy monologues. In our 

approach, we instead produce a theory for the consumption of academics and a set 

of shorter cognitive patterns with an emphasis on application. 

Grounded theory may be valid for theory building in software engineering, but the use 

of these methods involves some significant challenges [14, 33]. We will highlight the 

challenges in later chapters, but an interesting challenge to the novice researcher is the 

inductive literature review. To reinforce the emergent properties of grounded theory, the 

researcher begins research with only a topic and avoids bias from prior studies by the 

omission of the literature. This is meant to promote unbiased theory building, but in 

practice it is a significant challenge for the (novice) researcher. For practical purposes, the 

scientist should combine rigorous grounded theory techniques with perspectives drawn 

from the literature. 

The second issue that we face is that protocol analysis and grounded theory are both 

inadequate for our purposes. Protocol analysis is too specific to the natural language of our 

study participants and does not support coding based on software representations. 

Grounded theory is too broad and would result in book-length texts surrounding our 

inquiry. We do however have an opportunity to produce a research methodology that 

combines and extends empirical elements of both techniques. This method, described in 

Chapter 3, allows us to examine the first research question. 

The third, critically important problem we face in using grounded theory research is 

how to report our results in a form that is scientifically valid and accessible to readers. We 

address this challenge in the next section. 
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2.7 

                                                

Reporting the results of empirical research in pattern form 

Arunachalam and Sasso propose that the description behind comprehension processes 

can eventually contribute to the development of computer-based support for program 

comprehension – more specifically, software support tools. The authors produce a 

scholarly review, worthy analysis and interesting results, but defer recommendations for 

the development of software support tools to future work (although they state that these 

recommendations are a primary objective of the study). Such deferment is a common 

weakness in the comprehension-process research we reviewed: strong in theory and 

method, they are often weak in the application of results. In an effort to methodically build 

upon the prior research, we faced similar challenges in our research. To address the gap 

between theory and application14 we constructed two versions of our theory, one for the 

consumption of academics and one for the consumption of tool designers. We describe 

these versions in later chapters. We draft the latter in pattern form, as Martin et al. [88] 

recommends, which provides a focus on structure and consumption by a specific audience. 

Patterns are a phenomenon that has become entrenched in software engineering since 

the mid-1990s. Patterns focus on a deep understanding of recurring problems. Each pattern 

addresses an individual problem, though sometimes patterns work together to solve bigger 

problems. Pattern authors document patterns in discourse, a process that provides an 

informal catalogue of knowledge. Pattern writing is notoriously difficult. The pattern 

community, aware of this, provides a number of sources to aid in the writing process [92, 

111, 137, 138]. The pattern community reasons that, by recording solutions to recurring 

problems for reference, individuals can focus on larger, tougher challenges. Without 

patterns, software developers re-develop rather than re-use. The general consensus is that 

software is complex enough, and patterns may reduce this complexity. 

In the late 1970s, Christopher Alexander [8, 9], concerned with the state of his field of 

urban design and building architecture, strove to assemble an understanding of the 

structural artefacts that shape daily interactions between people, with an emphasis not only 

on the structure of buildings, but also on a structure of the natural social groups in 

 
14 As future work, members of our research group are building instantiations of our theory in an IBM software 

development tool. 
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buildings [31]. He coined the terms ‘pattern’, ‘pattern language’ and ‘forces’ to serve his 

vision of elucidating knowledge of patterns that make people feel “fully alive” within his 

architectural creations. We associate the early value system (what makes a pattern ‘good’), 

and the way in which we write patterns, with Christopher Alexander. From Alexander [8], 

a pattern is a ‘good’ one if you can visualize the solution it generates concretely, and if the 

pattern’s inner forces resolve themselves. We append the following: the problem must be 

relevant to the audience, and the pattern must exhibit clear writing. 

Patterns are becoming widely used in software engineering and other fields as a way of 

capturing expertise within a community of experts. The best known patterns are those of 

the so-called “Gang of Four”, Gamma, Helm, Johnson and Vlissides [52]. These patterns 

are called design patterns since they represent common approaches to solving object-

oriented (OO) design problems. In addition, there is a growing wealth of other types of 

patterns, noted in the Pattern Languages of Program Design books (e.g. [89]), including 

work similar to ours in reengineering patterns [39] and usability patterns. “Activity 

patterns” are another area of pattern interest. These are recurring properties of human 

activity that do not necessarily pass judgment on whether the observed activity pattern is 

good or bad [134]. 

Gardner et al. [53] set the precedent for applying cognition in the realm of OO 

technology. Their approach is best described as the application of cognitive models to 

organizational and system processes, and is highly concrete. Cognitive patterns (in their 

words, templates for how humans solve problems) serve as a framework for OO projects. 

Although we share similar roots for our research, a fundamental difference exists: their 

work is closer to business process modelling and less about patterns in the Alexandrian 

sense. 

We base the transition from grounded theory to pattern writing on a near perfect fit 

between the two approaches: 

• Both approaches are focused on a deep understanding of a central topic. 

• In grounded theory, the phenomenon surrounds a set of themes or categories. In the 

pattern world, these are the patterns themselves, and the names of the patterns are 

analogous to the names of the categories.  
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• The source of both categories and patterns are linked to recurring themes in the real 

world.  

• Patterns focus on a deep understanding of a central problem. This is not unlike the 

focus in grounded theory on a central phenomenon.  

• In grounded theory, one attempts to understand the contextual and primary 

conditions that allow the phenomenon to exist. In the pattern world, the context and 

forces are two of the most important features of patterns. The concept of forces 

extends beyond primary conditions.  

• In the pattern world, we find solutions and rationales as to why that solution is 

appropriate. In grounded theory, we find the outcome of phenomenon and the 

strategies leading to those outcomes.  

• Both grounded theory and patterns concentrate on consequences.  

• In grounded theory, we seek to understand common threads and differences among 

categories. In the pattern world, we find the analogous concept of hierarchy and 

linkages.  

• Patterns are written documentation, and many agree the drafting of patterns is 

difficult. Likewise, the output of grounded theory is a narrative, and few dispute the 

difficulty of the approach.  

• The concept of a visual model in grounded theory aligns with the concept of 

dynamics and structure in the pattern world. If the phenomenon in question is a 

problem, a researcher may draft the output of grounded theory in pattern form. 

We see a strong continuum between grounded theory and patterns – grounded theory 

focuses on building theory, and patterns offer the medium for presenting theory. The 

upshot of this finding is our realization that the goals of our research are in the spirit 

intended by Alexander. 

2.8 Concluding Remarks 

In this chapter, with the goal of providing a convincing structure for our research, we 

reviewed the literature that most closely influenced the research questions stated in the first 

chapter. 
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We perform the role of theorists who build cognitive models with the goal of 

extending software modeling tools to support behavioural traits of software explanation. 

We recognize the crucial research step that will allow the extension of software modeling 

tools is the construction of a research methodology and generation of a theory. We came to 

this realisation from an examination of prior research in comprehension processes. 

Some of this prior research examined programmers working with source code, while 

other research examined communication involved in different kinds of meetings. We noted 

the methodological deficiencies that we can improve with our approach. The most notable 

deficiency was the prior research’s failure to examine representations of software, e.g. 

UML or freeform diagrams, as a common medium for software explanation. This drew our 

attention to prior empirical studies of diagrams in software engineering. We noted the 

novelty offered by a qualitative study of software explanation employing both speech and 

sketch activities. We then reviewed a research methodology that would allow us to 

generate a theory from the ground up – a grounded theory. In so doing, we encountered the 

issue of how to report our research, an issue that is resolved by writing our theory in pattern 

form as cognitive patterns. This allows us to make a contribution to software design: tool 

developers may use cognitive patterns to understand their users and cognitive patterns may 

actually improve the tool developers’ own mental models. 

In the following chapters, we describe the methods and results of our research 

approach.
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Chapter 3 Pilot Study 
This chapter describes a pilot study, the purpose of which is to identify a behavioural 

phenomenon in software professionals and to devise categories of software explanation 

based on the observation of such professionals working in the field. These categories or 

codes will subsequently receive deeper examination in the main study. The goal of the 

main study is to generate a theoretical foundation for a more detailed investigation of the 

existence and importance of the snapshot phenomenon in the creation of diagrams, and 

more generally in the process of software explanation. Our strategy involves videotaping 

whiteboard activities while professional software engineers explain software, coding the 

video data, defining topical categories from the codes, and exploring trends in the data 

through the use of visual aids, or displays, such as tables, figures and other models that 

illustrate interesting aspects of data. In this chapter, we describe the initial steps of this 

strategy. 

3.1 Objective 

The objective of the pilot study was to develop a preliminary set of codes to be 

corroborated in the main study. At the pilot stage, we did not seek to build a theory or 

model. Our aim was, rather, to familiarize the principal researcher with the coding process, 

to identify and overcome challenges that might hinder data capture and data analysis, and 

to identify and develop the core set of codes and categories that we would examine in 

greater depth in the main study. We also provide a discussion of some of the underlying 

principles in the formation and execution of a qualitative inquiry. 

In the early stages of this research, our research objectives had not yet been fine-tuned 

and our research method had not yet been worked out. After the pilot study and initial 

analysis, we decided that grounded theory was appropriate for the analysis of our codes. 

The decision to use grounded theory was followed by the formulation of our second major 

research objective: to develop a methodology in order to study the discourse structure of 

software developers. This chapter illustrates the formative stage of this decision. 

25 



Chapter 3: Pilot Study 
 

3.2 

3.3 

Participants and Study Setting 

The setting for the pilot study was the on-going maintenance of a complex real-time 

telecommunications software system at Mitel Corporation. A team of developers regularly 

update the telecommunications software: their routine and extended experience with 

whiteboard sessions made them ideal candidates for our study. Unfortunately, participant 

selection could not be random due to the relatively small number of people available. We 

felt fortunate that twelve Mitel technical leads and developers were kind enough to 

participate in the project. With their involvement, the principal researcher held twelve 

videotaped informal whiteboard sessions on location over a six-month period in 2002. 

This pilot study focuses on the informal whiteboard session process. We initially relied 

on our own personal experiences with informal whiteboard sessions. Throughout the study, 

however, we updated our understanding of the informal whiteboard process through 

observation and interviews. This study was not intended to evaluate what was being written 

or drawn on the whiteboard, but instead to understand the reasons and ways a developer 

uses the whiteboard. 

Generally speaking, informal whiteboard sessions are held at varied and random times 

throughout maintenance and development lifecycles. Often developers need to draw on the 

knowledge of their peers, need to work through problems using their peers as a sounding 

board, or just need to step away from the computer and think using visual representations. 

Informal whiteboard sessions involve one to many developers with varying degrees of 

expertise and knowledge related to the subject of the sessions. 

Data Collection Procedure 

In this pilot study, we combined interview questions with the taping of a think-aloud 

protocol on videotape. We used the same data collection procedure in the main study. 

During the pilot study, we captured data at Mitel using an analog video camera and 

converted the data to a digital format using video capture hardware and software. During 

the main study, we captured data with a digital video camera on-site in meeting rooms, and 

imported the data to computer using video capture software that produced higher quality 

video. Video captures a complete record of a session, which makes it both detail-rich and 
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time-intensive to use and interpret. The rule of ten, that every minute of captured video 

requires ten minutes to process, may constitute an underestimate if the analytic method is 

too open-ended; in our study, we analysed roughly twenty minutes for every minute of 

data. Each session lasted 30-45 minutes and involved a single participant. We used both the 

participant’s verbal utterances and whiteboard diagrams as the basic data for our analysis. 

We prompted the participants by asking each one several questions. According to our 

data, the following questions generated the most diagrammatic material: 

• Imagine I am a new hire with basic knowledge of computer science, telephony and 

real-time systems; please explain the architecture of the [system you maintain] and 

related systems to me. 

• Please explain very briefly the main subsystems, layers, processes and data 

structures. 

• Please explain how the architecture supports the following features. 

The challenges inherent in using interview sessions as the data collection method for a 

qualitative inquiry include: 

• how to structure questions; 

• how to prompt interviewees without leading; 

• how to run the session and simultaneously record notes; 

• how to properly manage interview time. 

To address these challenges, we prepared an investigator’s handbook as part of the full 

set of study materials15. 

3.4 

                                                

Data Analysis Procedure 

After the interview sessions, we transcribed all tapes as the first step in our analysis. 

Our progress was somewhat hindered at this stage because our analytic procedure was not 

rigorous; eventually, we evolved our analytic procedure to match the process illustrated in 

Figure 4.1. We reviewed the video data to make sense of the whole and to find regularities. 

We were not yet sensitive to the subtleties of the patterns we found. 

 
15 A full set of study materials may be found online at http://www.site.uottawa.ca/~tcl/gradtheses/amurray/appendices/.  
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The following describes how we identified at this initial stage a plausible phenomenon 

to examine at greater depth. During an interview session at Mitel, our participant provided 

particularly rich details for nearly forty minutes. At the whiteboard, the participant 

regularly remembered new details that he wanted to add to his story of how a practical 

phone call takes place in terms of PBX technology; his way of adding the new details was 

startling. He would find the space on the board to add the detail, would announce the level 

of importance of the upcoming information, and through a series of added and removed 

details would animate the process in conjunction with his verbal annotation – his diagram 

was constantly changing, and when the session was complete, the diagram did not reveal 

any of the dynamic story-telling that had taken place. This case drew our attention to the 

novel yet simple idea that temporal details may be important in software explanation. 

The concept of temporal details looked reasonable, sensible and interesting, so we 

sought a deeper understanding through qualitative data analysis. This became our analysis 

of discourse structure. In pursuit of this analysis, the observed behavioural patterns became 

our initial coding scheme, which we present in the next section. 

3.5 

                                                

Results: Coding Scheme 

The raw data from our pilot study consisted of twelve videotaped interviews, or 

7:54:4816 of raw video. When we removed extraneous details (e.g. camera set–up, meeting 

and greeting participants, etc.), we were left with 6:44:55 of processed interview content. 

Percentages of total time given in this section are relative to the processed interview 

content. In total, eighty-two scripted questions were asked of participants, or an average of 

6.83 of a possible 10 questions per participant (see Section 3.3 for examples of questions). 

Several passes of the data led us to a scheme with 13 distinct codes. These can be 

roughly grouped into four categories we call “drawing”, “speaking”, “snapshot”, and 

“other.” “Other” codes corresponded to thinking activities and were the hardest to identify, 

though we were able to recognize recurring patterns of cognition manifested through both 

speaking and drawing. In the main study, we abandoned the “other codes” because the trail 

of evidence was too difficult to construct and defend. Likewise, many other codes were not 

 
16 i.e. seven hours, fifty-four minutes, forty-eight seconds 
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further developed in the main study because they did not contribute to the central 

phenomenon under investigation. 

Participants spent 57% (3:48:54) of their time speaking and 25% (1:43:01) of their 

time drawing. A total of 18% of the session time was allocated to noise; by noise we mean 

time when the interviewer was asking questions, interruptions, and spaces longer than five 

seconds where neither drawing nor speaking occurred. 

We use “speaking” to refer to the time during which participants were verbalizing but 

not drawing. When the participant drew on the whiteboard we exclusively used drawing 

codes, and if the participant was speaking while not drawing, we used speaking codes. 

The participant was considered to be “drawing” whenever he or she was moving a 

marker on the whiteboard; this was recorded to the second. The fact that 25% of total time 

was spent drawing shows that we gathered much potentially useful information about 

diagrammatic drawing. While “drawing”, participants exhibited different forms of 

behaviour including: silence, talking about diagrams, confirming aloud their thoughts, 

random discussion, and joking. In other words, participants exhibited natural and typical 

whiteboard activity. 

We found other results, but they do not contribute to the central thesis, nor do they 

contribute to the central phenomenon under study. For these reasons, we will not present 

them here. Figure 3.1 illustrates our original coding scheme. 

Drawing
ADD
REM
SML

Other
BASE
BIG
EXT

SET

Snapshot
SNAP
LONG

Speaking
TALK
MEAN
MBED

MULT
 

Figure 3.1: Pilot Coding Scheme 

ADD-Add Detail: The participant draws new material on whiteboard. 

REM-Remove Detail: The participant modifies previous material, or erases some or 

all of the material on whiteboard. 
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SML-Starting Small: The participant begins a new representation. 

TALK-Talking: The participant is speaking, neither drawing nor discussing prior nor 

future diagrams. 

MEAN-Retain Meaning: The participant references other diagram or diagrammatic 

elements and describes meaning not captured through the diagram itself. 

MBED-Embedded Rationale: The participant describes his or her rationale for 

drawing. 

SNAP-Snapshot: A representation in a moment of time. A representation contains 

enough information to allow the participant to speak to some meaning. Often the 

participant pauses to reaffirm the details contained within a representation. 

LONG-Longview: This is a series of snapshots, typified by (though not exclusive to) 

steps leading to the completion of a diagram.  

BASE-Baseline Landmark: A participant continually references, either verbally or 

via representation, a central or familiar concept.  

BIG-Thinking Big: The participant describes some unifying concept using a complete 

representation as opposed to its constituent parts. 

EXT-External Memory: The participant uses external media in order to store details 

for later recall. 

MULT-Multiple Approaches: Different participants typically represent the same 

concept in different ways.  

SET-Set Boundaries: This code marks places in which participants set boundaries 

when answering the questions.  

3.6 Concluding Remarks 

The pilot study was important. We developed a preliminary set of codes, which we 

examined in greater depth in the main study. We gained sufficient experience in the coding 

process to allow us to competently perform in the main study. We also identified several 
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challenges in data capture and analysis. We document how to overcome these challenges in 

the next chapter. 
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Chapter 4 Study Design 

4.1 Introduction 

Our qualitative pilot study provided a systematic way of organizing and understanding 

the data through a set of codes. The initial coding scheme remained to be tested and cross-

verified through the use of an independent sample. As a consequence of performing our 

second qualitative study with an independent sample, the coding scheme – and therefore 

the analyses we derive from the coding scheme – became more complete. In general, a 

qualitative study will result in propositions tied to a trail of evidence, hypotheses grounded 

in the data, explanations regarding the phenomenon under study, and areas for future study. 

In this chapter, we describe how we designed our study to achieve these results in practice. 

The literature offers several well-known strategies [25, 80, 85, 122, 139] that describe 

how people approach comprehension problems at a high level. We however are interested 

in the way people manipulate their mental model at a somewhat lower level: from minute 

to minute or even second to second as they tackle a comprehension or explanation problem. 

This is similar to the low-level comprehension processes, or cognitive activities, we 

reviewed in Section 2.4. 

We introduce this chapter by describing the impetus for the study and research 

objectives. In Section 4.2.1, we describe our participants and the study setting. In Section 

4.2.2, we provide our study design. In Section 4.3, we detail our data analysis procedure, 

which includes our revised coding scheme and our motivation and mechanism for data 

displays (i.e. tables and charts from which we draw conclusions). The aim of this chapter is 

to provide the overall design for our study. We describe the results of our study in the next 

chapter. 

4.1.1 Impetus for the study 
From a theoretical perspective, a behavioural analysis of software explanation appears 

likely to improve our understanding of how software developers systematize and express 

their knowledge structures when explaining software (i.e., speaking and drawing). From an 

applied perspective, a comprehensive description of the temporal process of software 
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explanation may shed light on how software development tools can better support the 

creation of software models. 

This chapter presents three contributions made by this thesis, all of which relate to our 

second research problem: which methodology to use. The first and most important is a 

demonstration of qualitative research methods incorporating concepts of the grounded 

theory method, discussed in Chapter 2. In the previous chapter, we built the foundation of 

our work: the development of an initial set of codes. In this chapter, we demonstrate how 

qualitative research is conducted based on the tenets of grounded theory and a detailed set 

of analytic steps. In particular, the range of displays built in conjunction with a rigorous 

analytic process may yield new insight into difficult software engineering problems. We 

use the grounded theory approach for two reasons: first, we are studying the process of 

human behaviour; and second, there is a lack of earlier work along the lines of our 

research. This means that we do not yet have any hypotheses on which to base more 

quantitative studies. We believe this grounded theory approach has led to results that are 

rich, descriptive and closely linked to the data. 

The second, related, contribution developed in this chapter is the refinement of a 

protocol, piloted in the last chapter, for examining informal whiteboard sessions in which a 

software engineer explains software. 

The third contribution described in the chapter is the development of a more refined 

set of codes that mark behavioural activities performed during the whiteboard sessions. 

4.1.2 Objectives 
The primary objective of this study is to clarify the role of temporal details as an 

experienced programmer explains his or her knowledge of structure and functionality of a 

software system. In particular, we will explore the snapshot as the foundation of temporal 

details, and will answer the research questions we posed in Section 1.1. 

Our objective is to generate a Snapshot Theory. We provide a systematic description of 

the software explanation process supplemented with evidence that supports the snapshot as 

the participant’s building block towards software understanding. As part of this inquiry, we 

progress towards the secondary objective: to develop a methodology in order to study the 

discourse structure of software developers. 
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4.2 Method 

4.2.1 Participants and Study Setting 
Twelve IBM developers participated in the study. Participants had completed at least 

an undergraduate degree. Two participants were developers for the Eclipse framework, and 

the other ten were developers of IBM Rational Software Architect. Participants worked in a 

variety of software development roles and on various product components. Participant 

selection was not random. Their level of software development experience ranged from 

four to twenty-four years; their level of experience with the product in question ranged 

from six months to seven years; and their use of informal whiteboard sessions was typically 

two to five times per week. 

Prior to recruiting the participants, we attained approval from the University of Ottawa 

Ethics Review Board for the entire study. 

To recruit participants, we used the following process: 

• We obtained management support from IBM. 

• We sent a recruitment letter via email to IBM managers and developers (see online 

Appendix). 

• We met individual developers, described the study in more detail, and when a 

developer volunteered, allocated specific time and place. 

• We sent an email reminder and thanks to each participant. 

• If the participant was late for a session, we followed up with a desk visit 

(participants sometimes required a final reminder). 

4.2.2 Study Design 
We designed the study in order to examine the behaviour and patterns of experienced 

software developers engaged in software explanation during informal whiteboard sessions. 

In a closed environment (i.e. with the participant alone in a meeting space with the 

principal investigator), we asked the software developers to explain their mental models of 

the architecture of the software they were developing. We asked participants to think aloud 

as they drew diagrams. 

A typical session was run as follows: 
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• Investigator welcomes participant. 

• The investigator informs participant:  

o of the study objective; 

o that participation is voluntary, and that the participant has a right to 

terminate the session at any time; 

o that investigators have management support, but that managers will not see 

the data; 

o that investigators will preserve anonymity and confidentiality of the 

participant, of the session, of the results, and of the system under study; 

o that the investigators are interested in observing the way participants explain 

software to new hires; and 

o that investigators are studying what the participant says and draws on the 

whiteboard, and are not studying the participant personally. 

• The participant reads and signs the informed consent form. 

• The investigator introduces the study procedure, including proposed timeline and 

study equipment. 

• The investigator invites the participant to ask questions at any time during the 

session. 

• The investigator starts taping. 

• The investigator asks a series of interview questions (see online Appendix). 

• The investigator reminds the participant to use the whiteboard and to verbalize their 

thoughts, in other words to “think aloud.” 

• The investigator takes notes, and prompts the participant for further details where 

appropriate. 

• The participant answers interview questions as they see fit. 

• If the study time elapses or the investigator has no further questions, then the 

investigator requests clarification of any details he is unsure about, and asks the 

participant if he or she wishes to add anything else. 

• The investigator stops taping. 
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• The participant fills out a follow-up questionnaire regarding details of their level of 

experience in IT, the product with which they work, and UML diagrams. We 

discuss this later in the thesis. 

• The investigator thanks the participant for their time and patience. 

We counter the Hawthorne effect17 by asking participants to consider the study 

analogous to an informal session in which they explain software to a new employee. 

Not every participant provided an answer to every question, though incomplete 

question coverage did not really matter. The purpose of the questions was more to ensure 

that we gathered a wide variety of data. We were interested in studying what was said and 

drawn, not the specific details of the answers themselves. For a complete description of the 

questions asked in the whiteboard sessions, please see the online Appendix. 

4.2.3 Data Collection Procedure  
We used the same data collection technique described in the pilot study, Section 3.3 

with the slight difference that we tailored the questions to the product with which the 

participants were familiar. 

4.3 

                                                

Data Analysis 

We followed the constant comparative method as dictated by the grounded theory 

approach presented in Chapter 2. Grounded theory is largely based on content analysis. In 

our research, we focus on behavioural analysis (not content analysis), and, thus, we follow 

the tenets of grounded theory as part of a more general qualitative inquiry. In accord with a 

grounded theory approach, we coded and categorized the data, grounded observations in 

the data without preconception, made propositions based on these observations, and 

verified these propositions in the data. 

The richness of the video content had the potential to lead us to a state of ‘analysis 

paralysis.’ As investigators, we had many options for coding. We found that following the 

tenets of grounded theory, such as focusing on a single central phenomenon, was of 

considerable help in allowing us to pursue our research objectives; we discuss this in more 

 
17 The Hawthorne effect refers to a participant’s altered behaviour produced by obtrusive observation – in other words, 

the scientist must attempt to ensure that the study conditions do not alter participant behaviour. 
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detail below. In the pilot study, we moved from video to codes and categories through the 

application of the first three major steps in the process model, illustrated in Figure 4.1. As 

part of the main study only, we applied all five major steps of the process model. 
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Figure 4.1: Qualitative Process Model: Moving from video data to codes and categories 

We describe below how the process model shaped our work. 

Central phenomenon 

A central phenomenon is some particularly interesting aspect of the data. We began by 

picking a videotaped session and reflected on its underlying meaning. The central 

phenomenon we identified was the existence and importance of snapshots in the creation of 

diagrams, and more generally in the process of software explanation. 
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Topics and categories 

If a researcher keeps the central phenomenon under constant consideration, a review of 

the data from other participants yields different manifestations of the phenomenon. These 

sometimes required us to expand the categories of observations and group them into high-

level categories. For example, two of the high-level categories in our analysis were 

‘speaking’ and ‘drawing.’ We also went back to data we had already analysed to ensure we 

properly recorded the information about each newly added category. In addition to forming 

new categories, we grouped together those that were similar. The process of ensuring that 

all the information relevant to the central phenomenon is captured with an adequate set of 

categories is called category saturation. 

In the grounded theory approach, the simple codes used to mark the categories of data 

are usually called ‘topics,’ whereas a description of the category of data is called a 

‘category.’ We will, however, use the term ‘codes’ for simplicity here. Codes ease the 

identification of trends, patterns, and generalities and can help extract quantitative data 

from qualitative data. 

To adopt a prior coding scheme 

A researcher may use a coding scheme from prior research. We debated using one of 

the published coding schemes [13, 61, 81, 112]; however, the graphical nature of 

whiteboard work confirmed the need for a unique set of codes. The other schemes did not 

fit the context of informal whiteboard sessions. In general, it may be viable to create a new 

coding scheme where one has not previously existed, but one must exercise diligence in 

examining the possibilities. As Figure 4.1 shows, adopting a coding scheme contributes to 

efficiency. 

To devise a new coding scheme 

Literature about the grounded theory approach [23] supports our finding that a 

researcher charged with devising a new coding scheme may encounter numerous issues. 

These include deciding which codes are relevant and will lead to answers to research 

questions. In our research, we had to drop many of our initial leads18 that were irrelevant to 

                                                 
18 C.f. pilot study codes and Appendix C for examples of codes we dropped. 
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our central phenomenon. Bogdan and Bilken suggest considering the following types of 

codes [23]: 

• Setting and context codes 

• Participants’ ways of thinking about people or objects 

• Process codes 

• Activity codes 

• Strategy codes 

• Perspectives held by participants 

In our research we used all of these types of codes. 

To initiate coding, one may look for phrases used repeatedly that indicate regularity in 

the setting. The start list of codes should be tied to research questions. 

Simple codes 

We tested several variations of coding schemes before we settled on the simple set that 

we will present in Section 4.3.2. Simple codes do not necessarily imply simple data, nor do 

they confer simple interpretation: simple codes permit the researcher to focus on a single 

phenomenon free of lengthy and possibly erroneous interpretation at the coding level. The 

more abstract the coding scheme, the more difficult it is to produce concrete statistics and 

to validate the work (e.g. to compute inter-rater reliability, which we describe below). 

Therefore, following our pilot study, we elected to use codes that were easiest to find in the 

data. Analysis was surprisingly revealing despite adhering to these simple conditions. 

To codify data 

The actual process of coding the data can be done with or without tools and in many 

different ways. In the initial stages, we viewed video while reading and marking up our 

transcription with xml style tags. This was fruitless because it was imprecise, inflexible to 

code changes (e.g. new or obsolete codes), and did not lend to deeper analysis. Moreover, 

our broad and inconsequential codes were often unrelated to each other and did not 

contribute to a more comprehensive theory. To work within a text-based transcript proved 

impractical. We needed an alternative. 
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We looked at several qualitative data analysis software tools, but they did not satisfy 

our needs. These were: an ability to review the video, a short learning curve, and an ability 

to adapt the process as new ideas emerged. We elected to code our data in Microsoft Excel 

on account of its rich feature set, intuitive interface, and macro programming. During the 

pilot study, we coded the data first on paper and input the codes in Excel. For the main 

study, we used Excel macros to improve the data coding process. In the latter stages of the 

main study, we exported our data in xml to a java-based qualitative data analysis tool 

(Qanal) for video review. We will discuss Qanal in greater detail in Section 4.3.4. Figure 

4.2 illustrates a sample of our data coding in Excel. 

 
Figure 4.2: Data Coding Sample (Excel) 

We elected to use a coding model of discrete, contiguous events to account for the 

entire session. We tracked the following information: the time and duration of the coded 

event, the code category (colour-coded and divided into columns by category of code), the 

corresponding dialogue, and the investigator’s notes. Our data codification approach was 

sufficient to establish which codes were important and should be explored in more depth, 

how the basic phenomenon was manifested in the data, and how to capture and analyse 

data. We explore these findings in more depth in the Section 4.3.2. 

