

The Convergence of Modeling and Programming:

Facilitating the Representation of Attributes and Associations in

the Umple Model-Oriented Programming Language

by

Andrew Forward

PhD Thesis

Presented to the Faculty of Graduate and Postdoctoral Studies in
partial fulfillment of the requirements for the degree

Doctor of Philosophy (Computer Science1)

Ottawa-Carleton Institute for Computer Science
School of Information Technology and Engineering

University of Ottawa
Ottawa, Ontario, K1N 6N5

Canada

© Andrew Forward, 2010

1 The Ph.D. program in Computer Science is a joint program with Carleton University, administered by

the Ottawa Carleton Institute for Computer Science

 ii

Acknowledgements
A very special, and well-deserved, thank you to the following:

a) Dr. Timothy C. Lethbridge. Tim has been a mentor of mine for several years, first as one

of my undergraduate professors, later as my Master’s supervisor. Tim has again helped to shape

my approach to software engineering, research and academics during my journey as a PhD

candidate.

b) The Complexity Reduction in Software Engineering (CRUISE) group and in particular

Omar Badreddin and Julie Filion. Our weekly meetings, work with IBM, and the collaboration

with the development of Umple were of great help.

c) My family and friends. Thank you and much love Ayana; your support during this

endeavor was much appreciated despite the occasional teasing about me still being in school.

To my mom (and editor) Jayne, my dad Bill, my sister Allison and her husband Dennis. And, to

my friends Neil, Roy, Van, Rob, Pat, and Ernesto – your help will be forever recorded in my

work. Finally a special note to Ryan Lowe, a fellow Software Engineer that helped to keep my

work grounded during our lengthy discussion about software development – I will miss you

greatly.

d) Software professionals around the world. Sincere thanks to the individuals that

participated in my research, published valuable references for my writing, as well as to those in

the various news-groups about software engineering that I follow. Your knowledge and insight

helped provide the necessary substance for my work.

 iii

Abstract

This thesis investigates approaches to model-driven development (MDD) in which developers

can keep using their familiar textual programming languages, but with additional model-

oriented concepts. The added concepts include associations and attributes as found in the

Unified Modeling Language (UML), as well as concepts from software patterns and other

common programming abstractions.

By keeping text at the forefront of development, we maintain all of the advantages of text,

without having to sacrifice the benefits of diagrams. By allowing a model to be equally

expressed in either diagrammatic or textual form, we enable what we have termed text-diagram

duality, a duality that benefits programmers and modelers alike.

We explore why software developers in some situations prefer diagrams, but tend to revert to

textual means to write and maintain software systems. To explore the capabilities of modeling in

code, we developed a model-oriented programming language called Umple. At its core, Umple

is a family of object-oriented languages enhanced with additional abstractions. Umple supports

both platform-independent models (PIM), as well as platform specific models (PSM). Umple

currently integrates with Java, PHP and Ruby; referred to as base languages throughout this

thesis. Our research focuses on investigating the opportunities and obstacles we discovered in

the course of implementing and using UML-like associations and attributes in Umple.

It is our hypothesis that current features available in object-oriented languages can be enhanced

with a more model-oriented approach, providing a textual form for modeling concepts that have

been primarily available diagrammatically. By providing modeling abstractions in a

programming language, the complexity and size of the resulting systems, we argue, is reduced

and more developers, particularly those who are used to writing code, will be more eager to

adopt modeling practices. At the same time, our approach maintains the benefits of

diagrammatic approaches to software development, since Umple can be rendered and edited as a

UML-like diagram.

Our primary contributions to the field of computer science are as follows: First, we provide an

empirical investigation on the nature of modeling practices. Second, we present the design,

implementation and analysis of a model-oriented language, Umple. The language is presented as

enhancements to existing programming languages including Java, PHP and Ruby.

 iv

Table of Contents
Chapter 1 Introduction...1

1.1 Research Questions ..2

1.2 Hypothesized Solutions ..6

Chapter 2 Attitudes Towards Software Modeling – a Survey...8

2.1 Attitudes towards Modeling ...8

2.2 The Preliminary Study: Categorizing Software Applications ..10

2.3 The Main Study: Modeling Survey ..13

2.4 Demographics of the Modeling Survey..14

2.5 Modeling Survey Results ...15

2.5.1 What is a Software Model? ...16

2.5.2 Creating Versus Consuming Software Models ...16

2.5.3 What Modeling Notations Do You Use?...17

2.5.4 How Are You Using Your Modeling Tools? ..18

2.5.5 How Good Are Your Modeling Tools?...19

2.5.6 Important Attributes of a Software Model ..19

2.5.7 Which Approach, Code Versus Model Works Best? ..21

2.5.8 Model-Centric Issues and Concerns ..22

2.5.9 Code-Centric Issues and Concerns ..24

2.6 Threats to Validity ..25

2.7 Contributions of the Modeling Survey ...26

Chapter 3 Umple: A Model Oriented Language ...28

3.1 What Models and Modeling Languages Should Be ...29

3.2 Motivations...34

3.2.1 Lack of Adoption of Modeling..34

3.2.2 Reducing the Need to Program Boilerplate Code ...35

3.3 Description of Umple ...36

3.3.1 Simple..36

 v

3.3.2 UML Programming Language ..37

3.3.3 Ample ..38

3.4 Motivating Examples..38

3.4.1 Course Registration ...38

3.4.2 Airline Reservation System...39

3.5 Overview of Umple Entities ...41

3.5.1 Attributes ...41

3.5.2 Associations...42

3.5.3 Generalizations ..43

3.5.4 Action Semantics Using Java-Like Methods ..44

3.6 Umple Design and Tooling ..46

3.6.1 Umple’s IDE Tooling ..46

3.6.2 Modeling in the Browser ...47

3.7 Defining the Umple Language ...50

3.7.1 Grammar Notation...50

3.7.2 Umple Metamodel ...54

3.8 Alternative Approaches and Representations to Modeling ..58

3.8.1 Eclipse Modeling Framework ...58

3.8.2 Executable UML (xUML or xtUML)..64

3.8.3 Specification Description Language (SDL) ..66

3.8.4 Xtext ..68

3.8.5 Microsoft’s SQL Server Modeling CTP (formely Oslo)...69

3.8.6 USE - A UML-based Specification Environment ...70

3.8.7 Slime UML..71

3.8.8 PlantUML ..72

3.8.9 Embedding Models in Source Code ..72

3.8.10 Active Record ..73

3.8.11 Data Mapper Pattern..76

 vi

3.8.12 Aspect-Oriented Programming..78

3.9 Summary...81

Chapter 4 Syntax and Semantics of Attributes..82

4.1 UML Attributes ..82

4.2 Related Work..83

4.3 Attributes In Practice ..85

4.3.1 Method...86

4.3.2 Categorizing Variables (Attributes, Associations, Internals) ..87

4.3.3 Results After Filtering Out Associations and Internals ...90

4.3.4 Analysis and Observations ..92

4.3.5 Umple Syntax for Attributes ...93

4.3.6 Is the Attribute Specified in the Constructor (Q1)?...93

4.3.7 Can the Attribute Change After Construction (Q2)?...94

4.3.8 What Other Characteristics Does the Attribute Possess (Q3)?95

4.4 Existing Tools that Generate Code for Attributes ..98

4.4.1 ArgoUML ..99

4.4.2 StarUML..99

4.4.3 Bouml ..99

4.4.4 Green Code Generator ...99

4.4.5 Rational Software Architect (RSA) and RSA Real-Time ...100

4.4.6 Eclipse Modeling Framework (EMF) ...100

4.5 Generating Code for Attributes using Umple...104

4.5.1 Basic Attributes ...104

4.5.2 Immutable Attributes...105

4.5.3 Defaulted Attributes ..106

4.5.4 Unique Attribute ..106

4.5.5 Autounique Attributes ...109

4.5.6 Constant Class Attributes ..110

 vii

4.6 Attributes with Multiplicity of Upper Bound Greater Than 1..110

4.7 Summary...111

Chapter 5 Syntax and Semantics of Textual Associations ..112

5.1 Related Work..113

5.2 Associations In Practice ...116

5.3 Associations in UML Diagrams ...117

5.4 Analyzing All Possible Multiplicity Combinations ...120

5.4.1 Bidirectional Associations Between Two Different Classes.......................................121

5.4.2 Unidirectional (Directed) Associations ...122

5.4.3 Reflexivity and Symmetry...123

5.5 Implications for Code Generation ..124

5.6 Existing Code Generators...125

5.6.1 Code Generation Patterns ..125

5.6.2 ArgoUML ..125

5.6.3 StarUML..126

5.6.4 Bouml ..126

5.6.5 Green Code Generator ...127

5.6.6 Rational Software Architect (RSA) and RSA Real-Time ...128

5.6.7 Eclipse Modeling Framework (EMF) ...129

5.7 Generating Association Code using Umple ...131

5.7.1 Defining Association Variables...132

5.7.2 Association Ends as Constructor Parameters ..132

5.7.3 Get Method Code Generation Patterns..135

5.7.4 Set Method Code Generation Patterns ..136

5.7.5 Code Generation Patterns for Support Methods..138

5.8 Summary...138

Chapter 6 Modeling Software Patterns..140

6.1 Singleton...140

 viii

6.2 Equality, Immutability and Keys..140

6.2.1 The Umple ‘key’ Keyword to Support Equals and Hashing143

6.2.2 Keys on Attributes and Associations...145

6.3 Pre/Post Conditions and Operations ...145

6.3.1 Injecting Custom Behaviour using before and after Keywords146

6.3.2 Injecting Custom Behaviour using Mix-ins ..149

6.4 Summary..150

Chapter 7 Quality and Validity of the Research..151

7.1 Building Umple using a Test Driven Design (TDD) Strategy ...152

7.1.1 Testing Infrastructure ..153

7.1.2 Testing the Umple Parser ..154

7.1.3 Testing the Metamodel Classes ...155

7.1.4 Testing Code Generators ...156

7.1.5 Testing Generated Systems ...160

7.1.6 Managing Defects and Minimizing Regressions...161

7.1.7 Enhancing the Umple Language ...164

7.1.8 Validating Umple through Testing ..166

7.2 Improving Program Comprehension with Umple ..167

7.2.1 Reducing Complexity and Improving Readability..167

7.2.2 Analyzing Systems Written in Umple ...172

7.2.3 Analyzing LOC of Umple (Java Versus Generated Java)...177

7.2.4 Comparing LOC of Systems Written in Umple ..179

7.3 Industrial Examples of Umple..182

7.3.1 Umple as a Modeling Language..183

7.3.2 Private Lender Business Domain ..183

7.3.3 Schedule Management Web Application ..187

7.3.4 Distance Learning Progress Reporting Tool ...188

7.3.5 Frequency of Multiplicity Usage in Commercial Umple Systems..............................192

 ix

Chapter 8 Conclusions...194

Glossary ...199

 x

List of Tables
Table 1: Sub-Sample Sizes ..15

Table 2: Responses for Question 12: How good are modeling tools at ...?...................................19

Table 3: Responses for Question 13: Important Attributes of a Modeling Tool?20

Table 4: Responses for Question 14: Model versus Code-Centric Tasks.21

Table 5: Responses for Question 15: Problems with a model-centric approach.23

Table 6: Responses for Question 16: Problems with a code-centric approach.24

Table 7. UML to SDL mapping rules [1]. ...67

Table 8: Association Notation for Active Record Implementation in RoR74

Table 9: Active Record API when dealing a multiplicity end of 1 (or 0..1)74

Table 10: Active Record API when dealing a multiplicity end > 1 (e.g. *)75

Table 11. Categorizing member variables...86

Table 12. Distribution of static (class) variables. ..87

Table 13. Analyzing variables for presence in the constructor and get/set methods.88

Table 14. Distribution of instance variable types. ...89

Table 15. Entity versus complex object type criteria hints. ..89

Table 16. Distribution of attribute types..90

Table 17. Attribute Constructor and Access Method Patterns. ...90

Table 18. Distribution of attribute properties based on type of setters and getters.91

Table 19. Distribution of attribute set and get method implementations.92

Table 20. UML code generation tools. ..98

Table 21. Additional UML tools not considered for our case study. ..98

Table 22. Distribution of set/get methods and availability in constructor.117

Table 23: Usage of Association Multiplicities in UML ..118

Table 24: Example Usage of Association Multiplicities in the Book by Lethbridge [2]118

Table 25: Usage of Association Multiplicities from Model Repository [3]................................119

Table 26: Summary of Usage of Association Multiplicities ...119

Table 27. Multiplicity Possibilities for Associations (Shorthand in Parentheses).121

 xi

Table 28. The 28 Possible Bi-Directional Non-Reflexive Associations122

Table 29: Member Variable Patterns...132

Table 30: Constructor Argument Patterns ...133

Table 31: Method Signature Patterns for Accessor Get Methods ...135

Table 32: Method Signature Patterns for Set Methods ...136

Table 33: Interface for support methods ...138

Table 34: Applying before and after operations to Attributes and Associations148

Table 35: # Characters of Umple versus Java ...169

Table 36: Umple v1.0 Java Code ..177

Table 37: Umple v1.3 Java Code ..178

Table 38: Comparing Umple Generated Code ..178

Table 39: LOCs of Umple Based Systems ..180

Table 40: LOCs of Generated Java/PHP Based Systems..181

Table 41: Comparing Umple Code To Generated Java/PHP Code...181

Table 42: Frequency of Multiplicity Usage in Umple Based Applications192

 xii

 List of Figures
Figure 1: UML class diagram for part of the student registration system (from [2])....................39

Figure 2: Airline Reservation System UML Class Diagram [2] ...39

Figure 3: Airline Reservation System in Umple ...41

Figure 4: UML association class ...43

Figure 5: Umple Process ...46

Figure 6: Rending an Umple model in RSM...47

Figure 7: Rending an Umple model in Umlet ...47

Figure 8: UmpleOnline Screenshot ...48

Figure 9: Synchronization of Visual and Textual Representations of UmpleOnline49

Figure 10: Simulating a Simple Umple Model..49

Figure 11: Umple Metamodel (described in Umple) ..55

Figure 12: Software Development Workflow using EMF ..59

Figure 13: Software Development Workflow using Umple..60

Figure 14: Snippet of Ecore Meta Model [4]) ...60

Figure 15: Music Library Example from [4] ...61

Figure 16: Umple IDE (An Eclipse Plugin written in Xtext) ..68

Figure 17: USE approach to software modeling ...70

Figure 18: UML diagram created using Slime UML ..71

Figure 19: Software Development Notations identified from [5] ...72

Figure 20: Example system integrating three software patterns [6]..78

Figure 21: Nonorthogonality and asymmetry in AO languages [a3] ..79

Figure 22: Class Hierarchy generated from UML from [7] ..83

Figure 23: Simple Bank Account examples from [8]..84

Figure 24: Unique flightNumber on the airline association ..95

Figure 25: Student class with a simple id attribute and a list attribute..99

Figure 26: Umple class diagram for part of the student registration system...............................113

Figure 27: An example of nonunique association ends from [9] ..114

 xiii

Figure 28: An example binary association ..120

Figure 29: Visualizing Different Types of Equality (from [10])...141

Figure 30: Umple Testing Infrastructure ...154

Figure 31: Umple Automated Testing Report ...154

Figure 32: Process to Test the Umple Parser...155

Figure 33: Original Umple Metamodel ...173

Figure 34: Umple State Machine Meta Model ..174

Figure 35: Private Lending Data Model ..184

Figure 36: Private Lending Application Screenshot ...187

Figure 37: Scheduling Model ..188

Figure 38: Screenshot of Distance Learning Program Reporting Tool189

Figure 39: Umple model of a distance learning management application189

 1

Chapter 1 Introduction
In our research, we investigate to what extent software modeling can be achieved in textual

form, without hindering a diagrammatic representation. By understanding the dual nature of a

model (in textual and diagrammatic form), we hypothesize that software engineering could be

improved by exploiting the efficiencies of text without losing the communicational power of

diagrams.

In this thesis we present the design and analysis of a technology called Umple. Umple allows

textual modeling, and integration of code and model, all without losing the ability to model

graphically. We discuss the following: The research into modeling in practice that led us to

develop Umple; the syntax, semantics and code generation of Umple, particularly with regard to

associations and attributes; and, our analysis of the use of Umple in several real systems. We

also compare Umple to other technologies that have related goals.

For our work, we consider a software model to be an artifact that represents an abstraction of the

software system being built. A model can typically be viewed as a set of diagrams and/or pieces

of text. It can be recorded on a white board, paper, or using a software tool. A model can use

formal syntax and semantics, but this is not necessary.

Software engineering currently adopts a range of approaches from code-centric to model-

centric. In a pure code-centric approach, software engineers write the code for a system entirely

in a textual programming language. The code is then compiled and linked with libraries to create

a working system. In a model-centric approach, the system is instead largely generated from

more abstract models created using modeling languages. Modeling languages, the most

prominent of which is UML, tend to be diagrammatic with some text inserted as necessary.

There seems to be a strong opinion among software engineering experts that model-centric

approaches are now considered a best practice for software development, since they allow

developers to apply powerful abstractions, increase productivity, improve quality,

standardization and formalization [11, 12]. However, code-centric approaches still appear to be

dominant in practice [12]. Developers seem divided into de facto camps ranging from those that

believe in a model-centric (see glossary for a definition of this term as well as many others used

throughout this thesis) approach to those that are quite opposed to it and who prefer to simply

write code in a code-centric fashion. In what follows, we refer to this divergence of both

practice and attitude as the model-code divide.

A key hypothesis we investigated in the work leading to this thesis is that the most important

 2

concepts of a diagrammatic modeling language can be rendered into a usable and useful textual

form that extends or is similar to a programming language. And, by enhancing programming

languages with model-oriented syntax, we raise their level of abstraction to better align with the

intentions of designers. By usable we are referring to enabling more efficient and effective

creation and use by developers. By contrast, XML-based notations such as XMI, primarily serve

to allow exchange of models among tools. Our language, Umple, has advantages over

approaches such as EMF, xUML, and SDL, which we will explore in Sections 3.8 .

We used two main approaches throughout our research. The first was to conduct empirical

studies into how modeling is practiced, or not practiced, as the case may be. The second

approach was to design, implement and analyze a model-oriented programming language. By

understanding how textual languages can be applied in addition to diagrammatic languages, we

intend to help bridge the model-code divide. Our bridge in this context will be known as text-

diagram duality. Text-diagram duality means that the underlying abstraction (i.e. model) of a

system can and should be equally expressible both textually and diagrammatically, and should

also be capable of being manipulated in both textual and diagram editors.

The goals of our research are: 1) To learn more about the model-code divide in software

engineering; 2) To develop and extend tools to better exploit the text-diagram duality of

software artifacts; 3) To analyze the effectiveness of languages that leverage modeling concepts

as first-class entities, in order to investigate the extent to which software development can be

improved. In practical terms, we are trying to help software coders to incorporate more and

better modeling concepts in the code they write. Modeling by writing code may be a less-

daunting task than trying to get developers to opt for creating diagrams; a view shared by Martin

Fowler [13], a vocal proponent of textual modeling.

This is not the first thesis to work in this domain. We build on the work of Brestovansky [14],

who worked with us to create the first version of Umple. In this thesis, we focus on deepening

our understanding of text-diagram duality, with particular emphasis on UML associations and

attributes; other researchers are already working on doing the same for state machines.

1.1 Research Questions

The guiding research questions that have motivated our research are presented below.

 3

RQ1. Why do software practitioners resist the current style of software modeling

and show a tendency to prefer to design directly in code?

Although model-centric design has been demonstrated to produce good results, most software

engineering is still done using an approach where the model is either secondary to the code, or

does not exist [12]. In other words, software engineers resist the use of models. Some of the

reasons for this resistance may include:

i. Habituation: Software engineers may have become trained or habituated to code-centric

thinking;

ii. Efficacy: In some contexts, code-centric thinking may in fact be better than model-centric

thinking – the costs of modeling may exceed the benefits either as perceived or in practice.

iii. Politics and Practices: Political or management practices might lead developers to take a

code-centric approach. For example, the business domain may enforce code-based

deliverables, or teams may be evaluated using code-centric metrics such as lines of code.

iv. Software Process: Some processes advocate early implementation of prototypes or

iterations that are then repeatedly refactored or re-implemented to produce the final

system. These processes reinforce thinking about code and might make it difficult to

integrate modeling.

v. Tool Weaknesses: Tools (both languages like UML and design tools) may not yet be

capable of supporting model-centric thinking adequately. Modeling tools may also be too

large and complex, resulting in obstacles to learning and to creating software with them.

vi. Intrinsic Utility: Software developers may find it easier to use the mechanisms that code-

editors provide rather than the mechanisms provided by graphical diagram editors.

Factors such as the number of ‘clicks’ or keystrokes to accomplish a task, the amount of

data manipulation required, the amount of data that can be seen at one time, and the

searchability of the document all may affect utility.

vii. Software Engineering Education: Modeling may be an under-emphasized component of

software curricula, resulting in software practitioners that lack the necessary skills and

knowledge to properly apply modeling concepts. Furthermore, the modeling education that

is provided may simply impart textbook syntax and toy examples, leaving students

somewhat skeptical, and giving too little guidance as to the pragmatics and practice of

modeling in industrial projects.

 4

viii. Domain suitability: Particular types of models and modeling might be more appropriate

in certain domains. For example, class diagrams might be more suitable in data-dominant

software applications, whereas in real-time applications state machines might be more

useful. However developers may be most familiar with class diagrams, leading them to

feel that modeling is not suitable for real-time software.

We investigate the extent to which some of the reasons above may contribute to the model-code

divide. We approach these issues from the programming language perspective to uncover

whether improvements to languages can help improve both the quality of software models and

the extent to which modeling occurs. We contrast this with approaches that consider code-to-

model transformations and reverse engineering.

A trend can be observed in programming languages wherein both semantics and syntax have

slowly evolved by progressively increasing abstraction away from of the details of computer

architecture and data structure, and towards expression of domain-level concepts. Assembly

programming languages provided abstractions of numeric machine code, which was tied to the

architecture of the CPU. Assembly was later superseded with early programming languages like

COBOL and Fortran that abstracted away the details of the machine code. Böhm and Jacopini

later formalized the use of branches and loops to create what is known as structured

programming [15]. Ole-Johan Dahl introduced object-oriented programming concepts in Simula

[16] which eventually gave rise to programming languages like Java, Smalltalk and C#. Object-

oriented languages added several abstractions such as automatic memory management,

polymorphism and encapsulation.

Interestingly, human languages have also evolved in similar fashion over thousands of years

with a trend towards increasing the level of abstraction [17]. In addition to simply increasing the

number of vocabulary items, human languages have developed new terminologies to describe

more complex concepts, resulting in more efficient communication media.

If we look at the progression of software languages from the early days of assembler to fully

object-oriented languages like Ruby, we can observe another trend in the process of evolution.

There appears to be a trend whereby advancements in programming languages are first

introduced as visual mechanisms for designing and modeling. For example, flow-charts gave

rise to structured programs; and Entity-Relationship diagrams helped spawn object oriented

class diagrams. If such a relationship were to exist, then it might be the case that the current

trend towards highly diagram-oriented approaches to software development are acting as a

precursor or prototype for features yet to be incorporated into textual programming languages.

 5

In this thesis, we address this research question primarily through a survey of software engineers

described in Chapter 2.

RQ2. What is the level of modeling adoption in industry, and what are the factors

affecting this?

We seek to uncover the extent to which various types of developers perform modeling, and how

they approach it. We use the following initial categorization of how developers use modeling:

i. Model-only: Approaches where the model is effectively all there is, except for small

amounts of code for such things as calculations.

ii. Model-centric: Approaches where modeling is performed first, and code is generated

from the model, for possible subsequent manual manipulation.

iii. Model-as-design-aid: Approaches where modeling is done for design purposes, but then

code is written mostly by hand.

iv. Model-as-documentation: Approaches where modeling is done to outline or describe

the system, largely after the code is written.

v. Code-only: Approaches where modeling is almost entirely absent.

To answer this question we conducted meta-analyses of the literature, and surveyed modeling

practitioners using a variety of questions. The results of this research question are presented in

Chapter 2.

RQ3. Can programming languages be enhanced with model-oriented constructs

and provide benefit to software developers?

In the course of investigating RQ1 and RQ2, we uncovered a discrepancy between the actual

usage of modeling versus coding and the perceived benefits of working in a model-oriented

environment. In essence, there seems to be evidence that software developers believe in the

benefits of modeling, but for various reasons they are not able, willing or satisfied to work in a

model driven environment.

In answering this question, we set out to design, implement and analyze a language that looks,

feels and behaves like current programming languages, but includes additional modeling

constructs and software patterns to increase the abstraction of the programming language and to

bring modeling into code. This allows developers to continue to work with code without

sacrificing the ability to work with models.

 6

1.2 Hypothesized Solutions

Our main hypothesis is stated as follows.

H1: Software development can be enhanced by providing a textual format to write and

maintain software constructs and abstractions that have previously been diagrammatic in

nature.

Our hypothesis is more than simply providing a textual syntax for software modeling and model

notations, it is more deeply rooted in integrating software models at the code-level to support the

notion that the “code is the model” from a code-centric view, and the “model is the code” from a

model-centric view.

Our investigation into RQ1, why software developers seem to revert back to textual behaviours

for software development, suggests several possibilities. One is that the use of pure text is a

symptom of being unable to change habits and embrace diagrammatic approaches.

Alternatively, the inverse may be true: perhaps it is the key benefits of textual approaches that

software engineers consciously or subconsciously embrace. Regardless of which of these is true,

and they may both be true, our focus is on how textual forms of abstractions can be used to

improve software development. Our second research question RQ2 helps to substantiate and

clarify the assumptions about how modeling is or is not currently practiced with some initial

attempts at explaining why. For RQ3, we set out to enhance object-oriented programming

languages with modeling constructs and built-in software patterns to analyze the impacts on

software complexity and assess the efficiency of building real systems with such a language.

Our research focuses on object oriented software development. We believe more abstract

modeling constructs can be added to such languages, that would allow software developers to

model in code. Our modeling language is called Umple. Umple embeds class-diagram concepts

such as attributes and associations (with multiplicity, etc.), state machines, and software

patterns. Umple also eliminates (and/or reduces) the need for the resulting systems to have

implicit associations coded and duplicated as instance variables, resulting in what is clearly a lot

of boilerplate code (see glossary for a definition). Similarly, state-diagram concepts and more

advanced software patterns could also be designed into such a textual modeling language.

By providing modeling constructs in a model-oriented language like Umple, we hope to solve

many of the issues identified in our research question RQ2. Namely:

• Code-centric thinkers would actually be modeling; there would be a smoother path from

code to model.

 7

• If code-centric thinking is better in some way, then one can continue to use it while

continuing to model. In other words, any intrinsic benefit of textual approaches can be

leveraged.

• If managers like a process that places code first, then the software team can continue to

use it, while adopting modeling practices.

• The best features of both code-editing and graphical editing tools can be applied to the

problem.

Any added complexity of the new constructs made available by Umple (such as associations and

multiplicity) must be offset by the potential gains to be achieved by being able to communicate

at a more abstract level. By focusing on text, we should be able to offer a process that allows

software practitioners to model without drastically changing their work environments. The focus

should be to allow developers to take advantage of all of the benefits of textual software

development in addition to the full benefits of visualizing software models based on the

program’s textual equivalent.

 8

Chapter 2 Attitudes Towards Software Modeling – a Survey
As a first step in our research, we sought to understand how modeling is performed in industry.

This led us to develop a survey; the aim of the survey is to uncover the attitudes and experiences

regarding software modeling and development approaches that avoid modeling. We are

motivated by observations that modeling is not widely adopted; many developers continue to

take a code-centric approach. We seek to understand the extent to which this is true and the

reasons why. We also aim to understand how tools might be enhanced to improve adoption of

modeling approaches to software development.

During the course of developing the survey questions, we realized that we needed to gather

information about what types of applications our participants develop. Doing this would enable

us to determine if modeling practices and application type are correlated; we suspected there

may be a strong correlation. However, our research indicated that no one has published a

definitive taxonomy of software types; we therefore set out to develop such a study, prior to

completing our main survey. Development of the taxonomy is discussed in Section 2.2.

The main survey is discussed in Sections 2.3 to 2.6 . Key results are as follows: 1) UML is

confirmed as the dominant modeling notation; 2) modeling tools are primarily used to create

documentation and for up-front design with little code generation; 3) modeling tools are also

used to transcribe models from other media including whiteboards; 4) participants believe that

model-centric approaches to software engineering are easier, but are currently not very popular

as most participants currently work in code-centric environments; and 5) the type and quality of

generated code is one of the biggest reported problems.

Section 2.2 of this chapter is based on work published in [18] and sections 2.3 to 2.6 are based

on [12, 19]. The complete results are available online at [20].

2.1 Attitudes towards Modeling

A significant area of variability in software engineering practice today is the extent to which a

development team uses models. At one extreme, model-centric or model-driven development,

software engineers use tools to describe the structure and behaviour of their system using a

language like UML, and then generate source code for the software automatically. In many

cases, they start by using even higher level models, such as business models, from which they

generate UML and other models. France and Rump provide an excellent overview [21] of the

 9

current state of the art in modeling. At the other end of the spectrum are those developers who

work entirely by editing code, i.e. using a code-centric approach.

One of our objectives has been to uncover why modeling is not more widely practiced.

Proponents of modeling, and modeling languages, would have us believe it is entirely obvious

that most of us should be modeling; they cite successes with modeling and the apparently

obvious benefits of working at a higher level of abstraction [22]. However, “in the trenches” one

often sees an entirely different perspective. In many organizations, developers primarily toil on

vast volumes of source code, rarely looking at diagrams or other models, let alone creating or

editing them. This is typified by the open-source community, where in most projects source

code file patches are the key unit exchanged [23], and repositories consist almost entirely of

code. The very names ‘SourceForge’ and ‘GoogleCode’ are telling in this regard. Agile

developers also tend to be very code centric. If modeling is so great, why are these people not

doing it more?

There has been only a small amount of research into why modeling is not as prevalent as it

might be. Afonso et al. [24] point out that although in certain areas of software development

modeling is the norm, most notably the design of databases, “there is little practical evidence of

the impact” of model driven development in general software engineering. Berenbach et al. [25]

describe a number of common modeling problems that lead to models being less effective, and

hence less adopted. These include a belief that it is just about “pretty pictures”, not

understanding the underlying paradigm well enough (typically the object-oriented paradigm),

and lack of attention to consistent style in modeling. Anda et al. [26] studied modeling in the

safety-critical context, where modeling would seem to be particularly appropriate. They reported

that modeling yielded positive results, but that the inadequacies of tools, and the cost of training

were important obstacles. Also, it was difficult to apply modeling in a legacy environment, and

when development teams are assigned specific blocks of source code to work on; in both these

cases the code-centric approach is presupposed.

Dobing and Parsons [27] conducted a web-based survey on how UML is used in practice. They

were supported by the Object Management Group and collected 171 responses. One of their

results was that class diagrams, although being the most frequently used UML diagram type, are

“not well understood” by 50% of analysts. Furthermore 42% felt that use case diagrams are not

worth their cost, and 37% felt that use case narrative text is not worth the cost. On a more

positive note, the majority of respondents found that all aspects of UML are useful for most

 10

projects. The authors suggest that complexity and lack of usage guidelines are the biggest

concerns with UML.

Several researchers have conducted controlled experiments to measure the benefit that modeling

may provide; however the results have not been encouraging for the modeling community. For

example Arisholm et al. [28] concluded that the costs of maintaining UML documentation in the

type of software they studied balance the benefits of the modeling. This sentiment is echoed by

Agerwal et al., [29, 30] who conducted experiments to examine the usability of modeling tools.

Sjoeberg et al. [31] provide a comprehensive survey of experiments, some of which relate to

modeling.

Reasons for the lack of adoption of modeling therefore seem to boil down to the following: a)

weaknesses in tools, modeling languages and processes; b) the lack of education or training of

developers or their managers; and c) satisficing, wherein the benefits of modeling are judged,

rightly or wrongly, to not warrant the costs, given the level of quality desired. The problems

inherent in adoption of any technology also undoubtedly come into play; Sultan and Chan [32]

provide a detailed study of technology adoption for object-oriented technology, concluding that

management issues and organizational culture have a larger role to play than factors intrinsic to

the technology itself.

Our work contributes to the field of software modeling by learning first hand from software

practitioners from a wide variety of companies from several countries around the world, and

with diverse experience about the state of the art. We set out to uncover what software

professionals believe to be modeling, the tools they use, the activities they perform and what

difficulties they perceive towards model-centric and code-centric approaches. Our survey of

software professionals discussed in this chapter complements the survey results of Dobing and

Parsons [27] in that we asked questions about modeling in general, as opposed to specifics of

UML.

2.2 The Preliminary Study: Categorizing Software Applications

We are interested in modeling practices, and it seems reasonable that some types of software

applications have a greater need for modeling than others. Prior to surveying software

practitioners (the results of which are presented later in this chapter), we wanted to be able to

distinguish responses based on software application type.

Empirical software research, including our own, could be improved if there were a systematic

way to identify the types of software for which empirical evidence applies. This is because

 11

results are unlikely to be globally applicable, but are more likely to apply only in certain

contexts such as the type of software on which the evidence has been tested. We therefore

developed a software taxonomy to help apply our research systematically to particular types of

software. The taxonomy was generated using existing partial taxonomies and input from survey

participants. If a taxonomy such as ours gains acceptance, it will facilitate comparison and

appropriate application of research.

The notion of taxonomy, a structured vocabulary, is widely familiar and is extensively used in

modeling tools to organize information. Almost all newer conceptual models like attributes,

tagging and axioms are all backed by a hierarchy [33], making a taxonomy a logical starting

point to uncover software application types.

Maintaining a software taxonomy provides the following benefits for software engineering

research:

• Improved software research. A software taxonomy is able to provide a context for

empirical results in software engineering, as well as to facilitate exploring the applicability

of those results. The taxonomy would be used to suggest the types of software on which

results could be tested. For example, a survey of software practitioners could be subdivided

into participants that work with data-dominant versus computational-dominant software.

From that sub-sampling, the researcher might be able to demonstrate that a particular

software process (or architecture, or framework, or testing technique, etc.) is indeed

appropriate in both types of applications, or is in fact applicable only to one of the types.

• Artefacts more readily reusable. Artefacts such as libraries, plug-ins, software patterns,

and algorithms could be more easily reused if mapped to categories within a software

taxonomy. The taxonomy could help identify candidate artefacts for reuse, as well as identify

gaps – i.e. application types where more reusable artefacts are required.

• Increased use of reference models (sketches of the architecture) and frameworks. If

reference models and frameworks were mapped to a taxonomy of software types, developers

may have a better starting point when building new software in a particular domain. Similar

to the artefacts above, the taxonomy will also identify which application types lack

frameworks and reference models.

• Appropriate education coverage. With a software taxonomy, educators and curriculum

designers would be able to build courses and programs that provide exposure to a broad

range of application types.

 12

Below is a summary of the first two levels of the software taxonomy we developed. Our

contribution aims to add closure to much of the effort already invested in this field. We used a

systematic process so the taxonomy covers all types of software currently developed. Please

refer to [18] for a further analysis of justification for our work, for the existing literature on the

topic, for the formalized approach to developing the taxonomy, as well as to see where a

particular software application fits within the structure below.

 A. Data-dominant systems
 A.con Consumer-oriented software
 A.bus Business-oriented software
 A.des Design and engineering software
 A.inf Information display and transaction entry

 B. Systems software

 B.os Operating systems
 B.net Networking / Communications
 B.dev Device / Peripheral drivers
 B.ut Support utilities
 B.mid Middleware and system components
 B.bp Software Backplanes (e.g. Eclipse)
 B.svr Servers
 B.mal Malware

 C. Control-dominant software

 C.hw Hardware control
 C.em Embedded software
 C.rt Real time control software
 C.pc Process control software (e.g. air traffic control, industrial process, nuclear plants)

 D. Computational-dominant software

 D.or Operations research
 D.im Information management and manipulation
 D.art Artistic creativity
 D.sci Scientific software
 D.ai Artificial intelligence

The taxonomy should be useful to both researchers and practitioners who need to perform such

tasks as cataloguing, filing or searching for applications. The taxonomy will also facilitate

tagging of components and techniques according to the application types for which they are

suitable.

By explicitly defining a software taxonomy with a well-defined purpose, and formalized criteria

for classification, we can start to apply strong approaches to application domains to solve

specific problems. This taxonomy should help with software reuse; re-using the appropriate

 13

tools, methodologies, languages, paradigms (e.g. object-oriented, procedural), software patterns,

and software components.

2.3 The Main Study: Modeling Survey

Once we had developed our software taxonomy to a satisfactory level of detail, we were able to

proceed with our survey. The modeling survey was conducted online. Please refer to [20] for the

questions posed and a complete analysis of the responses to the survey, since the official survey

is no longer online. We sent targeted requests to personal contacts in a wide variety of

organizations. We also asked for participation using a variety of Internet forums.

The survey consisted of 18 questions. Most questions involved several sub-questions answered

using 5-point Likert scales. Responses were in ranges such as strongly disagree to strongly

agree, or never to always.

The survey was divided into groups of questions as follows:

• Q1: What is or is not a model? Various options were presented ranging from class diagrams,

use cases, to source code. Our objective was to see if participants had a preconceived notion

about what they considered a model to be.

• Q2-5: How and when do you model, and using which notations? The objective of these

questions was to understand the state of the practice.

• Q6: How do you approach a new task or feature with respect to requirements, design,

modeling, testing and documentation?

• Q7-10: What tools, methods and platforms do you use, and what type of software do you

develop?

• Q11-14: To what extent do you use modeling, and how good is it for various tasks?

• Q15-16: What are the principal difficulties you perceive with the model-centric and code-

centric approaches?

• Q17: An open-ended free form question for comments about the survey and / or modeling in

general.

• Q18: Demographics question with sub-questions about country of origin, education level, and

years of experience of the participant.

Some randomization in the order of questions was applied to reduce bias towards either code-

centric or model-centric questions. Questions 2 to 5 were presented in a random order. We then

defined modeling as follows so that participants could consistently answer subsequent questions:

 14

For the remainder of the survey, please assume that any reference to a software model

refers to an artefact that represents an abstraction of the software you are building. A

model can typically be viewed as a set of diagrams and/or pieces of structured text. It

can be recorded on a white board, paper, or using a software tool. A model could use

formal syntax and semantics but this is not necessary. We will consider the final source

code of the system, and requirements written in natural language to not be models,

although models can be embedded in a requirements document.

Questions 7 through 16 were then presented to the participant in a random order. The survey had

113 participants. Of those, at least 88 answered each question, and at least 63 answered the two

modeling tools questions. Participants were able to ignore these modeling questions if they did

not have substantial experience with modeling tools. The full technical report outlining the

questions posed, method, threats to validity and the results obtained is available in [20].

2.4 Demographics of the Modeling Survey

Our survey was conducted between April and December 2007 and ultimately attracted 113

software practitioners. Participants averaged 14 years of experience, with 80% having more than

5 years of experience, and about 20% having more than 20 years of experience.

About two thirds of the respondents were from Canada or the United States. The rest of the

world was fairly well represented with participation from the United Kingdom, the rest of

Europe, India, and Pakistan, as well as a few participants from Australia, Mexico and Singapore.

The most prevalent type of software that participants work on is business software (identified as

'very often’ by 46% of participants), followed by design and engineering software (25%),

website content management and information display such as search, maps and news sites

(23%). The least represented categories were malware (2% - good!), industrial control (10%),

and system utilities (7%). At least one participant has ‘always’ worked in one of the available

categories (except for malware). The categories of software applications from which to choose

were based on work building a software taxonomy (described in Section 2.2). By using a

comprehensive taxonomy, we are able to (1) validate that our results apply broadly, and (2)

provide a means to filter our results. The software modeling needs of business application

developers, for example, may not necessarily reflect the needs of real-time developers.

The dominant programming languages in use are Java, and C/C++ with about 30% using the

language ‘very often’. PHP / Perl was used ‘very often’ by 19%, ASP.Net 14%, and Ruby /

 15

Python 9% by the participants. Other languages mentioned in the free-form answers include

JavaScript, SAP, Documentum, ASP, Smalltalk, MatLab, and SOAP.

About 90% of participants have leadership roles (team leader, project manager) at least

sometimes, and 53% lead very often or always. Design or modeling is performed at least

sometimes by over 95% of participants, and 57% do this very often or always. On the other

hand, 86% at least sometimes work with source code (developing new code, maintaining and/or

bug fixing), and 49% very often or always work with code.

Almost half of the participants had a Masters degree (44%) – which is more than in the general

software engineering population. However, an advantage of this over-representation is that our

respondents should be among the more knowledgeable software engineers.

In our analysis, we not only studied the whole sample, but also sub-sampled according to

various criteria to ascertain whether particular groups of developers had different opinions. For

example, we separately analyzed the data for those who reported they programmed extensively,

or used modeling tools extensively. We also sought any geographic differences, and differences

based on the type of software the developers focused on. We used Student’s t-test to determine

statistical significance, with significance deemed to with at least 90% confidence (p <= 0.1).

The appropriateness of using the t-test on Likert scale data is summarized in [34].

The sizes of the major sub-groups are shown in Table 1.

Table 1: Sub-Sample Sizes
Category N %
All Participants 113 100%
Participants in Canada/USA 63 56%
Participants Outside Canada/USA* 27 24%
Software Developers 53 47%
Software Modellers 46 41%
Participants that Generate Code 15 13%
Experienced Participants (≥ 12 years) 53 47%
Participants in Real-Time Projects 19 17%

*Of the 113 participants, 23 participants did not indicate what country they live in and were not

included in the geographic sub-sampling

2.5 Modeling Survey Results

The tables presented in this section will provide the following data:

• N is the number of participants that actually responded to the question / sub-question

• Mean is the mean of the rating from 1 to 5

 16

• S.d. is the standard deviation of the particular statistic

• The final four columns present the % of responses that answered at either extreme (1,

1+2, 4+5, and 5).

The format of the tables gives a sense of the polarization of the data, as the mean does not

always present an accurate interpretation of the data. Notably high values are highlighted in bold

in the tables, and notably low values are highlighted in italics. The data is also sorted based by

the mean and does not reflect the order in which the sub-questions were asked.

2.5.1 What is a Software Model?

Our first question listed various types of artefacts that could conceivably be perceived as models

and asked the participants to give us their opinions.

Participants almost completely agree that class diagrams (48% strongly agree, 88% agree or

strongly agree), UML deployment diagrams (36% strongly agree, 78% agree), and use case

diagrams (34% strongly agree, 82% agree) all represent models of a software system. In fact,

hardly anyone felt that any of these artefacts are not models (3% and 6%, respectively). There

was also good agreement that the following can be models: pictures by drawing tool (86%

agree); textual use cases (79% agree); pictures drawn by hand (79% agree) and whiteboard

drawings (57% agree). The source code of a system is perceived by about half of the participants

to be a model (47% agree, 39% disagree). Similar data was observed for pictures drawn by hand

(57% agree, 10% disagree). Most participants were neutral as to whether source code comments

represent a model of a software system (34% agree, 41% disagree), but few strongly agreed

either way.

A key conclusion from this question is that developers do not limit their perception of a model

to diagrams in a modeling tool. Models can be represented textually (use cases, and source

code), and in non-electronic formats (white boards, and hand drawn pictures), and in drawing

tools.

2.5.2 Creating Versus Consuming Software Models

There is little agreement among participants regarding how software models are created and

maintained. Similarly, there is also little agreement about among participants about how they

learn about the design of software.

The most frequent way of creating models was by drawing or writing on a whiteboard, with

45% agreeing they do this, and 33% disagreeing. Next most frequent was using diagramming

 17

tools (37% agree, 42% disagree), and word-processing software (27% agree, 46% disagree).

Other mechanisms to maintain software models like word of mouth, handwritten material,

source code comments, and modeling tools/CASE had between 22% - 30% agreement that the

participants used them. Finally, very few (13% agree, 72% disagree) used drawing software to

maintain models.

It is interesting to reiterate that 27% of people feel they create models by word of mouth,

although 42% of people disagree with this.

The most important source of design information was word of mouth, with 55% of people very

often or always using information originating from this source, whereas 24% of people

sometimes or never use this. The next most important source was material created in word

processors (48% very often, 30% sometimes), and using diagramming tools (that can create

structured diagrams, but not integrated models with 42% very-often and 32% sometimes).

Diagramming tools and whiteboards were cited as being used very often by 42% of the

participants.

The least important source of information was material in fully integrated modeling tools. Only

32% use material created with such tools very often, and conversely 33% never do. Handwritten

material also ranked as an unimportant source of information (20% very-often, 24% never).

When comparing the results of what is a software model, there are several differences among

the sub-samples. The most interesting differences are highlighted below:

• Software developers are less likely to use modeling tools compared to the entire sample

(p=0.014).

• Software modellers that write/maintain software are less likely to use modeling tools

compared to software modellers that do not write/maintain software systems (p=0.06)

The contrast between what mechanisms participants use to generate models versus consume

them is interesting. Although our survey did not attempt to answer why there is a divide, a key

conclusion is that the tools and data formats used by individuals responsible for creating

software design information tend not to be the same as those used by the audience of that

information. In other words, assimilation of data is done differently from its dissemination.

2.5.3 What Modeling Notations Do You Use?

About 52% of practitioners very often or always use UML – and more practitioners use UML

2.* (34%) versus UML 1.* (28%). UML is also indicated as being the most highly used

notation. Our survey supports the idea that the UML is, in fact, now the universally accepted

 18

notation for software modeling as few people are using domain-specific languages for their

projects, or other notations like Entity-Relationship Diagrams (ERD), SQL and Specification

and Description Language (SDL).

2.5.4 How Are You Using Your Modeling Tools?

The main uses of modeling tools reported by participants were to develop the design of a

software system (48% very often) or to simply transcribe a design into a digital format (39%

very often) in somewhat of a data-entry fashion.

Conversely, tools to generate code from the model are not widely used (18% very often generate

some code and only 14% very often generate all code for a software system); this may be

because participants do not need code generated, or perhaps because the tools do not do it in the

way they want.

Relatively few participants use software modeling tools to brainstorm about possible design

ideas and alternatives (23% very-often, and 55% only sometimes), and it seems that

collaboration amongst developers is not an important feature for software modellers. From

earlier questions, it seems that whiteboards still are superior for this and the role of modeling

tools in this instance is to help transcribe the design as opposed to actively develop it. This woud

seem to be especially true when you consider that many modeling tools are not good for

brainstorming – 15% believe they are awful at brainstorming, and 45% see them as poor for

brainstorming.

As a large percentage of software practitioners use modeling tools to transcribe a design into a

digital format, this might suggest that more (or better) text-driven features within software

modeling tools would make such transcriptions more efficient; as the data is most likely derived

from informal mediums such as whiteboards and diagramming tools where it may be too

optimistic to suggest automatic transcription from the disparate sources.

When comparing the results of what is a software model, the following differences surfaced

among the sub-samples:

• Real-time developers are more likely to use modeling tools for prototyping a design

compared to entire sample (p=0.043)

• Software developers that model are more likely to use modeling tools to develop a

design (p=0.0002) and generate some code (p=0.004) compared to software developers

that do not model

 19

2.5.5 How Good Are Your Modeling Tools?

As a follow up to the previous question we asked, “Based on past experience, how good (based

on qualities like efficiency, accuracy and usability) are software design or modeling tools at

accomplishing the following tasks.” The results are presented in Table 2.

Table 2: Responses for Question 12: How good are modeling tools at ...?
Available activities N mean s.d. %

Awful
(1)

%
Poor

(1 + 2)

%
Good
(4 + 5)

%
Excellent

(5)

Developing a design 71 3.4 1.0 2.8 16.9 47.9 12.7
Transcribing a design into digital format 69 3.2 1.0 2.9 24.6 42.0 7.2
Generating code (code is editable) 69 2.9 1.1 10.1 39.1 29.0 8.7
Prototyping a design 68 2.9 1.1 10.3 41.2 29.4 8.8
Brainstorming possible designs 71 2.8 1.2 15.5 45.1 32.4 4.2
Generating all code (no manual coding) 69 1.9 1.1 42.0 79.7 8.7 4.3
Note. Values range from Awful (1) to Excellent (5).

The order of items in this table is almost the same as in the previous question that asked how

modeling tools are used, suggesting that participants use tools for what they are good at, and

might use them differently if the capabilities of the tools changed.

Participants believe that design and modeling tools are adequate at developing and transcribing a

design. Some participants believe modeling tools are okay at generating source code templates

(code that will be then edited). Many believe that modeling tools are poor at facilitating

brainstorming and generating the entire system.

This presents two possible scenarios: modeling tools are poor at generating entire systems and

that is why software practitioners do not use them; or, developers do not really need to use

modeling tools as full-system source code generators. The same scenario is true for

brainstorming sessions (there is currently little use of modeling tools for the purpose of

brainstorming, and modeling tools do not facilitate brainstorming that well).

2.5.6 Important Attributes of a Software Model

Participants seem to care most about how well a software model can effectively communicate to

others and be readable. This result (ranking communication and readability as the top two

qualities of a software model) is unsurprising. The third and fourth most important attributes of

a software model are more interesting and are discussed below. The results are summarized

below in Table 3 and are ranked in order of most to least important qualities of a software

model.

 20

Table 3: Responses for Question 13: Important Attributes of a Modeling Tool?
Attribute / Ability to N Rank % Bottom

2
%

Bottom
4

%
Top 4

% Top
2

Communicate to others 89 1 10.1 16.9 78.7 68.5
Readability 89 2 10.1 20.2 68.5 51.7
Ease and speed to create 89 3 7.9 36.0 55.1 19.1
Ability to analyze 89 4 10.1 33.7 55.1 21.3
Collaborate amongst developers 89 5 12.4 38.2 43.8 15.7
Ability to view different aspects of a model 89 6 10.1 42.7 40.4 13.5
Generate code 89 7 52.8 70.8 23.6 11.2
Information density 88 8 51.1 72.7 17.0 3.4
Embed parts of model in documentation 89 9 55.1 82.0 13.5 4.5
Note. The % top 4 represents the percentage of participants that listed the attribute in their top four. Similarly for %
bottom four. The same applies for % top2, and % bottom 2.

The third most important attribute is how quickly and how easily models can be created. There

seems to be a trend towards supporting advanced users, as participants are fairly keen on ease

and speed of use of a tool. Again, our survey did not expand on what aspects of tools that

developers want made more easy and faster, but further investigation could consider:

• Modeling tools need to accommodate users by providing quick ability to edit

information when the user thinks of a needed change or quick ability to access

information when the developer needs to look something up.

• Power users may benefit from expert-user techniques that include more keyboard-

focused activities: keyboard shortcuts, textual data entry and keyboard navigation.

The fourth most important attribute suggests that modeling tools should facilitate the analysis of

the models they produce. Although our survey did not expand on the exact meaning of how a

tool can best support the analysis of a model, the strong response (57% rated it within the top 4)

warrants further investigation. Possible avenues of research include investigating features such

as:

• Model feedback for correctness (syntax and semantics), best practices / pragmatism, and

modeling style (potentially similar to coding style)

• Model search whereby tools provide a mechanism to answer questions about the model

in a similar manner as CAD tools and development environments for source code. For

example, “Where is this association being used?”, “How often is this method being

requested” or “Which of these two designs has lower coupling?”.

Software modeling tools should allow a developer to create models quickly and easily. Perhaps

the trend towards visual programming languages accommodates only part of this requirement:

the ease-to-create part, not necessarily the speed-to-deliver.

 21

2.5.7 Which Approach, Code Versus Model Works Best?

The following questions make reference to model-centric and code-centric approaches to

developing software first presented in Chapter 1. To recall, in a model-centric approach, the

developers look to the model to see the design, and change the model as the first step in

performing any design change. Extensive modeling is performed, and the coding is either

automated, or at least straightforwardly determined from the model. In a code-centric approach,

the code is seen as the main artifact; developers understand the design by understanding the

code, and the process of design change is equated with changing the code.

The results of our survey do include practitioners that fit each level of this model-code-centric

spectrum – increasing the confidence in our sampling technique. In the following questions we

will analyze how well modeling tools perform specific tasks, as well as uncover what approach

(model versus code) is more suitable based on particular situations.

The participants’ perceptions about which approach works best for various activities are

presented below in Table 4.

Table 4: Responses for Question 14: Model versus Code-Centric Tasks.
Available activities N mean s.d. % Much

easier in
Models

(1)

% Easier
in Models

(1 + 2)

% Easier
in Code
(4 + 5)

% Much
easier in
Code (5)

Fixing a bug 90 3.2 1.5 21.1 28.9 43.3 25.6
Creating efficient software 92 3.1 1.4 16.3 35.9 43.5 21.7
Creating a system as quickly as
possible

92 3.0 1.5 23.9 46.7 42.4 23.9

Creating a prototype 92 2.9 1.5 26.7 43.0 32.6 22.8
Creating a usable system for
end users

92 2.7 1.3 26.1 42.4 22.8 10.9

Modifying a system when
requirements change

91 2.5 1.4 34.1 54.9 24.2 13.2

Creating a system that most
accurately meets requirements

91 2.2 1.3 42.9 67.0 19.8 8.8

Creating a re-usable system 92 2.2 1.3 44.6 63.0 15.2 9.8
Creating a new system overall 92 2.2 1.3 43.5 68.5 20.7 7.6
Comprehending a system's
behaviour

89 2.0 1.3 51.7 71.9 15.7 5.6

Explaining a system to others 92 1.7 1.1 61.1 81.8 7.6 6.5
Values range from much easier in a model-centric approach (1), to much easier in a code-centric approach (5).

The results suggest that most activities tend to be easier in a model-centric approach, in the

opinion of the survey participants. Even the task judged to be the most code-centric (creating

efficient software) was considered to be achievable with about the same amount of difficulty as

in a model-centric approach. Overall, this question seems to show considerable polarization of

the participants, as even the activities that are seen as highly model-centric still had 15% - 24%

of the participants believe that the code-centric approach was the easier approach. Model-centric

 22

approaches appear to be particularly appropriate for higher-level activities including: explaining

a system to others (82% at least somewhat easier); understanding a system’s behaviour (72%);

creating a new system (69%); and creating a re-usable system (63%).

The participants seem to really want to incorporate modeling into their process, but as earlier

questions indicate, at present they are not doing so to any significant degree. This is

demonstrated in that only half of the participants answered the question about how they use

modeling tools and, of those participants, very few were using the tools to generate source code

from their models.

2.5.8 Model-Centric Issues and Concerns

As expected, the biggest perceived problem of model-centric approaches is keeping the model

up to date with the code (recall that participants did not want code to be generated from models)

with 68% in agreement.