Category analysis 

Codes are almost always related to one another, since they derive from a central 

phenomenon. As mentioned earlier, we selected to consider as our central phenomenon, or 

core category, a concept we called the ‘snapshot.’ We chose this because there was 
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sufficient evidence for it in the data, it was neither non-trivial nor overly complex, our 

industrial partner saw value from further investigation of it, and we surmised deeper 

investigation would yield strong, usable results. We performed a category analysis19 by 

doing the following [33]: 

• We assessed common threads and differences among the data associated with the 

snapshot codes. Repeated sequences provide good leads. 

• We explored causal conditions. For example, as suggested by the grounded theory 

approach, we searched the protocol for places the participant had used the words 

“because” or “since”. 

• We wrote specifications of the strategies that resulted from the central phenomenon. 

• We identified the context and intervening conditions. 

During this process, we recoded data as required; doing so is a normal part of the 

category-saturation process. In our research, we made several changes to our coding during 

this phase. The results of our category analysis are described in the next chapter. We 

continued to revise our coding scheme until we reached the point of saturation, which we 

describe next. 

Saturation 

The qualitative researcher faces a significant challenge: how to know when coding is 

complete. Strauss [131] indicates that coding and recording are complete when all incidents 

can be readily classified, categories are saturated, and a sufficient number of regularities 

emerge. A researcher must balance deep analysis against the limitations of time, budget, 

and scientific relevance. In our research, we wanted to achieve comprehensive coding of all 

data and to reach a point where subsequent data analyses yielded no new categories. The 

following is an account of how we balanced data saturation and sufficient depth while 

following the constant comparative approach. 

We began by coding two participants. We continued to code and recode these two 

participants at a rate of roughly 20:1 coding time to video time until no new codes emerged 

and the central phenomenon was well understood for these participants. Of course, two 

                                                 
19 For more detail, please refer to Section 5.2. 
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participants do not provide a sufficient level of variety and to generalize from two cases is 

difficult. We were, however, able to find some emerging trends, and to develop an idea of 

what sort of extra analysis might yield further insight. To facilitate this analysis, we built 

prototypes of various tables and figures that displayed interesting information about the 

data. We term each of these ‘data displays,’ and discuss them further in Section 4.3.4. 

We proceeded to code the remaining ten participants one at a time. New codes were 

rare, and trends began to solidify. As per the tenets of grounded theory, we focused only on 

coding during this phase, but we were mindful of where analysis might lead us. We had 

many coders20 pass over data and verify coded data. 

Figure 4.3 illustrates a sample of the change history for our day-to-day data. This 

listing of differences made it easy to monitor frequency and location of changes. To build 

the displays, we kept a historical record of all changes to our data; more specifically, on a 

day-to-day basis, we stored a copy of our data in a repository.  

To examine the differences between these files and produce displays was a significant 

technical challenge. Displays forced us to improve our data integrity since much of our 

early data (prior to automated displays) was difficult to analyse programmatically. This 

problem was compounded by the fact we wanted to leave our data in its original form – 

that is, we did not want to introduce or remove changes as part of this phase, since our 

displays would not be representative of the data. Further compounding the problem was the 

evolution of the coding scheme. Though we originally intended the data change history 

displays would reveal the evolution, we did not anticipate the major programmatic work 

involved. 

We settled on the core categories, ADD, REM, MEAN, TALK, and SNAP, and 

tracked changes in the form of additions, removals, moves and totals for codes within each 

category. We developed criteria to determine if a code was added, removed, or moved, and 

we required many trials to see accurate results. When we manually built the accurate 

results for comparison, we were close to dumping the programmatic solution, but pressed 

on because we wanted to share the process automation with future researchers. 

                                                 
20 See Appendix A for Coder Profiles. 
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At a certain point, a data pass did not yield new codes or changes to current codes. 

Therefore, we elected to move from analysis to interpretation. We describe the results of 

the interpretation in the next chapter. 

 
Figure 4.3: Listing of individual differences between data files 

It is very difficult to correlate coding time with quality of results, although if we 

performed many studies this correlation might be more obvious. The following rough 

phases reveal our progress with the data: Roughly the first 20% of the time was spent in 

‘initiation’, whereby we began to understand the data, but had very little to speak of in 

terms of results. The next 15% was ‘code breakthrough,’ where we had an explosive 

increase in the number of codes. The next 50% was manual coding, in which there was 

modest code growth, a lot of manual labour in coding the data, ample discussion, as well as 

review of codes with multiple researchers. The final 15% was ‘saturation,’ in which new 

codes are rare, codes were refined, reviews became more technical, and data displays to 

test initial hypotheses were built. 

Inter-rater Reliability 

One may use inter-rater reliability to justify that codes reflect actual subject 

verbalizations. With this reliability mechanism, two coders independently analyse the 

coded data. When coding is complete, researchers calculate a coefficient of agreement; 

generally referred to as the kappa coefficient or Cohen’s K. Researchers use Cohen’s K to 

measure the proportion of agreement between two researchers who code the same chunk of 

data. Disagreements between coders indicate that code definitions need to be extended or 
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improved. When researchers disagree, they can review their discrepancies to improve the 

reliability measure. 

Inter-rater reliability is necessary to validate that codes accurately fit the data and that 

coders do not introduce bias. The length of time to perform an inter-rater reliability check 

depends on what level of agreement is deemed suitable. We performed inter-rater 

reliability checks comprehensively across our coded data. For much of our data, we 

performed many checks. We isolated and performed inter-rater reliability for each 

individual code. Then we performed inter-rater reliability for the relationships between our 

ADD and MEAN codes. And finally, we checked the agreement regarding code times. 

Inter-rater reliability can be computed as the percentage of codes that are the same 

from one rater to another. You would not expect 100% reliability; Seaman attained 62% 

agreement [118, pp.51]. Values lower than 60% indicate either the categorization needs 

revision or clarification, or else one or more of the raters need to re-visit their analyses.  

Let A = number of agreements, and let D = number of disagreements: 

K = A / (A + D) 

Reliability = K x 100 

Let’s walk through a real reliability scenario. For the purpose of simplicity, and 

because the coding of snapshots was the most critical coding activity, we will only look at 

snapshot-code reliability; though in typical scenarios we also checked our other codes, the 

relationships between codes, and code times. To make the process manageable we checked 

each separately, which led to improved integrity but also to lengthy analysis. We always 

performed inter-rater reliability checks with new coders, so in the following scenario one 

coder is an expert and the other is new to the project. 

Two coders code the same piece of data. Then we run an Excel macro to generate data 

change history listings between the two, such as the one shown in Figure 4.3. This allows 

us to highlight the differences between the files. It is important to set criteria for changes 

between files, when, for example each coder might set the time for a code differently. Does 

this constitute disagreement and how much of a difference in time is reasonable? We only 

want to reveal disagreements that matter.  
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The point of the exercise is to determine what disagreements the two coders had, to 

determine if the disagreements are nomenclatural (inappropriate naming, e.g. tagging 

ADD-T instead of ADD-TL), conceptual (e.g. tagging a snapshot where the other coder 

insists there is no snapshot) or primitive (e.g. tagging a snapshot because of inappropriate 

cues – a result of immature coder knowledge). We do not count trivial disagreement in our 

measures; in fact, the majority of the interesting debate centered on the timing and category 

of snapshots. 

 
Figure 4.4: Inter-rater reliability sample between expert coder and new coder 

Figure 4.4 illustrates the sample data for our scenario. A new coder is typically over-

exuberant while tagging snapshots, as the right-column in Figure 4.4 shows. This is to be 

expected, the concept of a snapshot is not always easy to understand at first contact with 

the data. We handle various discrepancies as follows: 

• Three cases of primitive snapshot codes are listed as ‘primitive’ in the left column. 

By reviewing the primitive codes, we reinforce the appropriate snapshot cues and 

the novice coder can avoid tagging primitive codes. 

• Also in the left column, we see two cases of agreement and one instance of 

nomenclature.  

45 



Chapter 4: Study Design 
 

• In one of the agreements, there is a misalignment because of timing, which is an 

irrelevant criterion. 

• Aside from that there are two discrepancies, the expert tagged the code as SNAP2-

advinfra, and the new coder tagged the same code as an infra, but lateral – which 

requires discussion. Why did the new coder think the discussion was lateral?  

• The second discrepancy is the new coder’s SNAP3.3-S FUNC, which was a code 

we missed in an earlier pass and provided us with a new perspective on the data. 

We had to agree on a new coding standard for similar events, and updated the 

coder’s manual to reflect this change. 

For the data in Figure 4.4, A = 3, D = 5, so Cohen’s K = 3 / (3 + 5) = 0.375, or 37.5%. 

We found this to be typical for a new coder. After we excluded primitive differences, A = 

3, D = 2, so K = 3 / (3 + 2) = 0.6. After further discussion to reconcile the two remaining 

disagreements, K rose to 1, or 100% agreement.  

In practice, we cannot always reach 100% agreement: ‘moral’ debates ensue and 

occasionally, after hours of discussion, there is still no resolution and work must continue. 

In 85% of our reliability checks, K was initially in the range of roughly 0.50-0.70 and we 

improved it to the range of approximately 0.85-1. The mean increase in K following 

researcher discussion was 0.3. The remaining 15% of reliability checks account for new-

coder situations in which training was the objective. 

Patterns & Theories 

We analysed our qualitative data to discover patterns, trends and generalizations. We 

sought evidence towards generalization as opposed to the individual differences between 

participants. As discussed earlier, the intended outcome of our analytic process is to 

generate a theory regarding a central phenomenon. The description, which includes 

rendering the study setting, participant perspective and specific evidence, is only one aspect 

of the theory. The theory is grounded in the views of the participants, and requires further 

grounding in the literature. The theory and the literature should contribute and contrast with 

one another harmoniously. 
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To convey qualitative theory through a narrative is popular, although displays, visual 

models, figures and interesting statistics can also be presented. In Section 4.3.4, we provide 

a detailed summary of the displays we used in our qualitative inquiry. 

We developed the theory we call Snapshot Theory in response to the kinds of 

information added and removed, and the temporal patterns involved. As discussed earlier, 

our intent is that such a theory might aid tool developers in thinking about design. Tools 

currently tend to be designed with the final diagram in mind; if the tools were designed 

with the evolving state of a representation (including deletions) in mind, it may be possible 

to improve their user interfaces. 

Any theory developed using this approach must be expanded and deepened by 

additional studies (preferably using the same or a related coding scheme). Other research 

needs to address the value of theory in terms of its application in practice. In Chapter 5, we 

describe our results. 

4.3.1 Memos and Comments 
The observation of collected data produced many insights into the structure and type of 

information contained in data. Further insights commonly arose as to how to approach the 

data and how to analyze its informational load. Marginal or appended comments began to 

connect different codes with larger conceptual units. While coding and recoding data, we 

used numerous memos and comments to track our rationale or doubts regarding the 

significance of codes, and sometimes we converted the memos into new codes. In this 

manner, we devised our initial coding scheme. 

Following recommended practice, we ensured that comments were kept close to 

relevant transcription and codes. We also kept marked comments with the date, coder 

name, and contextual information such as the stage and relevance of analysis. 

4.3.2 Coding Scheme 
According to Miles and Huberman [93, pp.62], coding “is a way of forcing you to 

understand what is still unclear, by putting names on incidents and events, trying to cluster 

them, communicating with others around some commonly held ideas, and trying out 
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enveloping concepts against another wave of observations and conversations.” In short, 

codes are tags used to assign meaning to data. 

Because we had multiple coders, we found it necessary to have an unambiguous 

coding scheme. Codes became a common shared language between our coders, and we 

often had to refine the definition so coders could determine if data fit the code. Discussions 

between coders promoted the evolution of the overall conceptualization of the coding 

scheme and the evolution of the coding scheme was non-trivial. With the introduction or 

change to a code, we revisited the entire coded protocol to investigate the effects. We 

consequently found that coding changes during the interpretation or theory-building phases 

were extremely time-consuming and costly. 

In undertaking the main study, we first coded our protocol according to a series of 

codes from the pilot study (Section 3.5): ADD, MEAN, SNAP, TALK, etc. We then 

established the snapshot as the core unit of analysis and developed the coding scheme in 

more depth around this core unit. The revised codes were more comprehensive and 

sensitive to subtleties in the data. Our codes were explicitly tied to our choice of media. 

The ADD, MEAN and SNAP codes are dependent on video. We will provide justification 

for this dependency in the coding scheme. In contrast, the TALK code is not dependent on 

video; we can find instances of this code in the protocol. 

Four independent researchers agreed that the pilot coding scheme was an appropriate 

classification of the data in general. However, it was clear that the pilot codes were 

underdeveloped. We therefore made the following types of changes to our coding scheme:  

• To aid the analysis of codes, we devised a unique identifier for each usage of a 

code. As a result, we could distinguish among groups of similar codes, which made 

memo writing and analysis easier. 

• We explored the relationships between categories. For example, we examined 

whether ADD codes corresponded with particular MEAN codes and likewise 

whether ADD or MEAN codes corresponded with particular SNAP codes. We used 

a relationship identifier in order to analyse these types of relationships. 

• We further developed the coding scheme to be objective, context independent, 

exhaustive (to cover the entire data set) and easy to record. 
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• In the pilot study, we only tracked whether drawing was occurring, but did not track 

what was drawn. In the main study, we used generic drawing shapes (i.e. box, line, 

etc.) as opposed to software terms (e.g. UML) in order to maintain context 

independence. The drawing codes in Section 4.3.2.1 describe the types of shapes 

and provide examples. 

• The data revealed distinct sub-categories not present in the pilot coding scheme. 

For example, in the pilot, we broadly tagged snapshots, but in the main study, we 

became aware of different sub-categories of snapshot that exhibited different 

characteristics, e.g. weak or helper snapshots. All codes are written to identify both 

category and sub-category (e.g. MEAN-S-E has category MEAN and sub-category 

S-E). We tagged each ADD, REM, MEAN, TALK and SNAP code with sub-

category. No codes are marked with only high-level category. 

• The syntax for coding in the pilot study was to write the code in its abbreviated 

form, e.g. “SNAP” for snapshots. In the main study, the addition of unique 

identifiers, relationship identifiers and sub-categories led us to write the code in its 

abbreviated form with additional details. For example, an ADD code, as shown in 

Figure 4.2, might take the form “ADD-T(S1-Q1-1)a”, where “ADD” refers to the 

category, “T” refers to the sub-category (text), “S1-Q1-1” refers to the unique 

identifier (the first add of the first snapshot and the first question) and “a” refers to 

the relationship identifier (e.g. a MEAN code with relationship identifier “a” refers 

to a descriptive explanation for this drawing element). 

• We extended our pilot codes to comprise deeper behavioural elements in the data. 

• Certain codes became obsolete because they were:  

o Subsumed into new categories (e.g. codes from our pilot study were 

subsumed in our main study: MBED was accounted for within the new 

MEAN classification, SET within the new TALK classification, etc.);  

o Ineffective in the investigation of the snapshot as the core unit of analysis.  

In the following section, we describe in detail the coding scheme illustrated in Figure 

4.5. For each code, we provide explanation, rationale and an example, and discuss some of 

the events or incidents that made these codes apparent during analysis. 
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Figure 4.5: Code Classification 

4.3.2.1. Drawing Codes 
Add Detail (ADD): The participant draws new material on the whiteboard. The 

investigator who reviews video with no sound can accurately code drawing instances for 

the entire data set (investigator sees shape, investigator marks data). Though a participant 

may engage in dialogue while they draw, if the pen is on the whiteboard, we apply the 

ADD code. We deal with situations where a participant is drawing for a very long time by 

tagging subsequent individual shapes. At first, we limited the ADD code to a single gesture 

(e.g. a box, an arrow, a line); hence, every distinct shape was tagged with its own code. 

However, our participants regularly used the same combination of gestures (e.g. an arrow 

drawn from a box), so we extended our coding to include these combinations. We use a 

relationship identifier in the coded data to mark if an ADD code corresponds to participant 

dialogue (i.e. a MEAN code). The ADD codes are simple and may be coded by 

investigators from different domains and levels of education. 

The sub-categories of the ADD category used to indicate shape are as follows: 

i) (B)ox (ADD-B): A rectangular shape, which typically contains a label that 

designates the concept the box represents. In our study, this shape had squared corners, 

though we would also have permitted rounded corners21; however, if the shape is elliptical, 

we use the ‘ADD-C’ code, below. Boxes typically represent such things as software layers, 

                                                 
21 If we had seen triangles or parallelograms, we would have revised our coding scheme, but the box shape was common 

and we saw little variance. 
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components, objects, classes, and user interface elements. For example, a participant drew 

the boxes in Figure 4.6 to indicate software layers. 

‘Right at the base there's Eclipse. And then, layered on top of Eclipse…’ 

 
Figure 4.6: Drawing Example (box) 

ii) (T)ext (ADD T): A label added to the diagram. For example, a participant described 

the label in Figure 4.7 as he added text to the diagram. 

‘There's a transform provider…’ 

 
Figure 4.7: Drawing Example (text) 

iii) (L)ine (ADD L): A non-directional link between diagrammatic elements. The 

example participant used a line in Figure 4.8 to indicate the connection between the 

controller component and view component in a model-view-controller architecture. 

 
Figure 4.8: Drawing Example (line) 

iv) (A)rrow (ADD A): A directional link between diagrammatic elements which 

indicates function or inheritance. The example participant used the arrow in Figure 4.9 to 
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indicate that the AbstractGraphicalEditPart is a subclass of the AbstractEditPart. Later, the 

participant continued the inheritance hierarchy with a lower-level class, GraphicalEditPart. 

‘From this comes the abstract graphical edit policy, which brings in a concept of 

figures…’ 

 
Figure 4.9: Drawing Example (arrow) 

v) (C)ircle (ADD C): An elliptical shape, which may contain text, and represents a 

concept in the diagram. For example, a participant used circles to express how products 

overlap in Figure 4.10. 

‘If they were diagrams it would be ReqPro here, and RSA here…’ 

 
Figure 4.10: Drawing Example (circle) 

Remove Detail (REM): The participant erases some or all of whiteboard material (i.e., 

additions or whole snapshots). The participant may engage in dialogue while removing 

material.  

The REM code breaks down into two subcategories, which address the rationale for 

removal, practical and conceptual. 

i) Practical (REM-P): The practical code marks a case when participant removes 

whiteboard material because of lack of space or poor organization. For example, the 
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participant displaced a component from the main model in order to present the component 

on a bigger part of a whiteboard. 

ii) Conceptual (REM-C): The conceptual code marks a case where participant removes 

whiteboard material because of conceptual reasons, such as complexity of the abstraction 

or disharmony between knowledge and explanation. For example, one participant realised 

his explanation and drawing were further advanced than his audience’s understanding, 

stated “sorry, before that…”, erased a recent addition in order to backtrack, and drew 

something else. He realised that he had moved too quickly and removed detail in order to 

first provide other needed concepts. 

4.3.2.2. Speaking Codes 
We divide moments when the participant speaks into two categories: talking, and 

meaning. 

Talking (TALK): The TALK code is a general code that marks instances when the 

participant references contextual aspects of the explanation; for example, the participant 

expresses a general opinion with respect to the software system, usual approaches to the 

system, the system’s structure or functionality, how experienced and knowledgeable he or 

she is with regards to the problem space, or how he or she feels. The participant also 

provides directional focus for material, as well as bantering and anecdotal expressions that 

have less to do with the substance of the explanation. From the operational definition 

perspective, TALK includes the participant speaking, while he or she is not drawing or 

discussing prior or future diagrams. 

The TALK code breaks down into three main sub-categories, just talk, context, and 

directional. TALK sub-categories are mutually exclusive. 

i) Just talk (TALK-JT): The “just talk” code represents the participant’s general 

statements (e.g., bantering, anecdotes, etc.) that improve explanation flow, but give no 

substantial contribution to the comprehension of the issue. Consider the following 

anecdotal expression: 

‘Now this is not reverse engineering so there is a difference there. In reverse 

engineering you’re taking your Java model and creating a UML model out of it.’ 
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ii) Context (TALK-C): The context code represents the participant’s perception of 

contextual aspects of the domain, either the state of the system or personal states. We 

divide the context code into two sub-codes, objective evaluation and self-evaluation.  

ii-1) Objective evaluation (TALK-C-OE): Statements that provide general estimates, 

opinions or biases about issues such as state of the system, system functionality, structure, 

or other practical aspects. Consider the following broad assessment, free of specific details: 

‘It tries to tie in a lot of the components that Eclipse gives us because they are really 

good, they give us a lot of bang for their buck. Not perfect, but pretty good.’ 

ii-2) Self-evaluation (TALK-C-SE): Statements that reveal an evaluation of the 

participant’s experience, knowledge, or personal state, such as lack of integrated 

knowledge, time constraint, lack of preparedness, etc. Consider the following self-

evaluation of the participant’s knowledge with respect to a particular topic: 

‘OK. I'm going to be a little bit fuzzy around this, because I don't know, exactly.’ 

iii) Directional talk (TALK-D): The directional code represents the participant’s 

direction of the recall process and/or direction of the audience’s attention toward the 

wholeness of a structure or toward the following topic in the explanation (e.g. ‘that’s the 

general structure’ or ‘let’s take a step back’). Directional talk underlines conceptual 

wholeness, or announces upcoming content; for example, ‘Now, profiles.’ indicating 

upcoming content in the explanation. 

Meaning (MEAN): The MEAN code marks instances of description or explanation of 

the structure, function, or application of the software system the participant has explained, 

will explain, or is currently explaining, at different levels of abstraction that include model 

elements, model components, or the whole system. As in Section 4.3.2.1, we use a 

relationship identifier in the coded data to mark if a MEAN code corresponds to 

whiteboard drawing (i.e. an ADD code). The MEAN code breaks down into three main 

sub-categories: structure, function and application. The structure and function categories 

are then divided into levels of abstraction. MEAN codes are mutually exclusive. Before we 

describe the MEAN sub-codes, we will describe some of the analytical challenges we faced 

in developing this code. 
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Qualitative researchers interpret data. Sometimes, the interpretation is subtle and 

unintentional, so a primary goal in qualitative research is to clarify bias and to be critical of 

how the data is interpreted. We must, therefore, explain an important detail with respect to 

our coding of meaning. We can code the ADD codes through the observation of silent 

video – but, only with great difficulty can we code instances of the MEAN code through 

the observation of sound alone (e.g. listening to audio tapes). When, in the course of our 

research, we coded MEAN instances, we tried to find support in the video and the audio. 

We were interested in ‘the software system the participant has explained, will explain, or is 

currently explaining’ and we had to build evidence through both visual cues (e.g. 

participant motions to whiteboard space he or she previously used) and audio cues. 

Furthermore, we relied on video to indicate the level of abstraction where this was not 

evident in the audio protocol. For example, the participant would often visually indicate the 

level of abstraction by pointing to a single element, motioning to a combination of 

elements, or waving at the entire whiteboard. Therefore, we were dependent on the audio 

and video data when we applied the following codes. 

A further challenge was the subtle distinction in certain cases between structure and 

function. For example, the participant draws and explains a user interface; is this structure 

or is this function? Though the answer is dependent on the specifics of the situation, if the 

participant describes how a user interacts with the interface then the participant describes 

function, whereas if the user describes the user interface elements as a part of the system 

then the participant describes structure. 

Another challenge arises from the varying levels of abstraction that might, from one 

drawing to another, be represented by the same drawing element. For example, in one 

drawing, a method is represented by a single element, but in another drawing, the method is 

represented by the whole model. Or a product such as Rational Software Architect (RSA), 

which in an architectural drawing is the whole model, might in a product-line drawing be a 

single element among other products. In the following sections, when we use the terms 

‘element,’ ‘component’ and ‘whole model,’ we use them in the context of the level of 

abstraction within the diagram in which they are drawn – hence the dependence on video 

data. 
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i) Structure (MEAN-S): The structure code represents statements in respect to the 

composition of the model. We divide the structure code into three sub-codes: structure 

element, structure component and structure whole model. 

i-1) Structure Element (MEAN-S-E): The structural element code represents 

statements in respect to the lowest-level model constructs. Consider the following reference 

to a single element of Figure 4.10: 

‘From what I do know, ReqPro is a requirements gathering tool…’ 

i-2) Structure Component (MEAN-S-C): The structural component code represents 

statements in respect to several elements of the model. Consider the following explanation 

in which the participant relates three model elements: 

‘We have three common tabs, that we support and supply with a transform GUI...’ 

i-3) Structure Whole Model (MEAN-S-W): The structural whole model code 

represents statements in respect to the model structure described as a whole. Consider the 

following summation of an entire model: 

‘So this is the big picture of all of our tools right now,’ 

ii) Function (MEAN-F): The function code represents statements in respect to the 

description of model processes, mechanisms, or inner-workings. We divide the function 

code into three sub-codes, function elements, function component, and function snapshot 

(i.e. general functionality). 

ii-1) Function Element (MEAN-F-E): The function element code represents statements 

in respect to the description of the way in which a single element functions. Consider the 

following statement, which explains what a single graphical element, the transform 

provider, can do: 

‘A configuration instance: a configuration instance is a record that contains the 

information in a parameter…’  

ii-2) Function Component (MEAN-F-C): The function component code represents 

statements in respect to the description of the way in which a series of elements co-
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function. Consider the following statement which explains how a set of extractors work 

within RSA: 

‘…various extractors which take information out and then feed them into rules that 

actually do the mechanics of performing the transformations of various types.’ 

ii-3) Function Snapshot (MEAN-F-SN): The function snapshot code represents 

statements in respect to the function of the entire model at the participant’s intended level 

of generality at a given moment in the explanation. The level may vary from enriched 

basics of the highest level of abstraction (i.e. high-level infrastructure) to a model 

developed far enough to generate cognitive insight. The model may not yet be complete, 

but the participant describes the meaning of the model function in terms of its constituent 

components and wholeness. Consider the following statement, which explains the general 

mechanics that provoke insight with respect to the model function at a given level of 

generality: 

‘So any time you make any change, the user gets immediate feedback. If he's broken 

something, it will go from blank to having an error; if he's fixing something it will go from 

an error to blank, or removing it – there can be more than one error in this particular set.’ 

iii) Application (MEAN-A-P22): The application code represents statements in respect 

to the practical value or real-world implications of a model or the usage for a model. 

Consider the following example of how a user can engage the system to satisfy practical 

purposes: 

‘And when you say, I want to run a transformation, and I want the output to go to this 

here, model, file, project folder, or something like that.’ 

4.3.2.3. Snapshot Codes 
Snapshot (SNAP): A snapshot marks the culmination of an interval of time that 

contains enough information about a model to reveal meaning. The snapshot is defined by 

its conceptual wholeness at a given level of generality. Often a researcher may identify a 

snapshot based on the fact that a participant pauses to reaffirm something, e.g. a particular 

structure or a set of mechanics within a system’s representation. A snapshot is usually 

                                                 
22 Please note, the code should be MEAN-AP; we kept MEAN-A-P for legacy purposes, but they are synonyms. 
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revealed after a verbal or diagrammatic summation of a model. Our normal practice in this 

thesis will be to provide code samples or vignettes; in the case of snapshots, however, we 

will provide in the analysis and interpretation sections both a rationale for their use and 

support for their existence. 

The snapshot category has sub-categories we divide by category (infrastructure, 

advanced infrastructure, functional, example), by helper status (lateral, sequential) and by 

quality (weak, complete). As previously stated, all codes are marked with sub-categories, so 

we do not permit a SNAP code without category, helper or quality, though a SNAP code 

may have one, two or all three (e.g. a lateral complete infrastructure snapshot is possible.) 

Snapshots are different from TALK and MEAN codes in that sub-categories are not 

mutually exclusive. The reason is as follows: as the notions of helper and quality emerged, 

we realized a snapshot can be both lateral and functional at the same time. We did not want 

to extend the number of codes (i.e. to include lateral functional, lateral example, etc.) as 

this would hinder analysis. Because of the lack of mutual exclusion we increased 

programmatic complexity and coding complexity. 

A snapshot’s category is consistent with the way the software is typically described in 

terms of structure, function and application, though we did not originally intend this. A 

helper snapshot stems from a prior snapshot and is a supplement or further elaboration by 

which a participant builds upon a preceding snapshot using independent or sequential sub-

models. A helper snapshot is non-essential to an explanation, but is still conceptually 

whole. Quality refers to a snapshot’s level of “wholeness” – whether it is sufficient for 

insight into an entire concept, or intended as sufficient but lacking specific details required 

for wholeness. 

We tag snapshots with sequential identifiers (e.g. SNAP1, SNAP2, etc.). In the case of 

lateral snapshots, we use the original snapshot identifier followed by “.1”, e.g. (SNAP2.1) 

to demonstrate that SNAP2.1 is a lateral discussion branching from SNAP2. Along the 

helper branch for SNAP2.1, we increment sequential snapshots as SNAP2.2, SNAP2,3, 

etc., and further lateral branches, SNAP2.3.1, SNAP2.4.1, etc. 
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Snapshot categories 

i) Infrastructure snapshot (SNAP infra): The infrastructure snapshot represents a 

moment in which the participant reveals the model at its highest level of generality, typified 

by the visual structure with only basic structural elements shown. The infrastructure 

snapshot is the most abstract form of snapshot, stripped of details, specifics, processes, etc. 

ii) Advanced infrastructure snapshot (SNAP advinfra): The advanced infrastructure 

snapshot represents an infrastructural model in which at least one of the basic elements is 

structurally developed. 

iii) Functional snapshot (SNAP func): The functional snapshot represents a moment in 

which the participant conveys the processes, mechanics, or inner-workings of the model. 

The functional snapshot may capture the participant’s explanation of a function extracted 

from the main model. 

iv) Example snapshot (SNAP exam): The example snapshot represents the moment in 

which the participant expresses the applied usage of the model. The participant articulates 

how the model is used in practice. 