The results reporting the problems with a model-centric approach are presented in Table 5.

Participants did not identify that they had had past bad experiences with modeling (only 17%

agree to have had a bad experience). This suggests little bias against model-centric approaches.

Also, modeling languages (primarily UML, as identified as the dominant modeling language

with 52% usage among the survey participants, whereas the next highest, structured design

models, had only 22% usage) are not the limiting factor to adopting model-centric approaches,

since languages are not considered that difficult to understand (only 10% agree modeling

languages are difficult).

The issue that “code generated from a modeling tool is not of the kind I would like” also appears

to be of high concern with 37% in agreement that this problem is real.

Other high ranking problems include:

• Difficulty exchanging models between tools (52% agree)

• Tools are too big and too hard to learn (39% agree)

• You cannot describe in modeling languages the kinds of detail required to be

implemented in source code (36% agree)

• Models become obsolete as tools change (33% agree)

• Creating models is slow (23% agree)

 23

These problems are mostly tool centric ranging from underlying storage formats, and tool

usability (too big, too slow and insufficient data). It is interesting to note that 34% felt that a

model’s underlying storage format would become obsolete (7th most perceived problem) and

this perhaps reflects an assumption (whether true or not) that tools conform differently to the

underlying data standard (either officially via extensions, or unofficially deviating from the

standard) creating tool-specific models. Text and source code seem to have a much longer shelf-

life; this lends support to the main hypothesis of this thesis that perhaps it is time to explore

models in textual notations that are human editable just like a programming language.

Table 5: Responses for Question 15: Problems with a model-centric approach.
Potential problems N mean s.d. % Not

Problem (1)
% Slight
Problem
(1 + 2)

% Bad
Problem
(4 + 5)

% Terrible
Problem (5)

Models become out of date and
inconsistent with code

92 3.8 1.2 7.6 16.3 68.5 37.0

Models cannot be easily exchanged
between tools

91 3.3 1.3 15.4 26.4 51.6 17.6

Modeling tools are 'heavyweight'
(install, learn, configure, use)

92 3.1 1.2 10.9 31.5 39.1 12.0

Code generated from a modeling tool
not of the kind I would like

91 3.0 1.4 18.7 39.6 38.5 16.5

Not enough detail to be implemented
in code

89 2.8 1.3 23.6 43.8 36.0 7.9

Creating and editing a model is slow 92 2.7 1.2 17.4 43.5 22.8 12.0
Modeling tools change, models
become obsolete

92 2.7 1.2 22.8 44.6 32.6 5.4

Modeling tools lack features I need or
want

89 2.6 1.1 19.1 44.9 21.3 5.6

Modeling tools hide details (source
code fully visible)

92 2.6 1.1 19.6 44.6 23.9 1.1

Modeling tools are too expensive 90 2.6 1.3 26.7 46.7 26.7 6.7

Modeling tools cannot be analyzed as
intended

90 2.5 1.3 28.9 51.1 25.6 6.7

Organization culture does not like
modeling

92 2.5 1.2 31.5 48.9 23.9 4.3

Semantics of models different from
prog. language

90 2.4 1.3 31.1 56.7 23.3 8.9

Modeling languages are not
expressive enough

91 2.4 1.1 28.6 54.9 17.6 2.2

Modeling language hard to
understand

91 2.2 1.0 28.6 62.6 9.9 3.3

Have had bad experiences with
modeling

91 2.2 1.2 39.6 63.7 16.5 6.6

Do not trust companies will continue
to support their tools

89 2.0 1.0 44.9 67.4 10.1 0.0

Note. Values range from Not a problem (1), to Terrible problem (5).

 24

2.5.9 Code-Centric Issues and Concerns

As expected, when the participants were asked about the potential difficulties with code-centric

development most feel that code-centric approaches fail to deliver a high-level view of the

system (66% agree) and entropy means that situation only gets worse over time (55% agree).

The results are summarized in Table 6.

Table 6: Responses for Question 16: Problems with a code-centric approach.
Potential problems N mean s.d. % Not

Problem
(1)

% Slight
Problem
(1 + 2)

% Bad
Problem
(4 + 5)

%
Terrible
Problem

(5)
Hard to see overall design 94 3.8 1.1 4.3 13.8 66.0 35.1
Hard to understand behaviour of system 94 3.6 1.1 4.3 19.1 60.6 21.3
Code becomes of poorer quality over time 92 3.4 1.3 9.8 28.3 55.4 25.0
Too difficult to restructure system when
needed

93 3.4 1.2 8.6 22.6 51.6 17.2

Difficult to change code without adding
bugs

93 3.4 1.2 9.7 22.6 50.5 18.3

Changing code takes too much time 94 2.8 1.2 20.2 39.4 27.7 8.5
Our prog. language leads to complex code 94 2.5 1.2 26.6 51.1 20.2 8.5

More skill than available to develop high
quality code

91 2.5 1.2 29.7 53.8 22.0 6.6

Prog. Languages not expressive enough 91 2.1 1.2 46.2 64.8 14.3 5.5
Organization culture does not like code-
centric

92 1.9 1.2 58.7 72.8 14.1 4.3

Our prog. language likely to become
obsolete

93 1.9 1.1 51.6 75.3 9.7 3.2

Note. Values range from Not a problem (1) to Terrible problem (5).

Participants are of the opinion that programming languages they use do not result in complex

code (20% see this issue as a bad problem), are expressive enough (14% bad problem) and are

not likely to become obsolete (10% bad problem).

The participants were divided on whether or not changing the code takes too much time; 28%

agree and 39% disagree.

Based on the results identifying the current problems with model-centric and code-centric

approaches to software development; development tools may benefit from features that help to

better:

• Synchronize code and models to reduce the inconsistencies.

• Provide better traceability between models and code to help identify relationships among

code and model artefacts to help indicate aspects of models that may require

maintenance should the code change (and vice-versa).

 25

• Provide better modeling capabilities and expressions within the programming code to

reduce the need for external and disjoint modeling artefacts.

The research presented in subsequent chapters helps to substantiate these claims with the design,

implementation and analysis of the model-oriented programming language, Umple.

2.6 Threats to Validity

The main threats to validity of this part of our work are summarized below. We have also

outlined the steps we have taken to help mitigate these threats.

Question interpretation. The survey was conducted over the Internet and respondents may

have misunderstood the intended meaning of our questions. We took two steps to reduce the

ambiguity of our questions by asking colleagues to first review the questions, and then having

team members complete the survey during our trial run. Both activities helped improve the

overall survey prior to go-live. We also separated the survey into two main parts: the first part to

solicit the participants’ personal thoughts towards "what is a model" and the second to answer

modeling based question based on our explicit definition.

Researcher bias. The survey questions attempt to uncover problems with both model-centric

and code-centric approaches to software development. A potential bias could be introduced if

our survey appeared to be overly negative towards either modeling or software coding. To

reduce the chance of bias we tried to be objective when referring to both code-centric and

model-centric questions, as well as presenting the questions in a random order. Since at the time

of this survey we had already conceived some of the notions later embedded in Umple, it may

also be the case that the researchers only asked questions that would lead to answers supporting

the features they were already considering. This may have led to omission of questions that may

have shed different lights on this topic.

Non randomized sample. To help ensure that our sample was based on a representative

collection of software practitioners, we approached both open and closed forums for

participation. In particular, we submitted link articles to Digg.com, and Dzone.com - two

popular technology and news sites. We submitted email requests to UML user groups, agile user

groups, Java user groups, and RUP user groups. We also submitted personal requests to current

and former colleagues. Our demographics results indicate that we do have representation from

most regions of the world, most educational backgrounds, most software industries, and most

types of developers. Prior to conducting the survey we also developed a software taxonomy

 26

[18], as discussed earlier in this chapter, to categorize software applications; our results do

include representation from each of the top-level application types.

Missing/inappropriate question options. Most questions were closed questions and did not

allow additional comments from the participants. Conducting a closed questionnaire can

improve the rate of participation, and it is easier provide quantitative analysis, but it can limit

the kind of feedback that participants can provide. It is almost impossible to provide all possible

scenarios to explain a certain occurrence, and providing too much freedom in the data collection

process (e.g. free-form answers to each question) reduces the quantitative analysis potential of

the survey as a whole and can add considerable length to the survey. To mitigate the threat that

our survey does not learn anything new we put the following safeguards in place (some have

already been mentioned above): the questionnaire was reviewed with colleagues to improve

coverage of the answers; and, the questionnaire concluded with a free-form open question where

participants could provide additional insights (and perhaps additional explanations to a closed

question) on the subject of software modeling.

2.7 Contributions of the Modeling Survey

The following are the main contributions and findings from our study.

Firstly, it is clear that most participants take a broad view of what they consider to be a model,

including informal material such as hand-drawn diagrams. The use of formal modeling tools is,

however, not widespread, with over a third never using them. UML is now clearly the dominant

modeling language for modeling – but tends to be used informally.

For those who use modeling tools, the main uses are to develop a design or transcribe a design

into digital format. Use of a tool to generate all code is not common; this is seemingly because

participants feel that the generated code is not of the type of quality they want, and presumably

also because most developers are reluctant to use full-fledged modeling tools capable of

generating code.

Overall, most developers clearly see the value of the modeling approach, even though they

practice it to only a limited degree. However, there remains a strong core of code-centric

practitioners who seem strongly opposed to modeling.

The following observations gathered from the modeling survey lend credibility to our research

problems identified in Chapter 1. The results provide some insight into the validity of our

hypothesis that the uptake of modeling might be higher if it were possible to create models

textually, in the same manner as code-centric software developers currently program. Below is a

 27

summary of the observations from the survey data that have helped shape the direction of

subsequent chapters:

• Models are more than just diagrams and can include a multitude of other media,

including text

• Model-centric approaches seem to fit many situations, more so than code-centric

approaches, but modeling is not yet a common practice among software practitioners

• Modeling tools are often used to transcribe a model into a digital format; they are used

for this more than for brainstorming the design, or generating code.

• Models quickly become out of sync with the code, and the code often poorly reflects the

design intent of the system

• Software practitioners want modeling tools that allow easy and quick creation of models;

perhaps visual editors are easy to use but maybe they do not adequately facilitate

quickness.

Software developers still appear to love to code, so instead of focusing our work on changing

the development habits from textual to graphical (since most modeling tools are graphical), it

may be possible to raise the level of abstraction (i.e. modeling capabilities) of programming

languages to incorporate many of the concepts currently found in visual modeling languages like

UML. Visual modeling tools could then be enhanced to support a textual equivalent, allowing

both text and diagram to be renditions of the same underlying model. This duality of text and

diagram (referred to as text-diagram duality) would eliminate the need for a reverse engineering

process. If the above were possible, then the complaints our participants had about the quality of

generated code may disappear, so too would the complaints regarding models being out of sync

with the code, or the code poorly reflecting the design of the system. By learning more about the

text-diagram duality of software modeling and by addressing the identified limitations of code-

centric and model-centric programming, we may be able to increase the uptake of modeling as a

whole.

In subsequent chapters we will design, implement and analyze a model-oriented programming

language called Umple that allows developers to model in code. We are seeking to understand

more about this phenomenon and to see if text can be successfully used for what has been a

predominantly visual task.

 28

Chapter 3 Umple: A Model Oriented Language
This chapter leverages the insights gained from previous chapters as we introduce our approach

to address the model-code divide. Our objective is to build a textual modeling language, which

we call Umple. This enables developers to continue to work with text but to adopt more model-

centric approaches to software development.

Umple is a model-oriented programming language that can be used as a diagramming /

documentation tool similar to Yuml [35]. Umple can be used as an evolutionary prototype

platform as described in [36]. Finally, Umple can be used for full application development with

example applications described in Section 7.3 .

The Umple approach is intended to reduce the ever-present tension between model-centric and

code-centric developers. Model-centric developers prefer to model visually and generate code,

while the code-centric developers see source code as the only important software artefact. There

are significant challenges in model driven development of software. One major challenge is

synchronizing generated code with source models, a practice generally referred to as round-

tripping [37]. Our past research also indicates that modelers quite often create models that do

not quite reflect how the system is intended to behave [38]. By eliminating the need for round-

tripping and by reflecting the model directly in the code; these challenges can be reduced. On

the other hand, by enabling coders to model, we raise the level of abstraction available to

developers allowing them to focus more on the what instead of simply on the how.

The core of the Umple approach is to add UML abstractions such as attributes and associations

directly into high-level programming languages. Umple is unique in that it is not simply another

Domain Specific Language (DSL) among the sea of many languages; Umple adds facilities to

general-purpose programming languages with a Java-like syntax; it enhances existing object-

oriented languages instead of competing with them.

A benefit of using Umple (which enabled our team to refactor Umple’s Java implementation

into Umple), compared to other model specifications like xUML [39], and DSLs [40] is that a

system need not be fully specified in Umple to use Umple (as is the case with many other model

specifications). Umple can easily be refactored into an existing system by following certain

patterns as discussed in [41].

Currently, Umple can work with Java, PHP and Ruby. Future versions of the Umple could also

support additional languages such as C++, C# and Python.

 29

In addition to being built on top of existing languages, developers that develop (and/or model) in

Umple can work interchangeably with UML diagrams and Umple code; they are just views of

the same model. In this chapter, we provide an overview of the basics of the Umple language as

well as the supporting tools. In subsequent chapters we provide a deeper analysis of the

implementation of attributes, and associations; as well as analyze the implications on program

size and complexity of systems developed in Umple.

Umple’s objective is to simplify software by incorporating higher-level abstractions in

programming languages. Umple can be viewed from several perspectives. It can be seen as a

programming language based on Java that incorporates UML constructs to raise the level of

abstraction. It can be viewed as a tool for rapidly creating UML diagrams. Or it can be viewed

as a tool to help broaden the appeal of modeling by allowing models to be created textually. In

fact, it is all three of these.

In this chapter we discuss our motivations for developing Umple. These include the lack of

adoption of modeling technology caused in part by difficulties using modeling tools, and a

desire to reduce the amount of code needed in certain object-oriented programming tasks. Then

we present various aspects of Umple including the overall philosophy, the concrete syntax, an

overview of the semantics and the tools we have developed.

3.1 What Models and Modeling Languages Should Be

Miller believes that "If a model had a clear meaning, it would be an asset, rather than a cost"

[42]. Miller’s paper goes on to describe the need for a shared language with a solid foundation,

that is well understood, suits the range of application types being built and does not impose

restrictions on the user. Although we agree with the arguments presented for building an

unambiguous modeling language, we are skeptical that such a language could serve all

application types. In the same manner that source code can be an asset despite there being no

shared language from which all application types can be built, we believe that modeling code

can be equally valuable despite there being no universal language. To further that point, we

intend to apply modeling-like constructs to a variety of application domains. In some cases we

present a simple proof-of-concept to demonstrate the feasibility of our approach to modeling,

and in others we look more closely at particular issues, concerns and implications that arise from

introducing new constructs to a language.

Selic provides his perspective on the pragmatics of model-driven development in [43]. Selic

describes the pragmatic qualities of a model-driven approach that, if available, might help

 30

improve the up-take of modeling. These qualities include:

• Model-level observability: Static and runtime reporting of models should be displayed

at the modeling level; just like compiler errors are reported at the code level (not the

generated byte code level)

• Model executability: Provides direct experience with the system being designed.

• Efficiency of generated code: Identified as an early concern to MDD adoption, the

ability for model compilers to produce as (or more) efficient systems compares to early

concerns about program compilers. This concern, in time, should become less and less

of an issue.

• Scalability: MDD is intended for large-scale systems. Scalability refers to both the

compilation time and the system size.

• Integration with legacy environments and systems: Not only must MDD software

work with legacy system, it must also work with legacy software development processes

and environments.

It is important to note that despite being model-oriented, there is very little discussion of text

versus diagrams in the pragmatics above; also, the implications on integration with legacy

environments (which is mostly textual) imply at least somewhat of a textual approach to MDD.

Pawson and Matthews in [44] describe a modeling technique called naked objects. The premise

involves a one-to-one mapping between business model and user representation – somewhat of

an object-oriented user interface. The goal of naked objects, as we understand it, is to provide

reduced modality and greater expressiveness. There are no views, no controllers, just models.

The view and controller functionality is provided by an object viewing model.

Naked Objects is an approach that discourages the separation of process and data, and instead

the intent is to provide behaviourally complete objects [45]. Naked objects use a “convention-

over-configuration” approach to achieve its goal (i.e. if you follow our rules, then the system

works) and presents a compelling argument for straightforward application development. The

framework does, however, admit its limitations in handling associations relative to a modeling

language like UML. Naked objects provide a compelling prototype language whereby modeling

objects can be translated into a tangible form. But its adoption will be limited due to the

complexities that arise in enterprise level application user interfaces. Pawson has demonstrated

that business models can be directly translatable into a functioning software system and our

work tends to apply similar high-level objectives; albeit our focus is on describing models

 31

within an executable context without constraining either the persistence of model data, nor its

presentation and interaction with end users (i.e. the GUI).

We agree with Spinellis [46] that design models can be composed textually, and graphs can then

be automatically generated. A model is a simplification of reality and that simplification need

not imply a purely graphical representation. Manipulating shapes on a canvas can be tedious and

time consuming. The effort and coordination to create the diagrams is somewhat irrelevant to

the end result. In addition, with diagrams it can be very difficult to determine if model diagrams

are inconsistent or simply incomplete [47].

Drawings are also problematic for configuration and revision control as well as refactoring, code

generation, and metrics extraction. Treude et al. [48] reports that medium- to large-size models

can take five minutes to one hour of processing for merging. Some approaches result in

significant overhead, for example, the use of Universal Unique ID (UUID) for all modeling

elements, which cannot change once created, and whose uniqueness must be guaranteed at all

times [49]. In addition to the limitations of merging models from different sources, such

approaches are inevitably computationally complex. While the computational processing of

XML-based documents may be efficient compared to semantic model merging, XML-based

versioning of software models appears to not have an appropriate level of abstraction, which can

result in falsely identifying model conflicts [50].

Spinellis [46] lists the following advantages to textual models:

• High-level Skills: Textual modeling takes advantage of a programmer’s high-level skills

at abstract formalization of concrete concepts.

• Low-level Skills: The model may be manipulated using an editor of the developer’s

choice, which may include advanced features for searching, editing, macro-

preprocessing, merging. Etc.

• Design versus Diagram: Textual modeling allows developers to concentrate on the act

of modeling, not the aesthetics of diagrams and documentation. For example, text may

be much easier to automatically tidy, or even maintain in a clean manner from the start;

whereas visual models may require developers to spend time perfecting their pictures.

Gronniger’s position paper on text based modeling [51] also analyzed the benefits of text, and

points out the following additional advantages.

 32

• Information Content: Text can be more compact and concise than a typically spread-

out diagram, resulting in graphical tools requiring a significant amount of zooming,

scrolling or pop-ups to convey the same amount of textual information.

• Speed of Creation: There is less need for drag and drop, menus, pop-ups and switching

between mouse and keyboard in a textual environment.

• Integration of languages: Not everything can be readily expressed in a diagram, and

most graphic tools do a poor job of integration of elements that intrinsically need to be

textual.

• Version control: Small changes in diagrams can result in large changes in its model

serialization for version control, making model versioning compared to plain text very

difficult.

• Outlines and graphical overviews: Text can be represented graphically if needed, so a

textual form serves as a good main form.

• Composition of modeling languages: Text shares a common storage format with

disparate modeling and programming languages, allowing for easier integration among

these.

Both graphical and textual representations have their limitations and Gronniger [51] states that

most papers investigating graphical modeling tools make no comparison to textual versions. The

premise that graphical tools and languages are better simply because they are graphical has

been questioned in [52]. Although he does not present empirical evidence in support of or

refuting graphical versus textual notations, Gronniger argues anecdotally that because he

observed software developers choosing a textual approach as opposed to a graphical approach,

where both options were available, that there is merit to text and that at least in some situations

text can be the preferred development approach. He made these observations in the context of

the USE tool [53].

Jacobson and Cook [54] provide a short summary of the possible future direction of UML to

"prepare [UML] for the future" as a response to the Request for Information on the Future

Development of UML in 2009 [55] (issued by the OMG and led by Steve Cook). The results of

the RFI showed a need for UML to be leaner, easier (to learn, to integrate with other languages),

and to be more expressive.

One area that our research addresses is the ability for "models to be deeply integrated with

modern programming languages without any semantic conflicts" [54]. A future objective of

 33

UML is to create a kernel, called "Essential UML" which contains a compact set of elements

that can be quickly learned. Our work looks to bring UMLs future objective to reality now, with

an unambiguous implementation of a small but significant UML subset that when used in

combination with an executable action language like Java, PHP, or Ruby can fully specify

software systems.

Most MDA approaches provide different layers of software system descriptions from platform

independent models (PIM) to platform specific models (PSM) for a particular implementation. It

is likely the case that several languages will be used in a system [56]. Our approach to modeling

looks to reduce the number of languages in use by extending current languages with modeling

constructs. In [57], Skene argues that modeling languages do a poor job of preserving the link

between artefacts (i.e. generated source code) and their language. If the model were the code

then the need to preserve the link is a moot point because they are now one and the same.

OMG recently made available an RFP for a concrete syntax for a UML Action Language (UAL)

[58]. The proposal is to seek a definition of a textual language for representing the UML subset

defined in the Foundation Subset for executable UML Models (fUML) [59]. The OMG proposal

requires that the UAL be suitable for use in executable UML models. A proposed UAL must

meet a number of objectives including [60]:

• It must be computationally complete, meaning it must include standard arithmetic and

logical capabilities supported natively or by the use of libraries.

• The UAL must allow the invocation of user-specified external code such as legacy code.

• It must allow embedding of native code. For example, if the target platform is Java, the

UAL should allow the embedding of Java statements and constructs.

The approach requested by OMG with a UAL presents just a small aspect of textual modeling

(in this case the action semantics of a model), but it does represent an increased movement

towards text-based (and human usable) modeling languages. In November 2009, OMG

published two proposals, one from IBM and one from Mentor Graphics. In mid-February 2010,

the two proposals were consolidated into one to be called Action Language for Foundational

UML (Alf) [61]. Development of Alf continues at the time of writing.

Umple allows developers to model the structure of a system (i.e. class diagram), and it currently

delegates much of the system’s behaviour (i.e. action semantics) to the underlying programming

language such as Java, PHP, or Ruby. Some might take the perspective that all code is at some

level a model – which might be even truer in the future if or when Umple extends support for

Alf action semantic.

 34

3.2 Motivations

Our desire to develop Umple arose for two main reasons. We address each of these in the

following subsections.

3.2.1 Lack of Adoption of Modeling

It is apparent from our survey in Chapter 2 that although most developers model sometimes, the

code-centric approach is more prevalent.

The respondents in our study felt that for corrective maintenance and developing efficient

software the code-centric end of the spectrum would be better; however, they agreed that for

almost all other tasks, including new development, adaptive maintenance, and program

comprehension, model-centric approaches work best.

The respondents had three main criticisms of the model centric approach: 68% felt that it is a

bad or terrible problem that models become out of sync or inconsistent with the code; 52%

complained about incompatibility among tools, and 39% complained about tools being too

heavyweight.

On the other hand the respondents also had complaints about code-centric approaches: Two

thirds complained about difficulties understanding the design or behaviour of the system based

on code, and over half complained about code being difficult to change in general, as compared

to models.

We believe it is possible, in the approach we take with Umple, to deal with both sets of

criticisms and hence satisfy both groups.

Our own personal experience corresponds with what we have observed in our studies of others:

We do a considerable amount of modeling and would like to be able to generate and modify

UML diagrams very rapidly. Whether it is for teaching UML, illustrating books or papers, or

developing actual systems, we have found both the commercial and open source tools to be

slower at modeling than we would like.

We concluded from the above that the reasons for lack of more wholehearted adoption of

modeling seem to be as follows:

a) Code generation does not work as well as it needs to;

b) Modeling tools are too difficult to use;

c) A culture of coding prevails and is hard to overcome;

 35

d) There is a lack of understanding of modeling notations and technologies;

e) The code-centric approach works well enough, such that the return on investment of

changing is marginal, yet the risks are high.

The Umple approach addresses these reasons as follows.

Point a) is addressed by the fact that Umple is a programming language, and a simple one. One

of the main difficulties in generating code from a language like UML is that the semantics of

UML were in fact explicitly designed to be for abstract modeling – making it difficult to

translate a model into code. Umple adopts key modeling features, but in its design we have

chosen to err on the side of making it simple and usable for programming. It adopts Java

semantics when these differ from UML semantics.

Umple addresses point b) by allowing models to be created using a simple text editor. Umple

has a syntax-directed editor that is used to help produce error-free code or models. At the same

time, however, the Umple tools provide the capability to rendering Umple code as UML

diagrams directly in IBM’s Rational Software Modeler, as well as other modeling tools such as

Papyrus and EclipseUML. In general, Umple supports Eclipse Modeling Framework (EMF)

tools via Ecore. The user therefore has the ‘best of both worlds’.

Umple addresses point c) simply because it does not try to go against the prevalent coding

culture. Umple allows you to keep coding, even though you are actually developing using some

features that are at a modeling level of abstraction. If you are in the modeling culture, and want

to work with full UML models in diagrammatic form, Umple does not stop you from taking that

approach either: you can use Umple code to generate or edit your diagrams.

Umple addresses point d) by only introducing the very simplest modeling concepts in its initial

release. These include generalization, associations (with multiplicity), attributes, association

classes and a few basic design patterns. Current work also includes support for state machines,

the discussion of which is outside the scope of this work.

Finally, Umple addresses point e) by providing a path to adoption that does not require a

significant investment.

3.2.2 Reducing the Need to Program Boilerplate Code

In the last section we explained our first motivation for developing Umple: A desire to ease

people’s ability to model.

 36

However, our second major motivation is to ease people’s ability to write object-oriented code.

Long before the advent of UML, it was a commonplace object-oriented programming idiom for

two classes to contain instance variables that reference the opposite class. The programming

challenges include maintaining referential integrity, and deciding which class would take the

prime responsibility for adding and deleting the references (links) between objects of the two

classes.

With the emergence of object-oriented modeling languages (e.g., OMT and later UML) these

between-class references were modeled as associations. Detailed semantics can be found in the

UML specification [62], or the many books on the subject (e.g. [2]).

Ultimately, however, association abstractions still have to be rendered into programming

language code. Developing bug-free code to do this involves considerable work. However the

code ends up being very similar from association to association. It is called boilerplate code

because it is standard in nature, yet needs to be replicated in many parts of a system.

With Umple, this boilerplate code for associations is completely eliminated. Instead one

declares associations and lets the compiler handle the details of referential integrity and link

assignment.

In the next section we provide an overview of the language constructs available in Umple,

followed by a review of Umple tooling and its underlying design.

3.3 Description of Umple

The word ‘Umple’ is a play on words, meaning ‘Simple’, ‘UML programming Language’ and

‘Ample’.

3.3.1 Simple

Umple is intended to be simple from the programmer’s perspective because, a) there is less code

to write, and b) there are fewer degrees of freedom than either Java or UML. Code that is

eliminated includes boilerplate code for adding, deleting and modifying association links, as

well as constructors and methods for accessing attributes. In all these cases, and many others,

Umple provides sensible default implementations that can be enhanced to support more complex

behaviours.

An Umple program deliberately enforces a highly layered style of software. In particular it

provides no user interface facilities other than a simulation environment and debugging

mechanism. The result of compiling Umple code is the generation of Java, PHP or Ruby code

 37

implementing an API that can be accessed by other layers, such as a user interface or data access

layer. This allows for the use of existing tools and frameworks like Java Server Faces [63], and

Zend Framework [64] to build the user interface and a tool like Hibernate [65] for database

access.

3.3.2 UML Programming Language

Umple adds key features of UML to Java, PHP and Ruby. The Umple language supports UML

concepts like attributes, associations and state machines. As mentioned earlier, Umple can be

used to generate UML class diagrams, or alternatively a class diagram can be rendered

straightforwardly into Umple.

Umple is not the first attempt to provide a textual notation to UML. The XML Metadata

Interchange XMI [66] is designed as an exchange specification between UML compliant tools,

but its intent is to be consumed by computers and is not very human-readable; it also comes in

different ‘flavours’ resulting in it actually not being very useful for interchange in practice.

Umple can generate XMI as well as tool-specific model exchange formats including TextUML.

OMG proposed a Human-Usable Textual Notation HUTN [67]; but this representation is not a

language but rather an approach for any model to be populated textually. The HUTN standard

has remained stagnant since first being published in 2004. Should this standard be revived, our

team could investigate model-to-model transformation from Umple into HUTN. In addition to

those just mentioned, there are number of other textual modeling approaches and tools [35, 68-

72]. For example, TextUML [73] is a tool that allows the modeler to create and edit UML

models in text as opposed to in graphical form. TextUML is a UML editor whose output is

compatible with other modeling tools so the user may obtain services such as code generation.

Conversely, Umple provides the full end-to-end solution with a textual notation, action semantic

and constraint notation as well as a model compiler (no round trip engineering required).

Although we believe that Umple’s approach to easily facilitate the generation of running

systems from textual UML models with embedded implementation code is unique. Umple’s

philosophy is to completely remove the need to round-trip between models and code, effectively

eliminating the need for manual effort to synchronize model and code [74]. We successfully

removed round-tripping by supporting a friendly human-readable (and textual) modeling

notation seamlessly integrated with algorithmic code. With a model-is-the-code approach,

developers are more likely to maintain and evolve the code (and modelers are more likely to

 38

maintain and evolve the model) as the system matures simply by the fact that both views

represent the same underlying system.

3.3.3 Ample

Despite the restrictions imposed by the deliberate simplicity of Umple, it is intended to have

sufficient power to program the functional layer of most kinds of systems. As we will describe

later, we have used it for several moderately-sized applications including the Umple compiler

itself, a private lender’s mortgage company, a distance learning reporting tool, an online

schedule manager, as well as 25 example systems including an airline scheduling system and an

elevator control system.

3.4 Motivating Examples

Umple provides a family of programming languages that all incorporate UML constructs to raise

the level of abstraction. Each Umple language instance (e.g. Java+Umple) supports the

underlying action semantics of the target execution language. It can also be used as a tool for

rapidly creating UML diagrams to help broaden the appeal of modeling by allowing models to

be created textually.

Versions of Umple currently exist for Java, PHP and Ruby, and we intend to create versions for

other object-oriented languages. For simplicity we will typically limit our discussion to Java.

An Umple program contains algorithmic methods that look more or less identical to their Java

counterparts. The key differences lie in how classes are declared, the absence of explicit

constructors, and the replacement of instance variables and many related methods by attributes

and associations.

3.4.1 Course Registration

The following example shows how one would declare attributes and associations in the first

steps on modeling a system using Umple. To help distinguish between Umple and Java code, the

Umple examples use dashed borders in light-grey shading, and pure Java examples use solid-

line borders with no shading.

class Student {}
class CourseSection {}
class Registration {
 String grade;
 * -- 1 Student;
 * -- 1 CourseSection;
}

 39

As the above example shows, the basic declaration of a class follows the syntactic style of Java.

The three lines in class Registration declare an attribute and two associations respectively. The

class diagram to reflect the Umple code above is shown in Figure 1.

Figure 1: UML class diagram for part of the student registration system (from [2])

Immediately after writing the Umple code shown above, we can generate a class diagram of this

tiny system. Alternatively, we could have drawn the diagram and the Umple code would have

appeared in our tool. We can also generate an executable system in either Java, PHP or Ruby.

The executable system implements an API that allows developers to create instances of the

modeled classes, as well as manage attributes, and delete links of the associations. The few lines

of Umple code above generate over 300 lines of Java (the details of the code generation is

discussed in Chapter 4 and Chapter 5).

3.4.2 Airline Reservation System

Let us consider the UML class diagram outlining a simple Airline Reservation System [2]

illustrated in Figure 2.

Figure 2: Airline Reservation System UML Class Diagram [2]

The system is comprised of eight classes, eight associations, and one generalization (with two

subclasses). The airline system has regular flights that run on a particular schedule with daily

occurrences (called specific flights) staffed by employees and filled with passengers, who make

bookings.

 40

In translating UML associations into executable languages like Java, it would be beneficial (but

currently uncommon) to include access methods (get, set, add, remove) to manage links of

associations. Ideally, these methods would maintain the multiplicity constraints of the

association as well as preserve referential integrity – ensuring that both ends of an association

are properly updated when adding or removing links.

With Umple, the model and the code (and the modeller and the coder) become one. There is no

‘code generation’ process that requires manual updating, since the Umple code represents the

model and the code at the same time. Of course, there is still a compilation process, but because

the full richness of object-oriented programming is available within Umple, there is no need for

the developer to look at the compiled code, just as today’s programmers almost never look at the

generated machine or byte code. By removing the necessity of editing the generated code we not

only remove the need to reverse engineer the generated code; we also simplify the generated

code as there is no longer a need to provide the infrastructure to allow hand-written code to be

integrated into generated code. Indeed, supporting round-trip engineering in a code generator

can be a nice feature to have, but not requiring one is even better.

Umple’s executable code is not intended to be read, as all the features of the underlying

language would be available in Umple. Despite the fact that the generated system need not be

further edited to be run, we believe that it is still a good practice to generate code as if it were

written by hand. Undoubtedly, and at least until Umple becomes widely accepted, end-users will

look at the generated Java/PHP/Ruby code. From an educational perspective, having well

written generated code acts to demonstrate how modeling is translated into executable code.

The Umple syntax for describing the airline system above is shown below in Figure 3.

As seen below, the Umple language provides a Java-like syntax to describe software models and

includes basic constructs such as classes, packages and primitives types such as Integer,

Boolean, String, Date, and Time. Unlike Java, Umple also provides mechanisms to model

associations separate from attributes.

Umple treats associations as first-class entities and associations can be expressed separately

from the classes they link together. For example, to code the association that several employees

can be assigned many specific flights, and many specific flights can have several employee roles

assigned to them can be written as follows:

association {
 * EmployeeRole -- * SpecificFlight;
}

 41

A collection of additional Umple examples (currently 34 examples ranging from Banking

Systems to Warehouse control systems) is available for review online at [3].

namespace Airline;

class Airline{
 1 -- * RegularFlight;
 1 -- * Person;
}

class RegularFlight{
 Time time;
 unique Integer flightNumber;
 1 -- * SpecificFlight;
}

class PassengerRole {
 isA PersonRole;
 immutable String name ;
 1 -- * Booking;
}

class PersonRole{}

class EmployeeRole {
 String jobFunction;
 isA PersonRole;
 * -- 0..1 EmployeeRole supervisor;
 * -- * SpecificFlight;
}

class Person {
 String name;
 Integer idNumber;
 1 -- 0..2 PersonRole;
}

class Booking {
 String seatNumber;
 * -- 1 SpecificFlight;
}

class SpecificFlight{
 unique Date date;
}

Figure 3: Airline Reservation System in Umple

The textual version of Umple shown in Figure 3 above includes some additional details such as

role names and attribute modifiers (like immutable and unique) that are not displayed in the

diagrammatic view that was used to generate Figure 2. The same is true for most other UML

diagrams presented in this thesis.

Let us now look at the other syntactic elements illustrated above. Please note that attributes and

associations are further analyzed in subsequent chapters. The description appearing below is

meant to provide a high-level understanding of the Umple language.

3.5 Overview of Umple Entities

3.5.1 Attributes

The declaration of attributes in Umple looks very much like the declaration of instance variables

in Java. However, there are some important differences. First, the set of primitive data types is

different. Currently Umple supports the following attribute types: Integer, Double, Date, Time,

String, and Boolean. The above set of primitives was chosen to cover most basic modeling and

programming needs, without having to deal with the complexities of primitive vs. class data

types. The Integer type will in fact generate ‘int’ code when compiled in Java, but we want to

insulate the user from that constraint on the Java language. The set of attribute types is also

inspired by those available in relational databases.

 42

It is possible to leave an attribute un-typed. This can be useful when you simply want to use

Umple to quickly generate a class diagram. The default data type is String, so you still can

compile an Umple system that has un-typed attributes. This concept of allowing information to

be omitted follows the UML convention.

Chapter 4 will present Umple Attributes in more detail, including a discussion of the syntax and

semantics of modeling attributes as well as their underlying code generation.

3.5.2 Associations

Associations are the key feature that makes the first version of Umple interesting. The

declaration of an association is designed to look visually similar to how it would look in a UML

class diagram.

In Figure 1, there is a many-to-one association between Registration and Student. Declarations

of associations can appear in two places in Umple. They can appear inside one of the two

associated classes, or else as standalone ‘first class’ associations.

For example, we could have placed one of the association declarations inside the Student class

(instead of keeping all of the associations declared in the Registration class) as shown below.

class Student {
 1 -- * Registration;
}

An association can also be defined independently of either association end as shown below:

association Enrolment { 1 Student -- * Registration; }

This notation can be useful when you want to name the association (e.g. Enrolment as shown

above), or when you want to use Umple’s mix-in capabilities to enhance an existing model

without modifying that model directly (e.g. re-using existing model with your own

enhancements).

Another difference between the syntax for standalone versus inline associations is that the

additional class name must appear in the syntax (e.g. Student above). For inline associations

declared within a class referenced in one of the association ends, the first association end is

implicitly defined as the containing class.

Finally Umple supports UML’s notion of association classes. The notation and diagram of

association classes is shown in Figure 4. The Umple code to generate Figure 4 is as follows:

 43

class Student {}
class CourseSection {}
associationClass Registration {
 * Student;
 * CourseSection;
 String grade;
}

Those familiar with UML will recognize that the functionality embodied in Figure 1 and Figure

4 is essentially the same.

Figure 4: UML association class

The full Umple grammar, which also includes the various ways to declare associations, is

presented in more detail in Section 3.7 . Chapter 5 will elaborate in more detail the syntax,

semantics and implications on code generation of associations.

3.5.3 Generalizations

There are two approaches to create a generalization relationship in Umple. One can simply add

an expression in the subclass following the syntax:

isA <superclass>;

For example, an Employee could be a subclass of a Manager.

class Manager
{
 isA Employee;
}

class Employee {}

Or, one can embed the subclass definition inside the definition of the superclass. For example,

the following is equivalent to the previous example.

class Manager
{
 class Employee {}
}

The embedded form is appealing in that the inheritance hierarchy appears visually as increasing

levels of indentation. There are no scope restrictions (such is the case with inheritance) using

 44

this indentation syntax, and it should be noted that inner classes are not supported in Umple

(conceptually inner classes are not really needed, but they can help to make code easier to

understand).

3.5.4 Action Semantics Using Java-Like Methods

Methods in Umple look very much like Java, PHP or Ruby methods. In fact, the Umple

compiler relies on the action semantics of the base language to process them. However there are

certain restrictions placed on the code in a pre-processing step:

Umple methods should be confined to the following:

• Read and write attributes. References should be made via the setX and getX methods.

Rules about immutability and multiplicity are enforced when managed via these methods.

• Navigate associations where the other end is ‘1’ in the same manner as accessing

attributes.

• Navigate ‘many’ associations by calling built-in methods to obtain a read-only version of

the list of objects participating in the association end.

• Instantiate objects, destroy objects, and add, delete and update links of associations by

calling methods generated for this purpose. Referential integrity is automatically

maintained when using navigation and population methods.

• Perform normal computations with local variables, and reference external libraries as

required.

Umple methods can be placed inline in the class, or can be separated (either within a single file,

or several). This allows for mix-in capabilities to enhance (as opposed to extend) a class as well

as allows an Umple model to be separated from the methods written in the base language (i.e.

Java, PHP, or Ruby).

There is presently no standard notation for action semantics in UML. The approach to action

semantics in Umple is built to support any and all object oriented syntaxes. As mentioned,

Umple currently supports the Java, PHP, and Ruby syntaxes. Work is ongoing to support C++.

Additional work is being proposed to support the soon-to-be-approved UML action language

Alf that was discussed earlier.

A UML action language (UAL) is geared towards describing elements of a system, such as

actions, algorithms, and navigation paths, which are not readily described by typical UML

 45

diagrams. Snippets of languages like C++ and Java can be used as a UAL, but such languages

are unaware of UML abstractions, resulting in mixed levels of abstractions and boilerplate code.

Current directions in standardizing action languages for UML, like the current RFP submission

Alf, take a top-down approach, where a new language and new constructs are defined forming

an additional layer of abstraction, with the objective of formalizing model execution. In

developing Umple, we adopted an alternative approach; iteratively discovering what is

necessary in an action language starting with a pre-defined object-oriented language (in our case

Java, PHP and Ruby) and adapting it by adding abstractions to fit the action language

requirements.

Umple provides an excellent complement to UAL by providing a textual syntax for the aspects

of models such as classes, associations, attributes and state machines without committing to any

one action language. Just like Umple currently supports Java, PHP and Ruby, once a UAL

standard is defined, Umple could easily support the concrete UAL syntax.

Chapter 6 discusses additional patterns and features available within the Umple language.

3.5.5 Layout and Positioning in Umple

Umple tracks diagrammatic positioning of classes and association links. The syntax to position

a class is as follows:

position <top-left-x-point> <top-left-y-point> <width> <height>;

And, associations between classes are positioned with the following syntax:

position <qualified-role-name>__<qualified-role-name>
 <x-offset-1>,<y-offset-1> <x-offset-2><y-offset-2>;

The qualified-role-names refer to the combination of class name, as well as optionally the role

name should it be explicitly provided. The offsets refer to the positioning of the link end-point

on a class relative to the top-left quadrant. And example is shown below:

class Student
{
 position 50 30 109 45;
}

class Mentor
{
 1 -- 0..1 Student;

 position 50 130 109 45;
 position.association Mentor__Student 59,0 30,45;
}

The syntax presented above is sufficient to store the layout of a class diagram. Additional

research regarding layout is deferred for future work.

 46

3.6 Umple Design and Tooling

In this section, we provide an overview of the tools currently available to support the creation

and analysis of Umple systems; as well as discuss some of the technical details of the underlying

design and storage mechanism of Umple.

3.6.1 Umple’s IDE Tooling

At its core, Umple is a language interpreter and code generator that parses Umple code,

populates the Umple metamodel and then generates several output artefacts as shown below in

Figure 5. Apart from the target language platform (e.g. Java JRE or PHP/Ruby interpreter) there

are no other external dependencies, enabling Umple to work on a variety of platforms including

Windows, Mac and Linux.

Figure 5: Umple Process

The Umple grammar and metamodel are discussed in later sections in greater detail. Below, we

focus on the Umple tooling, and in particular we see that Umple currently generates a variety of

artefact types include working Java, PHP and Ruby systems, JavaScript notation (JSON) for

web visualization, Violet [75] / Umlet [76] visualizations that plug into Eclipse, Yuml [35]

visualizations, as well as several other modeling notations including valid RSx [77], Papyrus

[78], and TextUML [73] models. Umple relies on Java Emitter Templates (JET) [79] to generate

Java, PHP and Ruby.

Umple also includes subsidiary and internal tools that include:

• Umple Statistics – A metric gathering tool to analyze certain aspects of an Umple system

such as the types of associations present in a model.

 47

• Umple Delta – A synchronization tool that accepts delta inputs (e.g. add or edit) in JSON

format and updates the underling Umple code (and vice versa). This is used for the

Umple Online tool that provides synchronization between an Umple diagram and the

corresponding Umple text.

• VML – Processing of variability models whose target applications are written in Umple.

Umple is available as an IDE and works within Eclipse, Papyrus, Xtext and RSx (both Rational

Software Modeler and Rational Software Architect). In these tools, Umple incorporates model

visualization but does not yet provide synchronization between the code and the diagram. Below

is an RSx model generated by Umple.

Figure 6: Rendering an Umple model in RSM

Umple is also integrated into light-weight model visualization tools including Violet, Umlet and

Yuml. No synchronization between text and diagram is available for these tools. Below in

Figure 7 is an Umlet diagram generated by Umple.

Figure 7: Rending an Umple model in Umlet

3.6.2 Modeling in the Browser

Umple is available as an online editor, called UmpleOnline [3]. The online project was created

for several purposes. A web application provides a zero-footprint modeling environment. Casual

users are able to experiment with the latest version of Umple with little more than a browser and

 48

Internet connection. This access enables curious developers to try out the language, and simulate

basic models (e.g. object creation, link management and attribute updates). It can act (and has

acted) as a tool for software educators to quickly demonstrate various UML design alternatives

as well as to teach the implications on the generated code of those alternatives. Umple provides

a close link between a modeled system and its underlying implementation. Our online editor was

also used to investigate our claim that text and diagrams can represent the same underlying

model, allowing both to be manipulated interchangeably.

UmpleOnline works well as a demonstration tool. It allows the latest features to be used and to

quickly analyze both the modeling and code generation capabilities of the language. Below is an

example model generated using UmpleOnline.

Figure 8: UmpleOnline Screenshot

UmpleOnline also demonstrates the successful synchronization of core modeling components

including classes, associations and attributes. Figure 8 is a view of both visual and textual

representations of the same model as seen from UmpleOnline. Figure 9 illustrates the

synchronization mechanism of the textual and visual editors in the online environment.

The delta mechanism implemented in UmpleOnline synchronizes both the visual and textual

views by synchronizing only the change deltas, making it suitable for the online modeling

environment even when the available bandwidth is limited. Umple is presented and stored in

the same textual representation (as opposed to visual editors whose presentation is diagrammatic

but storage is textual, usually XML based).

 49

Figure 9: Synchronization of Visual and Textual Representations of UmpleOnline

UmpleOnline features a simulator that allows an object-level manipulation of a model. This

runtime execution allows early testing of the design and data model. A screenshot of a simple

relationship between a student and a mentor is shown below in Figure 10.

Figure 10: Simulating a Simple Umple Model

The simulator allows you to create new instances, set/get class attributes, manipulate association

links and call arbitrary methods defined in the model. The simulator provides navigation

between objects via association links, and well as simple undo. The action language for the

simulation is purposely light; the simulator may later be changed to adopt OMG’s yet-to-be-

finalized Alf UAL standard discussed earlier.

 50

The Umple tools are developed in Umple itself, using Java as its underlying action language for

data manipulation and algorithmic operations for the stand-alone application such as the Umple

IDE, and support tooling. UmpleOnline is built in Umple, using Umple+PHP for the front end

interaction with the end-user including the simulator, whereas the back-end parsing, processing,

merging and synchronizing diagram and text uses Umple+Java.

The various tools mentioned throughout this section are built and deployed using the ANT

scripting language; resulting in several executable jars for the various stand-alone tools as well

as for the RSx and Eclipse plugins. These executable jars are also used in the UmpleOnline web

application.

The development team of Umple (several graduate students including the author) follows a test-

driven approach to provide confidence that future enhancements will not regress previously

functioning (and tested) aspects of the Umple systems as well as to ensure that defects are less

likely to re-surface. More on our approach to verification and validation is presented in 7.1 .

3.7 Defining the Umple Language

The Umple language is specified using an interpretable EBNF format with small enhancements

to support domain specific languages where code blocks need not be fully parsed.

3.7.1 Grammar Notation

The notation we present for the Umple grammar is identical to that interpreted by the Umple

system when compiling an Umple program. The benefit is that we ensure our documentation is

always up to date, but at a cost of using a slightly non-standard EBNF syntax.

Our decision to abandon using Antlr [80] was due to its strictness – all tokens have to be strictly

defined, yet Umple, needs to support arbitrary code blocks allowing for algorithmic code to be

written in the native execution language (e.g. Java, PHP, Ruby or any other future language to

which Umple is added). Similar limitations have been uncovered, and remain unresolved, when

working with the xText IDE for Umple.

We strive to keep our notation in line with the EBNF format. Our syntax offers a very simple

mechanism to define a new language, as well as extend an existing one. We will be using

examples to help explain the syntax. Let us start with a simple assignment rule:

assignment : [name] = [value] ;

The rule name is "assignment". An assignment is comprised of a non-terminal called "name",

then the equals symbol ("="), a non-terminal "value" and finally a semi-colon symbol (";").

 51

The grammar includes two non-terminal notations, the first of which is shown above. A

sequence non-terminals is a sequence of characters that is non-whitespace and is delimited by

the next symbol as defined in the grammar. In our case above, the non-terminal "name" will be

defined by the characters leading up to either a space, tab, newline, or an equals ("=").

Our grammar syntax allows for rapid language creation. The language author need not worry

about the complex, repetitive and somewhat error prone regular expressions used to define

common structures such as string sequences, decimal numbers, alphanumeric strings, and

arbitrary code blocks as would be required when using a parser like Antlr [80]. This simplicity

allows for rapid prototyping, which can later be refactored into rule based non-terminals as

discussed below.

Here are a few examples that satisfy the assignment rule above:

key = "one";
wasSet=true;
numberOfItems =7;

Let us now consider examples using rule-based non-terminals (i.e. nesting rules within a rule).

directive- : [[facadeStatement]] | [[useStatement]]
facadeStatement- : facade [=facade:on|off] ;
useStatement : use [=type:file|url] [location] ;

Above, we have three rules, directive, facadeStatement, and useStatement. A directive is either a

facadeStatement or a useStatement (the or expression is defined by the vertical bar "|"). To

differentiate between the two types of non-terminals, we use single square brackets (“[“ and “]”)

for sequence non-terminals, and double square brackets ("[[" and "]]") for rule based non-

terminals.

By default, rule names are added to the tokenization sequence. But, some rules act more like

placeholders to help modularize the grammar and to promote reuse. To exclude a rule name

from the token sequence (and just the name, the rule itself will still be evaluated and tokenized

as required), simply add a minus ("-") at the end of its name.

Above, we see that the rule names directive, and facadeStatement are not added to the

tokenization string. Based on the example grammar above, parsing the statement:

facade off;

based on the facadeStatement rule shown above would result in the following tokenization:

[facade:off]

Note that because of the minus (“-“), the facadeStatement is not added to the tokenization string

and is simply used internally by the grammar to group and re-use rules.

 52

Symbols (i.e. terminals), such as "=" and ";" are used in the analysis phase of the parsing (to

decide which parsing rule to invoke), but they are also not added to the resulting tokenization

string for later processing. If we want to tokenize symbols, we can create a constant using the

[=name] notation.

Above, we see that a facadeStatement is represented by the sequence of characters "facade" (i.e.

a constant). To support lists of potential matches we use a similar notation

[=name:list|separated|by|bars]. Above, we see that the type non-terminal can be the constant

string sequence file or url.

Here are a few examples that satisfy the assignment rule above:

facade;
use file Parser.ump;
use url http://cruise.site.uottawa.ca/Parser.ump;

Our grammar syntax supports a simple mechanism for non-terminals that can include

whitespace (e.g. comments). Consider the following rules to define inline and multi-line

comments.

inlineComment- : // [*inlineComment]
multilineComment- : /* [**multilineComment] */

The [*name] (e.g. [*inlineComment]) non-terminal will match everything until a newline

character. The [**name] (e.g. [**multilineComment]) non-terminal will match everything

(including newlines) until the next character sequence is matched. In the case above, a

multilineComment will match everything between "/*" and "*/".

Here are a few examples that satisfy the assignment rule above:

// remove all references to "x" once complete

/* This class will help calculate
 your overdue library fees */

The grammar language provides additional internal features well suited for the creation of

programming languages / extensions. The above examples should be sufficient to allow the

reader to review the Umple language syntax.

The current Umple grammar is shown below; the latest version is maintained online at [81] and

is prepared automatically to ensure it is always accurate. For clarity, we omit the grammar

pertaining to state machines as it is outside the scope of this work but currently available in the

Umple language.

program- : ([[comment]] | [[directive]])*

directive- : [[glossary]] | [[generate]] | [[useStatement]] |
 [[namespace]] | [[entity]]

 53

glossary : glossary { [[word]]* }

word : [singular] : [plural] ;

generate- : generate [=generate:Java|Php|Ruby|Json|Yuml|Violet|Umlet] ;

useStatement- : use [use] ;

namespace- : namespace [namespace] ;

entity- : [[classDefinition]] | [[interfaceDefinition]] | [[externalDefinition]] |
 [[associationDefinition]] | [[associationClassDefinition]]

classDefinition : class [name] { [[classContent]]* }

externalDefinition : external [name] { [[classContent]]* }

interfaceDefinition : interface [name] { [[depend]]* [[extraCode]]? }

associationDefinition : association [name]? { [[association]]* }

associationClassDefinition : associationClass [name] { [[associationClassContent]]* }

classContent- : [[comment]] | [[classDefinition]] | [[position]] |
 [[softwarePattern]] | [[depend]] | [[symmetricReflexiveAssociation]] |
 [[attribute]] | [[inlineAssociation]] | [[extraCode]]

associationClassContent- : [[comment]] | [[classDefinition]] | [[softwarePattern]] |
 [[depend]] | [[singleAssociationEnd]] [[singleAssociationEnd]] |
 [[attribute]] | [[inlineAssociation]] | [[extraCode]]

association : [[associationEnd]] [=arrow:--|->|<-|><] [[associationEnd]] ;

symmetricReflexiveAssociation : [[multiplicity]] self [roleName] ;

inlineAssociation : [[inlineAssociationEnd]] [=arrow:--|->|<-|><] [[associationEnd]] ;

inlineAssociationEnd : [[multiplicity]] [roleName]?

singleAssociationEnd : [[multiplicity]] [type,roleName] ;

associationEnd : [[multiplicity]] [type,roleName]

multiplicity- : [=bound:*] | [lowerBound] .. [upperBound] | [bound]

softwarePattern- : [[isA]] | [[singleton]] | [[keyDefinition]] | [[codeInjection]]

isA- : isA [extendsName] ;

singleton- : [=singleton] ;

keyDefinition- : [[defaultKey]] | [[key]]

codeInjection- : [[beforeCode]] | [[afterCode]]

attribute : [=autounique] [name] ; |
 [=unique]? [=modifier:immutable|settable|internal|defaulted|const]? ([type]
 [=list:[]] [name] | [type,name>1,0]) (= [**value])? ;

beforeCode : before [operationName] { [**code] }

afterCode : after [operationName] { [**code] }

defaultKey : key { }

key : key { [keyId] (, [keyId])* }

depend- : depend [depend] ;

extraCode- : [**extraCode]

 54

comment- : [[inlineComment]] | [[multilineComment]]

inlineComment- : // [*inlineComment]

multilineComment- : /* [**multilineComment] */

position- : [[associationPosition]] | [[classPosition]]

classPosition : position [x] [y] [width] [height] ;

associationPosition : position.association [name] [[coordinate]] [[coordinate]] ;

coordinate : [x] , [y]

The tools that enforce the syntactic rules of Umple programs use the grammar above; feedback

is available using the Umple plugin to Eclipse, using Xtext. The enforcement of semantic rules,

such as ensuring single inheritance, upper bounds >= lower bounds, no cyclic constructors, etc.

is fundamentally in the Umple tools, but it is neither user friendly nor comprehensively defined

at the current time.