Helper snapshots 

i) Lateral helper snapshot (SNAP L): The lateral helper snapshot instigates a 

discussion branch to advance the meaning of a prior core snapshot. The lateral helper is 

non-essential to the core discussion, but helps build more complete insight into the 

explanation. The lateral helper involves the construction of an aside in the form of a new 

model. 

ii) Sequential helper snapshot (SNAP S): The sequential helper snapshot is a special 

kind of lateral helper snapshot which continues the discussion branch instigated by the 

lateral helper or continues the branch from a previous sequential helper. A coder cannot 

have a sequential helper snapshot without first having a lateral helper to instigate the 

discussion branch. 

Snapshot quality 

i) Complete snapshot (SNAP complete): The complete snapshot represents the 

moment in time in which the participant reveals the full meaning of the cognitive model. 
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The participant completes his or her depiction of software understanding. A complete 

snapshot may follow one or more snapshots and may therefore summarize or close out an 

ongoing topic. Or, a complete snapshot may be independent of other snapshots; that is, a 

concept that is developed and fully described in the space of a single snapshot (we call this 

a “solo complete snapshot”). Lateral branch discussion can also lead up to a complete 

snapshot, which also suggests that a complete snapshot can follow other nested complete 

snapshots. 

ii) Weak snapshot (SNAP weak): The intention of the participant is to communicate 

meaning or understanding using a regular snapshot but uses instead the weak snapshot 

which lacks structural and/or functional elements necessary for complete comprehension 

of the model. 

4.3.3 Tactics for analysing coded data 
In order to move from codes to patterns, we employed a number of tactics for 

analysing coded data. These include: noting patterns, seeing plausibility, clustering, 

metaphors, counting, making contrasts and comparisons, partitioning codes, noting 

relationships between codes and noting outliers. 

Noting patterns can be both simple and complex. A simple case is the observation of 

recurring sequences in the coding scheme. Because, as Figure 4.2 shows, our data is 

colour-coded, many sequences are readily apparent to the keen observer and can be easily 

checked against other cases. More complex patterns are found through matrix displays, 

which reveal trends or combined sequences of video data that require multiple passes. In 

the course of our research, noting patterns was the most critical tactic for generating 

meaning. 

As Miles and Huberman [93, pp.246] identify, “the history of science is full of global, 

intuitive understandings that, after laborious verification, proved to be true. Plausibility, 

with intuition as the underlying basis, is not to be sneered at.” On the other hand, the 

researcher who is too eager to finish analysing may seek refuge in plausibility. Section 3.4 

sheds light on how the initial plausible notion of temporal details and snapshots emerged. 

Likewise, similar cases of plausibility were not uncommon for tagging data: The sequence 
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was, a) see behaviour, b) investigate against other cases to note recurrence, and c) tag 

occurrences with a code to investigate plausibility at deeper levels. 

Plausibility also guided us in decision-making about how to structure and handle data 

(i.e. specifics of Excel coding, storage of Qanal history). Our analysis evolved, but there 

was always a starting point when we said, for example, “is it plausible to record the 

dependence between drawing and speaking codes.” We logged decision rules for data entry 

and handling to preserve unity among coders. 

We used clustering to inductively form new categories and iteratively sort events from 

different participants into those categories. For example, when examining a particular 

pattern, we would group all instances of that pattern in Qanal for subsequent review. 

With metaphors, we need to be cautious about overloaded meaning. A primary 

example of the use of metaphors is the language for our codes. The term ‘snapshot’ is a 

metaphor. Another example is the term "lateral helper". The term ‘lateral’ suggests that the 

content of a snapshot is non-essential, and this is perhaps literal enough. However, the term 

‘helper’ suggests that the content of the snapshot is helpful, and this marks an abstraction 

and highlights an assumption. The assumption is that this content supplements other 

content and is useful. Consider the ambiguity of calling one snapshot a helper, but not 

others. Does the non-lateral or ‘main line’ of snapshots not ‘help’ if these snapshots 

contribute to audience understanding? We needed to consider details as such when making 

the decision to use the term ‘helper’ to denote snapshots that help the meaning of the main 

line. 

In short, we used metaphors to connect our theory of software explanation to our 

findings that related to temporal details. From informal discussions with other software 

researchers and practitioners we found that our use of metaphors, in particular the snapshot 

metaphor, ignites the imagination as to the impact of temporal details theory. The 

participants in our studies also regularly used metaphors to share their meaning. Such 

metaphors helped us define the boundaries of discussion and therefore helped us to identify 

snapshots. 

Counting is used frequently in qualitative data studies of software. In our research, we 

produced a significant volume of quantitative code counts, which allowed us to hone in on 
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the important or significant themes in the data on which to base our theoretical findings. 

This may seem counter-intuitive to the essence of qualitative research, yet counting quickly 

revealed trends in a large set of codified data and allowed us to explore our hypotheses 

about the data. That is, when we identified recurrence, we could observe if certain 

behaviour recurred in a specific way. 

A common practice in qualitative research is to group instances or sequences of data 

and make contrasts and comparisons to determine meaning. In our research, we compared 

instances of codes, specifically instances of snapshots. We also contrasted participant data 

using tables and charts and compared instances of day-to-day coding to determine if 

saturation had occurred. We did not contrast the sample from our pilot study with the 

sample from our main study on account of time constraints. 

Though the course of qualitative analysis moves toward integration, there are times 

when differentiation is critical. The transition between the initial pilot study and the main 

study is an example of such differentiation. We partitioned several codes into many sub 

codes, which freed us from what Miles and Huberman call “monolithic simplicity” [93, 

pp.254] and provided us with deeper focus. Likewise, as analysis proceeded, we found the 

need to partition yet further – the lateral and sequential snapshots are examples of the 

partitioning of the helper snapshot code. We differentiated enough to allow ourselves to 

distinguish between codes and thus relate the theory, but not so much to overwhelm the 

analytic process with complexity. In contrast, we rarely subsumed particulars into the 

general, that is, we rarely found codes that belonged to a more general class. 

Once the data were coded, it was common to note relationships between codes. In 

particular, we noted the correlation between ADD and MEAN codes, between ADD and 

SNAP codes, and between MEAN and SNAP codes. Matrix displays, as will show, are an 

efficient way to demonstrate relationships. 

We often found and challenged outliers in our data – chunks of data that did not 

correspond to our coding scheme or general expectations. Sometimes we found the outlier 

through odd participant behaviour (e.g. not drawing for long periods of time). Other times, 

we found snapshots that failed to invoke the kind of insight we expected because they 

lacked structural or functional foundation (these evolved into what we call ‘weak 
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snapshots’). Other outliers were strange drawings that did not fall into our scheme. We 

made slight modifications to accommodate these outliers, but this was probably not 

necessary because it did not affect the findings. In general, the outliers were very easy to 

locate. We generated data displays that clearly illustrated a) problems with the coding 

scheme; b) problems with our automatic data-display generator source code; and c) 

problems with the video that led to strange time sequencing and therefore strange displays 

(which we had to correct). If a chart or table looked dramatically different from 

neighbouring or prior displays then we took interest and either argued over the place of the 

outlier in the overall theory or corrected some conceptual or technical issue that drew our 

attention to the outlier. 

4.3.4 Instrumentation 
The researcher is the primary measurement device in qualitative research. That said, 

when working with codified video data, additional tools help to make tasks repeatable and 

easy. For example, when we clustered snapshots of a particular category for review, we 

used the coded data to tell us which chunks of video we needed to look at and performed 

manual seeks to the appropriate time sequence. The problem is that when analysing video, 

this operation must be performed very frequently – and at the outset of our research there 

was no effective way to a) expedite the operation, b) capture the operation, or c) replay the 

operation. 

To deal with this problem, we considered either using tools designed for qualitative 

analysis of video data or building our own tool. Existing tools had a number of problems. 

Firstly, they did not support the import of data we had already coded in Excel. Secondly, 

the commercial tools are either rich with irrelevant features (bloated), not extensible to our 

needs (poor customizability), or require extensive training. 

Our decision, therefore, was to build our own tool in Java – we call it Qanal, short for 

“Qualitative Analysis Tool” – to support the storage and review of codified video data. 

Qanal, in conjunction with Excel macros, provided immeasurable benefit to our research. 

Our tool requires training too; however, because Qanal is tightly designed for our 

requirements, the difference in training time between Qanal and existing tools is 

significant. 
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 The features of this tool are as follows. It can: 

• Export chunks of coded data from Excel into an XML data file (an Excel macro 

performs the export to XML) 

• Import XML data file of codes as an ‘exploration’ within Qanal 

• Explore operations, i.e. VCR playback of data files 

• Collect explorations as local history within a hierarchy 

• Access local history in order to load explorations and replay them. This is useful to 

the analyst who: 

o Confirms a proposition against prior explorations; 

o Needs a refresher of how events took place months after exploring data; 

o Wants to share findings as a story with others. 

An XML file has multiple codes. Each code within the XML file has the following 

fields: 

<Video>: Video file to which the code corresponds 

<Code>: Code identifier 

<Time>: Code event start time 

<Duration>: Code event duration 

<Protocol>: Corresponding dialogue 

<Comment>: Investigator notes 

Figure 4.11 is a screenshot of Qanal. We will presently describe the user interface of 

the tool.  
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Figure 4.11: Screenshot Qanal: the Qualitative Analysis Tool 

History Pane 

The history pane is a file hierarchy system that mirrors the local drive. When Qanal is 

started, the history pane opens in the Qanal history folder. The Excel macro for exporting 

to XML saves the XML file in the Qanal history folder. From the history pane, a user can 

load an exploration to play in Qanal, move explorations to other file locations, create new 

folders, and rename exploration files. The reason we always show the history pane is 

because accessing various explorations is a regular analysis operation; an auto-hide feature 

is a reasonable enhancement. 

Video Pane 

The video pane plays and explores video clips. When an exploration is loaded, it does 

not start to play automatically. The user clicks the Play/Pause toggle to play or pause the 

video. Each click of the < and > buttons which surround the Play button moves the video 

location back or ahead in ten second increments. The time, e.g. 00:04:22 from Figure 4.11, 

is the actual video time (four minutes, twenty-two seconds), not the time since the 
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exploration was started. Each click of the << and >> buttons moves the video location back 

or ahead by code. The code indicator, e.g. 6/18 in Figure 4.11, indicates that we are 

presently viewing the sixth code of eighteen codes. The video pane uses the Java Media 

Framework (JMF) and runs video at a smooth pace. Resizing the window maintains the 

aspect ratio of the video, and continues to smoothly run video. 

Diagram Pane 

The diagram pane plays and explores diagram files. We composed these diagrams files 

in Microsoft Visio to match the participant’s whiteboard diagrams. We saved the diagrams 

in folders for each participant in .gif format with file names that corresponded to the code 

identifier. If the video is ever unclear, or we simply want to follow the diagrams instead of 

video, the diagram pane will continue to update as video plays (the diagram pane shows the 

diagram file that corresponds to the code under observation). The lock/unlock toggle 

allows the user to lock the diagram to the video (in which case when the code changes, the 

diagram changes), or unlock it (in which case, the user can freely navigate forward or 

backward through diagrams and the diagram will not change when the code changes). The 

scroll panes allow the user to view diagrams that do not fit into the diagram pane. If the 

diagram is larger than the pane, the thumbnail image allows users to see which part of the 

diagram they are currently viewing in the diagram pane. The user can also move the red 

rectangle within the thumbnail image, which moves the viewable region in the diagram 

pane. The + and – buttons zoom out and zoom in to increase or decrease the viewable 

region in the diagram pane. The < and > buttons change the diagram to the last or next 

diagram and the << and >> buttons change the diagram to the first or last diagrams. The 

diagram pane is useful to remind the user how the diagram is about to unfold and to zoom 

in to the intimate details of the diagram when they are unclear from the video. 

Code Pane 

The code pane illustrates the codes for an exploration. Each code displays the code 

identifier, the protocol, and the start and end video time for the code. Each code is colour-

coded to match the colour-coding in Excel (colour-coding is simple to code: parse the code 

prefix from the code identifier and compare against a properties file). Qanal generically 

handles and accepts all codes. Single-clicking on a code moves the video to the appropriate 
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clip and updates the video pane (i.e. the video, the time and the code indicator). Each code 

has a uniform row height to make visual parsing of information easy. However, the 

downside of this is that there are times when the protocol expands beyond the bounds of 

the code. To address this, we implemented tool tips which reveal the complete protocol 

when the user moves the mouse over a code. The scroll bar allows the user to navigate 

through the complete set of codes for an exploration. 

Comments Pane 

If the researcher has embedded comments for a particular code, they appear in the 

comments pane while the code is playing. 

Under the Hood 

Qanal is written in Java, and uses the Swing toolkit for its user interface, the Java 

Media Framework (JMF) along with native codecs to play back video, and the Java Simple 

Access to XML (SAX) Parser to parse XML exported from Microsoft Excel. We 

implemented Qanal with a Model-View-Controller (MVC) pattern, which brings two 

advantages: maintainability (many software developers are familiar with MVC) and 

flexible improvement to user interface design. 

The JMF provides the video-playback capabilities. JMF is integrated with the Swing 

toolkit on the front-end, and uses native, open-source codes on the back-end to boost 

performance. This gives Qanal an extensible selection of video formats; researchers who 

wish to use an unsupported video type may simply download and install a new codec, and 

Qanal will be capable of playing that video type. 

4.3.5 Pattern Coding and Displays 
In this section, we describe the displays we built as part of the analysis phase. In the 

next chapter, we describe our interpretation and results that derive from the displays. For 

each display, we offer a data sample, give our rationale for how we filled the display, and 

describe the tactics for generating meaning from Section 4.3.3 to give the reader a taste of 

how our qualitative data analysis occurred. We illustrate tactics in italics in the 

forthcoming text. Our inquiry proceeded along the following path: 

• time-ordered sequencing of codes; 
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• investigation of codes; 

• investigation of code relationships; 

• investigation of snapshot relationships with codes; 

• investigation of snapshot relationships with other snapshots. 

In addition, we will briefly describe the other displays we built to assist the analysis 

process. 

Time-Ordered Matrix 

We applied the time-ordered matrix (c.f. Figure 4.2) to codify our data. As qualitative 

researchers, “we are always interested in events: what they are, when they happened, and 

what their connections to other events are (or were) – in order to preserve chronology and 

illuminate the processes occurring.” [93] This type of display provides event time, duration 

and sequence, and we can look for patterns in sequences of events.  

In the data sample for the time-ordered matrix illustrated in Figure 4.2, the coded data 

is divided into seven columns. The first column contains experiment comments (e.g. “Q1” 

indicates that the investigator asked question one). The second column contains dialogue 

codes. The third column contains drawing codes. The fourth column contains qualitative 

codes, including snapshot codes. The fifth column contains event duration. The sixth 

column contains event time, recorded to the second. The seventh column contains 

transcription, tied precisely to the event times. Event codes are coloured by type to ease 

reading and pattern identification. 

Our time-ordered matrix yields at least two benefits. Firstly, to read and to manipulate 

codes was easy in this format. Given the lengthy coding process, this first benefit was 

realized throughout analysis. Secondly, by entering the time-ordered sequence in Excel we 

were able to programmatically generate all subsequent displays – we could change codes 

and regenerate displays to obtain an accurate depiction of the current data set. This second 

benefit was invaluable, because we found that as we built and interpreted displays, we were 

required to make many revisions to the codes. In fact, to build a display programmatically 

we created an integrity checker that indicated human coding flaws. It was quite natural to 

build a display by hand the first time to allow the investigator to understand the criteria and 
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decision rules for each display. However, future versions of a display could all be based on 

current data; to build them by hand would have been labour-intensive and error-prone. 

Drawing-Speaking Independent Matrices 

To examine the drawing and speaking codes we built matrices that illustrate the 

frequency and duration in terms of code counts and the proportion of each code across all 

participants. This type of display may be considered one of the foundations of our analysis. 

For example, in order to note relationships between codes we need to first understand the 

context within a study in which a code exists. These tables illustrate the dominance of 

particular codes within our sample, and therefore lead us to form hypotheses for further 

investigation. 

 
Table 4.1: Data Sample (Drawing Frequency Counts) 

Table 4.1 illustrates the ADD frequency counts for each of our twelve participants. 

Each column represents a participant, numbered according to the participant’s ID. Each 

row represents one or more ADD codes in sequence (e.g. ADD-B indicates the number of 

boxes drawn for a participant, while ADD-BA indicates the number of boxes with arrows 

drawn). A sequence of ADD codes occurs when subsequent drawings are linked within a 

single gesture. Data summaries allow the investigator to see clear data trends, by code and 

by participant. The bottom row is a consistency check that provides the total number of 

ADD codes that arose from a participant. One may note that the values do not align for 

participant 5: the consistency checker picked up unintentional ADD codes from outside the 

transcript region. This is the type of result that merits further investigation. 
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Table 4.2 illustrates the MEAN duration counts. Often, the researcher will investigate 

not only the counts, but what the counts mean in the context of the participant, the study, or 

other code counts, durations, or proportions. For example, how long, on average, is the box 

gesture? Or what proportion of added elements is text? The researcher may examine how 

the proportion of counts corresponds to the proportion of duration. 

 
Table 4.2: Data Sample (Meaning Duration Counts) 

Drawing-Speaking Relationship Matrices 

In the stage of analysis just described, we examined the drawing and speaking codes in 

terms of counts, durations, and proportions within participants and across the entire study. 

In the next stage, to determine how the drawing and speaking codes relate, we built a time-

ordered relationship matrix (a derivation of our time-ordered matrix), and then built 

individual relationship frequency matrices 1) in order to demonstrate the occurrence of 

dialogue (MEAN) that enriches given diagrammatic material (ADD) on a whiteboard, and 

2) in order to list relationships and their properties. We believed that the combination of 

core activities would indicate the link between the explanation activities and knowledge 

concepts. 

To build the matrices, we used the following process. While coding, we assigned a 

relationship ID to a set of codes if there was a correspondence between a participant’s 

dialogue and what they drew on the whiteboard (in Figure 4.2, the relationship IDs are the 

unique letters that follow the add and mean codes, ‘a’, ‘b’, ‘bb’). The next stage was to 

illustrate the relationships visually to identify a topology of relationships. With a single 

click the investigator is able to toggle the colour-coding of the time-ordered matrix 

between an illustration of relationships (Figure 4.12) and an illustration of code categories. 

Figure 4.12 shows four different kinds of relationships between ADD and MEAN codes: 
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loners23 (green colouring), 1-124 relationships (aqua colouring), 1:2..* & 2..*:1 relationships 

(grey colouring), and 2..*:2..* relationships (no colouring). 

 
Figure 4.12: Visualizing Relationships (Time-ordered Relationship Matrix) 

Next, we formulated several hypotheses based on these relationships and built displays 

to examine these hypotheses based on relationship types and their properties. We built 

displays for each participant and a summary of the entire study for each set of relationship-

frequency matrices. We built matrices to count the total number of relationships between 

ADD and MEAN codes (each relationship within a 1:2..* and 2..*:1 is counted once). We 

built matrices to examine the relationship between single ADD codes and multiple MEAN 

codes. Then, we built matrices to examine the typical 1-1 ADD-MEAN relationships. We 

built a list of the loner 1:2, 1:3, 1:4, and 2:1 relationships. 

                                                 
23 Drawn elements with no corresponding discussion, or discussion of system meaning with no corresponding drawings 
24 The MEAN code precedes the ADD in the relationship, i.e. 1:2 means one MEAN corresponds to two ADD codes 
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Table 4.3 : Frequency of 1:1 relationships between MEAN and ADD codes  

Table 4.3 illustrates the frequency of 1:1 relationships between MEAN and ADD 

codes. We can see a clear pattern from the figure: text gestures are complemented with a 

description of software functionality. Box gestures, on the other hand, are regular for both 

structure and function (with slightly greater support for functionality). These are overly 

simplistic claims, but they illustrate a typical starting point of analysis: find a trend, devise 

a hypothesis, compare using multiple sources, generate a proposition with corresponding 

evidence. In practice, further analysis and interpretation is required to produce a general 

claim. 

Drawing-Speaking-Snapshot Relationship Charts 

At this stage of analysis, we built upon the individual relationships between the 

drawing and speaking codes through an examination of snapshots. We were interested in 

the role drawing and speaking play in the generation of a snapshot. To examine this 

relationship, we built numerous charts illustrating the cumulative frequency or duration of 

single or multiple codes within an individual snapshot or within the entire explanation as a 

function of time. We also examined the ratio. We will provide data samples to highlight the 

types of charts we built. 

We built charts to note relationships among codes, and to find patterns in the data. Our 

primary rationale for building charts – typical of qualitative research – is to facilitate 

working at a higher level of abstraction. We can see patterns in a chart that would be 

difficult to see from the original or coded data. As our data samples will show, charts 

indicate trends in the relationships among codes for the entire explanation and within 
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individual snapshots. These trends become a part of the trail of evidence the researcher 

uses to examine candidate hypotheses and to generate a theory. 

To build the charts, we used the following process. As mentioned earlier, while 

coding, we assigned a unique identifier to each drawing and speaking code instance. In 

Figure 4.2, the unique ID may be found in brackets, i.e. (S1.1-Q1-1). The unique identifier 

includes the snapshot ID (the snapshot to which the drawing or dialogue corresponds), the 

question ID (the question in which the drawing or dialogue occurs), and a numerical ID 

that increments by one for each subsequent code within a snapshot. 

Manual maintenance of code identifiers became a significant challenge and demanded 

a programmatic solution. The identifier is built according to code location and, where 

relevant, relationship. All drawing and speaking codes follow a question code and precede 

a snapshot code, thus permitting an automated pass of the data. This automated pass is not, 

however, sufficient to take account of drawing or dialogue codes that correspond to another 

snapshot. To resolve this issue, we use the relationship ID to determine the correspondence 

between a drawing or dialogue code and an earlier snapshot – the earliest snapshot within a 

relationship is used as the snapshot ID for all drawing or dialogue codes within that 

relationship. We performed a full pass of the data to verify that this solution was accurate 

and to evaluate drawing and dialogue relationships. We programmatically generated all 

charts according to the unique identifier. To generate thousands of charts in Excel turned 

out to be a difficult programming challenge. 
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Figure 4.13: Cumulative ADD - Entire Explanation - Frequency - Single Plot 

Figure 4.13 illustrates the cumulative frequency of ADD codes as a function of time 

for the entire explanation of our first participant. Each point on the chart represents a 

snapshot. This type of chart allows us to examine the relationship between drawing codes 

and the entire explanation. Figure 4.13 illustrates a trend of a close-to-uniform 

accumulation of drawings for the entire explanation, with a slight increase in the rate of 

additions in the first fifteen minutes. 

We were interested in the observation of drawing and dialogue codes within a 

particular snapshot as opposed to the entire explanation. Such observation would allow us 

to examine events at a lower level and to make contrasts and comparisons across groups of 

similar snapshots (e.g. by snapshot category). We were also interested in the observation of 

both drawing and speaking codes within one chart in order to examine the interplay 

between the codes over time. 
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ADD-MEAN Duration vs SNAP Time (Participant 8:SNAP13-infra)
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Figure 4.14: Cumulative ADD and MEAN duration in an example infrastructure snapshot. 

Each point is an ADD or MEAN event. 

Figure 4.14 illustrates the cumulative duration of both ADD and MEAN codes as a 

function of time within the thirteenth snapshot for participant 8. Each point on the chart 

represents an ADD or MEAN code. Figure 4.14 shows the dominance of ADD codes at the 

start of the infra snapshot, with supplementary meaning to provide complementary insight. 

We were also interested in the proportion of ADD and MEAN codes (and later TALK 

codes) within SNAP Time. Figure 4.15 illustrates the ratio of ADD and MEAN within an 

entire explanation. Each bar represents an individual snapshot. The reason each bar does 

not total 100% is accounted for by the absence of TALK codes within the chart. Figure 

4.15 indicates a possible lead: there is a preponderance of ADD codes in the first half of the 

explanation (the first fifteen-minute segment), and a preponderance of MEAN codes in the 

second half of the explanation. 
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Figure 4.15: Percentages of ADD and MEAN codes in an example complete session. Each 

bar is a snapshot. 

Snapshot Matrices 

At this stage of analysis, we examine how drawing and speaking codes relate to 

snapshots at a more general level. We built several matrices to examine how the frequency 

and duration of different categories of ADD, MEAN and TALK codes correspond to 

different categories of SNAP codes. Aside from snapshot category, we also examine 

frequency and duration by increment (first snapshot, nth snapshot, etc.), and by zone (for 

which the researcher specifies two values: the number of codes before and the number of 

codes after to search against). Aside from counting, matrices support the examination of 

other trends and patterns. In this section, we provide a sample of our snapshot matrix 

displays. 
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Table 4.4: ADD vs. SNAP Category Frequency 

Table 4.4 illustrates a summary matrix (summation of all participants) for the 

frequency of ADD categories by SNAP categories. We populated the category-frequency 

matrix by counting the codes of different categories under every snapshot. The right 

column and bottom row contain sums. There is a disparity between the sum values in Table 

4.1 and Table 4.4. This is to be attributed, as stated in the coding scheme, to the lack of 

mutual exclusion for SNAP categories. For example, a snapshot can simultaneously be a 

lateral helper and functional. Therefore, during analysis, we limited our examination to 

counting within mutually exclusive sets (e.g. we did not compare the lateral and functional 

values). 

From Table 4.4, we observe a large proportion of box (40%) and text (38%) 

diagrammatic elements. This shows that the preferred way to explain software is through 

boxes and text. A deeper look at the data (not shown here) indicates that boxes represent 

more structural aspects of software and text represents more functional aspects of 

software. Data from duration matrices (also not shown here) supports the dominance of box 

and text events. 
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Table 4.5: MEAN vs. SNAP Category Frequency 

Table 4.5 similarly illustrates frequencies of MEAN events versus snapshot category. 

The data illustrates that functional meaning occurs more frequently than structural 

meaning. Functional meaning is critical and dominant in the creation of the majority of 

snapshot categories. The exception to this claim is the infrastructure snapshot, which is 

largely composed of structural meaning. Structural meaning plays a minor role in the 

composition of lateral and complete snapshots. The small frequency of meaning in example 

snapshots is entirely composed of functional meaning. Table 4.6 illustrates the duration 

breakdown for the entire study. One interesting point is that precisely the same proportion 

of drawing took place in the pilot study – 25%. 

Total Study 5:59:39  
Drawing 1:30:32 25%
Meaning 2:20:19 39%
Talking 2:06:21 35%
Noise/Other 0:02:27 1% 

Table 4.6: Overall Study Duration and Proportion 

We looked at both frequency and duration (e.g. Table 4.7) matrices to support our 

findings. When drawing, the participant drew boxes for 34:10 (38%) and text for 33:01 

(36%). When providing meaning, the participant provided structural meaning for 41:49 

(30%) and functional meaning for 1:26:08 (61%). 

 
Table 4.7: MEAN vs. SNAP Increment Duration 
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Table 4.7 illustrates the duration of mean categories across individual snapshots for 

participant 12. This type of matrix provides a context for other analyses. For example, we 

can relate how the matrix in Table 4.2 is filled, or we can deepen our understanding of the 

composition for a chart, such as Figure 4.14, and so forth. In Table 4.7, we see a new 

column, entitled SNAPx. A participant would sometimes provide drawing or dialogue after 

the last snapshot but before the end of the explanation. We used SNAPx as a hidden code 

to catch all codes which did not correspond to a particular snapshot at the end of an 

explanation. 

 
Table 4.8: TALK vs. SNAP Zone Frequency 

Table 4.8 may appear similar to Table 4.4, but there is a significant difference. Table 

4.4 counts code categories within a snapshot of a particular category; that is, counting is 

based on the snapshot identifier for the drawing or dialogue code. In contrast, Table 4.8 

counts code categories within the zones of snapshots of a particular category; that is, the 

user specifies a zone (a.k.a. a window) of interest (e.g. x codes above, y codes below, 

where x and y are non-negative integers that specify the number of codes above or below 

the snapshot code to search), and we count codes by category if they exist within the 

snapshot zone. Zones can overlap; if we specify 300 codes above and 300 codes below, 

then each zone will include the entire explanation, and the matrix will include large counts 

that are difficult to interpret, though such zones are not the intended use of this matrix. The 

rationale for this type of display is to determine the categories of codes that immediately 

precede or follow snapshots of a particular category. We provide zones so the user can 

specify what is meant by ‘immediately precede or follow.’ 

Snapshot Event State Network 

We built matrices and charts to understand snapshots in terms of their relationship with 

other codes. For the next analytic step, we built displays to examine the relationship 
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between snapshots. To achieve this, we built event-state networks for the entire explanation 

for each participant. This type of display shows us how snapshots function at a high level 

of abstraction – within an entire explanation, and with other snapshots. While we built 

networks, we gained insight into the overall explanation process for each participant, but 

we also encountered strange cases that merited further investigation of the source data. We 

began to appreciate the dual role of displays: deeper insight and data integrity. 

To build the networks, we first settled on a notation that was a derivation of similar 

snapshot diagrams we had drawn over the course of analysis, for example, in the discovery 

of lateral helpers. We demonstrate our notation in Figure 4.16. 

1 Functional Snapshot

Sequence

Lateral
Helper

1

1

2

1.11

1.11

1.2 Sequential
Helper

1.11

1.2
Multiple

Lateral Helpers

1

Solo
Complete Snapshot

Single SNAP
Complete Snapshot

1.11

1.2
Multi SNAP

Complete Snapshot

(Infra/Advinfra) Structural Snapshot

w1 Weak (w) or Example (e) Snapshot

1

2

2

 
Figure 4.16: Snapshot Event Network Legend 

Once we had the notation in place, we built the networks for each participant in order 

to understand the snapshot relationships. First, we built a snapshot-event matrix (Figure 

4.17). This type of matrix is simple to build, but provides core information in one place. 
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We coloured the matrix according to snapshot category. Then, we followed the notation 

and built the networks according to the types and sequence as presented in the event 

matrix. 