Additional processing of the underlying base languages would be useful to not only identify

syntactic violations of the action semantic code (refer to Section 3.5.4), but also to identify

whether any of the action language methods violate modeled constraints by doing operations

such as directly accessing a member variable. Detailed analysis, documentation and tool support

to improve on these semantic and syntactic checks is left as future work.

The intent of discussing the underlying grammar is to help provide a context and completeness

of the modeling syntax of Umple, but a true appreciation for the capabilities of Umple are better

described by analyzing the semantics alongside the syntax. To that end, a discussion of the use

and declaration of the more interesting aspects of the language are presented in subsequent

chapters; attributes are discussed in Chapter 4, associations are discussed in Chapter 5, and

software patterns are discussed in Chapter 6.

3.7.2 Umple Metamodel

The Umple metamodel lies at the core of the suite of technologies to manage systems built in

Umple. It is mature, full featured, and is developed in Umple itself. In other words, future

versions of Umple are developed and managed in current versions (with the first few versions

being written entirely in Java).

Figure 11 gives an outline of the Umple metamodel. This class diagram was generated using

Umple and it should be noted that role names are not displayed in the diagram view of the

model but are provided in textual view that follows.

 55

Figure 11: Umple Metamodel (described in Umple)

In the Umple code below we have omitted the algorithmic manipulation of the model for

simplicity. This separation of concern is itself a feature and benefit of developing in Umple.

Umple allows algorithmic code to be seamlessly integrated with model code without enforcing

constraints on the how the resulting code should be implemented. Below is the actual Umple

meta-model written in Umple itself.

class UmpleModel
{
 depend cruise.umple.util.*;
 depend cruise.umple.compiler.exceptions.*;

 UmpleFile umpleFile;
 defaultPackage = null;
 String[] generate;
 Boolean shouldGenerate = true;
 Glossary glossary = new Glossary();
 String defaultNamespace = null;
 String code = null;

 1 -> * UmpleAssociation association;
 1 -> * UmpleClass;
}

class UmpleElement
{
 name;
 Coordinate position = new Coordinate(100,100,0,0);

 56

}

class UmpleInterface
{
 isA UmpleElement;
}

class CodeInjection
{
 type;
 operation;
 code;
}

class Key
{
 Boolean isDefault = false;
 String[] member;
}

class UmpleClass
{
 isA UmpleElement;
 Boolean isSingleton = false;
 String[] depend;
 String[] namespace;
 modifier = "class";
 UmpleVariable uniqueIdentifier = null;
 UmpleAssociation[] association;
 Key key = new Key();
 extraCode = "";
 packageName = "";

 1 -> * CodeInjection;
 * -> 0..1 UmpleClass extendsClass;
 1 -> * AttributeVariable;
 1 -> * AssociationVariable;

 before setPackageName { if (aPackageName == null) { return false; } }

 }

class UmpleAssociationClass
{
 isA UmpleClass;
 1 -> 0..2 UmpleAssociation associatedTo;
}

class UmpleVariable
{
 name;
 type;
 modifier; // potential enum, 'settable'
 value;

 before getName { if (name == null) { return defaultName(); } }
 before getModifier { if (modifier == null) { return "settable"; } }
}

class AttributeVariable
{
 isA UmpleVariable;
 Boolean isAutounique;

 57

 Boolean isList = false;
}

class UmpleAssociation
{
 Boolean isLeftNavigable;
 Boolean isRightNavigable;
 Coordinate[] position;
 Integer index = -1;
 0..1 -- 2 UmpleAssociationEnd end;
}

class UmpleAssociationEnd
{
 const Integer MULT_MANY = -1;
 const Integer DEFAULT_MINIMUM = 0;
 const Integer DEFAULT_MAXIMUM = -1;

 roleName;
 className;
 modifier; // potential enum 'internal'
 referenceToClassName;
 Multiplicity multiplicity;

 key { multiplicity, roleName, className, modifier, referenceToClassName }
 //modifier { Settable, Immutable, Internal, Defaulted, Constant }

 before getRoleName { if (roleName == null) { return ""; } }
 before getClassName { if (className == null) { return ""; } }
 before getModifier { if (modifier == null || "".equals(modifier))
 { return "internal"; } }
 before getReferenceToClassName
 { if (referenceToClassName == null) { return ""; } }
}

class AssociationVariable
{
 isA UmpleVariable;
 Multiplicity multiplicity;
 Boolean isNavigable;
 0..1 self relatedAssociation;
}

class Multiplicity
{
 bound = null;
 minimum = null;
 maximum = null;

 key { bound, minimum, maximum }
}

class GeneratedClass
{
 depend java.util.*;

 code = null;
 * -> 1 UmpleModel model;
 0..1 -> 1 UmpleClass uClass;
 0..1 -> 0..1 GeneratedClass parentClass;
}

 58

As it currently stands, Umple is used to model Umple, but Umple should not be considered a

meta-metamodeling language, a major difference between Umple and EMF. For example,

Umple is probably better described as a model-oriented programming language. Just as you can

develop Scheme interpreters in Scheme, our team was able to model an Umple modeler

completely in Umple.

3.8 Alternative Approaches and Representations to Modeling

The early focus of our work with Umple was to develop the syntax and semantics for the model-

oriented language, ensuring the code generation was of high quality and reflected a style of code

similar to that written by hand.

The following sub-sections will discuss other modeling languages, frameworks, tools and

approaches that have been used to represent models, both textually and diagrammatically.

Throughout the section we will make reference to an optional-one-to-many relationship between

a Mentor and a Student, shown below in Umple.

class Student {}

class Mentor {
 0..1 -- * Student;
}

3.8.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [82] is a modeling framework and code generation

facility for building tools and applications based on a structured data model. Models can be

specified in Java, XML, or within a modeling tool like EclipseUML and Rational Software

Modeller/Architect. The core tooling provides runtime support to produce a set of Java classes

for a model, including adapter classes to manage the display and editing of that model in a basic

editor. The metamodel used to store EMF models is called Ecore and it includes persistence (via

XMI serialization) as well as a reflection API and notification mechanism to allow

programmatic manipulation of EMF objects [83].

EMF includes additional support tools such as EMF.Edit and EMF.Codegen. EMF.Edit can be

used for building visual editors based on EMF models. EMF.Codegen provides the tooling for

code generation using Java Development Tooling (JDT). The code generation facility uses Java

Emitter Templates (JET) [79] to create Java interface and implementation classes, factory and

package implementation classes.

 59

EMF can be seen as a modeling and data integration framework for storing meta-data and

metamodels. Or, it can be seen as a code-generation platform for building plugins for Eclipse

(i.e. Eclipse editors). Umple, in contrast, is a model-oriented programming language for building

complete working systems. Umple is represented using a specific metamodel for building

software systems and is not a meta-metamodeling framework for building models to build

models. Umple uses code generation as a means to create executable systems, reduce boilerplate

code, and create systems based on all kinds of languages and platforms, not simply Java and

Eclipse.

EMF evolved from the experiences of building editors for WebSphere, whereas Umple evolved

as an enhancement to existing programming languages. The Umple authors wanted to raise the

level of abstraction of existing languages to help reduce the syntactic noise required to

implement model-oriented entities such as attributes, associations, multiplicity and state

machines.

Below in Figure 12 is an outline of the EMF approach recommended by the authors of

Mastering EMF [84]

Figure 12: Software Development Workflow using EMF

The Umple approach as shown in Figure 13 follows more closely the software development

style of defining a system including both model-level and code-level abstractions. This allows

the process to easily fit within existing software development processes including waterfall,

iterative, incremental, agile as well as code-and-debug. As mentioned, Umple also includes a

simulation engine to allow early exploration of models before committing to a certain design.

Umple integrates with EMF using a model transformation into Ecore. By supporting EMF via

model-to-model transformation we get all of the tooling support available to Ecore models

without having to sacrifice the somewhat divergent goals of Umple’s approach to model-driven

development compared to those of EMF.

 60

Figure 13: Software Development Workflow using Umple

In order to illustrate the difference in the positioning of Umple as compared to EMF, consider

the following Ecore meta-model.

Figure 14: Snippet of Ecore Meta Model [4])

As evident in Figure 14, EMF captures only the class diagram subset of UML (page 14 of [4]).

EMF Attributes are seen as pairs of methods. References are similar to associations (one end of

an association) with support for referential integrity in the generated code. EMF does not

support association classes, or state machines. In contrast, Umple allows associations to be

defined as first class entities, in addition to managing the actual references amongst classes. By

including state machines as entities, Umple allows simple enumerations in addition to more

complex full state machines with events, actions, etc. Umple delegates the behavioural aspects

of the system to an action language like Java, PHP and Ruby.

EMF also differs in its support for reverse engineering. Code generated with EMF allows for re-

generation of code while preserving user modifications. As stated previously, Umple has set out

to provide a model-oriented language that requires no end-user modifications of generated

source code in a similar manner that a developer would not modify byte code generated from

Java (i.e. no round trip engineering required).

 61

We agree with the premise that one can both model and code within the same artefact (page 13

of [4]). EMF claims that it provides a gentle introduction to modeling (where only state

machines are more effectively written in code). The desired approach for creating EMF models

is to edit the Ecore model directly (page 17 of [4]), but editing a syntax tree to model can hardly

be seen as efficient, and it cannot be expected that a modeler (or even a developer) would

model/code in XMI. In fact, EMF was complex enough that Emfatic [85] was developed as a

text-based editor built on top of EMF, meaning that the ‘gentle’ introduction now required the

developer to write Emfatic code to generate an EMF model, which could then be used by other

systems to generate code (or other editors) for that model.

Umple also prescribes the gentle approach to introducing modeling within software, but without

limiting the act of modeling to just class diagrams, as well as ensuring that the process is just as

straightforward as that currently available in programming languages (i.e. write, compile, run).

Below is a UML diagram based on the Music example from (page 20 of [84]).

Figure 15: Music Library Example from [4]

The Umple code to describe the model above is written below.

class MusicLibrary {
 name;
 * -- 0..* Artist;
}

class Artist {
 name;
 notes = null;
 * -- 0..* Work;
}

class Work {
 name;
 whenMade = null;
 notes = null;
 mediaType { CD, LP, Tape, MP3 };
}

The Ecore model for the same model is shown below.

 62

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="model">
 <eClassifiers xsi:type="ecore:EDataType" name="Time"
instanceClassName="java.sql.Time"/>
 <eClassifiers xsi:type="ecore:EClass" name="MusicLibrary">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="artist"
lowerBound="0" upperBound="-1" eType="#//Artist"
eOpposite="#//Artist/musicLibrary"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Artist">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="note"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="work"
lowerBound="0" upperBound="-1" eType="#//Work" eOpposite="#//Work/artist"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="musicLibrary"
lowerBound="0" upperBound="-1" eType="#//MusicLibrary"
eOpposite="#//MusicLibrary/artist"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Work">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="whenDate"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="note"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="artist"
lowerBound="0" upperBound="-1" eType="#//Artist" eOpposite="#//Artist/work"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="mediaType"
eType="#//MediaType" />
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EEnum" name="MediaType">
 <eLiterals name="CD" value="0"/>
 <eLiterals name="LP" value="1"/>
 <eLiterals name="Tape" value="2"/>
 <eLiterals name="MP3" value="3"/>
 </eClassifiers>
</ecore:EPackage>

For comparison purposes, here is the code for our running optional-one-to-many Mentor /

Student example.

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="model">
 <eClassifiers xsi:type="ecore:EDataType" name="Time"
instanceClassName="java.sql.Time"/>
 <eClassifiers xsi:type="ecore:EClass" name="Mentor">
 <eStructuralFeatures xsi:type="ecore:EReference" name="student"
lowerBound="0" upperBound="-1" eType="#//Student"
eOpposite="#//Student/mentor"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Student">

 63

 <eStructuralFeatures xsi:type="ecore:EReference" name="mentor"
lowerBound="0" upperBound="1" eType="#//Mentor"
eOpposite="#//Mentor/student"/>
 </eClassifiers>
</ecore:EPackage>

EMF models represent an incomplete picture of an executable system, and require that the

generated code be edited and maintained after initial generation. EMF generators are expected to

be merged with hand-written code, and include sophisticated mechanism to support this reverse

engineering feature. EMF and Umple both use Java Emitter Templates (JET) for code

generation. EMF focuses on Java (and Eclipse) based systems, whereas Umple supports a

multitude of programming (Java, PHP, Ruby) and modeling languages (XMI, TextUML and

Ecore). There is a separate EMF4CPP project [86] that provides a C++ implementation of the

Ecore metamodel and supports C++ code generation.

Another area of contention with code generated from EMF is the use of interface /

implementation separation. EMF mandates that all classes be generated as interfaces with a

concrete implementation class. In Umple, the design decision for the most appropriate approach

is left up to the modeller / developer.

Code generated from EMF also cannot run without EMF run-time libraries, a limitation that

limits EMF modeling to both the Java language and the Eclipse environment. Umple is able to

generate code that can run on Java (or PHP or Ruby) without the need to reference or access any

special libraries or frameworks. Although there is some value with having an EObject as

available in EMF (including the notifier interface), this can easily be modeled within a system as

opposed to enforcing it for all scenarios.

class Student
{
 isA EObject;
}

It should be noted that in the beginning of developing any code generator, it is inevitable that the

generated code will be scrutinized and debugged; therefore we adopted a strategy where the

generated code is of similar (if not better) quality to that which would be written by an

experienced developer.

A main message in favour of EMF is that the generated code is clean, simple and efficient,

where "the idea is that the code that’s generated should look pretty much like what you would

have written, had you done it by hand." (page 23 in [4]). We disagree, mostly due to the

coupling to EMF itself; including code geared specifically for Eclipse such as plug-in manifests,

adapter classes and factory classes, all of which are forced on the developer, helping to bloat

 64

simple models and systems as well as lock the developer into the Eclipse technology both as a

development platform but also as a target execution platform.

The focus of EMF-based systems and tooling is on model transformations. One such

transformation is code generation for Java, but the overall process is relatively complex when

compared to writing and compiling source code to byte code. The focus of Umple-based systems

is on programming and modeling at the same time, whereas the process to compile the system is

straightforward. As such, in Umple we decided to reuse only those aspects of EMF that focus on

code generation (using JET [79] templates), and adopt our own process for building models.

Other industrial and research projects working with programming languages and DSLs have

opted away from EMF as well. For example, Aschauer and others [87] have relied on EMF for

the first phase of their project, and later realized similar limitations and restarted their Domain

Specific Language project without EMF.

As Umple evolves, we continue to investigate other emerging and maturing modeling

frameworks and tools, as well as the potential for interoperability. Eugenia [88] is a promising

notation that might allow increased support of EMF based tooling. Eugenia is a tagging

mechanism built into Emfatic that provides tooling hints for Eclipse’s Graphical Modeling

Framework (GMF) [89]. GMF helps transform an EMF model into a graphical editor and

Eugenia helps to simplify the process of transforming an EMF model into a GMF model that

can then be used to generate a custom editor (in our case an Umple visual editor). GMF tooling

would simplify the development effort of building an Eclipse-based visual editor and would

complement our online platform (built using HTML and JavaScript).

3.8.2 Executable UML (xUML or xtUML)

Model Driven Architecture (MDA) [90] is an OMG standard that “provides a solid framework

that frees system infrastructures to evolve in response to a never-ending parade of platforms,

while preserving and leveraging existing technology investments.” MDA and other Model-

Driven approaches place significant emphasis on software models, rather than on source code,

as the main development artefacts. MDA is built on other standards such as UML, MOF, XMI

and CORBA.

The general process starts with a platform independent model (PIM), which encompasses UML

models without any platform dependency. MDA tools then transform these models into platform

specific models (PSM) that exploit the facilities provided by the platform. A PSM can then be

transformed into executable artefact. In practice, the transformation from PIM to PSM is not

 65

fully automated and does require manual intervention to maintain the PIM and PSM in synch as

they evolve.

Executable UML (xUML or xtUML) [91] was introduced by Steve Mellor, but instead of

transforming a PIM into a PSM, a model compiler can be used to skip the need for a PSM. To

achieve such a model compiler, only an unambiguous subset of UML can be used. The general

approach to building a system with xUML is to divide a system into areas of experience and

within each domain to provide:

1. Classes to represent the data and processing requirements

2. State Machines / State Charts to process signals between the classes identified in Step 1.

3. Class operations to perform the necessary processing based on the state machine actions

xUML is implemented as a UML profile with sufficient details to allow modeling. xUML

originally relied on Precise Action Semantics for UML as its action language [58]. Many pUML

concepts were later integrated into OMGs Foundational UML (fUML) [59] which is an

upcoming standard that specifies the precise semantics for an executable subset of UML; this

can be seen as describing a virtual machine for UML. In addition to formal semantics, xUML

also supports an $INLINE directive to provide access to platform specific languages like Java or

C++ (a current necessity to ensure the resulting generated code requires no additional editing).

Umple provides a similar mechanism by relying on the action semantics of the target language

(e.g. Java or PHP or Ruby). Migration of Umple towards support for UAL will depend on the

approval of the UAL standard and adequate compiler / code generators being made available to

support the translation of UAL into some executable language.

xUML requires a model compiler with sufficient capabilities to build the entire system, whereas

Umple is the compiler. In both cases, the generated code should be considered as read-only with

no need for further editing or manual changes. Umple relies on JET templates to build an

executable system, whereas an xUML compiler relies on what are known as archetypes.

Below is a snippet of code to define an Archetype for a Java based implementation [91].

for each object in O_OBJ
public class ${obj.name} extends StateMachine
 private StateMachineState currentState;
 .select many attributes related by object->O_ATTR[R105]
 .for each attribute in attributes
 private ${attribute.implType}${attribute.name};
 .end for

 .select many signals related by object->SM_SM[R301]->SM_EVT[R303]
 .for each signal in signals
 protected void ${signal,name} throws ooaException;

 66

 .end for
}
.emit to file ${obj.name}.java
.end for

The archetype above would generate an Employee class similar to the following (assuming no

signals for simplicity):

public class Employee extends StateMachine
{
 private Integer id;
 private String firstName;
 private String lastName
}

BridgePoint [92], OOA Tool [93] and xuml-compiler [94] are three implementations of an

xUML compiler.

xUML supports only a subset of the binary relationships available in Umple. xUML supports the

following multiplicities for association ends: 1..1, 1..*, 0..1 and 0..*. xUML and Umple both

support generalization. Our decision to support all multiplicity combinations was because we

identified modeling situations where constraints such as fixed lower and upper bounds are useful

(e.g. a joint bank account having two customers). Furthermore, we identified that it was

technically less challenging to provide full multiplicity support rather than relying on layering

constraints on top of a particular subset of multiplicities.

xUML is a UML profile that defines a sufficient subset of UML to be executable. xUML

requires an xUML compiler and typically also an editor to be used. xUML tools analyzed to date

seem to all provide visual environments whereas Umple itself requires no specific tool for

editing, but has available both textual and visual environments. xUML is not standardized and

compatibility issues may arise when changing development environments. In fact, xUML

currently supports two versions (one for UML1.x [91] and another for UML2.x [95]).

In a similar manner that Umple can be translated into Java, PHP, Ruby, Papyrus and TextUML;

it stands to reason that Umple could be translated into other implementation of xUML and thus

allow Umple to support the xUML standard.

3.8.3 Specification Description Language (SDL)

The aim of SDL is to provide an unambiguous specification of software systems with a focus on

the telecommunication domain [96]. When modeling in SDL [97], SDL’s variables provide a

similar functionality as an Umple attribute, and SDL channels to pass messages between

elements is similar to representing an Umple association. The representation of SDL from UML

is discussed in detail by Bourduas’ master’s thesis [1] and is summarized below in Table 7.

 67

Table 7. UML to SDL mapping rules [1].
UML SDL
Subsystem Block Type
Implementation Class Process Type
Abstract Subsystem Abstract Block Type
Abstract Implementation Type Abstract Process Type
Class New Type
Type Gate
Associations Between Type Classes Channels
Operations Described by Type Classes Signal List
Interface Interface
Inheritance Between Implementation Classes Inheritance Between Process Types
Inheritance Between Subsystems Inheritance Between Block Types
Our Student / Mentor example, represented in SDL “text” is shown below; using the SDL

newtype and two channels to define the bi-directional association between Student and Mentor.

newtype Student struct
endnewtype Student;

newtype Mentor struct
endnewtype Mentor;

channel oneMentor
 from Student to Mentor with getMentor, setMentor;
endchannel oneMentor;

channel manyStudent
 from Mentor to Student
 with getStudent, getStudents, numberOfStudents, hasStudents,
 indexOfStudents, addStudent, removeStudent;
endchannel manyStudent;

Multiplicity constraints are not explicitly defined when declaring channels and instead could be

defined within the state machines of a process agent. It should be noted that signals are

typically used to represent messaging in distributed systems, which is different from a class’s

API as available in Umple (and UML).

UML was used as the basis for Umple instead of SDL, as UML became a more widely used

standard; this was affirmed in our study of software practitioners [12] where fewer than 4% of

the participants very often to always use SDL (compared to 52% for UML).

SDL was last updated with version SDL-2000 (first published in 1999 and updated with minor

corrections in 2007) [98]. The focus on SDL-2000 was alignment with UML including the

eventual creation of an SDL UML profile (Z.109) [99]. There are plans for an SDL-2010 release

 68

(originally scheduled for SDL-2008) [100]. An upcoming feature proposed for SDL-2010 is to

define a way of providing a binding to other languages such as Java, C and C++ [100].

The approach to binding to a base language differs from Umple’s approach of relatively

seamless integration into a base language. Umple relies on the underlying base language for

action semantics; a benefit of this is that Umple is not really a new language, but rather is an

extension of existing base languages with model-oriented features. Conversely, an approach of

binding to a language such as is proposed in SDL implies it is a new language; an implication

that differs from the spirit of Umple to appeal to code-centric base language programmers.

3.8.4 Xtext

Xtext [101] is an Eclipse-based DSL generator that was released in 2006 and is built on top of

Antlr [80]. Xtext provides textual tooling support including a parser, an EMF metamodel (AST

based) as well as a rich text editor in Eclipse. The tooling support available for Xtext includes

advanced IDE features like intellisense (code suggestions), and syntax highlighting. Umple is

currently integrated with Xtext to enhance the IDE experience within Eclipse, but to avoid the

strong coupling with Eclipse, the underlying Umple parser and code generator remains separate

from the plug-in. A screenshot of the Xtext plugin is shown below in Figure 16.

Figure 16: Umple IDE (An Eclipse Plugin written in Xtext)

The spirit of Umple is to write your model in text and then execute it in the same manner that a

developer would write code and execute it with no hidden external dependencies (apart for the

runtime environment of the deployment platform). From an end-user perspective, our

 69

technology choices are irrelevant as the developer writes Umple code, and generates either Java,

PHP or Ruby to run in the browser or on a JVM. From a compatibility and tooling standpoint,

Umple is looking to better integrate with meta-meta modeling tools, again without losing

Umple’s simple nature.

Umple is a programming language with support for modeling built right into the language;

whereas the tooling and frameworks above provide a mechanism to create model-oriented

languages. One typically does not use tools such as Xtext and EMF as described earlier to

directly develop software. Instead one relies on tools that use these technologies such as Papyrus

[78] and TextUML [101] (which will be discussed further in subsequent chapters). Our decision

to integrate with EMF and Xtext, treating them as peers, as opposed to building directly on top

has allowed our team to embrace the benefits of those technologies without being tightly

coupled to the philosophical differences about how best to bridge the model-code divide.

3.8.5 Microsoft’s SQL Server Modeling CTP (formely Oslo)

Microsoft is working on a modeling platform called SQL Server Modeling CTP, which was

originally codenamed Oslo [102]. This platform provides a modeling language M, a grammar

notation language MGrammar, a visual representation of the language called Quadrant and a

data store called Repository (which is backed by MSSQL). M is a declarative language used for

working with data and building domain models with a focus on querying their data. SQL

Service Modeling CTP appears to also follow the text-diagram duality that Umple provides;

whereby the model is equally represented in text or in diagrammatic form. M seems geared

towards declarative DSL (e.g. MURL [103] for command line URL manipulations or RESTful

applications), but it has been shown to also work for code generation [104]. The syntax of a

simple M model is shown below.

module School
{
 type Student {
 Id : Integer;
 }

 type Mentor {
 Name : Text;
 }
}

The intention of SQL Service Modeling CTP seems primarily geared towards building small

data-oriented DSLs, allowing developers to model their data in text. Conversely, Umple is a

general-purpose language for building a variety of systems.

 70

Integration of Umple and Oslo could occur at several levels including: a model-to-model

transformation of Umple code into M code; and building an Umple parser in MGrammar. Oslo

seems adequate as a rapid DSL generator and consumer (creating your own programming

language and then doing something of value with it); while Umple concentrates solely on

providing a more abstract and model-oriented approach to developing software systems;

whereas Oslo is more geared towards building a system like Umple (as opposed to building

systems with Umple).

3.8.6 USE - A UML-based Specification Environment

USE [53] is a subset of UML similar to Umple that contains a textual description of model.

Expressions are written in OCL and are used to specify integrity constraints against the model.

The process of using USE is shown below in Figure 17.

Figure 17: USE approach to software modeling

The USE specification is very similar to Umple, and a model-to-model transformation could be

made available much like Umple can currently be transformed to other languages like Umlet

and Violet. The USE code to specify the Mentor / Student relationship is shown below.

model Example

class Mentor
end

class Student
end

association teaches between
 Mentor[0..1] role mentor
 Student[*] role student
end

 71

The approach adopted by USE is geared towards constraint verification and model checking,

and not towards model execution. The action semantics of USE is based on OCL and that of

Umple is based on whatever base language is chosen (Java, PHP or Ruby). USE models can be

simulated using a textual or graphical syntax, but it is not used to build systems. Umple is

primarily used to generate systems, in addition to model simulation available at [3] and [105].

3.8.7 Slime UML

Slime UML [106] is an Eclipse plugin that can create UML use case, package and class

diagrams with dependencies on EMF and GEF. At the time of writing, code generation is not

available.

Figure 18 displays a UML diagram based on the Mentor-Student relationship created using

Slime UML

Figure 18: UML diagram created using Slime UML

The underlying XMI is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<slime:DocumentModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:slime="http://de.mvmsoft.slimeuml.model.slimemodel" x="0" y="0">
 <children xsi:type="slime:ClassModel" x="58" y="115" width="50" height="80"
classText="Mentor">
 <outgoingConnections xsi:type="slime:ClassConnectionModel"
target="//@children.1" fromMultiplicity="MULT_0_TO_1"
toMultiplicity="MULT_STAR"/>
 </children>
 <children xsi:type="slime:ClassModel" x="183" y="115" width="50"
height="80" incomingConnections="//@children.0/@outgoingConnections.0"
classText="Student"/>
</slime:DocumentModel>

Model transformation from Umple to Slime's XMI schema would be possible using Umple's

model generator much like Umple currently supports other XMI based languages like Papyrus

and Ecore.

 72

3.8.8 PlantUML

PlantUML [107] is an Eclipse plugin that lets you quickly build several UML diagrams by

embedding specialized comments within Java code, similar to the embedded approach described

in the previous section. PlantUML supports sequence, use case, class, activity, and component

diagrams.

PlantUML is enabled by embedding Javadoc-like comments within Java. The same UML

diagram presented in Figure 18 would be represented in PlantUML as follows.

/**
 *
 * @startuml Model.png
 * Mentor "1" --- "*" Student
 * @enduml
 *
 */

3.8.9 Embedding Models in Source Code

Balz’s approach to modeling is to embed the models directly in source code [5]. By enhancing

programming code with modeling constructs, one reduces the need for a separate modeling

language without losing the design, verification, execution and monitoring views of the system.

The motivation for their work is to reduce the number of notations present during software

development. A summary of the types of notations encountered during software development is

shown in Figure 19.

Figure 19: Software Development Notations identified from [5]

They argue that a system cannot be modeled completely, resulting in changes to the generated

code [108]; and therefore, you have not reduced the number of languages, you have only moved

some design into the modeling abstraction without completely removing the programming level

abstraction. And, those modeling languages that do provide sufficient specificity to describe a

complete system, they argue, are too complex. Their approach succeeds where others have

 73

failed by removing the need for a separate (and all encompassing) modeling language and

instead embedding model abstractions in program code.

Umple’s approach is similar in that we have abandoned the need for conventional modeling

languages and instead create a new language built on top of the action semantics of existing

languages. The technical approach to Umple, versus embedding modeling as described above is

where Umple stands out.

Umple supports three action language semantics yet all three build on the same modeling

syntax; maintaining the ability for modeler to model in Umple and then developers to write code

in Umple.

The embedded approach suffers from low cohesion; as “Embedded models are not self-

contained, but part of arbitrary program code so that well-defined interfaces realize abstractions

between model specifications and other program code.” [5]. In contrast, Umple models are self-

contained and the language can be used solely for modeling (and doing so in no way hinders the

ability to later add implementation code).

Umple’s approach can be compared to a language preprocessor, something that has been used in

the past as it not a foreign concept. We believe this approach provides a more suitable solution

to modeling-in-code compared to techniques such as embedding model constructs in comments,

which can be awkward.

Umple’s runtime environment is identical to the runtime of the chosen action language (i.e.

Java, PHP, Ruby), whereas the embedded approach requires a special runtime environment and

is based heavily on reflection. However, enforcing a specific runtime does provide a convenient

mechanism for monitoring and tracing, which is currently outside the scope of Umple and left

for future work.

Umple supports attributes, associations, state machines and software patterns, whereas the

embedded approach focuses on state machines and process models.

3.8.10 Active Record

The alternative approaches to representing models presented in the preceding subsections are

clearly approaches to modeling; whether they be in XMI, in more readable text, or as mark-up

tags embedded in existing programming languages. This subsection on Active Record, as well

as the subsequent subsections on Data Mappers and Aspect-Oriented Programming (AOP) are

further ways of adding modeling abstractions to a program.

 74

ActiveRecord [109] is an object-relationship pattern and has several concrete implementations.

The ActiveRecord pattern is implemented in many languages such as Ruby (on Rails) [110],

PHP (symfony), and Python (Elixir). Our analysis will consider the implementation available in

Ruby on Rails.

Ruby on Rails is a web framework that popularlized the notion of convention over configuration

(see glossary for a definition) in modern day web application development. Ruby on Rails

includes the following language structures to manage association multiplicities using: has_one,

has_many, and belongs_to. Below is an outline of how each supported association multiplicity

type can be achieved.

Table 8: Association Notation for Active Record Implementation in RoR
Association Multiplicity ClassA Structure ClassB Structure
0..1 – 0..1 has_one belongs_to
0..1 – * has_many belongs_to
* – * has_many has_many

ActiveRecord uses a validate mechanism to verify constraints; therefore, those constraints can

be violated during an interim state, but must be satisfied prior to persisting the model data. This

validate-before-safe approach combined with custom coding can be added to an ActiveRecord

implementation to enforce additional multiplicity constraints (i.e. 3..4 -- *)

Additional hooks are available when dealing with collections (i.e. many multiplicities) and

implementations like Ruby On Rails include specialized hooks to manage association

relationships including: before_add, after_add, before_remove, and after_remove.

When dealing with a one-end of an association relationship, several methods are available to

manipulate the association end. For example, let us assume that a Post has an Author, the

following methods would be available when using ActiveRecord:

Table 9: Active Record API when dealing a multiplicity end of 1 (or 0..1)
Class#method Description Available in Umple

Post#author Get the current author Yes
Post#author= Assign the author Yes
Post#author? Check for equality to another author Indirectly
Post#author.nil? Check to see that the author is set Yes
Post#build_author Create a new author No
Post#create_author Create and save a new author No

For a many-end of an association, the following methods would be available. For example, let

us assume that a Developer can be a part of several projects. The methods available to the

Developer class are shown below in Table 10.

 75

The API available in Umple is similar to the API provided by Active Record. Active Record

systems are typically associated with data storage and make available APIs to load, find and

create relationships based on primary keys. Umple instead provides a key mechanism (discussed

in subsequent chapters) to enable such searching without enforcing it.

Below is an example association written in Ruby using the ActiveRecord framework.

class Student < ActiveRecord::Base
 has_one :mentor
end

class Mentor < ActiveRecord::Base
 has_many :student
end

Table 10: Active Record API when dealing a multiplicity end > 1 (e.g. *)
Class#method Description Available in Umple

Developer#projects Retrieve all projects for the
developer

Yes

Developer#projects<< Add a project to the developer Yes
Developer#projects.delete Remove a project from a

developer
Yes

Developer#projects= Set all projects for the developer Indirectly supported
Developer#project_ids Retrieve all project ids for the

developer
No

Developer#project_ids= Set all project ids No
Developer#projects.clear Remove all projects Indirectly supported
Developer#projects.empty? Answers: does the developer

have any projects?
Yes

Developer#projects.size Answers: how many projects
does the developer have?

Yes

Developer#projects.find(id) Retrieve the project based on its
id

No

Developer#projects.exists? Answers: does this developer
belong to the provided project?

Indirectly

Developer#projects.build Create a new project for this
developer

No

Developer#projects.create Create and save a new project for
this developer

No

ActiveRecord provides many convenient language structures to efficiently manage associations.

The additional interface provided by ActiveRecord makes available additional convenience

methods; otherwise both Umple and ActiveRecord APIs are the same. ActiveRecord distributes

the definition of an association between both classes of the association. In contrast, Umple

provides a more succinct syntax whereby you can define both ends of an association in one

place (either in one of the relationship classes, or in a separate declaration).

 76

The ActiveRecord pattern is available in other languages such as Python (Elixir) and PHP

(Symfony). The semantics of these implementations are very similar to that available in Ruby on

Rails (using has_one, belongs_to style syntax). In addition, Elixir provides syntactic synonyms

more closely related to UML terminology including oneToMany and manyToOne. These

implementation provide various approach to the generic ActiveRecord pattern.

Umple currently supports the Ruby language. Due to the ability to mix-in frameworks like Rails

directly into the Ruby language, it is often difficult to distinguish where the language ends and

the framework begins. Future work is being considered to provide additional support geared

specifically towards Ruby on Rails (which can be seen as language separate from Ruby itself),

and in particular making use of the conventions shown above to align the generated code with

“the Rails way”.

3.8.11 Data Mapper Pattern

The Active Record pattern could be seen as a simple convention over configuration data mapper

where the object model is mapped to a persistence layer using specific conventions (e.g. an

Author business model would automatically map to an Authors database table). The data

mapper pattern extends that convention to allow data to be loaded from and written to a database

in an independent manner. A common implementation of this pattern is Hibernate [65].

Hibernate requires a more explicit configuration to map business objects to the persistence layer

(from here on, we will refer to this as a database). Below is an example Employee map.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="example">
 <class name="Employee" table="EMPLOYEES">
 <id name="id" column="EMPLOYEE_ID">
 <generator class="native"/>
 </id>
 <property name="firstName"/>
 <property name="lastName"/>
 </class>
</hibernate-mapping>

Hibernate provides finer-grained control over object relational mapping and could be integrated

seamlessly with Umple: Umple would provide the data model and Hibernate the mapper

between the data model and the database.

Although the approach above provides excellent decoupling between the data and business tiers

of an application, the separation also reduces the natural cohesion that exists between business

 77

and data models. To allow for tighter cohesion, Hibernate also supports the use of annotations to

provide in-line directives to map business to data models. The example below is equivalent to

the mapper shown above (in addition to the Java code of the Employee class itself).

@Entity
@Table(name="EMPLOYEES")
public class Employee
{
 private int id;
 private String firstName;
 private String lastName;

 public Employee(int aId, String aFirstName, String aLastName)
 {
 id = aId;
 firstName = aFirstName;
 lastName = aLastName;
 }

 public void setId(int aId)
 {
 id = aId;
 }

 public void setFirstName(String aFirstName)
 {
 firstName = aFirstName;
 }

 public void setLastName(String aLastName)
 {
 lastName = aLastName;
 }

 @Id
 @Column(name="EVENT_ID", length=5)
 public int getId()
 {
 return id;
 }

 @Column(name = "firstName")
 public String getFirstName()
 {
 return firstName;
 }

 @Column(name = "lastName")
 public String getLastName()
 {
 return lastName;
 }
}

Umple purposely does not provide explicit guidance regarding persistence, deferring the choice

to the application developer. This freedom to choose from existing persistence mechanisms such

as plain text files, XML, databases, or in-memory data stores, provides maximum flexibility to

Umple developers. Persistence could be achieved by modeling data access objects to bridge with

 78

existing frameworks, or one could simply write one’s own. Future work could investigate

integration with common persistence mechanisms, perhaps integrated as drivers to the Umple

language.

3.8.12 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming style that attempts to address the

problem of scattered and tangled code, typically resulting from how existing languages

implement crosscutting concerns [111]. A concern is a property or area of interest of a system.

A concern is crosscutting if the technique to address the property leads to scattered and tangled

code [112] (i.e. the desired functionality does not align with the composition of the solution).

Example crosscutting concerns include tracing, debugging and synchronization; typical

implementations of these properties involve low-cohesive solutions where the functionality is

implemented throughout the application. Aspects can also be used to implement model-oriented

concepts such as association relationships.

Using aspects to implement relationships between classes was proposed by Pearce and Noble

[113]. Vaccare Braga and Rosana [6] discuss their approach to using aspects to introduce

associations between software patterns. Figure 20 shows a theoretical system that integrates the

implementation of three software patterns.

Figure 20: Example system integrating three software patterns [6]

A typical object-oriented approach would be to hard-code the R3 and R4 associations amongst

the three software patterns. This approach is problematic due to the increased coupling between

the three patterns; making it difficult to isolate the pattern implementations for re-use (or for

incremental development). The approach in [6] is to use generics to weave the R3 association

into Pattern 1 and Pattern 2 (and the R4 association into Pattern 1 and Pattern 3).

 79

Below is the implementation of the R3 association based on [6].

public abstract aspect R3<X extends Class2, Y extends Class4>
{
 interface InterfaceR3 <T> {}
 declare parents : X implements IntefaceR3 <Y>;
 private T InterfaceR3.class4;
 public T getClass4() { return class4; }
 public void setClass4(T c4) { class4 = c4; }
}

This aspect-oriented approach leaves the patterns decoupled and does not mangle the purity of

the patterns implementation. The implications of such a process is that potential for greater re-

use of software pattern implementations such as those defined by the GOF [114] because

custom relationships can now be integrated into the pattern without altering the pattern itself.

Umple provides a similar mechanism and the syntax to weave in the R3 association in Umple is

shown below.

association { * Class2 -- * Class4 }

The Umple approach is more concise, and has richer multiplicity semantics compared to the

aspect approach above. In addition to weaving associations between classes, Umple also

supports weaving attributes, as well as additional action semantic code (i.e. additional methods).

Rajan and Sullivan [112] designed and evaluated a modeling language to unify aspects and

classes. AOP languages [115] typically support aspects separate from classes and advice

separate from methods. Rajan and Sullivan argue AOP becomes more difficult to understand

and use, and can harm modularity if you maintain this separation between classes and aspects.

Below in Figure 21, they outline how classes versus aspects and methods versus advice are both

nonorthogonal and asymmetric.

Figure 21: Nonorthogonality and asymmetry in AO languages [112]

Their unified language is called Eos and represents an extension of C#. Eos supports a new

classpects module construct, and supports implicit invocations using before and after bindings

as well as overriding using around bindings.

Rajan and Sullivan [112] found that it is both possible and useful to combine the notion of

classes and aspects using a single model construct supporting features of both classes and

 80

aspects. Umple's approach to dealing with cross cutting concerns is similar. As opposed to

introducing separate aspect oriented constructs, Umple instead provides a mechanism to deal

with cross-cutting concerns including:

1) Class mix-ins to weave in changes to attributes, and associations;

2) Defining association relationships externally to the class definition;

3) Applying before and after advice based on method join points.

Chapter 4 discusses Umple attributes in greater detail; Chapter 5 discusses associations in

greater detail; and Chapter 6 discusses software patterns and the use of before and after advice.

AO languages, such as AspectJ [116] include a join model which implement crosscutting

concerns. Join points are either a defined location in a program (static) or predicated on runtime

properties (dynamic). Dynamic join points represent the core of AOP languages like AspectJ

[117].

Below is a simple example aspect written in AspectJ that inject debugging code into the

getMentor method of a Student class, based on our running Student/Mentor system.

public aspect MyAspect
{
 public pointcut getMentorMethodCall (): call
 (public String Student.getMentor());
 before(): getMentorMethodCall()
 { System.out.println("Student.getMentor start..."); }
 after(): getIdMethodCall()
 { System.out.println("Student.getMentor end."); }
}

In Umple, the same code injection would be defined as follows.

class Student
{
 before getMentor { System.out.println("Student.getMentor start...");}
 after getMentor { System.out.println("Student.getMentor end.”);}
}

Note that the before and after advice in Umple resides within the class to which it applies and

Umple currently only supports before and after advice based on exact predicate matches of

generated API methods and constructors. More detailed analysis of Umple’s support of before

and after is discussed in detail in Section 6.3 .

Kiczales provides some evidence in [115] that AOP can improve performance and reduce code

volume, helping to improve program comprehensive. One principle of Umple is the reduction in

boilerplate code by adding more abstract concepts to the language. The approach has resulted in

some features exhibiting the qualities addressed by aspect-oriented programming such as

dealing with crosscutting concerns in a cohesive manner.

 81

3.9 Summary

Umple is a programming language that incorporates UML concepts. It is also an environment to

create and edit UML models textually.

We created Umple to respond to two needs: The first is the resistance to modeling prevalent in

industry. The second is the desire to eliminate boilerplate code and thus simplify some aspects

of object-oriented programming.

We believe that a language like Umple can help bridge the gap between model-centric

developers and code-centric developers because it allows both to continue to do what they

prefer, while also giving them the benefits of the alternative approach.

It should be emphasized that although Umple contains modeling constructs which were

previously not available in other languages, it was purposely built to support a multitude of

languages and platforms. For example, at the time of writing, Umple can generate working Java,

PHP and Ruby systems, Umple can generate Papyrus, Ecore/EMF and TextUML models as well

as visualizations in Yuml, Violet, and Umlet.

Support for languages like C/C++, and C# are forthcoming, and future work is being considered

to integrate with existing object-relational patterns to support Ruby on Rails (Active Record)

and Hibernate (Data Mapper).

In the current version of Umple, we have focused on implementing associations, attributes and a

few design patterns. A discussion of expanding Umple with capabilities such as state machines

is left as future work.

Please refer to [81] for full details about Umple. Our online application (UmpleOnline [3]) will

allow you to try out Umple without having to install any software on your local computer.

Simply type in Umple code and generate the Java (or, PHP, Ruby, Papyrus, etc.)

implementation.

In the following chapters we analyze the syntax, semantics and resulting generated code for

attributes and associations.

 82

Chapter 4 Syntax and Semantics of Attributes
Implementing UML attributes directly in an object-oriented language may not appear to be

complex since these languages already provide syntax for defining member variables. At first

glance, these member variables may appear equivalent to UML attributes. However, the

distinction arises when you consider the differences between modeling a class and implementing

it in the underlying language. Member variables can represent not only attributes, but also

associations, state machine variables, and internal data such as counters, caching, or sharing of

local data. There is also a need to properly define a syntax for characteristics of attributes such

as being unique, immutable, or subject to lazy instantiation. In this chapter, we analyze the

modeling characteristics of attributes from first principles. We also study the attributes present

in seven open-source projects. We describe a model-oriented syntax for attributes that is part of

our Umple language. We analyze how existing modeling tools generate code for attributes and

finally we demonstrate our own code generation patterns for attributes using Java as the target

language.

4.1 UML Attributes

A UML attribute is a simple property of a class. For example, a Student class might have a

studentNumber and a name. Attributes should be contrasted with associations, which represent

relationships among classes and will be discussed in the next chapter. UML 2.0 defines an

attribute as a directed association, but we believe that it is a good modeling policy to distinguish

between the two as it can help create better models. Our view of an attribute is one that is a

primitive type (String, Integer, Double, Date, Time), an enumeration or is a class that only

contains attributes (e.g. an Address class that might have street, city, state, and country

attributes, all of which only contain strings).

Various constraints can be applied to attributes; for example, they can be immutable or they can

be constrained to a certain set of values or a certain range. In translating UML attributes into

executable languages like Java, it is common to include accessor (get and set) methods to

manage each attribute.

In this chapter, we study the use of attributes in several representative systems, and analyze their

semantics. We also provide syntax to represent attributes within the Umple language, which we

introduced in the previous chapter. We present code-generation patterns for attributes as used by

Umple for the Java language.

 83

4.2 Related Work

A number of approaches and studies have been presented in the literature on code generation

from UML [7, 118-120]. In [7], Harrison, Barton, and Raghavachari present a novel approach to

code generation of attributes; for each UML class, their approach results in one Java interface

class, one abstract class and one regular class. An example is shown below in Figure 22.

Figure 22: Class Hierarchy generated from UML from [7]

We see that the Student UML class creates a Student interface, an abstract class (StudentAbst)

that implements the UML class attributes set and get methods, and finally an instantiable class

(StudentInst) that provides an extension mechanism to implement the Student operations. The

need for both an abstract class and an instantiable class is to deal with the limitations of UML

where it is not practical to express algorithmic logic in a UML class diagram. The StudentInst

acts as a skeleton class that must be edited by the developer. This adds a layer of complexity to

subsequent code generation and allows for the generated code to become out of synchronization

with the model. Umple provides a more direct approach, and the generated code more closely

resembles that which would be written by hand, whereas the approach above seems guided more

by the limitations of using UML as a programming language and dealing with quasi-generated

systems where some of the generated code must edited by hand after generation.

Jifeng, Liu, and Qin [8] present an object-oriented language that supports a number of features

like subtypes, visibility, inheritance, and dynamic binding. Their textual object-oriented

language is an extension of standard predicate logic [121]. An example class declaration is

shown below.

class Student extends Person
{
 private String name = “Andrew”
 method helloWorld()
 {
 //supported commands
 }
}

 84

The language is similar to Java, where attributes resemble member variables and can be declared

private, protected, or public. Methods are explicitly labeled using the keyword ‘method’; they

can take a list of parameters and can execute a set of commands. The command set allows for

OO-like operations but the syntax more closely resembles a formal Hoare proof than a

programming language. The approach to Umple was not to create a new language, but rather to

enhance existing ones with a more model-oriented syntax and behaviour.

Below in Figure 23 is an example Bank system based on Jifeng’s mathematical model for

object-oriented designs.

Figure 23: Simple Bank Account examples from [8]

The code in Jifeng’s language to describe the Account class is as follows:

class Account {
 protected : Int aNo, Int balance;
 method : getBalance(ϑ,Int b,ϑ) { b := balance } ;
 withdraw(Int x, ϑ, ϑ) { balance ≥ x |- balance’ = balance – x };
}

The Umple+Java implementation would resemble the following:

class Account {
 Integer aNo;
 Integer balance;

 public void withdraw(Integer amount){
 if (balance >= amount){
 balance = balance – amount;
 }
 }
}

The Umple approach reads more like a programming language, whereas the Jifeng et al.

approach is more suited to formal proof about model composition and behaviour.

The Umple language can be used to generate entire systems without the need for reverse

engineering or round-tripping. This is a desirable quality of a modeling language as reverse

engineering tools tend to blindly generate a UML attribute when they encounter a member

variable. But, not all member variables are attributes; some represent associations, others private

 85

data. Sutton and Maletic [122] advocate that an attribute should reflect a facet of the class

interface. These attributes can be read or written rather than representing the implementation

details of a member variable. They present their findings on the number of class entities,

attributes and relationships that were recovered using several reverse engineering tools,

revealing the inconsistencies in the reverse engineering approaches. They present their prototype

tool, pilfer, that creates UML models that reflect the abstract design rather than recreating the

structure of the program.

Gueheneuc [123] has analyzed existing technology and tools in reverse engineering of Java

programs, and highlights their inability to abstract relationships that must be inferred from both

the static and dynamic models of the Java programs. They developed PADL (Pattern and

Abstract-level Description Language) to describe programs using class diagrams. However,

their proposed approach requires the availability and analysis of both static and dynamic models

to build the class diagrams. In another study [124], two commercial reverse engineering tools

(Together and Rose) are compared to two research prototypes tools (Fujaba and Idea) and they

noted that different tools resulted in significantly different elements recovered from the source

code.

Lange and Chaudron [125] conducted an empirical analysis of three software systems and

identified violations of a number of well-formedness rules. In one of the systems under analysis,

they found 67% of attributes were declared as public without the use of setters and getters.

In the next section we will present our own findings regarding how attributes are used in

software systems. Our approach to analyzing attributes attempts to provide a structured method

to review, categorize and understand how attributes are used in practice. The approach is

subjective at times and susceptible to human error as there are several manual steps throughout

the process. But, as shown in most of the cases above, automated analysis done by reverse

engineering tools resulted in vastly different perceptions about the systems being studied,

despite being automated.

4.3 Attributes In Practice

To ground our work in the pragmatics of industrial software development practices, we set out

to analyze how real projects implement and manage attributes. An understanding of existing

projects will help us identify code-generation patterns, as well as identify areas where Umple

could be improved.

Two goals of our empirical analysis of software attributes are as follows:

 86

• To determine how attributes are defined, accessed and used in practice.

• To find attribute patterns that can enhance the vocabulary with which we describe

attributes.

For our research, we considered seven open-source software projects. The criteria by which the

projects were selected are described below, followed by a review of the results and the

implications for building a model-oriented syntax to describe attributes.

4.3.1 Method

The first step in our case study of attributes in practice was to identify which open source

repositories to consider. Our criteria for selecting a repository were that it had at least 1000 full

projects in Java or C#. We analyzed 33 repositories, and selected three that met our criteria:

GoogleCode (code.google.com), Freshmeat (freshmeat.net) and SourceForge (sourceforge.net).

The second step was to select suitable projects to analyze. The projects were selected by first

randomly picking the repository, then randomly selecting the target language (Java, or C#), and

finally randomly selecting one of the first 1000 most recently updated projects. Because the

number of projects in each repository varied, this approach provided a consistent criteria from

which projects could be selected from. The seven projects selected for analysis were: from

GoogleCode fizzbuzz, ExcelLibrary, ndependencyinjection and Java Bug Reporting Tool; from

SourceForge, jEdit and Freemaker; and from Freshmeat, Java Financial Library.

Table 11. Categorizing member variables.
Category Values Description
Set in
Constructor

No, Yes Is the member variable set in the object’s constructor?

Set Method None,
Simple,
Custom

Is the variable private without a set method (i.e. ‘None’), or does
the variable have a ‘Simple’ setter method / public access or does
it have a setter method with ‘Custom’ behaviour apart from
setting the variable (such as validating constraints, managing a
cache, filtering the input, or managing referential integrity)?

Get Method None,
Simple,
Custom

Is the variable public (‘None’), or does the variable have a
‘Simple’ getter method / public access, or does it have any
‘Custom’ behaviour like returning defaulted values, using cached
values or filtering the output?

Notes Free
Text

Other characteristics such as whether the variable is static, read-
only, or derived.

The third step of the case study was to document all member variables. For each variable we

recorded the project, namespace, object type, and variable name, as well as certain

characteristics presented in Table 11.

 87

Please note that publically available instance variables would fall under the ‘Simple’ set and get

method, as the simple mechanism is then to use the assignment (set) or access (get) of the

member variable.

4.3.2 Categorizing Variables (Attributes, Associations, Internals)

By manually inspecting the code in the seven projects, we found 1831 member/instance

variables in 469 classes. Instance variables might correspond to attributes or associations, or else

they might simply be used for internal data. Our approach to categorizing these member

variables as attributes, associations, and internal data is outlined in the following sub-sections.

4.3.2.1Grouping Static Versus Instance Variables

Table 12 gives a distribution of the types of static variables. Of the member variables identified,

620 were static (class variables) and 1211 were instance variables.

Table 12. Distribution of static (class) variables.
Object Type Frequency % Description
Integer 431 69% All whole number types including primitive

integers, unsigned, and signed numbers.
String 53 9% All string and string builder objects.
Boolean 29 5% All True/False object types.
Other 107 17% All other object and data types
 620 100%

Of the 620 static members analyzed, 90% were read-only constants, 69% were publically

visible, and 83% were written in ALL_CAPS. From this point onwards, we will focus on the

instance variables. The remaining 1211 instance variables might correspond to attributes or

associations, or else they might simply be used for internal data.

4.3.2.2Grouping Instance Variables Based on Constructor/Set/Get Methods

We then looked at how the member variables were accessed (and/or available as part of the

constructor). We filtered out any private variables that were also not part of the constructor.

Table 13 gives a distribution of the availability of a member variable as part of a constructor’s

arguments and whether get/set methods are provided (or whether the variable is public and

hence has get/set qualities).

To filter out potential internal data, we removed all private variables that did not have get

methods from our list of potential attributes (public variables are categorized as having both a

set and get method). Prior to doing so, we visually inspected the list and observed that most no-

 88

getter variables appeared to be cached objects and results (i.e. size or length), and user-interface

controls. Due to the subjectivity in determining the intention of a member variable, we make no

quantifiable observation regarding these private-without-access variables. In total, 637 member

variables were removed during this process. We also filtered out five member variables with the

word cache, or internal in their name; as they most likely also refer to internal data.

Table 13. Analyzing variables for presence in the constructor and get/set methods.

Constructor Setter Getter Frequency % Likelihood of being an attribute, or
association (High, Medium, Low)

Yes Yes Yes 32 3% High, full variable access
Yes Yes No 8 1% Low, no access to variable
Yes No Yes 44 4% High, potential immutable variable
Yes No No 160 13% Low, more likely an internal

configuration
No Yes Yes 318 26% High, postpone setting variable
No Yes No 41 3% Low, no access to variable
No No Yes 179 15% Medium, no access to set the variable
No No No 429 35% Low, no access at all to set/get

variable
 1211 100%
Once again, public variables are considered to have both setters and getters.

Only 3% of the variables were initialized during construction, could be overwritten via a set

method, and could be accessed via a get method, as shown below in Table 13. The most

common occurrence of member variables in the systems under study was that they were private

variables without external access (i.e. no setter or getter) and not included in the object’s

constructor. The second most common occurrence was a variable whose value was set only after

construction.

4.3.2.3Grouping Primitive versus All Other Object Types

We then grouped primitive types (Integer, String, Boolean, Double, Date/Time) as either

attributes, or internal data; all other types cannot yet be grouped. Table 14 gives a distribution of

all instance members (i.e. non-static variables) for the five most common attribute types, as well

as for other types.