 
Figure 4.17: Snapshot Event Matrix 
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Figure 4.18: Snapshot Event Network Data Sample 
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In Figure 4.18, an example network for participant 1, we see five complete snapshots, 

one of which is nested. The first complete snapshot represents a typical structure; we 

examine the topology of snapshot-event networks in the results of our interpretation phase, 

discussed in next chapter. We also see cases of solo complete snapshots, and complete 

snapshots based on weak explanation. We can also observe four core concepts (snapshots 

1, 2, 4, 5 respectively), and how they fall into two major explanations (complete snapshots 

3 and 6 respectively). We see structural snapshots as the foundation for the explanation (the 

first two snapshots), and the regularity of functional snapshots as the first snapshot in a 

lateral branch. 

These networks are rich for exploration, and in the next chapter we reveal some of our 

findings from the comparison of event networks across multiple participants. We suggest 

that as future work it would be a good idea to compare the networks built by multiple 

researchers; this would help ensure the building process is unbiased and representative of 

the data. This is a form of inter-rater reliability checking. 

Other types of displays 

We produced matrices on an as-needed basis as one step in the construction of an 

analytic base in following a trail of evidence. At various stages of analysis, we built 

displays that did not work. However, the discarded displays might be relevant for other 

qualitative inquiries, and in fact may be useful to our inquiry in the future. In addition, we 

had unfulfilled plans to build other displays. For completeness, the following describes the 

displays that did not pan out. 

We built a role-ordered matrix to examine the effects of role and experience on the 

production of snapshots. However, we built this display very early (before we revised the 

coding scheme), and we could not find any trends in the data. Perhaps the more detailed 

insight into snapshots would lead us to interpret the data differently, but we have, at 

present, no intention of returning to this line of inquiry. 

As part of the early stages of content analysis, we performed word frequency analysis. 

We built token frequency tables for each participant and for the entire study, and sorted the 

tables by frequency and alphabetically. Our goal with this line of inquiry was to more 

accurately follow the grounded theory approach and to produce a model of the user’s 
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knowledge that we intended to align with our snapshot model. The integration of the two 

models was meant to provide insight into the role of the snapshot in the developer’s 

cognitive model. We abandoned this line of research because it was unclear how we should 

integrate the two models and whether we were yet able to describe the cognitive model. 

Thus describes how we proceeded with topical analysis; the next stage of our research, as 

described in the next section, was category analysis. 

4.4 Category Analysis 

To perform category analysis, we examined each snapshot of a particular category. We 

looked for evidence in the data that objectively satisfied our research questions and drafted 

the answers in narrative form; thus, the steps of our snapshot category analysis produce a 

snapshot story. The following describes how we produced the narrative stories. 

While coding, we determined that each snapshot category had unique properties that 

may yield insight into snapshots as a whole. We built storyboards for each snapshot of a 

particular category. Appendix B contains example storyboards of two snapshots for each 

category. We then analysed the storyboards to gain insight into commonalities and 

differences within and among snapshot categories, the conditions that contribute to the 

existence and occurrence of snapshots, and participant strategies. We constructed each 

storyboard to contain the following information: 

• We found conditions in the Drawing-Speaking Independent and Relationship 

Matrices: ADD / MEAN frequency, duration, sequence, relationships, loners, 

introductory summaries and concluding talks. 

• We found context in the contextual TALK codes and Time-Ordered Matrix: 

o TALK frequency 

o Duration 

o Self-evaluation 

o Objective-evaluation 

o Researcher’s directed questions 

o Time constraints, and 

o Noise. 
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• We measured the explanation and snapshot times, the number of drawn elements, 

the corrections, and the length of pause immediately following the snapshot event.  

• We found the participant strategy to be revealed in the explanation sequence, 

element order and the rationale for participant explanation. 

• We were interested in the consequence as quality of the message in terms of 

information density, but the investigation was unsuccessful. Our data did not yield 

insight into cognitive effect and our interpretation of the message quality is 

subjective. That said, future research could reveal the consequences of snapshots to 

software understanding. 

From the conditions, context, and strategies, we wrote a narrative description of a 

composite (not case) snapshot for each snapshot category. We also revised the level of 

generality of claims by analysing the story associated with other snapshots of the same 

category. The contextual mediator in the story was the whiteboard, which participants used 

to graphically construct software models. Our stories included supporting data of 

conditions, relationships between codes and directionality. To generalize, the actor in our 

story was “the participant,” though we examined many participants to produce the story; 

“the participant” means “the participants in general”. In Section 5.3, we present a uniform 

Snapshot Theory derived from the convergence of snapshot features across snapshot 

stories. 

4.5 Concluding remarks on study design 

The value of a qualitative data study rests heavily on the quality of the data analysis. In 

this chapter, we have outlined the design and execution for a study of the temporal details 

of software. We built roughly 8000 displays, and in this chapter our aim has been to 

provide a cross-section of those displays with data samples and our rationale. In the next 

chapter, we provide the results we derived from the displays: propositions tied to a trail of 

evidence, hypotheses grounded in the data, explanations regarding the phenomenon under 

study, and areas for future study. 

84 



Chapter 5: Results 
 

Chapter 5 Snapshot Theory 
We used the data analysis steps described in the last chapter to construct the results of 

our qualitative study of snapshots in software explanation. In this chapter, we report the 

results, which we call Snapshot Theory. 

We use three main approaches to describe Snapshot Theory. The first is a simple table 

of snapshot categories containing a set of typical indicators to be used for identifying 

snapshots (Section 5.1). Next (Section 5.2), we provide a more extensive description of the 

snapshot categories using snapshot stories, which we derived from storyboards (see 

Appendix B for storyboard examples). In Section 5.3, we summarize Snapshot Theory, 

integrating the stories and providing some additional discussion. 

5.1 Typical indicators for identifying snapshots 

The building blocks of discourse structure identified in Snapshot Theory are the 

snapshots themselves. Researchers require a way to reliably identify each category of 

snapshot. A key result of our analysis, therefore, has been to identify a simple set of 

‘indicators’ that can be used by different people to consistently identify and categorize the 

same set of snapshots. 

Table 5.1 summarizes these indicators for the identification of snapshots; this table 

builds upon the coding scheme described in Section 4.3.2. The first column lists snapshot 

category. The second column provides a one-line description for the snapshot category. A 

coder examining some discourse can use the third column as a reference of typical 

indicators for the category of snapshot currently under observation. This table is presented 

first to help the reader understand the snapshot categories; subsequent sections provide 

much more detail about each category. 
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Snapshot 
Category 

Definition Typical indicators in the discourse leading up to 
this category of snapshot. 

Infrastructure G
t
f
a

1
2
3
e
4

eneral overview 
hat contains 
undamental 
rchitectural details 

) Presents core structural components 
) Closes with an overarching statement 
) Explicit meaning is tied to diagrammatic 
lements 
) More drawing than speaking occurs. 

Advanced 
Infrastructure 

Discussion of deeper 
s
d
s al 
c

1
s
2
3 aning is tied to diagrammatic 
e
4) More drawing than speaking occurs. 

tructure with 
etailed focus on a 
pecific structur
omponent 

) Begins with and closes with an evaluation of 
tructure 
) Focus is on a specific structural component 
) Explicit me
lements 

Functional Detailed discussion 
o
m
s

1
2 rior snapshots 
3  elements 
w t link to 
d
4

f processes or 
echanics of a 

pecific element 

) Primarily text 
) Explicit ties to p
) Significant portion of diagrammatic
ithout meaning and meaning that does no
iagrammatic elements 
) More speaking than drawing. 

Lateral Divergent discussion 
t s the role 
o
d
e

1 ement and 
q
2
3 re 
4  
w t link to 
d

hat question
f a specific 
iagrammatic 
lement 

) Identifies specific diagrammatic el
uestions the role of the element 
) Directional purpose established 
) Ties lateral discussion to infrastructu
) Significant portion of diagrammatic elements
ithout meaning and meaning that does no
iagrammatic elements. 

Example Discussion of the 
a
d
e

1
q
2) Answers question with an example 
3 on 
4
q

pplied usage of a 
iagrammatic 
lement 

) Begins with an utterance that contains a 
uestion 

) Answer may include structure and functi
) Ends with direction to other practical sub-
uestions. 

Weak Discussion which 
l  
f s 
n
c ion 

1) Starts with self-evaluation 
2 l should look like 
3
discussion 
4 tion 
5 ks to prior snapshots. 

acks structure and/or
unctional element
ecessary for 
omprehens

) Estimate of what current mode
) Premature abandonment of functional 

) Primarily general discussion and self-evalua
) Seldom lin

Complete G
that combines prior 
snapshots 
 

1
2 cture is insufficient, then continues 
with either advanced infrastructure or functional 
3

lobal discussion ) Starts with infrastructure snapshot 
) If infrastru

) Closes with overarching statement. 
Ta toble 5.1: Typical indica rs for the identification of snapshots 
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5.2 Snaps

T  detail to the analysis of the snapshot categories presented 

above. We describe the snapshot categories in terms of conditions, context and the 

participan

 

We remind the reader that when we refer to explanation in the following, we mean both 

drawing and dialogue events. Furthermore, som

re Snapshot 
The infrastructure snapshot precedes other snapshots in the development of a complete 

ructure snapshots is that basic structure is critical for 

software developers’ understa

re snapshot as the first snapshot. 

Table 5.2 illustrates that in 10 of 12 cases, the participant exhibits a higher frequency of 

ADD codes than MEAN codes before the first snapshot. 

9 10 11 12 AVG 

hot Stories 

his section adds more

ts’ behavioural strategies. The analysis allows us to answer our research 

questions from Section 1.1; we address, for example, snapshot composition and structure.  

Each of the following sub-sections contains a snapshot story for a snapshot category.

e dialogue events consist of the participant 

providing meaning. 

5.2.1 Infrastructu

snapshot. The implication of infrast

nding of a software model. 

In all cases, the participant produces an infrastructu

Participant 1 2 3 4 5 6 7 8 
ADD 3 1 2 4 0 2 2 9 13 4 8 7 4.6 

MEAN 3 0 0 3 0 1 3 0 3 1 1 5 1.7 
Ta : Cble 5.2 o arison of ADD an E N e qu y o irs a

W asic 

software architecture than time providing the meaning of the architecture. The participant 

creating the infrastru

starts the discourse leading up to an infrastructure snapshot with a 

general overview of the topic to be presented. The participant draws the main structure in 

vertical o

mp d M A cod fre enc  bef re f t sn p  shot

ithin the infrastructure snapshot, the participant spends more time drawing the b

cture snapshot draws more and provides more meaning than in other 

snapshot categories. 

The participant 

r horizontal form. The participant may omit or skip diagrammatic elements in 

order to emphasize essential details. The participant may not discuss the links between 

components. The explanation focuses on fundamental architectural details – the basics or 

the core structural components. The explanation may conclude with a summary or 
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overarching statement (“This is a basis of our diagrams”). Or, the participant proceeds 

without summary; in such cases, the participant may demonstrate that the topic is self-

explanatory with a nod that suggests ‘this is clear.’ 

When the participant speaks generally, in order to organize for the upcoming 

explanation, he or she directs the attention of the audience to the next topic with phrases 

such

wing 3 to 6 boxes or 2 to 5 textual elements on the whiteboard. The 

part

implication of advanced infrastructure 

snap

.  

Betw

 as “Let me now explain why I have this box crossing both” and “Now … what’s 

happened with …?” 

The participant reaches the infrastructure snapshot after roughly two minutes of 

explanation, after dra

icipant has either drawn boxes with labels or text with no corresponding shapes. For the 

most part, the participant explicitly describes the meaning of the diagrammatic elements. 

To not explain a diagrammatic element is rare and, likewise, to explain the software’s 

meaning without corresponding drawings is also rare. 

5.2.2 Advanced Infrastructure Snapshot 
In the development of a complete snapshot, the advanced infrastructure snapshot 

builds atop the infrastructure snapshot. The 

shots is that different levels of abstraction and detail are necessary for software 

developers’ understanding of a software model. Though not as prevalent as the 

infrastructure snapshot, the advanced infrastructure snapshot has its place. In many cases, 

the basic software architecture provided with the infrastructure snapshot will not suffice 

and software developers require deeper structure in order to understand a software model. 

Within the advanced infrastructure snapshot, the participant spends more time drawing 

the deeper software architecture than time providing the meaning of the architecture

een the advanced infrastructure snapshot and the infrastructure snapshot categories, 

the participant provides less meaning and draws less frequently for the advanced category; 

the reason for this difference is that the participant focuses on a particular structural 

element. Between the advanced infrastructure snapshot and weak snapshot categories, the 

participant provides more meaning and draws more frequently for the advanced 

infrastructure category. 
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The advanced infrastructure snapshot also has more diagrammatic elements without 

meaning and more meaning that does not link to diagrammatic elements than the 

infra

und that trying to make this huge thing with all these little boxes 

just 

ation. The advanced infrastructure is proportionally one-third of the time 

of t

t produces the functional snapshot through the selection of a specific 

the functional meaning of this text, and the 

gene

 

term

ticipant uses functional 

structure snapshot. 

The discourse leading to the advanced infrastructure starts with an evaluation of the 

structure (e.g. “... I've fo

turns out [to be] incomprehensible”). The participant then draws a number of boxes 

and textual elements in the model. The participant links diagrammatic elements or meaning 

to the prior infrastructure snapshot. The explanation concludes with an evaluation of the 

whole structure. 

The participant reaches the advanced infrastructure snapshot after an average of 50 

seconds of explan

he infrastructure snapshot. For advanced infrastructure snapshots, the use of the 

whiteboard is more frequent and lengthy than the provision of meaning. When the 

participant speaks generally, he or she provides an objective evaluation of the more 

developed model. 

5.2.3 Functional Snapshot 
The participan

diagrammatic element, the drawing of text, 

ral discussion that frequently follows the functional meaning of a functional snapshot. 

The participant starts the discourse leading up to a functional snapshot by selecting a 

diagrammatic element and providing some meaning to it (“These are plug-ins. Think in

s of plug-ins. They provide some service.”). The participant then draws the textual 

elements – roughly two-and-a half times more of these than boxes. In creating the 

functional snapshot, the participant draws less than is the case for the infrastructure 

snapshot, but more than all the other snapshot categories. In creating the functional 

snapshot, the participant spends almost twice as much time providing meaning as drawing 

– more than is the case in all other snapshot categories – which corresponds to the observed 

tendency to select textual elements that demand further meaning. 

The participant links the present functional snapshot with prior snapshots. Much 

general discussion supports the functional snapshot. The par
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disc

ssion. 

With

agrammatic element; 

• ent; 

ading to a lateral snapshot by highlighting a 

dia m a corresponding question (e.g. “Coming back to the 

mod

ember the previous drawing, we have a C/C++ 

box.

ussion for the majority of the lateral snapshots, described in the next section. When the 

participant speaks generally, he or she provides an objective evaluation of the model. 

The participant reaches the functional snapshot after roughly four minutes of 

explanation, which accounts for the substantial portion of overall functional discu

in the functional snapshot, the participant often provides multiple meanings to 

diagrammatic elements. Furthermore, diagrammatic elements without meaning – and 

meaning that does not link to diagrammatic elements – occupy more than half of the total 

duration. These lead us to the observation that functionality is more complex than structure. 

5.2.4 Lateral Snapshot 
The participant produces the lateral snapshot as follows: 

• selecting a specific di

 providing functional or structural meaning for the elem

• questioning the role of the element; 

• directing explanation flow. 

The participant starts the discourse le

gra matic element and asking 

el, whenever an element changes there are events that get fired; how do we listen to 

it?”). The participant then provides directional discussion to establish the purpose of the 

lateral model. Next, the participant draws more textual elements than boxes and describes 

the elements’ functionality. Sometimes, the participant describes the elements’ structures. 

Among snapshot categories, the participant draws less and provides less meaning than the 

infrastructure and functional snapshots. Within the lateral category, the participant draws 

less than he or she provides meaning – a tendency that corresponds to the dominant use of 

lateral snapshots for functional discussion. 

The participant recalls the link between the present lateral snapshot and the prior 

infrastructure snapshot (e.g. “and if you rem

 We're just reusing the same box from …”). Although divergence is the hallmark of 

lateral discussion, the participant rarely speaks generally or diverges from the lateral 

discussion. That is, to create the lateral snapshot, the participant does not provide 

anecdotes, evaluations or directional discussion. 
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The participant reaches the lateral snapshot after an average of two minutes of 

explanation. Among snapshot categories, the lateral snapshots demonstrate a much higher 

freq

on 

•

ntion to other practical sub-questions. 

g to the example snapshot with a focusing 

rem creen. How does 

that

thre

articipant produces the weak snapshot when the topic for explanation is outside 

expertise and when descriptive meaning is replaced with 

exte

uency of diagrammatic elements without meaning – and meaning that does not link to 

diagrammatic elements. There are two possible reasons for this: 1) The participant expects 

the audience to fill in the gaps; 2) The material is non-essential and the participant believes 

that gaps will not have a detrimental effect on software understanding. 

5.2.5 Example Snapshot 
The participant produces the example snapshot as follows: 

• stating a practical questi

 providing detailed functional meaning 

• directing the audience’s atte

The participant starts the discourse leadin

ark and a practical question (e.g. “Now, we drew this (the list) on the s

 work?”). The participant then continues with additional questions and answers with an 

example (e.g. “The one issue could be how do you get to this, how do you make a query?”). 

The participant draws on average one-third the diagrammatic elements for the example 

snapshot category than would be the case for the advanced infrastructure snapshot 

category. The participant describes the model’s function, with no structural clarification. 

The example snapshot occasionally ends with an evaluation, but general discussion is rare.  

We found the example snapshot to be rare, accounting for only 1/30 of total 

explanation time. The participant typically reaches the example snapshot after roughly 

e minutes of explanation and provided the meaning of about half of the diagrammatic 

elements. 

5.2.6 Weak Snapshot 
The p

the bounds of the participant’s 

nsive general discussion. The weak snapshot does not adequately address structural 

meaning and does not provide an overarching description of the software model. 
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The participant starts the discourse leading to a weak snapshot with a self-evaluation, 

such as how much information the participant possesses or does not possess in respect to a 

topi

. This 

lead

 meaning and meaning that 

does

uction of an explanation is the construction of a 

hot event network (e.g. Figure 4.18) reveal the 

part

c (e.g. “I didn't have a lot of experience with using [this technology] and seeing exactly 

how they implemented…” or “I am trying to think because it has been some time since I 

was on this.”). The participant proceeds with an estimate of what the structure of the model 

should look like through the addition of diagrammatic elements. We use the term 

“estimate” because the participant qualifies the diagrammatic elements with the word 

“should.” The participant produces typically four weak snapshots per session, half of which 

are purely functional and half of which have both structural and functional meaning.  

The participant provides more structural meaning than functional meaning in terms of 

duration and more functional meaning than structural meaning in terms of frequency

s to ‘scattered functional meaning’. Following up on the scattered functional meaning 

in weak snapshots, we found that the participant prematurely abandons functional 

discussion in favour of general discussion and self-evaluations that do not adequately fill 

the gap. Moreover, an overarching description of the model’s functionality is missing and 

the participant does not link the snapshot with prior snapshots. 

The participant reaches the weak snapshot after roughly one and a half minutes of 

explanation. The frequency of diagrammatic elements without

 not link to diagrammatic elements occupies roughly one half of the overall 

explanation time for weak snapshots. Among snapshot categories, the weak snapshot 

occupies a small portion of overall explanation time. The participant often speaks generally 

and provides ample self-evaluations. 

5.2.7 Complete Snapshot 
The core process in the constr

complete snapshot. The branches in a snaps

icipant’s structural organization of key knowledge units with assigned priority. If the 

participant assigns priority to too many details or lateral snapshots, it is difficult to produce 

a complete snapshot. This structure may take linear or non-linear shape. In non-linear 

shapes, the participant produces branches of lateral functional snapshots. The complete 

snapshot typically has one of the following structural organizations: 
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• infrastructure complete snapshot (e.g. Figure 4.18, Snapshot 7, which had 

predominantly structural discussion) 

• structural complete snapshot (e.g. Figure 4.18, Snapshot 3, without the lateral 

snapshot, 2.1) 

• L-complete snapshot (structural complete snapshot with lateral snapshot) (e.g. 

Figure 4.18, Snapshot 3) 

. Figure 4.18, Snapshot 6). 

from th napshot. The participant relies 

on t

frastructure 

was

nds the complete snapshot with a directional 

disc

• L-developed complete snapshot (L-complete with other complete snapshots or 

developed snapshots) (e.g

The participant produces a complete snapshot as a combination of prior snapshots 

e start of the explanation or since the last complete s

he conditions and contextual variables from prior snapshots to produce the complete 

snapshot. Therefore, we describe the complete snapshot more in terms of the composition 

of other snapshots, and less in terms of drawing, meaning and speaking events. 

The participant primarily builds the first complete snapshot by relying on 

infrastructure and advanced infrastructure snapshots. In 4 of 12 cases, the in

 sufficient for a complete snapshot, that is, the participant insists that the structure is 

sufficient for general understanding. In 3 of 12 cases, the participant produces an additional 

advanced infrastructure that is then sufficient for a complete snapshot. In the remaining 5 

of 12 cases, the participant produces functional snapshots in addition to the structural 

snapshots; together these are sufficient to constitute a complete snapshot. The participant 

builds successive complete snapshots with structural snapshots combined with lateral 

functional snapshots. Of 26 complete snapshots in 12 explanations, the participant used 36 

infrastructural, 14 advanced infrastructural and 19 functional snapshots. When the 

participant builds successive complete snapshots for new questions, they usually do so 

through the use of infrastructure snapshots. 

In general, the participant spends more time drawing than describing the models’ 

meaning. The participant often starts and e

ussion (e.g. “That’s the way the system works”). In 5 of 12 explanations, the participant 

reached the complete snapshot in roughly 5 minutes; in 7 of 12 explanations, the 

participant reached the complete snapshot in roughly 15 minutes. 
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The Snapshot Event Matrix reveals many trends regarding the composition of 

complete snapshots. Software explanation begins with and relies upon structure. Structural 

snap

n the creation of the second complete snapshot. Only 1 

part

mplete snapshot, whereas another participant built a 

stan

ts relate to the integrity and maturity of participant 

kno

shots are a uniform requirement in the creation of the first complete snapshot. The first 

complete snapshot follows a structural snapshot for 9 of 12 participants and then follows a 

lateral functional snapshot for the remaining 3 of 12 participants. In the 9 of 12 cases, 3 

participants produced a complete snapshot after the first snapshot, an infrastructure 

snapshot and another 3 produced a complete snapshot after the second snapshot – an 

advanced infrastructure snapshot. 

Seven of 12 participants produced a second complete snapshot. Structural snapshots 

are again a uniform requirement i

icipant produced a lateral functional snapshot in addition to a structural snapshot to 

build the second complete snapshot. 

Four of 12 participants produced a third complete snapshot. One participant produced 

a structural snapshot to build the co

d-alone complete snapshot and the remaining 2 produced lateral functional snapshots in 

anticipation of the complete snapshot. 

The composition of a complete snapshot consists of a number of other snapshots. To 

address whether the number of snapsho

wledge, we used a threshold of 9 snapshots to group participants into 2 groups of 6 

participants (group 1: greater than or equal to 9 snapshots; group 2: less than 9 snapshots). 

Table 5.3Error! Reference source not found. illustrates the frequency of occurrence for 

categories of snapshots within each group and the proportion of each category expressed as 

the number of snapshots of a particular category divided by the total snapshots within the 

group. The frequency of weak snapshots was too low to merit analysis, so we excluded 

these categories. 
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Snapshot Type 

Group 1 
>= 9 

Group 2 
< 9 

Infrastructure 34% 39% 
Advanced infrastructure 11% 19% 
Functional 28% 6% 
Example 4% 3% 
Complete 23% 14% 
Lateral 24% 10% 

Table 5.3: Proportion of snapshot category relative to total number of snapshots 

The group that produced more snapshots instigated more lateral discussion and 

produced a greater proportion of functional insight. 

The complete snapshot represents the effect that explanation can have on the audience. 

Two reasonable avenues for continued research include the study of participant intent to 

produce complete snapshots and the effect complete snapshots have on an audience. 

5.3 Summary of Snapshot Theory 

Based on data we collected in our study, our critical finding is the definition of the 

snapshot, which led us to generate Snapshot Theory. Our aim was to understand how a 

snapshot occurs, what causal and contextual conditions lead to the generation of a snapshot 

and what categories of snapshots are useful in the organization of knowledge. 

Earlier in this chapter, we described the basic categories of snapshots. Here we 

summarize the main findings that pertain to what we call our Snapshot Theory. The theory 

proposes that in general, when explaining software, people will use a series of snapshots 

with particular characteristics and relationships. 

The snapshot marks a moment of insight where a component of the meaning of a 

software model is evident. We now realize that this moment of insight cannot occur until a 

participant reveals a sufficient amount of information. 

The participant must prioritize and filter this information according to the needs of 

their audience – in this case, a new employee who has recently joined their team. When 

presented as part of software explanation, a snapshot should not overwhelm the audience’s 

perception process and reasoning capacities, nor should the snapshot ignore the audience’s 

prior knowledge and experience. 
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Our data suggests the existence of local and global elements of knowledge. Local 

elements refer to the details of a specific snapshot, and global elements refer to the details 

that arise from a combination of snapshots. In our transcribed interviews, we coded 

instances where the participant described many local elements of knowledge in the form of 

software structure or functionality. We also coded instances where the participant 

illustrated these local elements of knowledge diagrammatically using a whiteboard. The 

local elements were bound together into distinct categories, which comprised 

infrastructure, advanced infrastructure and functionality, that is, how the system appears 

and how the system works internally/externally. The categories were linked in a linear or 

non-linear fashion in order to produce global comprehension of a software model, which, 

in this study, we refer to as a complete snapshot. The theory of snapshots we propose will 

describe the flow and complexity of a complete snapshot. The complete snapshot is formed 

as a result of prior snapshots working in unison. 

As described earlier, the first snapshot that contributes to the complete snapshot is an 

infrastructure snapshot. It is a particularly important result of our research that an 

infrastructure snapshot is always produced. To produce the infrastructure snapshot, the 

participant recalls details such as the names and functions of the main software components 

and how the components are connected. The participant then represents the software 

components diagrammatically using primarily boxes with some text. Typically, the 

participant devotes substantial time to the annotation of each diagrammatic element. 

The next snapshot that generally contributes to the complete snapshot is the advanced 

infrastructure snapshot. To produce the advanced infrastructure snapshot, the participant 

imparts further knowledge through a more detailed explanation of one diagrammatic 

element or software component in the infrastructural composition. The participant provides 

a thorough explanation of the software component, enriches the original model with more 

detail (with regular reference to the original model), and often concludes with an evaluation 

of the model’s complexity or state. 

With structural information in place, the construction of the complete snapshot may 

turn to practicality, i.e. how the software functions. The participant reinforces an 

explanation through the creation of a lateral snapshot that, by adding detail of software 
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functionality, appears to enrich the listener’s knowledge of the fundamental structure. To 

produce the lateral functional snapshot, the participant adds textual elements to the 

whiteboard and provides the functional meaning of roughly half of the textual elements. 

The other half remain unexplained. The participant selects the important components and 

describes the component’s core functionality with ample diagrammatic elements and 

supporting meaning. The participant then offers an objective evaluation of the system.  

Following the creation of a functional snapshot, the participant may produce an 

example snapshot. The participant starts the example snapshot by posing a practical 

question and answers the question through an exclusively functional explanation with a 

variety of diagrammatic elements added to the software model. 

The creation of a complete snapshot is not always smooth. Our data suggests the 

existence of incomplete insight, which we refer to as a ‘weak’ snapshot. A weak snapshot 

indicates the absence of explanatory material; thus, through the study of weak snapshots, 

we should improve our understanding of the conditions for other snapshot categories. The 

participant starts the weak snapshot with a self-evaluation such as how much information 

he or she possesses or lacks with respect to the topic. The participant proceeds with an 

estimate of what the structure of the model should look like through the addition of 

diagrammatic elements. The participant prematurely abandons functional discussion in 

favour of general discussion and self-evaluations, which do not adequately fill the gap. The 

participant does not provide an overarching explanation of the model’s functionality and 

does not link the snapshot with prior snapshots. 

In our study, we found that the condition for any kind of snapshot is a sufficient 

diagrammatic representation linked with sufficient structural or functional meaning. Our 

data did not reveal snapshots without drawings. Further studies can explore the dependency 

between diagrammatic material and snapshots. 

The core process entailed in the construction of an explanation is the construction of a 

complete snapshot. The branches in a snapshot event network (e.g. Figure 4.18) reveal the 

participant’s structural organization of key knowledge units with assigned priority. If the 

participant assigns priority to too many details or lateral snapshots, it is difficult to produce 

a complete snapshot; indeed, there are times when the participant is unable to reach a 
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complete snapshot. This structure may take linear or non-linear shape. In non-linear shapes, 

the participant produces branches of lateral functional snapshots. The complete snapshot 

may have the following structural organizations: 

• infrastructure complete snapshot (e.g. Figure 4.18, Snapshot 7, which had 

predominantly structural discussion) 

• structural complete snapshot (e.g. Figure 4.18, Snapshot 3, without the lateral 

snapshot, 2.1) 

• L-complete snapshot (structural complete snapshot with lateral snapshot) (e.g. 

Figure 4.18, Snapshot 3) 

• L-developed complete snapshot (L-complete with other complete snapshots or 

developed snapshots) (e.g. Figure 4.18, Snapshot 6). 

 

In the next chapter, we describe our theory in pattern form for the consumption of 

practitioners.
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Chapter 6 Cognitive Patterns for Software Comprehension: 
Temporal Details25 
As we have discussed in earlier chapters, experienced software practitioners use 

cognitive procedures that have much in common with each other. We have chosen to call 

these procedures cognitive patterns. We discovered the cognitive patterns in software 

explanation through the field research described in the last three chapters. The cognitive 

patterns we describe are our interpretation of our study in the context of software modeling. 

Our goal in this chapter is to convey the concepts from our field research in a format that 

would be familiar to professional software engineers. 

This chapter, therefore, provides software engineers with the application of Snapshot 

Theory in an appropriate context. We had to abstract away many of our findings in order to 

get to the essence of what is applicable about Snapshot Theory and how we might present 

our theory to render it useful in practice. In future iterations of our patterns, we may 

reintroduce the theoretical findings of the prior chapters as practical use dictates. 