Variables for these five types (637 instance variables) either represent attributes or internal data,

but not associations. The remaining 574 variables of other types were further studied using a

recursive approach as described next.

 89

Table 14. Distribution of instance variable types.
Object Type Number of

Variables
% Description (if required)

Integer 326 27% All whole number types including primitive
integers, unsigned, and signed numbers.

String 169 14% All string and string builder objects.
Boolean 121 10% All True/False object types.
Double 12 1% All decimal object types like doubles, and floats.
Date/Time 9 1% All date, time, calendar object types.
Other 574 47% All other data types
 1211 100%

4.3.2.4Grouping Other Types as Attributes or Associations

To find variables representing true attributes as opposed to associations, we used a recursive

approach. An attribute is considered to have as its type either: a) a simple data type identified in

the first five rows of Table 16, or b) a class that only itself contains instance variables meeting

conditions a and b, with the proviso that in this recursive search process; if a cycle is found, then

the variable is deemed an association. This approach was partially automated (identifying and

removing 12 association member variables) where both ends of the association were defined

within the system (so we could automate condition b above). The remaining variables were

inspected by hand; subjective judgments were made to categorize the variable type as entity or

complex classes. An entity class was heuristically comprised of primitive data types such as an

address, a key, or a measurement. A complex class was heuristically comprised of more

complex structures and associations such as actions, containers and nodes. Table 15 was used to

help distinguish class categories.

Table 15. Entity versus complex object type criteria hints.
Entity Class Complex Class
Properties, Formats, Types and Data Nodes, Worksheets
Files, Records, and Directories Writers, Readers
Colors, Fonts, and Measurements Engines, Factories and Strategies
Indices, Offsets, Keys and Names Proxies, Wrappers, and Generic Objects
 Actions, Listeners, and Handlers
 Views, Panes, and Containers

Node objects (e.g. TreeNode) were marked as complex due to the fact that they are potentially

composite (i.e. a Node might have many Nodes).

 90

4.3.3 Results After Filtering Out Associations and Internals

The process described in the previous section was long and arduous, but also a motivation to

continue our efforts to better identify internal versus attribute versus association variables. Once

the filtering process was complete, we were left with 457 potential attributes and the distribution

of attribute types is shown in Table 16. As expected, most potential attributes are integers,

strings and booleans.

Table 16. Distribution of attribute types.
Object
Type

Frequency % Description (if required)

Integer 200 44% All whole number types (e.g. integers, signed, and
unsigned).

String 102 22% All string and string builder objects.
Boolean 67 15% All True/False object types.
Double 6 1% All decimal object types like doubles, and floats
DateTime 5 1% All date, time, calendar object types.
Other 77 17% All other data types such as char, Color, File, and Guid
 457 100%

Table 17 shows how attributes are set and get throughout an object’s lifecycle. Only 29

attributes (6%) had immutable-like qualities (available in the constructor, with no setter). About

31% of the attributes were managed internally with no setter and not available in the

constructor. Finally, only about 11% of the attributes were available in the object’s constructor.

Table 17. Attribute Constructor and Access Method Patterns.
Constructor Setter Frequency % Probable Intention
Yes Yes 23 5% Fully editable
Yes No 29 6% Immutable
No Yes 262 57% Lazy / postponed initialization
No No 143 31% Derived or calculated attribute
 457 100%

Note that all attributes have a get method (or are publically available).

Next, we investigated the implementation of the set and get methods as described in Table 11.

To recall, a set or get method, if present, can be simple or custom. Table 18 illustrates the

frequency of the various combinations of attribute set and get methods.

 91

Table 18. Distribution of attribute properties based on type of setters and getters.
Setter Getter Frequency %
Simple Simple 250 55%
Simple Custom 1 0%
Custom Simple 9 2%
Custom Custom 25 5%
None Simple 46 10%
None Custom 126 28%
 457 100%

Over 55% of the attributes used a simple set and get mechanism to manage the attributes, 10%

used a simple get method with no set method, and the remainder had at least some custom set or

get method.

Next, we investigated the attribute multiplicities. We were able to distinguish between ‘one’

(0..1 or 1) and ‘many’ (*) based on the attribute type. List structures and classes with a plural

noun (e.g. Properties) were identified as ‘many’, all other structures were identified as ‘one’.

Overall 93% of the attributes had a multiplicity of ‘one’, leaving only 7% with a ‘many’

multiplicity. To more finely categorize the multiplicity types would be too subjective, as the

multiplicity constraints are programmed in diverse ways.

Next, we studied the characteristics of custom access methods.

For custom set method implementations we observed: (a) having a caching mechanism, (b) lazy

loading, (c) updating multiple member variables at once, and (d) deriving the underlying

member variable’s value based on the provided input.

For custom get method implementations we observed: (a) constant values returned, (d) default

values returned if the attribute had not been set yet, (c) lazy loading of attribute data, (d)

attribute values derived from other member variable(s), and (e) the attribute value returned from

a previously cached value.

A summary of the major implementation types for set and get methods is shown in Table 19.

The frequency shown in Table 19 is based on the total number of attributes and not simply those

attributes with custom set or get methods. An interesting observation from this table is that

almost a quarter of all attributes were derived from other data of the class.

 92

Table 19. Distribution of attribute set and get method implementations.
Method
Implementation

Description Frequency %

Derived Set Input filtered prior to setting variable’s value 4 1%
Other Custom
Set

Caching values, updating multiple members at once 30 7%

Derived Get Based on a cache, or other member variables 105 23%
Other Custom
Get

Custom constraints applied prior to returning the
value

28 6%

Constant Get Always returns the same value 19 4%

4.3.4 Analysis and Observations

Key findings based on the results from the previous section include:

• Many attributes follow a simple member variable get and set approach, suggesting that such

behaviour could be the default, helping to reduce the need for boilerplate set and get

methods.

• Few attributes are set during construction, implying a separation between building objects

and populating their attributes. Despite this, we believe it is still important to allow

attributes to be immutable, and hence generally set in the constructor (if not, then

immediately after construction). Immutableness is important to help ensure the proper

implementation of hash codes and equality, which, for example, allow consistent storage

and retrieval from hash tables. It is also important for asynchronous and distributed

processing where the system needs to test equality among instances that are supposed to

represent the same thing, but, for example, reside on different processors.

• Attribute multiplicities are almost always ‘one’ (93%). Based on the overwhelming number

of ‘one’ multiplicity ends, there seems to be little need for syntactic support the vast array of

possible multiplicities available in UML such as m, m..n, m..*, etc beyond simple support

for the generic ‘many’ (*).

• Class level attributes (i.e. static) were mostly written in ALL_CAPS (83%), a convention

that some languages use instead of a keyword like static.

By analyzing existing projects we were able to align our model-oriented language Umple with

the observed trends in actual projects. This will be expanded upon in the next section. We were

also able to provide code generation that aligns with industry practices – in order to help make

the quality of the generated code similar to code that a software developer would write himself

or herself.

 93

4.3.5 Umple Syntax for Attributes

In this section we show how the Umple language allows a programmer to specify attributes,

with common characteristics found in practice as presented in the last section. In UML,

attributes represent a special subset of semantics of UML associations, although pragmatically

we have found it more useful in Umple to consider them entirely separately.

The main features of Umple’s syntax for attributes, and its code generation, result from

answering the following three questions.

Q1: Is the attribute value required upon construction?

Q2: Can the attribute value change throughout the lifecycle of the object?

Q3: What traits / constraints limit the value and accessibility of the attribute?

As we will discuss in subsequent sections, most current code generators provide the most liberal

answers to the questions above: no, the value is not required upon construction; yes the attribute

value can change; and no there are no constraints on or special traits of the attribute. In UML

you can add OCL constraints to answer Q3, but there is no straightforward way to specify

answers to Q1 and Q2.

As observed in the previous section the answer to Q1 is usually ‘no’ (89%), and the answer to

Q2 is split between ‘yes’ (62%) and ‘no’ (38%).

The answer to Q3 is ‘none’ about half the time (55%) – in other words most attributes have

straightforward set and get behaviour. The other half of the time there are a large number of

possible characteristics to consider, since each project has unique constraints to which an

attribute much conform. Two of the characteristics we observe reasonably frequently are

uniqueness and default values.

In the work below, we look at how the answers to the questions above could be reflected in a

model-oriented syntax, with consideration of the affects on code generation. We also determine

which scenarios do not make semantic (or pragmatic) sense in order to further simplify the

attribute syntax.

4.3.6 Is the Attribute Specified in the Constructor (Q1)?

First, let us consider attributes that are available in the constructor (Q1.Yes). By default in

Umple, an attribute’s value is required at construction, and the syntax to describe this scenario is

to declare the attribute with no extra adornment. E.g.

 94

String x;
Integer y;

For attributes that are not to be set during construction (Q1.No), the Umple syntax is to provide

an initial value (which can be null) to the attribute, as shown below.

String x = “Open”;
Integer y = 1;
String z = null;
String p = nextValue();

The initialized value follows the semantics of the base language (e.g. Java, PHP or Ruby). It can

either be a constant as we see for x and y, uninitialized as we see for z or an arbitrary method

call (that the developer must define) as in the case of p.

4.3.7 Can the Attribute Change After Construction (Q2)?

By default in Umple, an attribute’s value can change after construction (Q2.Yes), requiring no

additional syntax to describe this scenario. A set method is generated in this case.

Attributes that cannot change after construction (Q2.No) are marked ‘immutable’; the value set

in the constructor cannot then be changed. No set method is generated.

immutable String x;

As discussed above, immutability is very useful to provide consistent semantics for equality and

hashing, although not many attributes in our study exhibited the immutable property. Part of the

issue is that in current languages it is difficult to specify.

There are also instances where an attribute should be immutable, but it might be the case that the

value is not available at the instant of construction, only very shortly thereafter. Examples of this

include application frameworks where the creation of an object is controlled by the framework

and is outside the developer’s control. In these cases, an initially empty object is provided to the

application, to be immediately populated with the attribute data that cannot then be changed.

Therefore, to support this case in Umple, we allow immutable attributes to delay instantiation by

initializing the value to null as shown below.

lazy immutable y;

The use of the lazy syntax means that the attribute is not initialized in the constructor (i.e. it is

not part of the constructor’s signature). The generated code will contain a flag to track whether

the object has been set yet, allowing only a single set to occur. We elaborate on immutability

and the underlying executable implementation in following sections.

 95

4.3.8 What Other Characteristics Does the Attribute Possess (Q3)?

The potential characteristics are somewhat limitless. In our analysis of existing software we

found three somewhat common patterns that we have incorporated into Umple and will

elaborate on them below.

Before we consider these special cases explicitly supported by the Umple language, we should

first recognize that many attributes have no explicit constraints. In general, a property like a

name or jobTitle has no constraints apart from those enforced by the underlying implementation

language (i.e. type checking).

4.3.8.1Attribute Uniqueness

The first characteristic we will consider is uniqueness. In databases, being able to guarantee

uniqueness allows for efficient searching and equality assertions; many domains also have data

that is unique by design (e.g. flight numbers in an airline). In some cases, objects are

automatically assigned a unique identifier upon creation, whereas in others uniqueness is

checked whenever the attribute is set.

In UML, an attribute’s uniqueness can be specified using a qualifier, which is really a special

type of attribute. Let us consider an example of an Airline that has many RegularFlights.

Figure 24: Unique flightNumber on the airline association

Two RegularFlights of the same Airline should not have the same flightNumber, representing a

uniqueness constraint on the system. It is also possible to allow for global uniqueness within a

system, for example an ipAddress attribute should perhaps be unique throughout the entire

application.

In the cases above, it is the responsibility of the end-user developer to define unique attributes.

The example below provides a mechanism to allow the underlying system to manage the

generation of valid and unique identifiers, within or outside the context of an association. The

Umple syntax to describe the constraints mentioned above is shown below.

unique String ipAddress;
unique Integer flightNumber on airline;

The second example above for flightNumber includes an additional qualifier to limit uniqueness

of that attribute to be unique for a particular airline. The qualifiers available for the uniqueness

modifier are limited to association ends of the containing class with a multiplicity of 0..1 or 1.

 96

Uniqueness for integer attributes can also be managed automatically in Umple using the

‘autounique’ keyword. Autounique includes basic support for an Integer (1,2,3,…) and a String

(a,b,c,…) attribute id generator. The syntax for supported autounique attributes is shown below.

autounique Integer flightNumber;

For more complex autounique attributes, such as generating a license number, user name or

email address, the developer must also provide a custom function to manage uniqueness. The

syntax in Umple is as follows.

autounique String userId = { nextUserId(); }

The syntax uses a lambda function notation (similar to derived attributes presented below in

4.3.8.4).

4.3.8.2Default Values

Next, let us consider defaulted values. A default value ensures an attribute is never unspecified.

Any time the internal value of the attribute is unspecified, the accessor method (i.e. get method)

would return a default value. The generated API includes methods to reset the attribute to the

default and determine what the default would be. Note that defaulted attributes also do not

appear on the constructor’s argument list.

defaulted type = “Long”;

4.3.8.3Internal Members

Next, let us consider all other custom constraints and internal data. Not all attributes conform to

the standard simple set/get semantics as described in the previous sections. In addition, many

member variables are not attributes, but are support variables used internally [126]. To specify

these in Umple, the syntax is:

internal Integer cachedSize = 0;

Internal attributes do not form part of the constructor and do not have accessor methods,

allowing developers to manage this data in the way they see fit. However, the variables are

private.

4.3.8.4Derived Values

A derived value is a value that is based on possibly several values. For example, the area of a

circle is a derived value based on the circle’s diameter. A derived value differs from an

initialized value in that an initialized value is set once upon construction and can then later be

 97

overwritten; whereas a derived value is always set based on a predetermined calculation such as

the area of a circle, or perimeter of a rectangle.

The syntax for derived attributes uses a lambda-function like notation and is shown below; this

function must make reference to the attribute or attributes upon which the derived value is

based.

Integer length;
Integer width;
Integer perimeter = { 2 * getLength() + 2 * getWidth() }
Integer area = { getLength() * getWidth() }

Derived attributes only generate get methods, as generating a set method would make no sense.

Caching mechanisms for derived values is currently outside the scope of the Umple language,

due the many design factors to take into consideration to ensure correctness. Below is an

example showing how an Umple developer could implement his/her own caching mechanism.

Integer length;
Integer width;

internal Boolean isPerimeterCached = false;
internal Integer cachedPerimeter = -1;
Integer perimeter = { 2 * getLength() + 2 * getWidth(); };

before getPerimeter {if (isPerimeterCached) { return cachedPerimeter; } }
after getPermimeter {cachedPerimeter = aPerimeter; isPerimeterCached = true;}
after setLength { if (wasSet) { isPerimeterCached = false; } }
after setWidth { if (wasSet) { isPerimeterCached = false; } }

In the example above, we use our code injection syntax described in Section 6.3.1 . The code

attaches a dirty bit to all attributes involved in calculating the derived value.

4.3.8.5Constants (const)

Although technically not an object attribute, Umple also supports a const keyword to denote

read-only class level attribute. An example is shown below.

const MAX = 10

4.3.8.6List (Many) Attributes

Finally, let us consider a ‘many’ multiplicity. Using the square brackets [] syntax, attributes can

also be represented as multiple instances of the attribute type.

String[] names;
String[0..3] addressLines;

By default, list attribute multiplicities are many (*) as illustrated by the names attribute above.

The second example, addressLines, explicitly defines the multiplicity constraint as 0..3.

 98

4.4 Existing Tools that Generate Code for Attributes

In the previous sections, we investigated how attributes are used in practice. We then presented

the Umple syntax to describe attributes at a more abstract level. The next step in our research

has been to understand the code generation patterns of existing tools to see how they deal with

the complexities of implementing attributes.

The UML modeling tools considered were identified by two sources: Gartner [127] and an

online list of UML tools from [128]. We selected four open source projects and one closed

source application to analyze.

ArgoUML and StarUML are two of the most active open source UML modeling tools and RSA

has the largest market share, helping ensure that our review of existing tools is relevant and

popular [127, 129].

Table 20. UML code generation tools.
Tool Version Source
ArgoUML 0.26.2 argouml.tigris.org
StarUML 5.0.2.1570 staruml.sourceforge.net
BOUML 4.11 bouml.free.fr
Green 3.1.0 green.sourceforge.net
RSA 7.5 ibm.com/software/awdtools/architect/swarchitect
Eclipse EMF 2.5 www.eclipse.org/modeling/emf/

The above are not the only modeling tools that were considered. Table 21 lists additional

candidate tools for completeness of our research. Most of these tools either did not provide code

generation capabilities, did not provide code generation of class diagrams, did not provide

sufficient documentation to achieve code generation, or did not run on the platforms we had

available.

Table 21. Additional UML tools not considered for our case study.
Tool Version Source
Acceleo 2.5.1 acceleo.org
Jink UML 0.745 code.google.com/p/jink-uml
Hugo 0.51 pst.ifi.lmu.de/projekte/hugo
Umbrello 2.0 uml.sourceforge.net
Umlet 9.1 umlet.com
Fujaba 5.0.1 wwwcs.upb.de/cs/fujaba/
Modelio 1.0.0 modeliosoft.com
Topcased 1.2.0 topcased.org
NetBeans UML Modeling 6.7 netbeans.org
Papyrus 1.11.0 papyrusuml.org
For the tools listed in Table 20, we used a Student class with two attributes, an integer

representing an id, and a list of names (represented as simple strings).

 99

class Student
{
 Integer id;
 String[] names;
}

Figure 25: Student class with a simple id attribute and a list attribute

4.4.1 ArgoUML

ArgoUML is an open source modeling platform that provides code generation for Java, C++,

C#, PHP4 and PHP5. Below is the code generated from Figure 25.

import java.util.Vector;
public class Student {
 public Integer id;
 public Vector names;
}

The generated code provides public access to set and get the attributes; a pattern not often used

in practice as it breaks encapsulation by fully exposing the internals of the class. The attributes

are made directly available without the inclusion of accessor methods.

4.4.2 StarUML

StarUML is an open source modeling tool. Its generated code is almost identical to that of

ArgoUML, except that the import clause was missing, and names is declared erroneously as a

String. StarUML’s generated code hence does not account for the many multiplicity, resulting in

unusable generated code.

4.4.3 Bouml

BOUML is another free tool based on UML 2 that provides source code generation for C++,

Java, Idl, PHP and Python. Its code is very similar to the two systems above, with the primary

difference being that the attributes are declared as private and genericity is used:

class Student {
 private int id;
 private List<String> names;
}

The Bouml source code does not provide any mechanism to set or get the attributes; this code

must be written by hand after code generation.

4.4.4 Green Code Generator

Green UML is another UML editor that can generate source code from a class diagram.

 100

import java.util.List;
public class Student {
 int id;
 List<String> names;
 public Student() {}
}

Green’s implementation contains similar flaws as BOUML, where access to the attributes must

be written manually after generation.

Although Green UML does attempt to provide some additional source code generation to

manage the various types of association multiplicities available; the results provide little if any

added benefit in representing the model’s intentions.

4.4.5 Rational Software Architect (RSA) and RSA Real-Time

IBM’s Rational Software Architect is a full-fledged development environment that supports

model-driven development including source code generation from UML diagrams. Its code for

Figure 25 is as follows:

import java.util.Set;
public class Student {
 public Integer id;
 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }
 private Set<String> names;
 public Set<Student> getNames() { return names; }
 public void setNames(Set<Student> names) {
 this.names = names;
 }
}

RSA’s model transformation into Java code provided some flexibility regarding the template

patterns including (a) which Java collection to use, and (b) whether or not to include get/set

methods for the attributes. RSA Real Time generated the same code as RSA for class diagrams.

4.4.6 Eclipse Modeling Framework (EMF)

EMF is described in detail in Section 3.8.1 . As shown below, classes are generated as

interfaces.

import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
public interface Student extends EObject {
 int getId();
 void setId(int value);
 EList<String> getNames();
}

The implementation of the Student class (StudentImpl) is shown below.

import example.ExamplePackage;
import example.Student;

 101

import java.util.Collection;
import org.eclipse.emf.common.notify.Notification;
import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EClass;
import org.eclipse.emf.ecore.impl.ENotificationImpl;
import org.eclipse.emf.ecore.impl.EObjectImpl;
import org.eclipse.emf.ecore.util.EDataTypeUniqueEList;

public class StudentImpl extends EObjectImpl implements Student {
 protected static final int ID_EDEFAULT = 0;
 protected int id = ID_EDEFAULT;
 protected EList<String> names;

 protected StudentImpl() { super(); }

 public int getId() { return id; }

 public void setId(int newId) {
 int oldId = id;
 id = newId;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, Notification.SET,
 ExamplePackage.STUDENT__ID, oldId, id));
 }

 public EList<String> getNames() {
 if (names == null) {
 names = new EDataTypeUniqueEList<String>(String.class, this,
 ExamplePackage.STUDENT__NAMES);
 }
 return names;
 }

 public Object eGet(int featureID, boolean resolve, boolean coreType) {
 switch (featureID) {
 case ExamplePackage.STUDENT__ID:
 return getId();
 case ExamplePackage.STUDENT__NAMES:
 return getNames();
 }
 return super.eGet(featureID, resolve, coreType);
 }

 public void eSet(int featureID, Object newValue) {
 switch (featureID) {
 case ExamplePackage.STUDENT__ID:
 setId((Integer)newValue);
 return;
 case ExamplePackage.STUDENT__NAMES:
 getNames().clear();
 getNames().addAll((Collection<? extends String>)newValue);
 return;
 }
 super.eSet(featureID, newValue);
 }

 public void eUnset(int featureID) {
 switch (featureID) {
 case ExamplePackage.STUDENT__ID:
 setId(ID_EDEFAULT);
 return;
 case ExamplePackage.STUDENT__NAMES:

 102

 getNames().clear();
 return;
 }
 super.eUnset(featureID);
 }

 public boolean eIsSet(int featureID) {
 switch (featureID) {
 case ExamplePackage.STUDENT__ID:
 return id != ID_EDEFAULT;
 case ExamplePackage.STUDENT__NAMES:
 return names != null && !names.isEmpty();
 }
 return super.eIsSet(featureID);
 }
}

The EMF implementation of the Student class has the following qualities.

• The get implementation when the multiplicity is one returns the member variable (i.e. a

simple get method).

• The set implementation when the multiplicity is one assigns the member variable as well

as notifies other interested instances using the Observable pattern.

• Attributes with multiplicity many are accessed directly via a get method that returns an

EList interface (EList extends Java’s java.util.List interface with two additional move

methods).

• The many attributes are lazily instantiated (i.e. when first requested).

• The generated classes have only one constructor with no parameters.

• Additional methods provide generic access to all attributes using an eGet, eSet, eIsSet

and eUnset, using an argument to specify the attribute.

The simple attributes follow a similar pattern as would be written by hand; with the addition of

an observable mechanism to notify other objects of changes to this instance. The object

maintains little control over the many attributes, as the list is passed directly to the caller for

manipulation (and unfortunately the possibility of mangling it, too, thus making it impossible to

maintain constraints). And, because of the generic EList being used, it is unlikely to contain

model specific constraints, or validation. The additional generic access methods (eGet, eSet, etc)

expose the internals of the implementation and are presumably used by Eclipse to provide a

generic mechanism to interact with EMF generated code with less reliance on reflection.

EMF does not directly support attribute constraint checking or validation. EMF does provide

some hints about how to extend the EMF code generator to support custom behaviour, like

validation. Below is a sample validation interface generated by EMF for the Student class.

 103

/**
 * A sample validator interface for {@link example.Student}.
 * This doesn't really do anything, and it's not a real EMF artifact.
 * It was generated by the org.eclipse.emf.examples.generator.validator plug-
in to illustrate how EMF's code generator can be extended.
 * This can be disabled with -vmargs -
Dorg.eclipse.emf.examples.generator.validator=false.
 */
public interface StudentValidator
{
 boolean validate();
 boolean validateId(int value);
 boolean validateNames(EList<String> value);
}

Please note that we left the EMF comment in place to highlight that this mechanism is not

integrated within EMF. Also note that only an interface is provided with no concrete

implementation.

Of all the code generators analyzed, EMF provided the most comprehensive and complex

implementation. As such, we investigated additional code generation features of EMF. The

following observations were found:

• EMF treats multiplicities uniformly as either optional-one, or many. No additional

constraint checking is provided if the relationship is mandatory (e.g. 1..1), or limited

(e.g. 3..5).

• EMF does not support immutable attributes. All object constructors are empty. If you set

the changeable property to false, the attribute will always be null and setting a default

value will (in essence) make the attribute a constant; neither of which represent a

meaningful implementation of immutability.

• EMF ignores the unique properties for one multiplicity attributes and only applies to

many-multiplicities.

• EMF ignores the ordered property.

As discussed in Section 3.8.1 , EMF is geared specifically towards the Java language run within

the Eclipse environment. As such, the generated code is tightly coupled to the EMF framework

and includes additional methods (eSet, eGet, eUnset) and classes (PoFactory, PoPackage,

PoSwitch) and most likely would not extend well to other languages like PHP or Ruby, unless

the EMF framework was also ported to those languages or a bridge was created (such as JRuby)

allowing both languages to work in unison.

 104

4.5 Generating Code for Attributes using Umple

As seen in the previous example, existing code generating tools do not consider the many

complicated facets of implementing attributes in a target language like Java. Section 4.3.5

described the syntax of Umple attributes and Section 4.4 highlighted the simplistic

implementation of attributes in several code generators and software modeling tools. In this

section, we demonstrate code generation patterns based on Umple attributes and generated into

Java code.

Umple provides the full breadth of capabilities of the underlying runtime language (currently

Java, PHP or Ruby), without the need to manually edit the underlying generated code. Our

approach can be compared to compiling Java into byte code; just as a developer should not have

to analyze the generated byte code the same should be true of the underlying generated code of

Umple.

Regardless, it is unrealistic to believe that a language such as Umple will allow software

developers to simply ignore the generated code and work entirely in the Umple language

(especially in the beginning). It is more likely that early adopters will want to (or worse, need to)

explore the underlying implementation. And, it is because of early adopters that we strive to

provide high-quality and well-styled generated code.

The following example shows how one would declare attributes in the first steps of modeling a

system using Umple. To help distinguish between Umple and Java code, the Umple examples

use dashed borders in light-grey shading, and pure Java examples use solid-line borders with no

shading. For conciseness, we have omitted the code comments and some additional methods not

related to the attributes in the generated Java.

4.5.1 Basic Attributes

At the core of an Umple attribute is a name. The implications on code generation include a

parameter in the constructor, a default type of String and a simple set and get method to manage

access to the attribute. Consider the attribute code shown below:

class Student {
 name;
}

This would result in the following Java implementation.

public class Student {
 private String name;
 public Student(String aName) { name = aName; }

 105

 public boolean setName(String aName) {
 name = aName;
 return true;
 }
 public String getName() {
 return name;
 }
}

The style is similar to that generated from RSA, and similar to the simple cases observed in the

open source projects. As we discussed in Section 2, relatively few attributes are set in the

constructor. In Umple, this can be achieved by specifying an initial value as shown below.

class Student {
 name = “Unknown”;
}

The generated code would differ only in the constructor, which is shown below:

public class Student {
 ...
 public Student() {
 name = "Unknown";
 }
 ...
}

Please note the initial value can be null, or some user defined function written in the underlying

target language (i.e. Java).

4.5.2 Immutable Attributes

If a Student’s name variable was declared immutable, as shown in Section 4.3.7 the resulting

Java code would be the same as the basic attribute implementation from the previous section,

except that there would be no setName method.