We propose that the study of and dissemination of these patterns will help tool 

designers create more useful tools and directly assist developers in working more 

efficiently and effectively with software. More specifically, the patterns can be applied to 

help derive features of tools that aid in understanding software, whether for purposes of 

design, or some other type of problem solving. Such features will support such cognitive 

activities as reasoning about and thinking about software artefacts. 

A cognitive pattern is a structured textual description of a solution to a recurring 

cognitive problem in a specific context. A general class of cognitive problems in software 

engineering is the understanding of the structure and function of an object. More specific 

problems include: determining the most important aspects of a class diagram; 

understanding how a specific change is going to affect the system; or coping with cognitive 

overload due to the amount of detail present in a model. 

Since cognitive patterns are “patterns,” they are related to the design patterns well 

known in software engineering. But whereas a design pattern captures an effective 

                                                 
25 This chapter is based on [96] Murray, A. and Lethbridge, T. Cognitive Patterns for Software Comprehension: Temporal 

Details. Proc. 12th Pattern Languages of Programs (PLoP 2005), Champaign, USA, 2005.  
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technique for solving a design problem, a cognitive pattern captures a technique that is 

partly or wholly mental and that is employed by practitioners when trying to perform a 

complex task. Our intent is to translate cognitive patterns into software features that will 

facilitate a user’s cognitive abilities: cognitive patterns are therefore more closely related to 

usability patterns or patterns of user-interface design. An understanding of cognitive 

patterns helps illuminate the relationship between user and tool. 

All patterns “balance the forces” present in the problem and the problem’s context. 

The designer who uses a design pattern will be interested in the balance between 

efficiency, reliability, maintainability etc. The person who understands a program will be 

interested in the balance between cognitive load, correctness of understanding, efficiency 

of problem solving, and other factors.  

Cognitive patterns for software comprehension build on an extensive literature that 

describes high-level strategies for software comprehension. Well-known strategies include 

Bottom-up [122], Top-Down [25], Opportunistic [80], As-Needed [85], and Integrated 

Meta-Model [139]. Each of these may be described as a pattern. The many detailed 

techniques employed when using each of these can also constitute patterns. In addition, 

there are problems associated with switching between strategies – for instance, the 

disruption of the user’s mental model [44] – and solutions to these problems can also 

constitute patterns. Designers of tools such as SHriMP [129] implicitly recognize these 

patterns and support user needs through a variety of strategies that can be embodied in 

patterns. 

As we construct our understanding of software, our understanding is affected by time. 

Mental models and their internal details change over time. In this chapter, we therefore 

focus on a high-level pattern for software comprehension26, termed “Temporal Details,” 

and its subpatterns. The Temporal Details pattern illustrates the dynamics of time within 

the user’s mind and helps explain why tools should support these manifest dynamics. 

Several other patterns contribute to the resolution of forces within the Temporal Details 

pattern. We also present these patterns as a pattern language within this chapter. In 

particular, we derive the Snapshot pattern from our Snapshot Theory and use the Snapshot 
                                                 
26 A complete set of our cognitive patterns for software comprehension, including the Baseline Landmark pattern, may be 
found online at www.cognitivepatterns.org. 
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as the fundamental building block of Temporal Details. Temporal Details are comprised of 

a composition of Snapshots. 

6.1 

6.2 

Target audience and actors 

The instantiation of the patterns in this chapter will contribute to the understanding of 

artefacts through models. The patterns may seem intuitive and useful to any practitioner 

involved in software development (i.e. designers, architects, software archaeologists), but 

our target audience is software developers involved in the maintenance of large-scale 

legacy software, or tool developers who build tools to aid such maintenance. By using a 

tool based on these patterns, a software practitioner may be able to locate undocumented 

design decisions and, as a result, understand the system in its current form by 

understanding how the system evolved over time. A side effect of this benefit is less 

reliance on software archaeologists or software gurus. 

We will reference three actors throughout the chapter: 

• The tool designer, that is, the designer of a modelling tool; 

• The model builder, or modeller, who constructs the models; and 

• The tool user, designated by ‘you’ or ‘the user,’ who uses features based on the 

instantiation of the patterns when working with models. 

Case studies woven through the chapter 

We developed the patterns we present in this chapter through three research 

techniques: a study performed in an industrial setting, the cross-referencing of literature 

and other field studies in which we have participated. Many of the terms we use in this 

chapter (including “manipulate”, “meaning”, “pattern”, etc.) can be found in the glossary. 

To derive the “known uses” in the patterns below, we studied field experts as they worked 

with several tools, including: 

Grep: Grep is one of the basic tools used by software engineers to learn about source 

code. Researchers at the KBRE lab at the University of Ottawa observed software 

engineers making extensive use of grep as they tried to understand a system component 

[78]. Some word relevant to the problem would come to mind, and they would issue a grep 
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command to find all the lines of code in the system containing that word. They would then 

store that grep result. This process would be repeated many times, so that in the end they 

would have effectively built a model consisting of numerous search results in files. They 

would frequently refer to the stored results, perhaps searching inside one set of results to 

create another. 

TkSee: The KBRE group at the University of Ottawa developed TkSee [63] to assist 

software engineers in program understanding activities. In some sense, TkSee is a ‘visual 

grep’ tool: it helps people build, manage and manipulate models consisting of search 

results. 

IBM Rational Software Architect (RSA): RSA enables large-scale team 

development: many people with different perspectives may work within the same context 

and the same artefact base and build different views, which may then be synthesized or 

rationalized into a consistent whole. We examined numerous features, including browse-

diagram (a temporary, non-editable diagram that provides a quick way to explore existing 

relationships among elements), CVS Annotate (a feature within a Configuration 

Management (CM) System27), and Compare-Merge (another CM feature for teams to 

compare and merge software models). 

Whiteboard Think-aloud Study with Mitel and IBM: As described in Chapters 3 

and 4, we asked software engineers explicitly to explain the architecture of a system they 

were developing. Many of the patterns we describe in this chapter have been developed 

based on these studies. We were particularly interested in the sequence of behavioural 

states that prompted participants to describe complex software architectures in a particular 

way. 

Chess system: We developed a tool [133] to allow chess grandmasters to analyse 

various chess scenarios (games or game fragments known as ‘variations’). Grandmasters 

analyse chess variations while they are playing (and therefore, entirely in their minds), but 

we are primarily concerned with the physical consequence of their analysis using tools 

after their games. They may perform analysis for a variety of reasons: to improve their 

                                                 
27 RSA supports Rational ClearCase and CVS; however, in our study, we evaluated CVS. 
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play, to find ‘chess truth,’ or for publication purposes. We use this as an example of how 

many of the patterns apply in a domain other than software comprehension. 

6.3 Temporal Details 

In this section we first describe the Temporal Details high-level pattern, and then 

discuss several other patterns that relate to Temporal Details. 

Figure 6.1 is a pattern schematic that illustrates the related patterns. The patterns 

shown in Figure 6.1 combine to resolve the forces of Temporal Details. The circles 

represent the Snapshot pattern (important moments in time). Snapshots contain Meaning. 

The boxes represent groupings of Snapshots. The arrows represent transitions between 

Snapshots. 

There are several kinds of groupings of Snapshots, each shown as a box. This figure 

shows: a Longview (sequential Snapshots that tell a story), Multiple Approaches (parallel 

Snapshots), a Snapshot chosen from a set of Quick Starts (the evolutionary origin), and 

finally a sample of the ability to Manipulate History (which illustrates how we manage 

evolutionary complexity). 
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Figure 6.1: Temporal Details Schematic 

Temporal Details 
Context: You are dealing with models that evolve over a period of time. You may be 

using a tool to explore, reverse engineer, document or explain a large-scale system (e.g. 

software). Alternatively, you may be doing these activities by drawing diagrams informally 

on a whiteboard. The models can be diagrammatic or textual. 

Problem: After editing a model, you expect that the final version will maximize 

understanding of some aspect of the system. However the final model lacks intrinsic details 

that enable certain kinds of understanding. 

Forces: 

• A final model may be difficult to understand due to its size and complexity. To 

understand the way a system works, it may be better to look back to a time when 
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life was simpler. For example, attempts to make sense of the physical world using 

our current understanding of the laws of relativity are very difficult. If instead you 

base your initial understanding on Newton’s laws, you will learn much faster, even 

though Newton’s laws are not entirely correct for large speeds and masses. 

Newton’s laws provide a simpler view of reality. 

• To understand a system you may need to understand it incrementally. 

• To work with a system concretely you need the final model, since earlier models 

will be incomplete and inaccurate. Earlier models have inaccuracies or gaps 

preventing you from being able to properly understand, develop or find the flaws in 

the system. 

• The final model contains many levels of detail but abstracts away key historical 

decisions and their rationale. A tool supporting a block diagram of a CPU allows 

you to choose your desired level of detail by drilling down and backing out of 

different levels, such as sub-blocks, circuits, and transistors; this type of detail we 

call ‘drill-down details’. Drill-down details are needed to tell you how a system 

works and allow you to use a system concretely, but they do not help you 

understand why the system is the way it is today. Drill-down details do not support 

an understanding of the earlier decisions that constrain the current system.  

• We rarely have the luxury of building a system afresh; therefore, we need to 

understand and cope with the present constraints, which are there due to historical 

decisions and prior constraints. If we built the system afresh today, the constraints 

may be different, leading to a different design. 

• A prior model of a system may be unsound, or incorrect by the standard of today’s 

system, but understanding prior models is needed to make effective decisions and to 

avoid making recurring mistakes.  

• The historical information may be too rich and complex and thus confound the 

person working with the model. 

Solution: The tool developer must support the ability for tool users to view and 

manipulate aspects of history and the decision-making process that went into the 

development of the final model. The user will then be able to more easily understand why 

certain decisions were made early in the model’s development, and will be able to 
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understand the present system as an extension of the simpler system that once existed. The 

user will always have a choice: to simply view the final form of the model, or to explore 

the dynamic details of the model’s creation. Such details could include the different 

versions of the model over time, key decisions made and their rationale, and thought 

processes applied as the model was evolving. Ideally, a tool that supports such details 

would be transparent, so that users who do not need to look back at this history would 

never have to contend with such a feature. Those users who need historical information can 

view whatever levels of history they choose. 

Known uses: There are a variety of software engineering tools designed to capture 

design rationale [66, 73, 91]; these originated in the user-interface design community and 

enable developers to store information such as the decision tree leading to the final model, 

as well as the logic of each decision. Configuration management tools explicitly store states 

of a system at certain discrete points, and encourage annotation of the changes made each 

time a version of the system is saved. As an example, corporate meeting rooms often have 

equipment to create a digital image of the contents of a whiteboard. Also, learning the 

historical refactorings helps a developer understand the present state of a system. The 

Temporal Details pattern describes how one can capture and illustrate rationale and history 

in a broader sense than any one of the above tools. 

Resulting Context: The application of Temporal Details and its related patterns will 

result in tools for explaining, exploring and documenting systems that take advantage of the 

knowledge embedded in a model’s history and that mesh more closely with the way users 

think and act. Full application of Temporal Details would result, for example in the ability 

to Manipulate History. 

Important downsides of the pattern are that the environment must be built and the 

historical data must be managed on an ongoing basis. In other words, a tool for working 

with Temporal Details must leave a footprint that is greater than would otherwise be left by 

a design tool. 

Issues that arise when applying Temporal Details include deciding which historical 

information to capture, how to represent it, and how to manage details that accumulate over 

time. Some of these issues are addressed through the modeling of software evolution by 

106 



Chapter 6: Cognitive Patterns for Software Comprehension: Temporal Details 

treating history as a first class entity [43]. If these issues are managed well, each user 

should be able to choose the level of understanding that is appropriate to that user. At the 

root of the resolution of these issues is the following question: What are the key historical 

moments, the moments that exemplify key insight? The challenge posed by this question is 

addressed in the Snapshot pattern. 

Snapshot 
Also Known As: Short View, Temporal State, Coherent Point, Conceptual Whole, 

Cohesive Nugget 

Context: You are working with a single evolving model in the context of Temporal 

Details. Any model is modified by a series of operations, such as adding or removing 

model elements. The elements could be as small as single lines or characters, or could be 

larger compositions. 

Problem: With what granularity should you track the evolution of the model? That is, 

what are the most useful points to stop and think about the model as it is being built, or 

look back later to see how the evolution occurred? 

Forces: 

• A concept, even in the context of a complex model, can often be conveyed simply. 

• Small but self-contained changes to a model may convey important new meaning. 

• Building a large, complex model before stopping to think about it is likely to result 

in confusion, and the skipping over of important learning. 

• Adding, deleting or replacing information in a model can convey new 

understanding. 

• Tracking evolution with an excessively coarse granularity fails because humans 

need smaller increments to evolve their understanding, and you lose historical 

perspective. 

• If every gesture involved in evolving a model is tracked, then we are guaranteed 

that no historical information is lost. But to step through each possible state of the 

model would be slow, and we would lack guidance about which points are salient. 
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• Some states (e.g. after a single line is drawn) are incoherent or represent incomplete 

concepts. This level of granularity is too fine. 

• When humans try to learn in large numbers of very fine increments, they may not 

understand the big picture and retain the details. 

• A model does not have to be complete and accurate before one can pause to think. 

Neither completeness nor accuracy is needed for incremental understanding; 

striving for these will be important for some purposes, but not for the gain of 

understanding. 

Solution: Track and capture evolution at moments when the model is cohesive or 

conceptually whole. We call these moments Snapshots. Our research shows that Snapshots 

are naturally present in the development of a model. 

By cohesive and conceptually whole, we mean that a concept being conveyed in the 

model has had sufficient detail added so a person studying the model can understand the 

concept, but not necessarily perfectly. The granularity of tracking will therefore depend on 

the strategies used by the person doing the modelling (the modeller): Some modellers 

might add seemingly unrelated elements to a model, and only after considerable time, link 

them in a way such that the model becomes cohesive. In this case, the Snapshots will be far 

apart in time. Others modellers might add very small increments such that the model is 

highly cohesive after each increment. In either case, being able to view the model as it 

existed at Snapshots will group potentially large sets of model states into more manageable 

units. 

The Snapshot is a coherent step in the process of evolving a model towards its final 

form. The Snapshot, irrespective of the underlying meaning of the model it conveys, will 

reveal nascent information either independently or in conjunction with other Snapshots. It 

is not generally worth spending a lot of time designating Snapshots with a very high level 

of accuracy; a rough approximation of the set of Snapshots will often be sufficient to 

achieve the objectives of this pattern. 

In a tool, a Snapshot might be created manually through user actions including 

‘tagging’, saving, annotation, etc. A Snapshot might also be identifiable automatically: A 

modelling tool might recognize pauses; i.e. the tool might automatically tag a version as a 
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Snapshot when the modeller has made a collection of changes, and then pauses before 

making more changes. If it is a graphical modelling tool, the tool might recognize the 

completion of certain diagrammatic ‘idioms’ (e.g. drawing two boxes with a line between 

then and labelling the boxes), or even capture the oral explanation made about a diagram. 

We have used these approaches when manually determining the Snapshots in a model’s 

history. 

Resulting Context: The application of the Snapshot pattern to a tool will enable users 

to build and present a model in appropriately sized increments, and allow the user to 

reference and come back to some of those model versions if needed. 

How to identify a Snapshot is both an empirical and implementation challenge; what 

constitutes a conceptually whole moment will be subjective. A tool for working with 

Snapshots will need to allow for this subjectivity and imprecision. Also, the Snapshot 

pattern does not suggest how to organize the entire set of Snapshots over time, nor does it 

suggest how the Snapshots ought to be presented. We need Long Views and Multiple 

Approaches to organize Snapshots, and we need a way to Manipulate History for further 

organization and presentation. When we want to build or recognize the first Snapshot of a 

new model we may need to choose a starting point from a set of Quick Starts. 

Another problem with Snapshots is that although state alone may convey some 

meaning, the rationale or the decisions made to arrive at a Snapshot are not always 

conveyed in the model – further explicit Meaning associated with Snapshots may be 

required. Further to this point, a Snapshot does not give you the whole picture; you only get 

the picture at a moment of time. 

Related patterns: The “Speculate about Design” pattern [39] calls for a software 

engineer engaged in software reengineering to refine their model of a system by checking 

hypotheses about a design against the source code. In this case, a Snapshot can be 

constructed for each hypothesis. To Speculate about Design, an engineer inserts open 

questions as notes into a software model, then iteratively addresses each question and 

refines the model accordingly. The reengineering process builds a series of Snapshots. 
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The “Migrate Systems Incrementally” pattern [39] encourages developers to avoid the 

complexity and risk of “big-bang reengineering” by deploying incremental updates of the 

system. In this case, each update can be considered a Snapshot. 

The “Just Enough” pattern [87] tries to ease learners into the more difficult concepts 

of a new idea by the provision of a brief introduction and dissemination of more 

information available when the learner is ready for it. In other words, Just Enough 

describes the division of information into coherent units and a way of delivering 

information from the learner’s point of view. Snapshots similarly tackle the “right” amount 

of information and the user’s understanding. However, a Snapshot is a state in an ongoing 

process leading towards creating a final model: The emphasis in a Snapshot is keeping a 

point in the history of the model in case it may be useful, whereas the emphasis of Just 

Enough is the active design of an increment in a learning medium. Also, the Meaning 

behind the Snapshot is considered separately. 

The “Step by Step” pattern [87] encourages people to tackle problems in small 

increments “with short-term goals, while keeping your long-term vision”. Incrementality is 

therefore a common feature of both Step by Step and Snapshot; however, in Snapshot the 

idea is to review prior increments, rather than to work forward in increments. 

Known Uses: Many tools offer an ability to examine a specific model at a given 

moment in time, in other words to take a Snapshot. This Snapshot is not always what the 

user is looking for in terms of the particular details, but aids understanding. 

Grep: Grep produces a model of some aspect of the static state of a system based on a 

specific set of queries – the effectiveness of the results is directly proportional to the 

effectiveness of the queries, but rarely will an individual query generate everything the 

designer needs to solve a specific problem, and never will a grep query represent 

everything in a design. Nevertheless, individual grep results can be extremely useful 

Snapshots in the user’s evolving understanding of a problem. In our studies we observed 

software engineers print out grep results, store them in files and use them as checklists.  

TkSee: TkSee was specifically designed to enable people to explore software and 

incrementally build models. The models are ‘history states’ that show certain patterns of 
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relationships that bear on the current problem. As with grep results, software engineers 

discard these after a short period of time (several hours to several days). 

RSA: RSA supports Snapshots with the Compare-Merge feature. A Snapshot in this 

context refers to the individual differences between two versions of a software system. If 

one of the versions is the present system, and the other version is a point in local history, 

then each Snapshot represents an evolutionary development. Figure 6.2 illustrates a tree 

structure for navigating the differences, and Figure 6.3 illustrates the differences visually 

(e.g. in this particular case, a circle shows the dependency between Class1 and Interface1 

has been removed). In addition, CVS versions are Snapshots of an entire system in a 

moment of time, although often with a granularity that is much higher than what we 

envision for a Temporal Details tool. RSA also supports individual browse-diagrams for 

analysis; these can be seen as Snapshots supporting partial visualization of a system in a 

moment of time. 

Studies at Mitel & IBM: In many instances during our videotaped analysis, the 

participants would produce diagrams on the whiteboard and then begin discussing them. 

They would not speak until they had made enough changes so the diagram was in a new 

coherent state: they were thus building Snapshots. Based on the questions asked, the 

participants would then iteratively produce refined Snapshots of the system. 

Chess system: In chess, a Snapshot corresponds to a particular board position. In the 

mind of the grandmaster, he is examining not only the Snapshots that exist on the board, 

but also various interrelated moves that may occur (Snapshots from variations) [72]. A tool 

to support analysis must support not just the main board positions, but also variations. 

 
Figure 6.2: Tree-based navigation of Snapshots in RSA 
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Figure 6.3: Visual illustration of Snapshots in RSA 

Quick Start 
Also Known As: Starting Templates, Library of Openings 

Context: You are creating a model in the context of Temporal Details. This might 

mean you are starting from scratch, or you might have already evolved a model through 

many Snapshots. 

Problem: How do you effectively and efficiently create new models? 

Forces: 

• A model will always have at least one diagram (and hence one starting point), but 

will often have many. 

• The start of any task is often undertaken instinctively. However, people often have 

difficulty when they start a task. On the one hand, they may need a catalyst, and on 

the other hand, they may strive for an immediate, though unobtainable, perfection. 

• People may start with anything at all, just to get themselves going. Consider, for 

example, how the US Marines start with something called a “70% solution” [51] 

that encourages “high tempo.” The idea is that it is better to decide quickly on an 

imperfect plan than to deliver a perfect plan too late. The Marines find the essence 

of a complex situation and build upon it quickly. Professional writers also use this 

technique. 

• People need quick ways to plunge into a new task, such as modeling, which are not 

inhibited by start-up costs. These costs might be the need to determine where to 
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save something, the need to make links to existing models, or the need to construct 

a well-known canonical starting point. 

• If people do not have a familiar place from which to start, understanding is 

inhibited. But then, if they start with something too large or irrelevant, significant 

time may be wasted adapting it. People need a familiar or central starting place of 

an appropriate level of complexity when they begin a process of understanding. 

• An explanation is often best when it contains many interrelated models, each of 

which has to be created, and therefore must be started at some point in time. 

Solution: Allow users to quickly start new models by choosing from a small set of 

existing simple models. The selection of starting points is more appropriate if they represent 

a familiar landscape to the user. Each starting point is a Snapshot of a model that will likely 

then evolve through many more Snapshots. This first Snapshot is neither trivially small, 

nor is it too complex. As with all Snapshots, it is a view that is coherent enough to be 

talked about.  

In a tool, this pattern can be implemented using templates of sophisticated – but still 

very simple – designs. For example, it might be useful to start a state diagram with two 

states linked by a transition: not many useful state diagrams would ever have fewer states 

than that. 

Resulting Context: This pattern encourages speed of exploration or explanation, as 

well as the creation of multiple models. After you have chosen one of the Quick Starts, one 

of the hardest decisions – where to start – is behind you, at least until you choose to start 

afresh. A Quick Start provides a guide as to where to go next, and how to keep going. As 

you build a series of new Snapshots based on your Quick Start, you may need to consider if 

you intend to build in sequence (Longview) or in parallel (Multiple Approaches). 

In creating a list of suitable Quick Starts, you must determine which ones will be 

appropriate. A downside of starting with simple and imperfect starting points is that you 

may also need to start again several times. However, this may support incremental 

improvement of your understanding of a complex system. The real danger comes from the 

reliance on your set of starting points as definitive, that is, a reluctance to explore other 

possibilities. 
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Forcing people to choose a particular starting point would be contrary to the pattern. 

Users often find they stick exclusively to the templates provided or spend too much time 

exploring the template set. 

Known Uses: 

Studies at Mitel & IBM: Our participants start with a single notion, usually a Baseline 

Landmark, and incrementally expand from this starting space. In the telecommunications 

domain, for example, it is very common to draw a diagram of a “plain old telephone 

system” (POTS) and explain some new feature by evolving this diagram. 

RSA: A software architect may either create new model elements or access existing 

assets (e.g. requirements code, other models) to build a model. An architect may use search 

and navigate features to access existing features (Baseline Landmark). 

Chess system: In chess, grandmasters use “critical positions” to study opening theory. 

The critical position may be a hotly contested position – perhaps many other professionals 

reach this position in their play often, or the position is deemed “OK” since a first-class 

grandmaster played it recently. The grandmaster may prepare for a future opponent by 

analysing Snapshots from the opponent’s opening repertoire. Or the grandmaster may wish 

to broaden his repertoire. In all cases, the grandmaster starts analysis from a historical and 

relevant position. 

Other tools: Word processors and presentation software provide libraries of templates 

to allow Quick Starts. 

Long View 
Also Known As: Highlight the Story, Higher-Order Snapshot 

Context: You are evolving a model through a set of Snapshots. 

Problem: How can you tell an effective story when the complete set of Snapshots 

comprises a rich set of details? 

Forces: 

• People appreciate a story – a tale that evolves over time where linkages are made 

from step to step. 
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• If there is no connection between historical steps, then there is no story. 

• An individual Snapshot conveys some concepts, whereas others emerge only 

through a sequence of Snapshots. 

• One can lose sight of the forest (a story) for the trees (the individual Snapshots). 

• If all historical steps are connected, it is hard to see the key steps. 

• People have difficulty comprehending a ‘big bang’ explanation. 

• Explaining or exploring based purely on a series of unrelated Snapshots fails 

because the sequencing of Snapshots helps incrementally build understanding. 

Solution: Allow users to look at the history of model evolution and designate a 

coherent sequence of Snapshots as having particular significance. The sequence tells a 

story that would otherwise be hidden. The end-points of the sequence become, in some 

sense, higher-order Snapshots. A Long View is a view that shows how something evolved. 

How something evolved from one Snapshot to another is a story. Sometimes you cannot 

grasp a concept unless you have more of the small units. Sometimes you cannot grasp one 

of the small units unless you grasp another one. By seeing the individual Snapshots in 

context you may be able to understand a larger component of the entire system or 

understand some otherwise unintelligible Snapshot. 

Resulting Context: You may start a new Long View to explore a new aspect of the 

system; you may also start a new Long View if another was less fruitful than expected or 

resulted in only a partial understanding. A tool that implements the Long View pattern 

would allow the explanation and exploration of the history of a model through sequences, 

rather than just a simple presentation of Snapshots without any organization. Someone 

understanding a design would be able to understand more about the thought processes of 

designers. However, just as all Snapshots need not be retained, the user needs to remain 

flexible as to which sequences will be stored for later reference – and needs to remain in 

control of those choices. Tools to help guide the user through a series of Snapshots may 

also use “relevance feedback.” You may still need a mechanism to Manipulate History to 

clean up and organize Long Views, as well as to add Meaning to them. 
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Known Uses: 

Grep: We have observed software engineers doing two things to evolve and group 

their query results: one is to edit their previous grep command lines; the other is to pipe one 

set of grep results through another grep query. The notion of revisiting previous queries is 

poorly supported by tools. With native UNIX environments the user does however have 

access to buffered history of terminal output, and the history of commands. Users can also 

save queries to text files that can be concatenated, or run through other grep filtering steps. 

Taken together, these facilities allow a rudimentary ability to create a story or Long View 

from query results. 

TkSee: TkSee contains multiple indented trees of queries. The user can easily refer to 

previous queries, and group several of them together as a Long View. Users can also save 

query result sets to files and bring them back. 

RSA: The Compare-Merge feature supports a series of Snapshots, which collectively 

form a Long View. If the software architect clicks on consecutive items in the tree shown in 

Figure 6.2, RSA illustrates the Long View visually, as in Figure 6.3. RSA compiles a list of 

versions in the “CVS Resource History” which illustrates the Long View as an evolution of 

a system across versions. 

Studies at Mitel & IBM: In our whiteboard video sessions, the participants would 

iteratively refine diagrams representing their knowledge of a software system. Because of 

limited whiteboard space, they would erase (cull) less important aspects of the model to 

provide more relevant artefacts to address the questions. History was difficult; to refer to 

previous versions they would use verbal comments or redraw previous diagram 

components. 

Chess system: While analysing a position, a grandmaster first compiles a list of 

candidate moves, the Quick Starts for branches of forced (through a series of checks or 

threats) and unforced variations. The grandmaster subsequently steps through each 

candidate move in turn, building a Long View for each candidate move. The Long View is a 

series of moves that ends in an evaluation (white is winning, the position is equal, the 

position is unclear, etc.). For many positions within the variations, the grandmaster must 
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compile a new set of candidate moves; thus, the grandmaster is building a tree of variations 

– the topic of the Multiple Approaches pattern. 

Multiple Approaches 
Context: You will be modeling or understanding using a set of Snapshots. 

Problem: How do you support the representation of non-linear patterns of evolution of 

a model? 

Forces: 

• People may not fully understand one explanation, and may need an alternative 

perspective. 

• Different people may need to approach understanding using different strategies. 

• There may be different but perfectly valid ways to model something or solve a 

problem. 

• Allowing only a single path fails because it does not recognize the alternative 

perspectives, or else forces the perspectives to be considered in a less useful order. 

Solution: Allow branching and re-joining in the network of connected Snapshots. After 

a branch point, the Snapshots or sequences of Snapshots (Long Views) in either branch can 

be used for different purposes. A user may use different sequences to explain or explore the 

various aspects of a system. Alternatively, the user may use multiple sequences to approach 

the same aspect in different ways, either developing an alternative understanding, or a more 

complete understanding. Sequences may split and merge at arbitrary points. 

Resulting Context: A user will be able to designate and explore multiple paths for 

understanding and exploration and the user should see the path structure so he or she can 

compare paths and learn from different perspectives. One obvious downside to Multiple 

Approaches is the generation of a complex network of model versions. The user may need 

to Manipulate History to cope with the large amount of information and to filter important 

details. 

Related Patterns: The Multiple Approaches pattern allows a person in an organization 

to make a compelling argument from different viewpoints as to how an idea may meet the 
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Tailor Made [87] needs of an organization and the Personal Touch [87] that people require 

to see the personal value that an idea may bring them. 

The Multiple Approaches pattern depends upon branching. A group of patterns which 

addresses branching from the perspective of software configuration management (SCM) is 

“Streamed Lines: Branching Patterns for Parallel Software Development” [12]. The SCM 

patterns describe how to support parallel development through project management, 

organizational structures and technology. The implementation of the SCM patterns helps 

address problems of communication, visibility, project planning, and risk management and 

resolve some of the technical challenges associated with the capture and organization of 

Snapshot networks. 

Known Uses: 

TkSee: We studied users and evolved TkSee with features to build and explore 

hierarchies of exploration paths incrementally: each branch is a separate approach, throw 

away exploration paths or sub trees, save exploration trees to a file and reload them and, 

switch among trees. In fact, TkSee supports a hierarchy of exploration hierarchies. 

RSA: A software architect may analyse Multiple Approaches with browse-diagrams 

(system Snapshots) with the intent of building deeper understanding through multiple 

perspectives. RSA is not limited to browse diagrams – a software architect may create 

many typical UML diagrams (Snapshots) and the tool allows the architect to link them all. 

Thus the tool supports multiple branches and joins between Snapshots. In addition, RSA 

supports Multiple Approaches through CVS features such as branching (that is, you retain 

the baseline while you work on different versions). 

Studies at Mitel & IBM: In our whiteboard sessions, the participants digressed into 

discussion of seemingly unrelated parts of the system, and later conjoined concepts to 

deepen understanding. 

Chess system: As has been discussed, during analysis grandmasters built a tree of 

variations for candidate moves, or Snapshots. The right pane in Figure 6.4 illustrates 

support for Multiple Approaches through a visual hierarchy of clickable moves. When a 

grandmaster clicks on a move, the system illustrates the Snapshot in the left pane. 
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Other examples: Multiple product lines, multiple configurations, achieving the same 

result by applying different methods. 

 
Figure 6.4: ChessLink Analysis Feature, Multiple Approaches as chess variations 

Manipulate History 
Also Known As: Superman rewinds time to save Lois Lane 

Context: You have a historical record of model evolution in the context of Temporal 

Details 

Problem: The network of Snapshots may not be good enough for users to learn from. 

Forces: 

• A, then B is the way things happened, but B then A may make a more 

comprehensible story. 

• History is in the eye of the historian and the reader of a history: No two historians 

will tell a story the same way, and no historian will ever know exactly what 

happened. 

• Historical fiction can help one understand history by making it more 

comprehensible. No harm is done as long as one realizes that it is not a literal 

representation of past events. 
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Solution: Allow for the network itself to be rearranged and adjusted so you can revisit 

your understanding process by following previously followed paths. But as you do this, 

retain the previous network. The result can then become a network of networks. 

Resulting Context: You will be able to edit not just the models, but also the networks 

of models. This pattern builds on Snapshot, Long View and Multiple Approaches: Those 

patterns allow you to designate points, sequences and branches in the history of a model’s 

evolution. Manipulate History allows you to adjust that history itself. 

Known Uses: 

TkSee: Supports the manipulation of multiple hierarchies of historical queries. For 

example: Snapshots are the results of queries or other operations on the model; Long Views 

are the sequences of queries that form a hierarchy whose results can be saved as an 

exploration and revisited later; these explorations can themselves be edited to refine the 

user’s understanding, and saved again. 

RSA: Using the Compare-Merge feature, developers can retrace the meaning of 

decisions by interpreting iterative changes. Furthermore, UML notes, comments and 

documentation attributes may provide insight into the decision process. 

Chess system: After a chess game, grandmasters investigate what-if scenarios for the 

critical moments of games to unlock the ‘secrets of the position’. The primary goal of this 

is to improve their thinking, though they may also uncover improvements in their games 

that they can use in later games. The entire basis of modern chess opening theory is 

continual reflection on revision of historical games [72]. 
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Meaning 
Also Known As: Annotation, Metadata 

Context: You are working with a network of Snapshots. 

Problem: A model cannot inform you why the decision to transition from Snapshot to 

Snapshot was made, yet you often need such deeper understanding 

Forces: 

• A deeper understanding of history can be derived if you know why something 

happened, not just what happened. The “why” is, however, often lost in the mist of 

time. 

• A Snapshot only captures state and will often not even imply the rationale for the 

state. 

• Tying rationale for a Snapshot to the Snapshot itself may be inappropriate as it is 

may be difference between two Snapshots that is of most interest – and one may 

later on want to Manipulate History, which would seriously confuse rationale tied 

to a single Snapshot. 

• Rationale attached to a Quick Start may facilitate its use. 

• The need for annotation is proportional to the size of a network of historical 

models. 

• People often want to make use of information about information (meta-information) 

that may be valuable. 

Solution: Allow annotation or other mechanisms for recording knowledge about any of 

the Snapshots or transitions between Snapshots. Annotation features in tools may be one 

step towards retaining Meaning. Clearly developers need to indicate significant information 

that cannot be represented in diagram form. Perhaps notations need to be designed to 

represent this kind of information; or at the very least, structured documentation formats 

could be developed to capture this information. 

Resulting Context: Following use of the Meaning pattern, the tool designer can build 

tools to allow annotations of all types. For example a tool that stores several states of an 

evolving explanation could allow the user to record why new details are added or replaced 

to create a new Snapshot. Design rationale is an important area of study in software 
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engineering. Tools should allow the user to flow more easily from one design task to 

another while storing design decisions. Downsides to this pattern occur because people 

often disdain documentation. More annotation implies three more work tasks, one task is 

the annotation step, the second is the maintenance of previous annotations, and the third is 

reading annotations. Transparency is a very important aspect of this feature: do not enforce 

any of the three prior works tasks, but support them to an appropriate degree. Simply 

marking Snapshot moments may be sufficient Meaning. 

Known Uses: 

RSA: The developer may commit changes to CVS with comments annotating their 

rationale (illustrated in Figure 6.5). Furthermore, a developer may use the “CVS Annotate” 

feature (illustrated in Figure 6.6) to associate changes and comments with a particular 

version. In addition, RSA has a traceability feature supporting traceable design decisions 

across artefacts. 

Studies at Mitel & IBM: The participants described their rationale for drawing. In 

other words, they described why they were about to start explaining something; why they 

were erasing something or why they were adding new details. Our participants provided 

more of the structural or functional meaning of the model than their rationale for drawing. 

Chess system: Grandmasters analyse their own games to determine the “truth” behind 

the decisions they made over the board. They record these analyses in both variations and 

textual annotations, particularly when the games are to be published. The right pane in 

Figure 4 illustrates a sample annotation. 

 
Figure 6.5: CVS commenting in RSA, one form of Meaning 
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Figure 6.6: CVS Annotate feature for visualizing changes and comments with versions 

To sum up then: we can leverage the patterns now expressed to gain a deeper 

realisation of their benefits in forthcoming tools. 

6.4 Epilogue 

In this chapter, we presented the notion of cognitive patterns, and outlined a pattern 

language for software comprehension. We focused particularly on the Temporal Details 

pattern language, showing how we derived this language from field research and how it can 

be applicable to tool builders. 

Far more than an attempt to put a new face on certain program comprehension 

literature, cognitive patterns constitute an attempt to tie many results into a rich, new 

language. Our objective is that this language should provide perspective, structure and a 

common lexicon that can be used by tool designers and academics to relate practical 

problems in software comprehension. However, this places a heavy burden on cognitive 

pattern authors: what constitutes ‘practical’? The authors of this paper consider a pattern 

practical if it addresses a recurring problem that the community presently cares about, and 

is genuinely of use to tool designers. We have tried to balance the following criteria: a) 

ensuring patterns compose well; b) ensuring patterns reflect cognitive issues users 

encounter; c) grounding them in reality; and d) making them useful to tool designers. 
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Chapter 7 Threats to Validity 
"Qualitative analyses can be evocative, illuminating, masterful -- and wrong" [93, 

Qualitative Data Analysis, Miles and Huberman, pp.262] 

7.1 

7.2 

Introduction 

In this chapter, we address threats to validity. If we were to ignore these, it might 

suggest that we suspected our qualitative research approach or results to be biased, 

inaccurate or imprecise. Where possible, we will provide evidence showing how we 

reduced the threats, and where such evidence is not available we will argue why our work 

is nonetheless legitimate and reasonable. 

In general, the emphasis in grounded theory research should be on the generation of 

theory. Some research methodologies have a deep focus on the validation of results; but 

grounded theory focuses on clarifying bias and assessing how threats to validity affect the 

methods or results. Wolcott, for example, states that unequivocal determination of the 

validity of findings is impossible [147]. Erickson states that our aim is to be explicit about 

our biases, not to persuade anyone of their superior virtue or even their reasonableness 

[45]. 

Throughout the execution of our study, we were critical of the representativeness, the 

reliability and the replication of our findings. In this chapter, we address the rift between 

cognition and explanation, study limitations (i.e. time, medium, site and interview 

questions), theoretical and practical coding threats, misrepresentative data, researcher 

effects, internal validity, external validity and the applicability of our patterns. 

In the following sections, we label threats ‘T<threat id>’ and threat resolutions 

‘R<threat id>’. 

The Explanation-Comprehension Rift 

T2.1: The explanation of a software system to others is different from one’s personal 

comprehension of a system. The researchers claim to have studied comprehension when in 

actual fact they studied explanation. 

124 



Chapter 7: Threats to Validity 

R2.1: We speak to this threat at length in Section 2.4. There is precedent for studying 

comprehension through the explanations of professional software engineers [13, 61, 80, 

112]; researchers analyse fragments of software explanation to find recurring behavioural 

patterns that provide clues about internal cognitive events. The basis for this approach is 

the assumption that the verbal statements of professional programmers provide the closest 

approximation to a trace on the participants’ thought processes [80]. In following this 

assumption, the prior research does not acknowledge that the goal of software explanation 

is software understanding. In our research, we structured interview questions to prompt a 

large number of inquiry moments, which Letovsky identified as producing the richest 

cognitive responses. 

The challenge we faced in our research was to be certain that our task invoked 

moments of software understanding. The response to this challenge is as follows: our 

participants perceived and interacted with external stimuli, accessed short-term and long-

term memory and used external memory to store and organize explanation information – 

hence, they indeed engaged in cognitive activities as they responded to our questions. 

Because our study called for participants to sketch while they explained (c.f. [109]), our 

study is a contribution consistent in its assumptions with prior research. We also add that 

because we designed a natural task in a familiar environment, we are more likely to 

determine realistic behaviour than our predecessors [103]. 

The bottom line is that our participants constructed snapshots to enable comprehension 

for their audience. The critical point is that if you use a tool to understand software, the tool 

should enable comprehension through the creation of snapshots. 

7.3 Internal Validity 

To satisfy internal validity, a researcher must show that results are authentic, make 

sense and are not affected by the researcher’s presence and actions. In this section, we will 

discuss study threats as they concern limitations of time, site, medium and interview 

questions. 

T3.1: Researchers moved from coding to interpretation too early. 
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R3.1: If we moved from coding to interpretation too early, we would risk not properly 

challenging plausible concepts with alternative hypotheses. We used the concept of 

saturation, a typical grounded theory approach, to determine when to move from coding to 

interpretation. As stated in Section 4.3, we identified the point of saturation as the moment 

when regularities in the data stabilized and further coding and review of data did not yield 

new categories or codes. We received 100% agreement with three coders that to understand 

snapshots at a deeper level required interpretation and that further coding would provide no 

benefit. 

T3.2: The timeliness of results is dependent on expansion of modelling languages. 

R3.2: The reader may question the longevity of our results, for example, by 

questioning if the expansion of modelling languages (e.g. UML) into mainstream software 

development led to skewed results, results that would be different if a similar study was 

performed in the future. There are a number of arguments against this reasoning. 

First, we observed the use of whiteboards, which are analogous to tools people have 

used to discuss concepts for centuries. Second, our drawing codes were generic to avoid 

this issue. Third, the major finding is that developers use snapshots to explain software 

systems and we could not find evidence to suggest a dependence on diagrammatic 

techniques. Finally, a wide variety of notations were used by our participants, not just 

UML; we could not therefore conclude that the participants were influenced significantly 

by current modeling trends. 

T3.3: Researchers sampled only 2 sites with only 24 participants. 

R3.3: Sample size for the purpose of generalization is not an issue in grounded theory 

research. Other researchers, (e.g. [13, 80, 93]) studied only 6 participants, while we 

involved 12 participants per site. This number was adequate in terms of achieving the 

saturation point. As to our sampling only 2 sites, we have a number of responses. First, we 

should note that we eliminated bias that might arise through the study of a single company 

or a single domain of software. Second, we studied professional software engineers: this 

makes our study design more significant than research involving students. Third, we drew 

from the results of our first sample (our coding scheme) as the basis for our analysis of the 

second sample. Fourth, we performed a variety of comparisons across participants, which 
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resulted in significant adjustments to our theory. We can further reduce this bias in the 

future through cross-case comparisons of our two samples and further studies with 

additional industrial participants. 

T3.4: The study is biased towards elite participants. 

R3.4: This threat suggests that we overweighed data from articulate and well-informed 

participants, and under represented data from less articulate ones (so-called elite bias [93]). 

We reduced elite bias through the inclusion of participants from many different domains 

and levels of experience. The reality of this research is that some findings are stronger than 

others and this is not dependent on the quality of the informants but rather our ability to 

find multiple instances that support our findings across multiple participants. Participants 

receive a roughly equal proportion of data in this thesis, e.g. the snapshot stories come from 

nearly all participants. When we gathered participants for our study, we consciously 

avoided bias towards local elite. 

To extend the discussion of stronger or weaker data versus articulate or less articulate 

participants, consider the following case. We explored the hypothesis that participants who 

were stronger presenters produced more snapshots. We constructed evidence based on a 

formula that counted the number and types of drawn objects, and thus divided the 

participants into two groups – "strong presenter" and "weak presenter." However, when we 

made slight changes to the formula we used to pick groups, the hypothesis did not hold up. 

Thus, we did not present this finding. 

A second case strengthens our argument. There were several times when we weighed 

the evidence with the purpose of finding negative evidence. Self-criticality is important, so 

when we devised our coding scheme and were looking for exemplars, we also looked for 

weak cases of codes so we could identify why they were weak and improve our coding 

scheme and deepen our understanding of code instances. The notion of weak snapshots also 

falls within negative evidence; we did find this category of snapshot, which did not fall 

within our coding scheme and did not make sense. In the end, we explored these cases in 

depth to understand under what conditions they exist and what the weak snapshots lacked; 

this helped us to improve our overall theory. 
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These two cases illustrate the general reality that we were more concerned with strong 

or weak findings and what to do with them than strong or weak participants. 

T3.5: The principal investigator assumed the role of ‘new-hire’ during data gathering. 

R3.5: We acted as new-hires during data gathering for two reasons. The first reason, 

because prior field studies and work experience indicated that communication with new-

hires using a whiteboard was a common and important activity. The second reason was so 

the researchers could reasonably understand the session content during analysis. 

What we did was not ‘arms length research’ and therefore, an important question 

exists: to what extent did the researcher questioning or providing feedback trigger snapshot 

behaviour? An examination of the protocol reveals minimal interaction (0.6% of the overall 

protocol) from the interviewer (the principal investigator) in which the interviewer asked 

the participant to reiterate what they said or asked for clarification, clarified why the 

participant exhibited certain non-uniform behaviour (e.g. using a different coloured pen), 

provided reminders regarding the time limitation of the study, and provided other non-

verbal indicators such as smiling and nodding. The challenge of this question is this: by 

quietly listening, without interruption, or by certain unconscious non-verbal indicators, the 

researcher may have provoked snapshot behaviour. In future studies, we can improve upon 

our work by training an interviewer to perform the interview sessions so as to minimize 

this bias. We could then analyse the style and characteristics of the interviewer and assess 

the variability and impact on snapshot behaviour. 

T3.6: Whiteboard sessions are not a fundamental aspect of software development. 

R3.6: To address this threat we will provide evidence we gathered during post-session 

interviews with our participants. Our evidence suggests that software developers 

communicate using the whiteboard as a regular software development activity and that 

whiteboard sessions are indeed a fundamental aspect of software development. 

Before we present our evidence, one may question if expert software developers give 

the majority of informal whiteboard sessions. When communicating with whiteboards, 

software developers have no predilection towards developers of particular levels of 
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experience. Every participant in our study regularly engages in whiteboard sessions. 

Whiteboard communication is exemplary and important. 

Ten of our twelve participants endorsed the regular use of the whiteboard, with such 

statements as “crucial to model the more useful parts of software – in particular, the 

relationship between objects,” “very useful” and “very useful in a formal context.” One 

participant said he used the whiteboard “all the time, every day.” Some participants 

indicated the consistent use of whiteboards for every design discussion, technical meeting, 

design meeting, and discussion with testers. Another participant described the update issue 

with diagrams in obsolete documentation; he pointed out that software explanation with 

diagrams is extremely useful as a resolution to this problem. One participant indicated that 

he communicated primarily with customers using PowerPoint; a second participant, 

however, indicated that “whiteboard diagrams are moderately useful, but no substitute for 

getting into the system.” 

Frank Wales, in a recent Internet Posting [143], also spoke to the fundamental nature 

of whiteboards: 

 “These days, I don't believe I would hire a software developer who couldn't 
stand at a whiteboard and expound on a topic of interest for five minutes. As far 
as I'm concerned, it's up there with talking to clients on the phone or sending 
coherent e-mail messages. Communication with peers, clients, users and 
managers is critical to being able to do a good job in computing...” 

T3.7: The work relationships among participants may affect how they draw software 

representations on the whiteboard. 

R3.7: In response to this threat, we reiterate that a key goal in field research of this 

time is to disturb the site as little as possible. Aside from cursory details from some 

participants as to whom they work with, we had limited details of the participants’ working 

context, e.g. the company product and their specific role. These details were insufficient to 

study whether the context affected how they used the whiteboard. To address this threat, 

we could gather more detailed accounts of the participants work agenda and specific details 

of their day-to-day work surrounding the study (as in ethnography, e.g. [61]), but this 

would greatly disturb the site. The downside is that without said context, we are unable to 
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determine which contexts are most related to our research questions. We can offer that the 

context we studied produced reasonable results and was therefore, in the very least, related 

to our research questions. 

T3.8: There is dependence between results and the selection of the whiteboard as the 

medium. Why did the researchers not perform a study using modelling tools? Why did the 

researchers restrict access to resources such as PowerPoint or Word during whiteboard 

sessions? 

R3.8: We specifically chose the most flexible communication medium with the idea 

that a tool developed as a result of the research would not end up being biased by artificial 

inflexibility derived from the research medium. If we are biased then we are biased in the 

direction we intended. The reason is that a tool constrains the user with the features the tool 

provides. Time also limited our study of alternative tools. Though the whiteboard does not 

provide access to the code or to existing models (e.g. for rationale), we do not have 

evidence to suggest that developers use source code or models during informal whiteboard 

sessions – they limit discussion to the board space during these sessions. Another issue 

with whiteboards is that participants do not have enough space to keep all their diagrams. 

However, because developers could freely add or remove elements, space was never an 

issue. 

T3.9: Tool development or patterns will be biased towards whiteboards. 

R3.9: According to 11 of 12 participants28 in our IBM study, tools with features that 

resemble a whiteboard may be useful. These features include: the ability to design as one 

would design on paper, i.e. free-hand drawing features like those found in a Tablet PC; 

built-in collaboration; and the whiteboard as a capturing tool that takes a picture, which 

need not be syntactically correct, and converts it to a model. 

T3.10: Study questions introduce bias towards a particular perception of architecture. 

R3.10: We devised the study questions with managers at Mitel in order to develop 

stimulating questions that contained elements of architecture that are in widespread use and 

would promote the participants manipulation of their mental model. We placed a lot of 
                                                 
28 The one participant who did not feel such features would be useful was knowledgeable of class diagrams and use case 

diagrams, but was a beginner or unfamiliar with other software diagrams. 
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emphasis on the first question and on architecture in general, and drilled down to a 

particular perception of architecture after the participant a) had already gone down that 

path or b) was having a hard time determining what we meant by architecture. We did not 

exclude any participant’s interpretation of architecture that differed from our study 

questions. 

T3.11: The researcher produced an effect on the study. The risk is that this behaviour 

can lead to biased observations. 

R3.11: During our study, we tried to avoid the effects of the researcher on the case and 

the effects of the case on the researcher. The presence of a researcher inevitably produces 

some effect, and our goal is to clarify and reduce this effect. 

The effects of the researcher on the study can manifest in many forms. Participants 

may switch their outward presentation to the researcher and craft their answers to protect 

their self-interests. To address this threat, we set the stage for the interview (see Section 

4.2.2) with an introduction of the researcher, our motivation for the study and how data will 

be collected and handled. Also, our participants could not anticipate the study of snapshots 

as our core focus, so it is highly unlikely that they shaped their answers to affect our data. 

The high level of autonomy we gave participants through little interjection from the 

researcher further reduced researcher effects.  

We minimized the effects of researchers on the study by: 

• Staying on-site for as long as possible (three days a week for a year and a half) thus 

blending in to the environment; 

• Using unobtrusive measures during study sessions (single camera, sessions of 

reasonable length, minimal impact on the site); and, 

• Informing participants of our intent. In recruitment emails, face-to-face 

conversations and the introductory explanations to our study, we stated our 

motivation, the object of our study, our data gathering techniques and our data 

storage techniques.  

We found some evidence to support a contention that the researcher had an effect on 

the process. For example, one participant indicated that he would have preferred more time 

to prepare and would have produced or used PowerPoint slides. This participant then gave 
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many short answers to the questions and produced very little diagrammatic material. There 

were occasional instances when a participant would get stuck, and rely on the researcher to 

guide the process. We have stated that our intent was to leave control in the hands of the 

participants and to use the open-ended questions to promote discussion, but in these 

instances, we guided the participants to encourage further discussion. During analysis, we 

were watchful for moments where the researcher promoted snapshots that would not 

otherwise occur and we did not count them. 

As future work, we could address this threat by asking participants to review their own 

video and to ask if they feel their answers were contrived. To produce data with less 

researcher effect, we could extend our study to record ad-hoc informal whiteboard sessions, 

in particular, sessions that involve new-hires. To perform this step properly was beyond the 

scope of this thesis. 

7.4 Reliability 

Reliability demands a consistent study process across researchers and therefore, in our 

opinion, calls for systematic coding and an inter-rater reliability mechanism. As Judith 

Good [69] explains, “schemes which are not fully worked out and/or which are not 

accompanied by explicit instructions enabling them to be used by persons other than the 

original researcher are not of much use: it is impossible to compare results reliably.” 

T4.1: Results are biased and contrived. 

R4.1: Multiple coders worked from a common coder's manual. We trained coders with 

example transcripts, coding examples and mentoring. Different researchers independently 

arrived at the same results using the same method. Coding checks were performed and 

showed an adequate level of agreement. Furthermore, reaching agreement improved coding 

in future iterations. Quality checks were performed regularly. We used peer review with a 

team of psychologists to strengthen the analysis process. In Section 4.3, we describe the 

inter-rater reliability process in greater detail. All in all, this helped us to avoid interpreting 

events as more patterned than they actually were. We did not shy away from weak data. 

T4.2: Too few / too many categories 
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R4.2: We used a hierarchical structure with interdependent levels of granularity. Some 

categories were unused because they became obsolete (e.g. see codes change from Chapter 

3 to Chapter 4). The codes allowed comprehensive coverage of the complete data set. 

There is no question that future work will yield new categories and discoveries as we work 

with new samples and our knowledge matures. For the purpose of this study, the number of 

categories was adequate. 

T4.3: Researchers required hindsight to accurately code the dialogue, that is, the 

review of entire utterances in order to understand the meaning of the utterance was required 

to determine appropriate code and relationships to other codes. 

R4.3: The risk with this threat is that too much iteration to properly code a chunk of 

data means that new coders may not be able to grasp the procedure at a glance. But our 

response is that experience comes from coding, and the decision about the appropriateness 

of codes was so regular as to become an essential part of the research process. Since we did 

not record all of the debates over coding decisions much of the rationale remains with the 

coders. Two factors come to mind: first, coding rationale is transferred during training and 

further code discussions; second, we updated the coder’s manual with improved 

descriptions of code criteria. Multiple passes to properly code a chunk of data along with 

detailed discussions about the correctness or appropriateness of codes are intrinsic to 

qualitative research. 

7.5 Objectivity 

Objectivity in this context refers to the relative neutrality of the research and 

reasonable freedom from unacknowledged biases and explicitness about inevitable biases 

that exist [93, pp. 278]. 

T5.1: Data is not available for reanalysis by others. 

R5.1: Our protocol data is confidential and so we cannot release this data. We 

provided a number of data displays in this research from which we derived our results. We 

also provided a number of vignettes to support the existence of our codes.  

T5.2: The data is not precisely coded. 
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R5.2: Exactly when a participant created a new snapshot (according to our definition) 

was not always completely clear. Additionally our approach to identifying snapshots 

changed as we gained experience at coding the data. However, we reviewed every snapshot 

with multiple coders and focused our analysis intensely on snapshots. Moreover, drawing 

and speaking codes were precise to the second with correct behaviour. We therefore feel 

that this set of data is as precise as is possible within the time constraint of this dissertation. 

T5.3: Inferences are drawn from non-representative events 

R5.3: To combat the incremental slide into selective sampling and abusive 

generalizing, we critically reviewed and challenged our assumptions with a team of 

psychologists; in this way, we guarded against self-delusion.  

We assumed that we were selectively sampling and drawing inferences from a weak or 

non-representative sample of people and challenged ourselves to prove otherwise. This was 

most evident when we began our analysis with just the first two participants: as exciting as 

it was to gain a deep appreciation of the two participants, and find rich (and contrasting) 

instances of snapshots, we knew we had to extend the number of participants until we 

found negative cases and new codes. And indeed, our sample was not wide enough until 

we had sampled roughly ten participants, at which point the number of regularities began to 

solidify. The final two participants confirmed our findings but did not yield significant 

variances to our findings. This led us to believe our sample was reasonably representative. 

7.6 External Validity 

Researchers building theories for practitioners are faced with the challenge of 

producing accessible, useful theories for practitioners to apply, and supplying data to 

reflect the process by which the theories were derived. The derivation process may not be 

useful to practitioners, but it is to other researchers who wish to validate or reflect on the 

theories themselves. 

T6.1: How can we prove conclusively that the patterns we describe are an 

improvement on existing knowledge and therefore are a valid scientific advance? 

R6.1: This threat suggests that there is no evaluation criterion for patterns. We 

submitted the patterns to the PLoP conference, where the patterns underwent a writer’s 

134 



Chapter 7: Threats to Validity 

workshop and shepherding process. As a result, the patterns were further developed, 

expanded and rewritten more closely in the spirit Alexander intended; that is, we improved 

the problems, forces, applicability and overall quality of the patterns. We had numerous 

discussions with reputable pattern authors [5] who suggested that our patterns were well 

written, creative, useful and of a higher level of quality than typical patterns submitted to 

PLoP in the last ten years. 

The issue is that this feedback does not provide evidence that the theories that underlie 

the patterns are an improvement on existing knowledge: there is no evaluation criterion for 

our empirical study. We believe that this statement highlights a key point for the whole 

thesis: subsequent generations of software engineers determine the value of a theory 

(sometimes many years or decades after the researchers form the theory). We can speak to 

how we applied methodological rigour, how we clarified our bias, how we assessed our 

threats to the validity of our methods and results. However, we cannot unequivocally 

determine that the theory we put forward is a contribution or scientific advance because 

future generations will determine this. That said, in the next threat resolution, we address 

the practical applications of our theory. 

T6.2: Patterns are not at an appropriate level of abstraction. Concrete use of patterns is 

unclear. Effect of patterns on tool building and tool builders is not explicit. 

R6.2: The risk is that if patterns are vague enough, people cannot disagree with them. 

As we built our theory, the concrete use of patterns was a significant challenge. We found 

many possible tool ideas. One well-developed idea to come out of this research is “The 

Diagram Player,” an RSA feature currently in prototype development at IBM [48]. The 

Diagram Player captures the creation of a software model and allows for subsequent 

playback, capture of snapshots and annotation. 

We should also note that Qanal allows for the capture, playback, and manipulation of 

snapshots from video-taped software explanation. Qanal will be useful as an educational 

tool in many contexts, including industrial training and university classrooms. 

T6.3: Study uses analysis instrumentation that is not applicable in other study contexts. 
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R6.3: As software developers, we are privileged to be able to build tools to support the 

analysis process. As future work, roughly one person-month of the coding time is required 

to generalize the Excel macros for broader use in any qualitative study. Qanal is already 

usable for other studies because we use a generic XML schema. 

7.7 Threat Summary 

In this chapter, we described a number of threats and provided resolutions. We 

described threats to objectivity, reliability, internal validity, external validity and an 

overarching threat we call the explanation-cognition rift. Though our resolutions were 

sometimes built-in by design, some threats suggest opportunities for future work. Despite 

the threats listed in this chapter, the following points nevertheless suggest that our work has 

validity: 

• We used multiple coders and investigated the agreement between them; 

• We applied a well-founded analysis technique (grounded theory); 

• The generation of our data displays provided additional validation checks; 

• Many practitioners confirm that snapshots in theory and in practice are useful for 

discussion and constitute an improved design technique. 

We continue a discussion of the contribution of this work in the next chapter. 
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Chapter 8 Discussion29 

8.1 

8.2 

                                                

Executive Summary 

In the earlier chapters of this thesis, we provided a detailed account of an empirical 

study of software developers explaining software during informal whiteboard sessions. The 

study was designed to ground a theory of software explanation. We provided this theory in 

pattern form to facilitate the development of software tool features. Finally, we assessed 

the threats to the validity of our data, method, and results. 

In this chapter, we summarize our contributions and discuss some implications of 

cognitive pattern research. Our primary contribution is a Snapshot Theory that describes 

how software engineers use snapshots to build the discourse structure through which they 

explain software. In the following sections, we review the theoretical and practical sub-

contributions arising from our work. At various points in the discussion we provide a 

forward-looking perspective. 

Theoretical Contributions 

The theoretical contributions we make are Snapshot Theory and the Temporal Details 

Framework. Software engineering stands to benefit considerably from theories that help 

developers produce better tools and processes. Suggestions for such tool and process 

improvements are given below, after a recap of the theories. 

8.2.1 Snapshot Theory 
The primary contribution of our work is a theory of snapshots. This theory suggests 

that when explaining software, professional software developers use a series of “snapshots” 

with particular characteristics and relationships. Our data suggests the existence of a 

specific snapshot that conveys local details and a complete snapshot – that is, a 

combination of snapshots – that embodies global details. The condition for any kind of 

snapshot is a sufficient diagrammatic representation linked with sufficient structural or 

functional meaning. 

 
29 We deliberately use the term discussion. An exploratory study often leaves room for much discussion and little 

conclusion. The research described is an important first step, but conclusive results may take many years. 
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Our theory describes how a typical participant flows from an infrastructure snapshot, 

which is always found to be present, to an optional advanced infrastructure snapshot or 

functional snapshot and then to an example snapshot. Sometimes, however, the participant 

is unable to construct an appropriate snapshot in the absence of sufficient explanatory 

structural or functional material; the result is a weak snapshot. 

We examined a process that developers regularly use and we analysed and conveyed 

the structure of software explanation with the goal of extending software modeling tools to 

support this behaviour. Our behavioural analysis of software explanation has led to results 

which explain how software developers systematize and express their knowledge structures 

when explaining software through speaking and drawing. This theory is therefore 

beneficial to the program-comprehension community: As prior contributions of program 

comprehension processes have shown, meaningful practical applications of the theory will 

follow. A comprehensive description of the temporal process of software explanation sheds 

light on how software development tools can better support the creation of software 

models. In Section 8.3.4, we describe the practical benefits of such a description. 

The approach demonstrated in this thesis leads to the emergence of theory from an 

essentially open-ended research question. Many additional ramifications of this theory may 

be generated by the replication of the study in different contexts, and by further analysis of 

the data. For example, a great many different events in the data could be coded, potentially 

leading to many more cognitive patterns. 

The second-order theoretical contributions to arise from Snapshot Theory are the 

concept of the snapshot itself, our particular categorization of snapshot categories, a 

specific set of propositional claims about snapshots, and the notion of the snapshot-event 

network. Each of these is summarized in the following paragraphs: 

The concept of the snapshot originated in our interview sessions with professional 

software developers and evolved during our qualitative analysis. Our participants paused 

after key concepts and their explanation at that point contained dynamic details that were 

not apparent in their final modelled representation. These pauses marked coherent steps in 

the process of evolving a model towards its final form.  In our analysis, we found the 

snapshot to be the culmination of an interval of time that contained enough information 
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about a model to reveal meaning. As we took the concept further, we recognized that a 

snapshot marks moments of conceptual wholeness at a given level of generality. That is, 

the snapshot marks a moment of insight where the meaning of a software model is evident. 

We realised that the snapshot moment could not occur until a participant revealed a 

sufficient amount of information. We also realised that the snapshot, irrespective of the 

meaning of the model it conveys, could reveal nascent information on its own or in 

conjunction with other snapshots. 

To share the concept of snapshots with other researchers, we produced snapshot 

definitions, typical snapshot indicators and snapshot stories to describe the conditions, 

context and behavioural strategies we found in our research. Coders can use the definitions 

and typical indicators to examine discourse and identify the category of snapshot under 

observation as well as to know when a snapshot has occurred. The snapshot stories reveal 

the origin and composition of the discourse structure that leads up to the snapshot. The 

concept of a snapshot does not need to be limited to a qualitative analysis of software 

explanation; we hypothesize that tagging snapshots for education or presentation purposes 

can yield significant improvements in communicating software concepts. As future work, 

we will perform additional studies to deepen our understanding of these categories and the 

relationships between the categories. 

The propositional claims arose during a qualitative analysis of software explanation in 

two development and maintenance domains with 24 participants. We contend that the 

following claims merit further investigation in further studies: 

• Software explanation begins with and relies upon structure; basic structure is 

critical for software developers’ understanding of a software model.  

• In many cases, the basic software architecture provided with the infrastructure 

snapshot will not suffice and software developers require deeper structure in order 

to understand a software model.  

• Functionality is more complex than structure.  

• The participant produces the weak snapshot when the topic for explanation is 

outside the bounds of the participant’s expertise and when descriptive meaning is 

replaced with extensive general discussion. The weak snapshot does not adequately 
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address structural meaning and does not provide an overarching description of the 

software model. 

• Software professionals that produced more snapshots instigate more lateral 

discussion and produce a greater proportion of functional insight. 

The branches in a snapshot-event network (e.g. Figure 4.18) reveal the participant’s 

structural organization of key knowledge units with assigned priority. This network reveals 

how snapshots function within an entire explanation and how snapshots contribute to other 

snapshots. We found that the networks provided us with insight into overall explanation for 

each participant. Moreover, we used the networks as one means of checking data integrity. 

In future work, we will attempt to determine whether a snapshot-event network 

corresponds to the structure of knowledge the participant intended. We will also further 

explore the rationale for the transition between snapshots. We also believe it is useful to 

compare the networks built by multiple researchers; this form of inter-rater reliability 

checking would help ensure that networks are unbiased and representative of the data. 

Snapshot-event networks were the link from our Snapshot Theory to our Temporal Details 

Framework, the contributions of which we describe in the next section. 

8.2.2 Temporal Details Framework 
Temporal details are a network of snapshots, composed of one or many sequential 

snapshots and one or many parallel snapshots. That is, snapshots are the building blocks of 

temporal details. Temporal details also comprise a high-level pattern whose forces are 

resolved by several other patterns. The audience for the temporal details framework are 

software developers involved in the maintenance of large-scale legacy software, or tool 

developers who build tools to aid such maintenance. By using a tool based on these 

patterns, a software practitioner may be able to locate undocumented design decisions and, 

as a result, understand the system in its current form by understanding how the system 

evolved over time. 

Tools supporting the collection, composition and manipulation of snapshots will 

support temporal details and thereby help developers, by understanding the system’s 

history, understand why the system is the way it is today and the constraints upon the 

system. Because historical information may be exceedingly rich and complex, if we are to 

140 



Chapter 8: Discussion 

improve understanding, we must incorporate the capacity to capture snapshots, compose 

snapshots into networks, manipulate these networks of snapshots, and visualize the 

networks. The practical implications we will describe in Section 8.3.4 include tool features 

for explaining, exploring and documenting systems that mesh more closely with the way 

users think and act. The focus of this thesis has been to understand snapshots, and future 

work should deepen the understanding of how collections or networks of snapshots are 

constructed and are useful in practice to software developers. 

8.3 

                                                

Practical Contributions 

In pursuit of the theoretical contributions, we found it necessary to build a number of 

practical qualitative research contributions including our qualitative research methodology, 

our data, and our qualitative analysis tool, Qanal. Other software researchers engaged in 

qualitative software engineering research may readily apply these contributions. Also, our 

cognitive patterns constitute a practical contribution that tool developers may refer to when 

building tools. 

8.3.1 Qualitative Data Analysis Research Methodology 
We presented a rigorous qualitative data-analysis process (c.f. Figure 4.1) that led us to 

transparent30 results that are rich, descriptive and closely linked to the data. The process 

involved the repetition of three core operations (description, analysis and interpretation) as 

we stepped through five main processes (data preparation, initial analysis, topical analysis, 

category analysis, and patterns & theories). The analytic operation was based on the 

grounded theory approach as extended by Miles and Huberman [93]. The contribution of 

this methodology is significant and offers exemplary methodological processes through 

practical challenges. 

We suggested how to construct and administer interview sessions when the objective 

is the generation of open-ended data. We condensed many data sources from interviews by 

tagging categories of meaning using a set of software explanation codes. We further 

reduced our data by constructing a series of tables and charts that allowed us to better 

 
30 The challenge in presenting ‘transparent’ results is that compiling the complete data set for publication is not possible 

on account of space constraints, participant confidentiality and corporate confidentiality. We therefore use the term 
‘transparent’ to refer to results we found by applying transparent process steps, described in detail in Chapter 4. 
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understand data trends or patterns. We built a set of claims based on these patterns. We 

then traced the patterns back to the source data to ensure the existence of an appropriate 

trail of evidence and to discover the source context in which our findings exist. This 

deepened our interpretation of our findings and helped to produce a parsimonious theory. 

Much of Chapter 4 described the practical application of our process methodology. 

The detailed steps are an improvement over the prior comprehension process studies 

described in Section 2.4, which do not indicate specifically how they found the developers’ 

comprehension processes. Software researchers can draw upon our experience to overcome 

challenges such as: 

• gathering data (the practice of not disturbing site, theoretical sampling, forming 

open-ended interview questions to answer research questions, dealing with video 

data) 

• developing and handling codes (including entering data, data syntax, avoiding 

preconceptions, code evolution, code obsolescence) 

• emerging study design (conducting a pilot study, evolving protocol, identifying 

central phenomenon, refining coding scheme, continual reflection, using the 

constant comparative approach) 

• analysing coded data (reduction, sorting and rearranging coded sequences, 

providing rationale in annotation, generalizing a small set of propositions, tactics 

such as noting patterns, plausibility, counting, etc.) 

• working with discrepant evidence 

• assessing inter-rater reliability and working with multiple coders. 

• understanding saturation 

• building matrix and chart displays 

• identifying patterns and developing theories 

• performing category analysis 

Other improvements over prior work include our interview structure, devised to 

regularly prompt inquiry moments and permitting us to receive the richest possible 

response. Furthermore, our work investigated a task that is consistent with our participants’ 

daily agendas, regular communication activities and natural environment. We also noted 
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that 25% of our total sessions were spent sketching, a fact that indicated the significance of 

the sketching activity in software explanation. Among published software research studies 

investigating comprehension processes, this is the first to include the sketching aspect of 

software explanation. 

We recognize the need to experiment with further methodological improvements: One 

possibility would be to examine the emergence of snapshots in truly informal whiteboard 

sessions without researcher involvement (aside from, for example, a hidden camera). This 

triangulation by method would help us examine if snapshots in an informal context are 

responsible for better explanation or understanding. 

Another possibility would be to examine how snapshots promote understanding in 

new-hires and therefore the effect complete snapshots have on an audience. In such a study, 

we could mine snapshots using a similar method and examine them from the perspective of 

a real new-hire. This is also triangulation by method. 

In a third study, we could invite participants to validate their own or someone else’s 

snapshots. This member-checking approach would help us to study the participant’s intent 

to produce complete snapshots. We did not apply this step in our present research because: 

• We did not want to introduce bias. 

• We did not wish to disturb the site more than necessary. 

• We felt participants may not be consciously aware of how or why they form 

snapshots. 

• We were under time constraints. 

In a fourth possible study, we could perform triangulation by data source in a cross-

sample comparison of our Mitel, IBM and perhaps a third independent data sample. It 

might be worthwhile, for example, to contrast our findings with snapshots derived during 

business process modelling or other diagrammatic techniques from other domains than 

software. 

In a fifth study, we can illustrate only the snapshot material to participants and study 

software understanding and characteristics of snapshots from the participants’ perspective. 
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In a sixth study, we could invite participants to build models using a tool (such as 

RSA) and then we can gather confirming evidence along the lines of our research. A 

researcher in our research lab is building a tool that will support this research step [48]. 

8.3.2 Qualitative Analysis Tools 
We built instrumentation to aid our qualitative data analysis efforts. More specifically, 

we wanted the frequent task of the capture and replay of video analysis to be repeatable and 

easy. We built a Java-based tool, Qanal, for analysing codified video data. We imported 

XML files of coded data into Qanal. We call each file an exploration. Qanal supports VCR-

like playback of the videos that correspond to the explorations. The collection and 

manipulation of explorations allows a researcher to review similar groups of data to 

confirm hypotheses, to review the analysis history, or to share analytical findings with 

other researchers. 

Other software researchers engaged in qualitative research with coded video data can 

use Qanal to simplify and extend their analyses. Qanal is platform-independent, can be 

used with a long list of video types, and is not tied to a particular coding scheme. 

Qanal is applicable beyond qualitative analysis. The navigation and sharing of codified 

video data that is tied to corresponding image files can be used in pedagogical contexts. 

Researchers may also be interested in using our Excel instrumentation. We built 

powerful tools for the generation of chart and matrix displays. The benefits of our Excel 

instrumentation include the integrity checker, data modeller, and display builder; building 

displays by hand is labour-intensive and error-prone. We also designed a macro to export 

our coded data to Qanal. The generation of chart and matrix displays is tightly coupled with 

our data model, the participants and the coding scheme. In future work undertakings, we 

will generalize our approach to work with any coding scheme and any number of 

participants. We will also package the source code for wide-spread use. 
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8.3.3 Case Data 
Researchers may be interested in building on such case data as our coding scheme, 

displays, propositional claims and snapshot story boards31. The coding scheme is still 

relevant and extensible for another study with a different central phenomenon. One benefit 

of applying our scheme is easy adoption of our analytic tools. We intend to make our 

analytic tool generic to any coding scheme. 

Our coding scheme underwent significant evolution to reach its current state. 

However, by the end of our data analysis, it was evident that our coding scheme was 

sufficient to codify the software explanation aspects of our entire data set. The evolutionary 

changes to our coding scheme were quite costly in terms of time. Further studies that apply 

our coding scheme will inevitably improve the code descriptions. 

Other researchers will find that the range of displays we built in conjunction with a 

rigorous analytic process may yield new insight into difficult software engineering 

problems. The contribution includes: 

• The time-ordered matrix (Figure 4.12). This matrix may seem intuitive, but it came 

about through much trial and conveniently handles data. More specifically, reading 

codes, manipulating codes and building a data model were made easier. 

• Drawing-speaking independent matrices (Table 4.1), for which we described how 

to interpret code counts in the context of the participant, the study, other code 

counts, durations or proportions. 

• Drawing-speaking relationship matrices (Table 4.3), for which we describe how 

meaning enriches diagrammatic material and how we linked explanation activities 

with knowledge concepts. 

• Drawing-speaking-snapshot relationship charts (Figure 4.13), which we used to 

note relationships among codes and to find patterns, specifically related to 

snapshots. 

                                                 
31 We cannot provide our entire set of case data on account of participant confidentiality, corporate confidentiality and 

space limitations. 
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In future projects, we aim to produce a word-frequency analysis that aligns a model of 

the user's knowledge with our snapshot event network. This will provide the role of the 

snapshot in the developers' cognitive model. 

8.3.4 Cognitive Patterns 
A cognitive pattern is a structured textual description of a solution to a recurring 

cognitive problem in a specific context. Cognitive patterns bridge the gap between theory 

and application in that they are discovered in field research and can be applied to help 

derive features of tools that aid in understanding software, whether for purposes of design, 

or some other type of problem solving. Such features will support such cognitive activities 

as reasoning about and thinking about software artefacts. 

The application of the temporal details framework and its related patterns will result in 

tools for explaining, exploring and documenting systems that take advantage of the 

knowledge embedded in a model’s history and that mesh more closely with the way users 

think and act. For example, a complete applied design of temporal details would support 

the ability to manipulate history. The applied design of snapshots would enable users to 

build and present a model in appropriately sized increments, and allow the user to reference 

and come back to some of those model versions if needed. The applied design of long 

views would enable the explanation and exploration of the history of a model through 

sequences, rather than just a simple disorganized presentation of snapshots. The applied 

design of multiple approaches would support the users’ designation, exploration and 

visualization of multiple paths for understanding, comparison and learning. The applied 

design of manipulate history would support the manipulation of networks of snapshots by 

designating points, sequences and branches in the history of a model’s evolution and 

removing history that does not enhance comprehension. The applied design of the meaning 

pattern would support annotations of evolution rationale (e.g. why new details are added or 

replaced to create a new snapshot.) 

Tools currently tend to be designed with the final diagram in mind; if the tools were 

designed with the evolving state of a representation (including deletions) in mind, it may be 

possible to improve their user interfaces. The bottom line is that we are using these patterns 

as generalizations that should be useful to tool designers building actual tool prototypes. 
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We expect feature improvements along the lines of design rationale, annotation and 

traceability. We also expect future work to examine the educational component of software 

explanation through temporal details. The known uses of the cognitive patterns we have 

described are limited instantiations of our patterns and can be improved in future work. By 

improving our known uses, we can improve tool designers’ ability to design tools. 

The application of the temporal details patterns we will examine in the near future is 

snapshots in support of software walkthroughs. In this case, the snapshots can be the actual 

system or the representation of the system. Improvements to the process of walking 

through a dynamic software system will yield tremendous insight into the benefit of 

temporal details from application and documentation perspectives. 

It is worth noting the relationship between our research and case-based reasoning 

(CBR) [64, 117]. CBR is a human behaviour in which a human matches a new problem 

with problems from a bank of old solved problem in order to derive a new solution from 

solutions to the old problems. One might argue that all we do as humans is case-based 

reasoning; we just store cases and then match these cases in new situations. The AI 

community has taken an interest in modeling this behaviour and has developed technology 

that supports the retrieval, analogical matching, adaptation and learning of cases. There are 

several analogies between our work and CBR: 

• In grounded theory, we are looking at and encoding a small number of sessions 

(each session is a case). 

• The snapshots we find in the video are cases we might find in a particular design 

• The archetypical snapshots are generalized cases we used to match new instances of 

snapshots. 

• In the library of temporal details patterns, each pattern is a generalized case for 

reasoning. In fact, all patterns are just cases! 

• Our participants used case-based reasoning to match the problems they faced at the 

whiteboard with older problems they were more familiar with. 

Our cognitive patterns serve as the first steps towards what might be called, a 

“handbook of software comprehension.” The patterns offer solutions, or steps to generate 

solutions, to practical problems in cognition and software comprehension. Our patterns 

147 



Chapter 8: Discussion 

have endured community scrutiny through both vigorous shepherding and writer’s 

workshops. The notion of empirical studies that reinforces pattern development 

corresponds to the need for firm grounding in well-received theories from cognitive science 

and HCI described by Walenstein [142] in addition to the call for empirical grounding 

expressed by Cross et al. [34]. 

Tool development based on the patterns has already started  [48]. We hypothesize that 

tool developers may use cognitive patterns to understand their users and cognitive patterns 

may actually improve the tool developers’ own mental models; we propose studying this as 

future work. 

In general, we wish to create the infrastructure for a patterns community that could 

emerge in the program comprehension field, one that recognizes the specific concerns of 

this field. This infrastructure would include the notion of cognitive patterns, pattern 

languages, shepherding [60] and writing workshops [111] — all adapted from the pattern 

community at-large. In fact, cognitive patterns, as we envision them, may be applicable in 

other domains as well, such as the creation of new software, or the collaboration of groups 

of people in teams; however, our focus remains the way in which people understand 

software. 

8.4 Concluding Remarks 

This thesis represents a complete snapshot of our research. Indeed, this work 

underwent much evolution and many historical changes: many snapshots preceded this 

‘final snapshot.’ To produce this complete snapshot, we reduced and manipulated the 

snapshot network of our research. The network of snapshots that remains annotates only 

the evolutionary steps that provide comprehension of our theory, our methodological 

process and our findings, in the form of cognitive patterns. We opened up a research area 

for numerous future studies. In these early stages of snapshot research, we established a 

terminology and a structural foundation to support the future work. We anticipate that the 

future of snapshot research and cognitive pattern research will leverage the patterns 

expressed in this study to gain a deeper realisation of their benefits in tools yet to be 

developed. 
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Appendix A: Role of the Researcher and Coder Profiles 

Role of the Researcher 

Qualitative research is interpretative research which brings a range of strategic, ethical 

and personal issues into the research process [86]. We explicitly note the principal 

researcher’s biases, values and personal interests so the reader attains better perspective of 

the research process and results. The researcher’s contribution to the research setting can be 

useful and positive rather than detrimental [86]. I will use first-person rhetoric to relate my 

personal experiences, my aim, to relate my unique contribution to this research. 

I worked two years at Alcatel, in a software support lab for an ATM switch – an 

analogous situation to our study participants’32. ‘Stepping into the shoes’ of the developers 

at Mitel was straightforward; the context of the participants was second-nature given my 

experience. Also, my personal values and beliefs with respect to software maintenance 

were comparable to those of our participants – the study setting had a culture not 

unfamiliar to me, and collaboration with participants was uncomplicated. One of our 

original concerns was one of conflict of interests between Mitel and Newbridge – non-

disclosure and contractual agreements with both companies established the groundwork to 

proceed with research. 

My research began roughly three years after initial relationships were established 

between our research group, the KBRE, and Mitel. Site and participant selection was 

relatively uncomplicated and involved sequestering management support and planning for 

minimal disruptions to employee workflow. Our initial plan was to provide Mitel with a set 

of synthesized diagrams they could use for new-hires. The challenging nature of qualitative 

research for the novice researcher strained the research process, and the decrease in R&D 

spending as a result of the telecommunications melt-down dissolved our partnership before 

we could provide results. The disbanded relations had an adverse effect on collecting 

further participant meaning. However, our videotaping approach made this effect limited, 

perhaps even negligible. 

                                                 
32 Incidentally, Terry Matthews started both Mitel and Newbridge – they are two blocks apart in Kanata, Ontario. At a 

glance, the similarities between the companies were startling. 
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I offer the following simple lessons. Do not underrate the trials of grounded theory 

research. Software engineering presents cultural gaps. Do not underestimate the value of an 

industrial partner. From a pragmatic perspective, this is more than funding; the value 

comes from collaboration with talented and like-minded people. These relationships form 

the possibility for creative and innovative research, connect academic research with the 

“real-world”, and allow one to face the trials of research with vigour. The lessons are 

important to the researcher who intends to embark on a similar path. 

Coder Profiles 

As described in Section 4.3, we used multiple coders to analyse our data. In addition to 

the principal investigator, five other coders reviewed at least part of the data. All of the 

coders enhanced our understanding of the coding scheme and our protocol data as a result 

of numerous discussions surrounding the methodology and data. 

Cognitive Psychology Coders: Two of the coders were doctoral candidates in cognitive 

psychology and had experience with qualitative research. Also, one of these coders had 

experience specifically in the application of grounded theory in an industrial research 

environment. Neither of these two coders had any prior knowledge of professional software 

development, though they commented that they benefited immensely from the opportunity 

to learn more about this domain which has been a subject of interest in cognitive 

psychology for some time. They furthermore commented that they understood the software 

concepts with further review of the data, at least from a high-level perspective. The benefit 

of their insight came in discussions surrounding both our methodology and also the notion 

of the snapshot as a moment of insight in the explanation of software. These two coders 

performed multiple passes over the complete data set. A third coder from the cognitive 

psychology program (unsuccessfully) coded a single participant’s data but the level of 

understanding regarding how to code data and inability to understand software concepts 

from a high-level (and therefore an inability to understand and properly code the 

explanation) made this candidate unsuitable for coding data. 

Software Coders: Of the two remaining coders, one hails from an academic 

background having completed a Ph.D. in Computer Science. In addition, this person has 

practical experience with empirical studies in professional development environments, and 
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modest experience coding data as in grounded theory, as well as programmatically coding 

complex real-time software systems. This coder coded only a single participant. The other 

software coder has a college diploma in computer programming and is therefore fluent in 

the software concepts described by our participants. This coder very quickly adopted the 

coding scheme and in general was able to work through the data at a quicker pace than the 

cognitive psychology coders. This coder performed a single pass over the complete data 

set.
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Appendix B: Snapshot Storyboards (conditions, context, 
strategies) 

This appendix provides example snapshot storyboards. We analysed the storyboards 

(c.f. Section 5.2) for each snapshot category to gain insight into commonalities and 

differences within and among snapshot categories, the conditions that contribute to the 

existence and occurrence of snapshots, and participant strategies. 

Infrastructure Snapshot (133) 

Objective measures: 

Snapshot Duration: 2 
: 3 

: 0 
t: c 

: s 
:   

: 0 
: 0 
: 0 

: 9 
: 3 

: 0 
:  2 

: 1 
: 5 

: 0 

                                                

0:4
# Model Elements
# corrections
Pause Duration following Snapsho 3 se

 

Conditions: 

ADD 3 boxe
MEAN 3
TALK
TALK-C-SE
TALK-C-OE
ADD Duration 0:2
MEAN Duration 0:1
TALK Duration
Links within zone 1-1; 1-
Loners
Loner duration 0:0

 

Context: 

TALK-D
 

Strategies:  

This infrastructure snapshot starts with a general description of a model through the 

use of layers (‘RSA is a layer that is built on top of another set of layers’). The participant 

 
33 The number ‘1’ refers to the participant identifier 
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gives a vertical order of components, which start from the bottom of the whiteboard and 

progresses upwards. The participant hints at a link between two components but offers no 

directional talk. The participant adds two boxes, explains their meaning, then adds a third 

box and explains its meaning. The participant offers no concluding rationale, instead 

moving towards the next advanced infrastructural snapshot. 
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Infrastructure Snapshot (7) 

Objective measures:  

Snapshot Duration: 7 
: 2 

: 0 
t: 5 

: 2 
: 3 

: 3 
: 1 
: 0 

: 2 
: 5 

: 9 
: 3 

:  1 
: 0 

: 0 

: 1 
: 1 

: 1 
: 0 

: 0 

1:0
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:0
MEAN Duration 0:2
TALK Duration 0:3
Links within zone 1-1; 2-
Loners
Loner duration

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE beginning
TALK-C-SE end
TALK-C-OE

 

Strategies:  

This infrastructure snapshot starts with a self-evaluative talk, which suggests less 

confidence and therefore less focused discussion in the participant’s area of expertise. The 

participant then continues with directional talk to indicate what this area of expertise is, and 

thus how the presentation will proceed. The participant uses two horizontal labels to 

represent two components, with no links between them. The participant then writes one 

component’s function on the whiteboard. The participant ends the snapshot with conclusive 

directional talk (‘this is a basis of …’). 
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Advanced Infrastructure Snapshot (3) 

Objective measures:  

Snapshot Duration: 5 
: 9 

: 2 
t: 8 

: 8 
: 6 

: 1 
: 0 
: 1 

: 0 
: 0 

: 6 
: 9 

:  2 
: 8 

: 0 

: 0 
: 1 

: 0 

2:1
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 1:2
MEAN Duration 0:5
TALK Duration 0:1
Links within zone 1-1; 1-1; 1-
Loners
Loner duration 0:4

 

Context: 

TALK-D, C-SE
TALK-C-OE beginning
TALK-C-OE end

 

Strategies:  

This advanced infrastructure snapshot starts with an objective evaluative talk about 

how to present the drawings (‘In drawing this I've found that trying to make this huge thing 

with all these little boxes just turns out incomprehensible.’). At the beginning, he hesitates 

to point to some imaginary ‘tiny little boxes here’. The participant then removes one side of 

the box and extends it. He links with the previous infrastructural model, explains the 

functionality of the components that create the first box, and then proceeds with building 

the second one. The participant does not establish links between the two boxes on the 

diagram. The snapshot concludes with general talk about the java package (‘But, there's not 
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very much in a java package, it is really just a directory structure, so this rule doesn't do 

very much. What's interesting is the class and interface transformations.’). 
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Advanced Infrastructure Snapshot (10) 

Objective measures:  

Snapshot Duration: 4 
: 3 

: 0 
t: 2 

: 3 
: 0 

: 1 
: 0 
: 1 

: 0 
: 4 

: 0 
: 0 

:  0 
: 3 

: 4 

: 0 
: 0 

: 0 
: 0 

: 1 
: 0 

2:3
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:1
MEAN Duration
TALK Duration 2:2
Links within zone
Loners
Loner duration 0:1

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE beginning
TALK-C-SE end
TALK-C-OE beginning
TALK-C-OE end

 

Strategies:  

This snapshot starts with an overview of the invisible architecture (‘there's an invisible 

part to the architecture…’), and continues with a long TALK (2 minutes and 20 seconds). 

The snapshot concludes with two lines of text added to the box. There is no conclusive talk 

at the end. 
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Example Snapshot (2) 

Objective measures:  

Snapshot Duration: 9 
: 1 

: 0 
t: 0 

: 5 
: 3 

: 3 
: 0 
: 0 

: 3 
: 0 

: 0 
: 1 

:  ; 
: 2 

: 5 

: 2 
: 0 

: 0 

3:1
# Model Elements 1
# corrections
Pause Duration following Snapsho

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 1-1
MEAN Duration 1:2
TALK Duration 0:3
Links within zone 1-1; 1-1; 1-1
Loners
Loner duration 0:3

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE, C-OE

 

Strategies:  

The snapshot starts with a statement of assumption about the listener’s knowledge (‘So 

let's assume you know what a class looks like when you draw it …’), continues with an 

extensive talk while drawing, and then states four directional questions and answers them. 

The participant states one practical problem (‘Now, we drew this (the list) on the screen, 

how does that work?’) after drawing an actor on the whiteboard, he steps back and asks 

another question (‘How do I create a request from this?’). He makes a long explanation of 

element’s functionality (00:01:15), with no conclusive talk at the end, but proceeds toward 

the next snapshot. 
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Example Snapshot (6) 

Objective measures:  

Snapshot Duration: 5 
: 7 

: 1 
t: 4 

: 6 
: 2 

: 1 
: 0 
: 0 

: 1 
: 9 

: 5 
: 1 

:  ;  
: 4 

: 7 

: 1 
: 0 

: 0 

02:2
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 1:3
MEAN Duration 0:3
TALK Duration 0:1
Links within zone 1-1; 1-1
Loners
Loner duration 0:5

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE, C-OE

 

Strategies:  

The snapshot starts with an objective evaluation about the existence of one editor that 

should be used, instead of propagating different versions. The participant states a practical 

question (‘The one issue could be how do you get to this, how do you make a query’), and 

when asked to show some cases, the participant proposes going step-by-step in the 

presentation and at the same time shows uncertainty in the graphical display (‘I have to go 

step by step, for example, in this use case here, the user will first select…I don't know how 

to draw this, because…). The participant then writes each step in text on the whiteboard 

(e.g., ‘user selects WSDL creation tool and drops it onto the diagram,’). The participant 
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then concludes with a summary (‘All these steps, you select, then the drop a few wizards, 

name, service name, all the details, then to finish this will draw, so this is a use case.’). 
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Lateral Snapshot (5) 

Objective measures:  

Snapshot Duration: 8 
: 4 

: 1 
t: 5 

: 4 
: 2 

: 0 
: 2 

: 5 
: 0 

:  1 
: 4 

: 7 

: 0 

1:0
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
ADD Duration 0:2
MEAN Duration 0:4
TALK Duration
Links within zone 1-
Loners
Loner duration 0:4

 

Context: 

TALK-D, C-SE, C-OE
 

Strategies:  

The participant develops a structural explanation of one of Eclipse’s components, and 

the participant draws the structural elements of the diagram. The participant explains that 

some components are not used and limits his presentation to one aspect of the infrastructure 

(‘so I just put them there to show that there is a way to extend the Eclipse platform in a lot 

of different areas from reporting to testing to development environment.’). The participant 

builds on top of the Eclipse components with boxes. The participant also links this diagram 

with previous drawings (C/C++ box which is the same as the one in a previous diagram – 

‘and if you remember the previous drawing we have a C/C++ box, we're just reusing the 

same box from the Eclipse foundation package’). The participant also expands on other 

tools on the top of Eclipse by adding two more boxes. The participant removes parts that 

represent lateral components of the infrastructure. The key feature of this snapshot is the 
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focus on the supplementary information about the pre-existing infrastructure – the key 

reference to non-core information is critical. 
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Lateral Snapshot (2) 

Objective measures:  

Snapshot Duration: 3 
: 6 

: 0 
t: 0 

: 3 
: 3 

: 1 
: 0 
: 0 

: 1 
: 5 

: 2 
: 3 

:  1 
: 3 

: 5 

: 1 
: 0 

: 0 

2:1
# Model Elements
# corrections
Pause Duration following Snapsho 0:1

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:3
MEAN Duration 1:2
TALK Duration 0:1
Links within zone 1-1; 1-
Loners
Loner duration 1:2

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE, C-OE

 

Strategies:  

The participant develops the lateral functional snapshot on the edit part through the 

provision of a forward-looking statement, a question, and an evaluation of the model’s 

simplicity. There is directional talk at the beginning: ‘Coming back to the model, whenever 

an element changes there are events that get fired, and in this case it will be semantic 

events, and in this other one it will be notational events’, and also ‘how do we listen to it?’, 

and then ‘it's very simple…’. The participant draws a model (cylinder) on the whiteboard 

and adds a table with labels in it. The participant finishes with 58-second concluding talk 
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about the functionality of an edit part that underlines the essence of this lateral sequence of 

this presentation. The concluding remark is: ‘So that takes care of the edit part.’. 
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Weak Snapshot (4) 

Objective measures:  

Snapshot Duration: 3 
: 7 

: 1 
t: 5 

: 6 
: 1 

: 3 
: 2 
: 0 

: 1 
: 2 

: 2 
: 8 

:  1 
: 5 

: 9 

: 1 
: 0 

: 1 
: 1 

: 0 

1:2
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:5
MEAN Duration 0:1
TALK Duration 0:1
Links within zone 1-
Loners
Loner duration 0:4

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE beginning
TALK-C-SE end
TALK-C-OE

 

Strategies:  

The participant is quick to start, and provides a self-evaluation (‘I am trying to think 

because it has been some time before I was on this.’). The participant continues by drawing 

structural components on the whiteboard (‘in terms of classes…’). No functionality is 

explained, and no concluding talk is given. The participant finishes with another structural 

element ‘I don't remember exactly what it looked like.’). The participant added lines of text 

on the board, with one remove-practical, and with frequent use of expressions such as 

‘there were …’, or ‘we would have…’ The participant’s content is incomplete at the end of 
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this sequence and the participant is reduced to a subjective evaluation (‘I am a bit fluffy 

here. I don't remember exactly what it looked like.’). 
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Weak Snapshot (8) 

Objective measures:  

Snapshot Duration: 9 
: 3 

: 0 
t: 4 

: 3 
: 1 

: 5 
: 3 
: 2 

: 0 
: 3 

: 4 
: 2 

:  1 
: 2 

: 5 

: 0 
: 1 

: 1 
: 1 

: 0 

1:4
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:3
MEAN Duration 0:0
TALK Duration 1-1
Links within zone 1-
Loners
Loner duration 0:2

 

Context: 

TALK-D
TALK-C-SE beginning
TALK-C-SE end
TALK-C-OE beginning
TALK-C-OE end

 

Strategies:  

The participant starts with a self-evaluation – where the participant worked before and 

how much the participant knows about profiles (e.g., ‘You'll have to take my answer with a 

bit of a grain of salt,’ and ‘I don't know much about dynamic EMF…’). He adds boxes 

such as ‘e-class’ and features such as ‘foo’, … (he leaves one box without a label in it) and 

objects that are instances of a class. The participant conveys the present understanding of 

how profiles are used, and shows a lack of knowledge (self-evaluative talk) of how they 

function, ‘How they persist, that info and how they keep it up to date I don't know’.
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Functional Snapshot (6) 

Objective measures:  

Snapshot Duration: 4 
: 1 

: 0 
t: 0 

: 2 
: 5 

: 0 
: 0 
: 0 

: 0 
: 3 

: 7 
: 0 

:  1 
: 4 

: 0 

: 0 

2:0
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:2
MEAN Duration 1:4
TALK Duration
Links within zone 1-
Loners
Loner duration 1:2

 

Context: 

TALK-D, C-SE, C-OE
 

Strategies:  

The participant selects the Aurora platform plug-ins to explain in more detail. During 

the presentation the participant adds just a few lines, provides functional talk about plug-ins 

(‘so these are plug-ins, think in terms of plug-ins, they provide… …some service.’). He 

adds new services and explains their function on the fly. He provides no drawings, only 

functional explanations. The participant concludes with the notion of what every newcomer 

should know about the services provided by the Aurora platform (‘So, we use a whole 

bunch of service here we use, as a newcomer you need to know, not the whole service, but 

the service required to implement only this part. You implement using the platform, 

somebody can implement from the ground level’). 
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Functional Snapshot (12) 

Objective measures:  

Snapshot Duration: 5 
: 5 

: 1 
t: 0 

: 9 
: 9 

: 0 
: 0 
: 0 

: 0 
: 8 

: 5 
: 0 

:  1 
: 8 

: 4 

: 0 

3:5
# Model Elements 1
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 1:2
MEAN Duration 2:2
TALK Duration
Links within zone 1-1; 2M:1A; 2M:1A; 1-
Loners
Loner duration 1:2

 

Context: 

TALK-D, C-SE, C-OE
 

Strategies:  

The participant talks about the ‘BPEL’ editor and its functions. The participant adds 

boxes and explains their structure, adds text lines on the board with structural description, 

and splits the main display into left and right parts. The participant extensively uses the 

whiteboard to build a model with numerous boxes and labels on it. However, he gives no 

directional talk, and no conclusive talk in this part. The participant makes links with 

previously presented models. The participant frequently uses the expression ‘we have’ this 

and that in the presentation. The only real functional part here is at the end of this section 

when the participant gives a functional explanation for the edit part (27 sec.). All previous 

explanations are structural (MEAN-S-C). 
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Sequential Snapshot (9) 

Objective measures:  

Snapshot Duration: 1 
  c 

: 8 
: 2 

t: 9 

: 3 
: 5 

: 5 
: 0 
: 0 

: 5 
: 5 

: 5 
: 5 

:  1 
: 0 

: 0 

: 4 
: 0 

: 0 

9:0
Type of SNAP preceded L-fun
# Model Elements
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 0:5
MEAN Duration 3:3
TALK Duration 0:4
Links within zone 3M:1A; 1-1; 1-
Loners
Loner duration 0:0

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE, C-OE

 

Strategies:  

The participant constructed a lateral snapshot on the extensibility mechanism with the 

UML diagram core; the participant expands this discussion in this sequential snapshot. The 

participant states the question: ‘What is a UML class shape?’ The participant asks how to 

visualize the UML class, and chooses the box form. The participant also asks a directional 

question about filling up the box while he draws a diagram (‘how do we know how to 

populate what's inside the box if we didn't have the semantic reference?’). The participant 
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presents strong concluding talk for over a minute, describing the overarching function of 

the name and list compartments. 
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Sequential Snapshot (2) (Please note, prior snapshot included in values below) 

Objective measures:  

Snapshot Duration: 9 
   

: 5 
: 3 

t: 5 

: 6 
: 4 

: 4 
: 0 
: 0 

: 4 
: 8 

: 2 
: 3 

:  1 
: 5 

: 2 

: 3 
: 0 

: 0 

4:2
Type of SNAP preceded Exam
# Model Elements 1
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 1:5
MEAN Duration 1:5
TALK Duration 0:3
Links within zone 1-1; 1-1; 1-
Loners
Loner duration 1:0

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE, C-OE

 

Strategies:  

The participant provides a sequential snapshot built on a previous example snapshot. 

The participant returns to diagrammatic material and starts with a directional question (‘you 

want to create something, so on the palette tool ... what do we do?’). The participant 

creates a large box with smaller boxes and a circle in it to represent the structure of an 

application interface. The participant produces a sequence diagram. The participant 

concludes with strong directional talk about where the explanation is going (36 seconds). 
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Complete Snapshot (1) 

Objective measures:  

Snapshot Duration: 9 
  c 

: 3 
: 0 

t: 2 

: 7 
: 7 

: 2 
: 1 
: 0 

: 1 
: 3 

: 9 
: 4 

:  1 
: 1 

: 5 

: 0 
: 1 

: 0 

3:5
Type of SNAPs preceded Infra, advinfra, L-fun
# Model Elements 1
# corrections
Pause Duration following Snapsho 0:0

 

Conditions: 

ADD
MEAN
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 1:5
MEAN Duration 1:4
TALK Duration 0:1
Links within zone 1:2; 1-1; 2:3; 1:2; 1-
Loners
Loner duration 0:0

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE, C-OE

 

Strategies:  

The whole sequence starts as a short introductory talk in which the participant 

announces exactly what he is about to draw on the whiteboard. With ‘skipping some 

various components in between’ the participant develops the main structure, and then the 

components of one basic part of the infrastructure (RSA). The participant then directs focus 

on the main structure, and towards the practical products it delivers. The participant then 

explains what the actual practice is in the working team – to deliver that transform. Then, 

the participant develops the transformation structure, with elements in it. The participant 
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describes the structure of transforms, and adds the transform applyGUI, describing what it 

is and what it does. The participant finishes with a directional talk – ‘So that's the high 

level overview’. An illustration of this complete snapshot may be found in Figure 4.18 

(Snapshot 3). 
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Complete Snapshot (8) 

Objective measures:  

Snapshot Duration: 0 
  

: 2 
: 0 

t: 1 

: 5 
: 1 

: 6 
: 1 
: 1 

: 4 
: 1 

: 8 
: 4 

:  1 
: 8 

: 3 

: 1 
: 1 

: 0 
: 1 

: 0 

5:2
Type of SNAPs preceded Infra, advinfra 
# Model Elements 1
# corrections
Pause Duration following Snapsho 0:0

 

Conditions:  

ADD 1
MEAN 1
TALK
TALK-C-SE
TALK-C-OE
TALK-D
ADD Duration 2:3
MEAN Duration 1: 5
TALK Duration 1-1
Links within zone 3:2; 1-1; 1-1; 1-1; 1-1; 3:1; 1-1; 1-
Loners
Loner duration 1:0

 

Context: 

TALK-D beginning
TALK-D end
TALK-C-SE beginning
TALK-C-SE end
TALK-C-OE

 

Strategies:  

The participant starts with a short directional talk (‘the first thing that everybody does 

now, when they look at Aurora. After our last release, we agreed on certain high level 

architectural constructs; so, I'll draw them in UML-type form…’), provides the layers in 

the core structure, and finishes at one moment with a concluding talk. Then, he proceeded 

to offer a complete explanation of mechanics between layers (0-4) in the model (‘The idea 

is that this sort of layering approach is beneficial because we can distinguish application 
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from platform and as you go up the layers you're increasing your functionality, you start at 

the layer 0 and you pretty much have just mini tech that are built on top of Eclipse.’). 
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Appendix C: Wide Pattern Base (Initial analytic steps) 

In this appendix, we introduce a high-level description of a pattern language for 

software comprehension. Our intent is not to present a final, definitive pattern language. In 

fact, the patterns community believes that patterns evolve over time; they contain mistakes 

and it is worthwhile trying to fine-tune them over time. Our intent is, rather, to demonstrate 

the kinds of things a pattern language for software comprehension might contain, and to set 

the scene for further development of the language, and, based on the language, for tool 

support. The patterns we outline were found in the initial analysis of the research described 

in Chapter 3. 

We leave it as an open research question whether these patterns and pattern languages 

constitute a strong basis for software comprehension. We will, however, demonstrate by 

example that some parts of the language are grounded in reality. 

Pattern Language Summary 

Figure C1 illustrates the relationships among the highest-level patterns. Arrows point 

to other patterns which help resolve the forces introduced or partially resolved by a pattern. 

The patterns in this language jointly resolve difficulties users have in understanding 

software. 

 
Figure C1: Pattern Language Thumbnail 
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The Patterns 

Below are concise descriptions of the high-level patterns in our pattern language for 

software comprehension. We will not go into detail regarding the individual sub-patterns 

(presented in italics), leaving this as future work. The exception to this is Temporal Details, 

which is the topic of this dissertation. 

Big Picture 

Today’s monolithic software systems defy human comprehension when presented in 

their barest form, source code. Furthermore, even understanding abstract representations of 

large systems, such as UML diagrams, borders on the unmanageable [7]. There is no doubt 

that the creation of a high-level abstraction may ease the task in understanding. However, 

human capacity for seeing the “big picture” is poorly understood [1]. This seminal issue 

serves as a primary motivator for research in reverse engineering [30] software 

visualization [135] and software architecture [18]. 

Big Picture is central in our pattern language for software comprehension. It breaks 

down into sub-patterns describing user representation strategies, such as: 

• Set Boundaries 

• Assessing Level Of Abstraction [18] (the ability to filter out fine-detail to get the big 

picture can be an advantage [108]) 

• Amalgamating Multiple Views [110]  

• Incremental Construction of the big picture 

Relationships to other patterns include: 

• Show appropriate Necessary Details 

• Making use of Culture (which is termed Corporate Memory in [95]) 

Collectively, the sub-patterns of Big Picture address the issue of how to utilize 

software knowledge at a high level of abstraction. 

Baseline Landmark 

During our videotaped whiteboard sessions, participants indicated “I know about this 

[software component] only in terms of something else”, or “I know about this only because 
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I believe it is similar to another concept I already understand.” These quotes are ideal 

illustrations of the Baseline Landmark pattern. 

We make use of our previous experiences when deliberating over new maintenance 

tasks. Moreover, in these prior experiences we encounter entrenched landmarks, or ‘points 

of crossing’ with other experiences, which enrich our understanding and become 

foundations for future comprehension. We return to them regularly in order to understand 

disparate aspects of the software system. The Baseline Landmark is central to the 

understanding of complex systems, and allows us to understand a software system without 

starting afresh. Alternatively, this pattern could have been named ‘Starting Point’; 

however, ‘Baseline Landmark’ evokes the notion we return to the landmarks often, and not 

necessarily as a starting point. Baseline Landmark is similar to concepts such as beacons 

[38, 148], frame-of-reference, and analogical reasoning. 

This pattern addresses how users solidify understanding around central details in a 

variety of topics including: 

• Familiarity and Recognition 

• Centrality 

• Navigation Links 

• Reference Points 

• Non-Central Landmarks 

Baseline Landmark may be related to how people navigate complex terrains (for a 

comparison of program comprehension with urban exploration, see also [94, pp.6-9]). 

People find some highly recognizable landmark (e.g. a tall building, a river). This landmark 

seems to tie to many other things and therefore serves as a reference and forms a basis for 

navigation. 

This pattern describes the central details of the greatest importance. To complement 

this, the next pattern comprises the important visual details in an appropriate 

representation. 
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Imagery 

To boldly repeat an overused aphorism, “a picture is worth a thousand different words 

to a thousand different people.” However, the question of which words are worth 

representing in pictures provokes a number of complex issues. The complexity lies not just 

in the information to be visualised, but also in the information's context of use [106]. 

The Imagery pattern describes ways by which a software developer represents their 

mental model of complex software through diagrams and symbols in order to facilitate 

understanding. This pattern explores further issues of representation, such as: 

• Understanding Static Representations 

• Understanding Dynamic Behaviour 

• Changing Perspectives 

• Illustrating Representations Over Time 

• Personal Representation vs. Cultural Dependency 

• Controlling Representation 

• Convention 

• External Memory 

• Cognitive Structures 

Through exploration of cognitive procedures for the interpretation of graphic 

visualizations of software, the Imagery pattern explores which diagrammatic techniques 

correspond to images in the user’s mind. The Big Picture and Imagery patterns together 

describe the way in which people create selective representations when they understand 

software. These selective representations may manifest in diagrams, whiteboard sessions, 

and the backs of napkins, or else may remain merely in the user’s mind. 

Within a representation, a user accesses and interprets details and landmarks. The next 

three patterns highlight particular kinds of details people tend to think about and represent 

when understanding software. 

Necessary Details 

Users may understand software better through abstractions they create themselves 

[129]. Although the reverse engineering and software architecture literature indicates 

180 



Appendix C: Wide Pattern Base 

‘create and support abstractions’, little empirical validation has been performed to 

determine which abstractions are valid and appropriate and for which users. The Necessary 

Details pattern explores how users understand what is necessary, but not more than is 

needed. 

When users establish a Big Picture, they add and remove details from their 

representation, and set boundaries outside of which lay unimportant details. Within these 

boundaries lies Necessary Details. Necessary Details may change over time, and thus we 

see a special relationship with Temporal Details. This pattern recognizes challenges in 

comprehending suitability through the following issues: 

• Required Depth vs. Inappropriate Depth 

• Temporal Quality 

• Big Picture Boundaries 

• How human minds Add Detail or Remove Detail 

• User Preferences for necessity 

The Necessary Details pattern addresses creating and supporting the right abstractions 

for representations. The next language expresses the flexible evolution of representation 

within a user’s mind. 

Temporal Details 

Everything about our understanding of software is affected by time. Mental 

representations and their internal details change over time. This pattern illustrates the 

dynamics of time within the user’s mind, and is the topic of this dissertation.  

Transitions are the centre of discussion in the next pattern. The Baseline Landmark, 

Necessary Details, and Temporal Details patterns collectively concentrate on the details of 

a representation insofar as centrality, importance, and time are concerned. However, when 

a user accesses a representation, they do not merely add and remove elements over time, 

creating a gargantuan, unruly representation. Rather, they express their representation in 

terms of multiple views, and navigate between these views to allow ease of transition 

through comprehension procedures. 
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Navigation 

Software engineers perform ‘Just in Time Comprehension’ [125] by repeatedly 

searching for source code artefacts and navigating through their relationships. This 

navigation is broken down into two distinct categories [124], browsing (exploratory, no 

distinct goal) and searching (planned, distinct goal in mind). The Navigation pattern 

describes how users cognitively browse and search mental representations. 

Navigation is a principal pattern for software comprehension. Humans navigate to 

better understand the boundaries of a Big Picture, or to assess which are the Necessary 

Details. We navigate from a Baseline Landmark to other distinct parts of a system. And 

finally, how and what we navigate changes over time (Temporal Details). Undeniably, 

navigation is a fundamental human cognitive procedure. This pattern language analyses: 

• Strategies for system navigation (i.e. Use Cases, Sequentially, Breadth-first, Depth-

first, Opportunistic, Polymorphic Implementation, Categorized Methods, etc.) 

• Strategies for comprehension (Bottom-up, Top-Down, Opportunistic, As-Needed, 

Integrated Metamodel, etc.) 

• Humans using their prior experience for further understanding (Historical 

Experience, a special case of understanding by feature) 

• Points Of Crossing 

Hitherto, we discussed a user’s cognitive procedures with respect to representation, 

details, and navigation. To conclude our pattern language, we delineate that which 

influences the cognitive procedures in the subtlest of ways, culture. 

Culture 

Typically, knowledge about architecture and design tradeoffs, engineering constraints, 

and the application domain only exists in the minds of the software engineers [18]. The 

organization aims to capture this knowledge through adequate documentation, mentoring, 

team building, etc. The goal of this approach is to strengthen the organization’s ability to 

solve highly complex problems through the support of the people that work within the 

organization. These practices form the basis of Culture, our final pattern, and one we 

believe is a rich area of research. In our opinion, tools often support concepts specific to 

software engineering, but rarely leverage culture to support concepts specific to a domain 
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or organization. Sub-patterns include Cultural Memory, Mentoring, and Organization 

Specific.
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Appendix D: Glossary 

Comprehension: The act or faculty of understanding, especially of writing or speech 

[105]. See also Comprehension, Program and Comprehension Process. 

Comprehension in computing is not a novel topic [90], though the landscape has 

changed significantly from mere programming to the complex process of modern software 

development in which programming is only one component. 

Anderson [10] claims comprehension involves a perceptual stage, followed by a 

parsing stage where words are transformed into a mental representation, and followed by a 

utilization stage where the mental representation is used. Bernhardt [20] provides 

references to the early debate over the question “What is Comprehension?” First, she 

relates Rumelhart’s [115] and others’ view: understanding is not a process of breaking 

complex units of language into simpler ones, but rather, a process of taking multiple units 

and building them into representations. Next, she relates the view held by Brown and Yule  

[26]: a proficient reader is one who builds an accurate conceptual representation of written 

materials. Instead of referring to explicit components in a text, those who comprehend the 

material refer to their inferences and generalizations about a text’s meanings [20]. The 

critical point is that a reader may build a completely inappropriate model of text meaning 

without becoming aware of the problem. 

The interpretation of text is not dissimilar to categorization – chunks of text are 

combined in memory into larger cognitive units [16]. Like categorization, combining 

chunks into cognitive units may support the “comprehender” [113]. This support may 

include economy and communication (if culturally-shared structures are used to represent 

texts, interpretations can be shared with those who share those structures). 

Textual comprehension is therefore a process involving the building of representations 

from inferences and generalizations of the meaning of text. 
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Comprehension, Program: (Section 2.4) The process of the acquisition of knowledge 

about a computer program [114]. Also called program understanding or software 

comprehension34 [22] 

We extend the definition of textual comprehension to software as follows: software 

comprehension is the process of building representations (e.g. tool output, mental 

representations) from inferences and generalizations of the meaning of software artefacts 

(e.g. design documents, source code, test cases) or the communication among software 

professionals (e.g. in meetings, whiteboard sessions, emails, and off-the-cuff discussions). 

The goal of the program comprehension community is to enhance scientific knowledge 

about understanding, with the ultimate objective of developing more effective tools and 

methods [128]. We consider program comprehension a challenging manual task, relevant 

to common software tasks such as software evolution, maintenance and documentation. 

Many researchers ground their research in program comprehension with the following 

introductory argument: programmers who engage in software evolution devote more than 

half of their time to program understanding35. 

Research in program comprehension includes research into such topics as beacons [25, 

54, 145], chunking [38, 148], comprehension processes, comprehension models, 

comprehension strategies (including programming plans), concept assignment [21], the role 

of expertise [19, 136, 146] (including programming knowledge), mental models, program 

slicing [144], representation form effects [35], and software psychology. Many of these 

topics still receive attention. Additionally, new areas of interest include cognitive support 

[140-142] and individual differences [47, 71]. 

Comprehension Process: (Section 2.4) The process of creating a mental model. A 

collection of processes, or the study thereof, may contribute to a more complete model of 

comprehension. 

Diagram: A two-dimensional symbolic representation, of processes, features, etc. that 

employs lines, shapes and symbols. See also, Model. 
                                                 
34 The term “software comprehension” is more circumspect, reflecting the nature of modern software development as 

more significant than programming. The term “program comprehension” is widely used, however. Also the words 
‘understanding’ and ‘comprehension’ are synonyms. 

35 Modern empirical evidence, confirming this widely accepted claim, would be most welcome. 
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Diagrammatic Reasoning: (Section 2.5) The study of representations; in particular, 

how natural and artificial agents create, manipulate, reason about, solve problems with, and 

in general use such representations [11]. Research in diagrammatic reasoning has two 

goals, beyond understanding the diagramming phenomena and its processes [56, pp.xxi]. 

The first goal is to deepen our understanding of the way in which we think. The second 

goal is to provide the scientific base for constructing diagrammatic representations that 

software can store and manipulate. These goals are not only of interest to design theorists, 

who regularly contribute to HCI and are absorbed in the role of sketches and diagrams as 

design aids [56, pp.xv], but also philosophers, cognitive psychologists, logicians, AI 

researchers, and of course, tool developers. 

Manipulate: (Chapter 6) Changing a network of recorded snapshots using some form 

of tool. In particular we consider it possible to manipulate prior versions, that is, the after-

the-fact exploration of “what if” scenarios. 

Meaning: (Chapter 6) The rationale for transitions between versions (c.f. versions and 

transitions). 

Model: An integrated representation, containing multiple diagrams, each acting as a 

view of some of the information in the model. See also, Diagram, Model, mental, Model, 

final and Model, prior. 

When discussing a representation of software, we will use the term “model” as 

opposed to “diagram”. Diagrams are found in models, but a model is more: The model as a 

whole will contain information from many dimensions including form, time, and rationale; 

not all of the information will appear on diagrams. 

Model, prior: (Chapter 6) A model version as it existed in the past. 

Model, final: (Chapter 6) A model as it stands at the present moment, even though the 

model may evolve still further in the future. 
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Model, mental (mental model): An internal representation [32, 67, 68] of a situation 

constructed within an individual’s mind in order to manipulate or predict an outcome36. See 

also Comprehension Process. 

Mental model research has roots in reading comprehension. Regarding software, a 

mental model is a mental representation of a human’s knowledge of software. Mental 

model research constitutes the philosophical underpinning of many fields within cognitive 

science. 

Various terms have been used to describe the notion of mental models [126]. We adopt 

Norman’s notion of mental model [100], and Farooq and Dominick’s notion of cognitive 

models [49], which we describe presently. Norman suggests five models of a software 

system: 

• the target system (the software system, source code) 

• the conceptual model of the target system (target system representations, e.g. UML 

models) 

• the system image (impression or presentation of software system to users, e.g. 

software user interface) 

• the user’s mental model of the target system (“what people really have in their 

heads and what guides their use of things” [100, pp.12]) 

• the scientist’s conceptualization of the mental model (a model of the mental model) 

Farooq and Dominick [49] suggest the fifth point is better described as a “cognitive 

model.” A cognitive model describes the mental processes and information structures 

humans use to complete a task; to be precise, a researcher’s conception of a mental model. 

Norman suggests that the root of a system’s design or implementation is the designer’s 

mental model [101]. To align the designer’s mental model with the user’s mental model is 

deemed essential. The reasoning is that the designer can only communicate with the user 

through the “system image”, the designer’s materialised mental model. 

There are two implications for tool design. The first inference is the following: tools 

that aid a software designer should produce the right mental model or the resulting software 

                                                 
36 Though an open research question, we drive this research from the assumption that people indeed create mental models. 
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system may suffer. From this inference we deduce that tool developers should anticipate 

the mental models produced by their tools. The second inference is critical: tool developers 

will inevitably design their tools based on their own mental model. Based on these 

inferences, we arrive at a critical point. Tool developers must have the right mental model 

for themselves and for their users37. 

Pattern: (Section 2.7 and Chapter 6) A structured exposition of a solution to a 

recurring problem in a specific context through which readers gain understanding. 

Although this is our definition of pattern, the definition of pattern is a source of debate 

[138]. A common definition, from Alexandrian theory, is that a pattern is a solution to a 

problem in a context. This definition describes elements of a pattern, but has been 

dismissed (most notably in [137]) on account of lacking notions of recurrence, teaching, 

naming and structure. 

According to Lea [76], our definition will not suffice. If we want to follow Alexander 

and produce quality to make people feel more alive, then patterns must also include 

properties of encapsulation, generativity, equilibrium, abstraction, openness, and 

composability. However, as with anything that needs defining, the definition cannot 

include every aspect. 

Each pattern encapsulates a well-defined solution to a problem such that we know the 

problem is real, and when to apply the pattern. Generativity, despite the confusing 

discussion in the literature, simply means a pattern helps the reader solve problems the 

pattern does not address explicitly, i.e. emergent problems. Equilibrium signifies that the 

intricacies and variables influencing a problem (known as forces) come into balance 

through the solution38. Patterns represent abstractions of empirical experience in addition to 

common knowledge. Openness means patterns may be extended to arbitrarily fine levels of 

detail. We can sub-divide a pattern into many smaller patterns. Composability, finally, 

refers to pattern languages expressing the layering between higher and lower-level patterns. 

                                                 
37 In this context, technically speaking, the users’ mental model is the cognitive model. 
38 A classic example is that efficiency and maintainability might be balanced. In the earliest days, efficiency (time) and 

memory requirements (space) were traditional forces in software development.  
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Pattern Language: (Section 2.7 and Chapter 6) A pattern language is a high-level 

pattern that breaks down into lower-level patterns or pattern languages, thus forming a 

hierarchy. Pattern names collectively form a vocabulary, which facilitates communication 

between people within a particular field. 

System: (Chapter 6) The software being modelled. Chapter 6 presents patterns for 

teaching or understanding an existing complex systems through the details of the system 

history, such as prior states or decisions. 

Theory: (Sections 2.6 and 5.3) A set of interrelated constructs (variables), definitions, 

and propositions that presents a systematic view of phenomena by specifying relations 

among variables with the purpose of explaining natural phenomena [70, pp.64]. The notion 

of interrelated constructs also contains the idea of theoretical rationale, “specifying how 

and why the variables and relational statements are interrelated” [74, pp.17]. The theory 

relates independent and dependent variables in a study, and then provides an explanation 

for how and why the code explains or predicts the dependent variable. One way to develop 

theories is to build them through field observation. 

The notion of theory is essential to science and engineering. Scientists develop and 

validate theories; engineers apply validated theories. According to Newell and Card [98], 

“Nothing drives basic science better than a good applied problem.” Likewise, Lewin [82] 

states, “There is nothing so useful as a good theory.” However, in the same vein, the 

theorist should heed a popular quote of Friedrich Engels, “An ounce of action is worth a 

ton of theory.” 

Transition: (Chapter 6) A change between versions. See Version. 

Version: (Chapter 6) The state of a model after a group of changes. We are interested 

in the versions of models under development as well as versions of models representing 

discrete software releases. 

A recurring theme in the Temporal Details chapter is the model that evolves over time. 

Models may evolve over time because they are developed over time, or because the artefact 

the model represents changes over time, and therefore the model correspondingly adjusts to 

match or capture this change. See Transition, Model. 
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