In the default case, immutable attributes must be specified on the constructor, and no setter

method is provided. But, Umple also supports lazy instantiation of immutable objects (also

discussed in Section 4.3.7).

Lazy immutable attributes are neither initialized nor provided as arguments in the constructor. A

set method is provided, but can only be called once as shown with the example below.

public class Student {
 private String name;
 private boolean canSetName;
 public Student() {
 canNameBeSet = true;
 }
 public boolean setName(String aName) {
 boolean wasSet = false;
 if (!canSetName) { return false; }
 canSetName = false;
 name = aName;
 wasSet = true;

 106

 return wasSet;
 }
 public String getName() {
 return name;
 }
}

The implementation above includes an additional check canSetName to ensure that the variable

is only set once. Note that the wasSet variable is available to be used by before and after code

injections, so they can base their behaviour on the success (or failure) of the set or get operation.

4.5.3 Defaulted Attributes

A defaulted attribute provides an object with a default configuration that can be overwritten:

class Student {
 defaulted name = "Unknown";
}

The underlying Java implementation is shown below.

public class Student {

 private String name;
 public Student() {
 resetName();
 }
 public boolean setName(String aName) {
 name = aName;
 return true;
 }
 public boolean resetName() {
 name = getDefaultName();
 return true;
 }
 public String getName() {
 return name;
 }
 public String getDefaultName() {
 String aName = "Unknown";
 return aName;
 }
}

The subtle differences between an initialized and a defaulted attribute include the following:

First, a defaulted attribute is specified in the constructor, whereas an initialized attribute is not.

Second, a defaulted value is guaranteed to return its default if it has not been initialized (or if it

has been reset), whereas an initialized attribute guarantees only the particular value after

construction (which can be set to null afterwards).

4.5.4 Unique Attribute

The unique attribute guarantees its uniqueness within a particular class.

 107

class Student {
 unique String name;
}

The implementation in Java is shown below.

public class Student {
 private static List<String> allNames = new ArrayList<String>();
 private String name;

 public Student(String aName)
 {
 if (!setName(aName))
 {
 throw new RuntimeException("Unable to create student due to name");
 }
 }

 public boolean setName(String aName)
 {
 boolean wasSet = false;
 if (indexOfAllName(aName) != -1) { return wasSet; }
 String oldName = name;
 name = aName;
 wasSet = true;
 if (wasSet) { addAllName(aName); removeAllName(oldName); }
 return wasSet;
 }

 public String getName()
 {
 return name;
 }

 public static boolean addAllName(String aAllName)
 {
 boolean wasAdded = false;
 wasAdded = allNames.add(aAllName);
 return wasAdded;
 }

 public static boolean removeAllName(String aAllName)
 {
 boolean wasRemoved = false;
 wasRemoved = allNames.remove(aAllName);
 return wasRemoved;
 }

 public static String getAllName(int index)
 {
 String aAllName = allNames.get(index);
 return aAllName;
 }

 public static String[] getAllNames()
 {
 String[] newAllNames = allNames.toArray(new String[allNames.size()]);
 return newAllNames;
 }

 public static int numberOfAllNames()
 {
 int number = allNames.size();

 108

 return number;
 }

 public static boolean hasAllNames()
 {
 boolean has = allNames.size() > 0;
 return has;
 }

 public static int indexOfAllName(String aAllName)
 {
 int index = allNames.indexOf(aAllName);
 return index;
 }
}

Uniqueness is provided by filtering incoming values on the unique attribute’s set method. Prior

to setting the value we check for uniqueness, following the successful setting of the attribute the

new value is added to the list of current unique values, and the old value is removed.

The implementation of uniqueness uses a static class level API for managing the list of existing

attribute values, which is based entirely on the API for list attributes. This mechanism allows

for uniqueness to be guaranteed without requiring that all instances of the class be instantiated.

As such, the methods are purposely public such that developers can provide their own optimized

approach to managing uniqueness. If such a mechanism were not in place, then our approach

would not scale well.

The lazy keyword can be used to remove the attribute from the constructor, similar to immutable

attributes presented in Section 4.5.2 .

Uniqueness can also be qualified along an association end with a multiplicity of one, an example

of which is shown below.

unique Integer flightNumber on airline;

The implementation differs in the following respects. First, the static list tracking all unique

values becomes an attribute of the qualified association. Second, the set method references

attribute of the qualified association end not a static list. Third, a check is added to the set

method that links the qualified association end, to ensure uniqueness if the attribute is set prior

to linking the association end. The first two changes reflect small changes to the code above.

The additional code required to implement the third change is shown below.

public boolean setAirline(Airline newAirline)
{
 boolean wasSet = false;
 if (newAirline != null && newAirline.indexOfAllFlightId(flightId) != -1)
 { return wasSet; }
 Airline oldAirline = airline;
 // existing association implementation code
 if (wasSet && oldAirline != null){ oldAirline.removeAllFlightId(flightId);}
 if (wasSet && newAirline != null){ newAirline.addAllFlightId(flightId); }

 109

 return wasSet;
}

4.5.5 Autounique Attributes

The Umple language also supports autounique attributes as shown below.

class Student {
 autounique Integer id;
}

The implementation of autounique builds on the implementation of unique presented in the

previous section. The difference is that the autounique attribute is automatically set in the

constructor to the next available value. The implementation in Java is shown below (we filtered

out the aspects that are similar to the unique implementation).

public class Student {
 private static int nextId = 1;

 private int id;
 public Student() {
 if (!setId(getNextId()))
 {
 throw new RuntimeException("Unable to create student due to id");
 }
 }
 public int getId() {
 return id;
 }

 public static boolean setNextId(int aNextId)
 {
 boolean wasSet = false;
 nextId = aNextId;
 wasSet = true;
 return wasSet;
 }

 public static int getNextId()
 {
 return nextId++;
 }

 // API implementation as available for unique attribtues

}

The autounique process can be manually configured (i.e. setNextId() and setId()) to support

loading autounique objects from a persistence mechanism (i.e loading an object from a database

– requires that the same persisted autounique value is assigned to that object instance).

 110

4.5.6 Constant Class Attributes

A constant class level attribute is identified using the const keyword. The UML modeling

standard is to underline; a convention that is difficult to achieve in a development environment

as most developer code is written in plain text.

class Student {
 const Integer MAX_PER_GROUP = 10;
}

The underlying implementation in Java is shown below.

public class Student {
 public static final int MAX_PER_GROUP = 10;
}

4.6 Attributes with Multiplicity of Upper Bound Greater Than 1

Umple includes support for attributes that might contain multiple values (i.e. cardinality > 1).

The Umple notation uses a square brackets [], which typically refers to arrays in programming

languages like Java, PHP or Ruby. An example list attribute is shown below:

class Student {
 String[] nickname;
}

The underlying implementation is Java is shown below:

public class Student {
 private List<String> nicknames;

 public Student() {
 nicknames = new ArrayList<String>();
 }

 public boolean addNickname(String aNickname) {
 boolean didAdd = nicknames.add(aNickname);
 return didAdd;
 }

 public boolean removeNickname(String aNickname) {
 boolean didRemove = nicknames.remove(aNickname);
 return didRemove;
 }

 public String getNickname(int index) {
 String aNickname = nicknames.get(index);
 return aNickname;
 }

 public String[] getNicknames() {
 String[] newNicknames = nicknames.toArray(new String[nicknames.size()]);
 return newNicknames;
 }

 public int numberOfNicknames() {
 int number = nicknames.size();
 return number;

 111

 }

 public int indexOfNickname(String aNickname) {
 int index = nicknames.indexOf(aNickname);
 return index;
 }

}

More complex cardinalities (i.e. 1 -- 3..5) can be achieved by using the association notation

presented in the following chapter. To be consistent with the treatment of primitive types like

an int or double, the generated code provides access to a copy of the entire list using primitive

arrays as opposed to the unmodifiable lists that, we will see, are used by associations.

4.7 Summary

This chapter analyzed the syntax, semantics and pragmatics of attributes. We studied how

attributes are used in practice, and discovered the difficulty in extracting modeling abstractions

from analyzing source code. Our approach used manual inspection, which, although subject to

human error, is comparable to analysis by automated tools since there are so many special cases

to be considered.

We also demonstrated how attributes are represented in Umple and showed the code-generation

patterns used when Umple is translated into Java. When compared to the code generated for

attributes by existing tools, we believe our patterns have a great deal to offer. In the following

chapter we analyze the impacts that supporting associations has on code generation.

 112

Chapter 5 Syntax and Semantics of Textual Associations
UML classes involve three key elements: attributes, associations, and methods. But current

implementations of object-oriented languages, like Java, do not provide a distinction between

attributes and associations. The focus of this chapter will be to investigate the implications of

providing separate syntax and corresponding semantics for associations, as distinct from

attributes that were discussed in the last chapter.

Tools that generate code from associations currently provide little support for the rich semantics

available to modellers such as enforcing multiplicity constraints or maintaining referential

integrity. In this chapter, we show source code from existing code-generation tools and highlight

how the issues above are not adequately addressed. We then outline code generation patterns

currently available in Umple that resolve these difficulties and address the issues of multiplicity

constraints and referential integrity.

Umple syntax allows the declaration of an association at the same level of abstraction as the

declaration of a class. A developer no longer needs to declare instance variables in classes to

implement associations. Except for reflexive associations, associations intrinsically involve

more than one class. Unless we make judicious design choices, creating an explicit association

abstraction may have consequences that negatively impact the object-oriented programming

paradigm. Firstly, doing this would potentially increase coupling. The association would be

coupled to the two associated classes, and the two classes might be coupled to the association if

their methods needed to access the association in order to perform needed operations. Also, it

has been a key tenet of OOP that a class looks after its own data; the association abstraction

makes this potentially no longer the case. The challenge is to design an association abstraction at

the programming level that adheres to the original spirit of OOP, and provides increased

abstraction and better engineering capabilities.

Figure 26 shows how associations are represented textually and diagrammatically in Umple. On

the right is a UML class diagram with three classes and two one-to-many associations. The code

on the left in the equivalent in Umple. The ‘--‘ means that the association is bidirectional

navigable (more on this later). It is also possible to use ‘->’ or ‘<-‘ to indicate that navigation is

possible in only one direction. The full set of UML multiplicity symbols may be used.

 113

class Student
{}

class CourseSection
{}

class Registration
{
 String grade;
 * -- 1 Student;
 * -- 1 CourseSection;
}

Figure 26: Umple class diagram for part of the student registration system

In addition to showing an association embedded in one of the two associated classes, it is also

possible to show an association ‘on its own’, thus:

association {
 * Registration -- 1 Student;
}

Other information such as role names can also be provided:

association {
 * Registration course -- 1 Student attendee;
}

Besides simply providing improved abstraction, explicitly coding associations might have the

following advantages: 1) Reduction in bugs, since the compiler can enforce various design

constraints and less code would need to be written. The current implicit nature of associations in

standard object-oriented languages results in bug-prone code since there is no general

mechanism to enforce things like referential integrity. 2) Faster development due to the need to

write less code and reduced numbers of bugs to fix.

In this thesis we demonstrate the effectiveness of the Umple approach to associations by

showing the reduction in the amount of code needed by elimination of the ‘boilerplate’ code that

would otherwise have to be coded. We also demonstrate that Umple associations can be used

effectively to code applications. However, we leave the empirical study of bug reduction and

development speedup to future work.

5.1 Related Work

Several studies [130-134] propose approaches to formalizing the semantics of associations.

They generally agree on the interpretation of associations, but do not address uniqueness and

ordering of associations.

 114

Other studies in the literature refer to two types of associations, static and dynamic [135, 136].

Static associations, a view we adopt, represent structural relationships between classes, where

the association is enforced throughout the lifetime of links between instances of those classes.

Dynamic (or contextual) associations are only enforced during the interactions of the two

objects. Miliev [9] proposes yet another view of associations: intentional associations that

encapsulate the intention of association of each participating object. Instead of restricting

associations from containing duplicate links, Miliev’s approach modifies the way in which an

association end maps objects from the other association end depending on the characteristics of

the association ends. An example where assuming uniqueness fails to provide the necessary

abstraction is shown below in Figure 27.

Figure 27: An example of nonunique association ends from [9]

In the example above, we see that a route can contain multiple links to the same object. Miliev

uses the Z language to provide different association implementation depending on the properties

of the association (i.e. ordered, unique, etc). Umple currently only supports ordered, unique set

semantics to define association ends. To support additional qualities such as being unordered

and / or nonunique, Umple would first need to introduce the appropriate syntax into the

language in a usable way, and only then would we look at the implementation specifics. To

determine the potential usefulness of qualities such as unordered, one could first look to expand

on our study of attributes and associations presented in Section 4.3 and Section 5.2 to investigate

the types of List structures used in practice.

Acknowledging deficiencies in automated code generation of UML associations and

multiplicities, Wang and Shen [137] propose a run-time verification approach for UML

 115

association constraints. Østerbye [138] proposes supporting association referential integrity with

a reusable class library that ensures the consistency of the relationship is maintained.

Executable UML (xUML) [91] was introduced by Steve Mellor; its aim is to provide a (yet to be

approved) specification of an unambiguous subset of UML that can be executed using model

compilers. The Umple compiler also behaves as a model compiler and provides a concrete

implementation of a subset of UML. However unlike Executable UML, Umple integrates with

standard object oriented languages, and supports a wider range of multiplicity, as well as a

variety of other features not present in executable UML.

The Executable Foundational UML [59] is a computationally complete and compact subset of

UML. Lazar et al. [139] provide an action language based on fUML with a concrete syntax

inspired by OCL. This fUML language does not explicitly define associations as does Umple,

but rather uses variables to define association ends as shown below for our Student/Mentor

example.

def students : Student [0..*];
def mentor : Mentor [0..1];

The Alf language [61] (an RFP submission for OMG’s upcoming UAL specification) presents

another computationally complete language aimed at providing a textual modeling notation. Alf

defines associations using a similar external notation to Umple. An example association in Alf

representing our Student/Mentor example is shown below.

assoc LifeCoach {
 public student: Student[0..*];
 public mentor: Mentor[0..1];
}

Alf supports higher order associations, the implementations of which would be considerably

different than those available in Umple; which only supports binary relationships.

The Umple approach to implementing a UML action language is distinct from the official OMG

approach in three aspects. First, Umple makes a textual representation for other UML modeling

elements available and integrates the textual action language with the textual diagram

representation. Modelers can create and edit models diagrammatically or textually, and can

embed the action language textually.

Second, Umple’s bottom-up approach attempts to raise the abstraction level of widely-adopted

programming languages to include modeling abstractions and action semantics, effectively

overcoming limitations associated with using a programming language as a modeling action

 116

language. Such an approach allows us to continuously use UML and the action language in

building real systems of considerable complexity.

We raise the abstraction level of base programming languages by iteratively executing the

following language refinements (LRs):

• LR-1. Make available additional, and more abstract, language constructs based on

necessity, experience, and experimentation

• LR-2. Restrict and modify statements to decouple the action language from the

underlying target system

• LR-3. Discover new language constructs for inclusion in our action language.

A third upcoming distinction between Umple and Alf is Umple’s native support not only for

class diagrams but also of state machine abstractions; the current Alf approach only addresses

the former.

5.2 Associations In Practice

In the previous chapter we discussed an empirical study of existing open source software to

analyze how attributes are used in practice. This study was extended to also include the analysis

of associations. Recall that we identified candidate attributes based on certain criteria (e.g.

attributes are simple types that also have a get method, or public accessibility). The process

applies almost identically for associations, except for the final step (see Table 15 for a review of

the filters used to distinguish simple from complex variables).

The process of seeking associations in our subject systems resulted in 350 candidate association

ends. During our manual review of candidate variables, we further filtered the set down to 235

candidate association ends by removing any internal variables that were neither set in the

constructor, nor available via a set/get method. These variables appeared to represent

dependencies and not association ends (e.g. Readers, Streams, and Maps).

Below, in Table 22, we highlight some distribution statistics of the 235 candidate association

ends. Please note that the categories are not mutually exclusive so the column sum will not be

100%.

In addition to tracking the distribution of set and get methods, the following observations were

made:

 117

• For associations with an upper bound greater than one, some implementations provided

direct access to the list structure and others provided list accessor methods like add and

remove.

• Of the 235 association ends, 42 (17.9%) were defined using collections (Map, Set, Hash,

List) and hence most likely represented associations with an upper bound greater than

one

Table 22. Distribution of set/get methods and availability in constructor.

Category Frequency % Description (if required)
Set/Get
Methods

67 29% All variables that had both a set and get method.

Set
Method

89 38% All objects that at least had a set method.

Get
Method

120 51% All variables that at least had a get method.

No Set
Method

54 23% All immutable variables links as the variables have no set
method.

Only
Get
Method

39 17% Internally managed variable links (no set method and not
available in the constructor).

Note that public instance variables are considered to have set and get methods as discussed in

the previous chapter.

When analyzing the open source systems it was difficult to match association-end variables to

one another. This was because many associations linked to external resources (and most likely

represented one-way associations). There was little evidence of referential integrity between

association-ends, implying that the application developer using the object model would have to

maintain the correct multiplicities himself or herself. This difficulty in analyzing how

associations are used in practice provides some motivation for our work, as greater traceability

can be achieved using a model-oriented language like Umple. This is because developers can

explicitly define associations in one location and the association can be accessed and modified

in a consistent manner.

5.3 Associations in UML Diagrams

To get a better understanding of the types of associations used in practice, we set out to analyze

a significant set of publically available UML diagrams. By analyzing such diagrams we should

be able to get a better understanding of how associations are used in practice. We analyzed 1536

associations (not just association ends as in our analysis above) based on two UML

 118

specifications (v1.5 and v2.1.2) and seven UML profiles (MARTE, Flow Composition, ECA,

Java, Patterns, rCOS). A summary of the multiplicities in use from these sources is summarized

in Table 26.

For comparison, we also analyzed example UML models found in “Object-Oriented Software

Engineering: Practical Software Development using UML and Java” by Lethbridge and

Laganière [2], as well as those in our own repository of UML modeled systems available at [3].

This repository represents systems modeled and built using Umple. These systems were

intended to demonstrate real designs that could be the basis for actual systems.

Table 23: Usage of Association Multiplicities in UML

Occurrences in the UML specs Rank in the three sets

Multiplicity Frequency Percent
In UML
Specs

Examples
in Book

In Umple
Repository

0..1--* 274 19.1% 1 4 2
1--* 273 19.0% 2 1 1
-> 190 13.2% 3 9 5
-- 158 11.0% 4 2 3
0..1--1 129 9.0% 5 N/A 7
1<-* 86 6.0% 6 N/A 6
0..1<-* 75 5.2% 7 N/A 4
0..1--0..1 56 3.9% 8 6 N/A
1..*--* 55 3.8% 9 N/A N/A
Other 142 9.9% N/A N/A N/A
Total 1438 100.0%

Table 24: Example Usage of Association Multiplicities in the Book by Lethbridge [2]

Occurrences in the book Rank in the three sets (for comparison)
Multiplicity Frequency Percent In UML

Specs
Examples
in Book

In Umple
Repository

1--* 39 39.8% 2 1 1
-- 15 15.3% 4 2 3
1--1 13 13.3% N/A 3 N/A
0..1--* 11 11.2% 1 4 2
1 <- * 4 4.1% N/A 5 6
0..1--0..1 4 4.1% 8 6 N/A
0..n--1 3 3.1% N/A 7 N/A
n--* 2 2.0% N/A 8 N/A
-> 2 2.0% 3 9 5
Other 5 5.1% N/A N/A N/A
Total 98 100.0%

 119

The top nine types of associations, where the categories distinguish associations both by

multiplicities at each end and by navigability, are shown in Table 23. The rank of actual usage

(where rank 1 is the most frequently-encountered multiplicity category) is given for the three

sets of class diagrams we analyzed, as described above. Note that in this and the subsequent two

tables the order of ends is irrelevant; so for example 0..1--* is the same as *--0..1.

Table 24, organizes the data based on example usage from [2].

Table 25, organizes the data based on our repository of UML models. These models can be

viewed online at [3]. The repository includes 28 unique models including elevators, airlines,

police procedures, warehouse inventory, and even the Umple meta model itself.

Table 25: Usage of Association Multiplicities from Model Repository [3]

Occurrences in the Umple repository Rank in the three sets (for comparison)
Multiplicity Frequency Percent In UML

Specs
Examples
in Book

In Umple
Repository

1--* 108 43.4% 2 1 1
0..1--* 34 13.7% 1 4 2
-- 27 10.8% 4 2 3
0..1<-* 23 9.3% 7 N/A 4
-> 22 8.8% 3 9 5
1<-* 12 4.8% 6 5 6
0..1--1 4 1.6% 5 N/A 7
1--1..* 3 1.2% N/A N/A 8
--1.. 3 1.2% 9 N/A 9
Other 15 6.0% N/A N/A N/A
Total 249 100.0%
Table 26: Summary of Usage of Association Multiplicities

Occurrences in all three sets, with
directionality considered

Occurrences in all three sets, ignoring
directionality	

Multiplicity Frequency Percent Multiplicity Frequency Percent

1--* 420 23.5% 1--* 522 29.2%
0..1--* 319 17.9% 0..1--* 418 23.4%
-> 214 12.0% *--* 414 23.2%
-- 200 11.2% 0..1--1 134 7.5%
0..1--1 134 7.5% 1..*--* 93 5.2%
1->* 102 5.7% 0..1--0..1 62 3.5%
0..1->* 99 5.5% 1--1 42 2.4%
0..1--0..1 62 3.5% 1--1..* 27 1.5%
1..*--* 59 3.3% 0..1--1..* 23 1.3%
Other 176 9.9% Other 50 2.8%
Total 1785 100.0% Total 1785 100.0%

 120

Overall the UML specification models and the models in the book have five of the top nine

multiplicity categories in common. A summary of multiplicity usage for all three sources (UML

specs, book examples and our Umple repository) is shown in Table 26. In the summary on the

left, we consider the directionality of the association; on the right, we ignore the directionality.

The most frequent multiplicity categories if you consider directionality are one-to-many,

optional-one-to-many, many-directed-to-many, many-to-many and optional-one-to-many. If you

combine directed and bi-directional associations then the top categories include: one-to-many,

optional-one-to-many, many-to-many, optional-one-to-one, and mandatory-many-to-many.

After analyzing over 1500 different modeled associations, it is clear that approaches like xUML

[91] (whereby only a subset of the UML multiplicities can be modeled) provide reasonable

coverage for most applications. The same is true of the code generators to be analyzed in

Section 5.6 ; these provide little support for association multiplicities beyond differentiating

one-ends from many-ends.

But, as shown above, 11% of the UML specifications fall outside of the simple cases currently

supported (3% if you ignore directionality) and despite the additional complexity of supporting

all multiplicity types; it should be of both academic and practical relevance to explore all types

of association relationships.

As an aside, only unary and binary associations were observed in practice; our work on

modeling associations in Umple will be based on that same constraint.

In the next section we analyze association multiplicities from first principles in order to identify

all possible multiplicity combinations, and to understand how to model and generate working

systems from them.

5.4 Analyzing All Possible Multiplicity Combinations

Let us consider an association between a Mentor and a Student.

Figure 28: An example binary association

An association has a multiplicity at each end that describes how many instances of one class can

be linked with the other class. In Figure 28, a Mentor can link to any number of Students, but a

Student must be assigned to one and only one Mentor. Multiplicities play an important role in

 121

the implementation of an association, since implementation will vary depending on the

combinations of multiplicity ends.

To understand the implications of explicitly describing associations in a programming language,

we must first know the types of associations, and in particular the type of multiplicities that can

be bound to an association. The nine multiplicity types that can be bound to each end of an

association are described below in Table 27. In this table, n and m stand for arbitrary integers

greater than one.

Table 27. Multiplicity Possibilities for Associations (Shorthand in Parentheses).
Multiplicity
Notation

Lower
Bound

Upper Bound Description

0..1 0 1 Optional-One – Item is either present or not.
0..n 0 n > 1 At Most n – At most n items, or none at all.
0..* (*) 0 undefined > 1 Many – Any number of items can be present,

or none at all.
1..1 (1) 1 1 One – The item is mandatory.
1..n 1 n > 1 Mandatory At Most n – At least one item is

mandatory up to a maximum of n items.
1..* 1 undefined > 1 Mandatory Many – At least one item is

mandatory with no maximum.
n..n (n) n > 1 n Exactly n – Exactly n items are mandatory.
m..n m > 1 n > m From m to n – At least m items are mandatory

up to a maximum of n items.
m..* m > 1 undefined > m At least m – At least m items mandatory with

no maximum.

Each multiplicity end requires a much different treatment in the code, except that the 1..n case

can be coded as a special case of m..n (both are mandatory with a fixed upper bound) and the

1..* case can be coded as special case of m..* (both are mandatory without a fixed upper bound).

5.4.1 Bidirectional Associations Between Two Different Classes

We will first analyze associations between two distinct classes that are navigable in both

directions; in other words where both linked objects are conceptually ‘aware’ of the relationship.

In total there are 28 different patterns of such binary associations possible, as listed in Table 28.

Each of these requires slightly different code for implementation.

Note that x -- y is equivalent to y -- x, so for example, 0..1 -- n is equivalent to n -- 0..1; for this

reason, the upper diagonal in Table 2 is left blank. Also note that the variables m and n are not

assumed to be the same on both ends of the association. For example, 0..6 -- 3..4 association

would fall under the 0..n -- m..n category.

 122

Table 28. The 28 Possible Bi-Directional Non-Reflexive Associations
0..1 0..n * 1 n m..n m…*
0..1 -- 0..1
0..1 -- 0..n 0..n – 0..n
0..1 -- * 0..n -- * * -- *
0..1 -- 1 0..n -- 1 * -- 1 1 -- 1
0..1 -- n 0..n -- n * -- n 1 -- n n -- n
0..1 -- m..n 0..n -- m..n * -- m..n 1 -- m..n n -- m..n m..n -- m..n
0..1 -- m..* 0..n -- m..* * -- m..* 1 -- m..* n -- m..* m..n -- m..* m..* -- m..*

Shaded cells show cases where both sides are ‘mandatory’. Bold associations with thick borders

indicate the common cases as observed in the previous section. Note that 1..* is a subset of the

more generic m..* and 1..n is a subset of m..n.

Several of our examples below will use an association between a Mentor and a Student (e.g.

Figure 28 above). We use this example as it is logical to vary the multiplicity and still have a

system that makes sense. Figure 28 shows the case where a Student always has one Mentor, but

a Mentor can have zero or more Students.

In subsequent sections, our implementation will be presented in Java, and we will assume

Mentor has a member variable student when the upper bound of the multiplicity is 1, and

students if the upper bound is greater than 1. The same applies for Student, with a mentor

member variable for a multiplicity of one, and mentors for greater than one. In Umple the

notation for Figure 28 is:

association {1 Mentor -- * Student;}

5.4.2 Unidirectional (Directed) Associations

A directed association is navigable in one direction only. Only one object of the pair is aware of

and can manage the relationship. For example, one could write in Umple:

association {* Mentor -> * Student;}

In the model above, Mentor is aware of the associated Students, but a Student is unaware of any

Mentor’s to which he/she might be associated.

Because one end is unaware that it is part of a link, the unaware object can be unknowingly

linked to multiple objects (i.e. a * relationship is generally implied); resulting in seven possible

combinations for code generation, * -> 0..1, * -> 1, * -> *, * -> m..n, * -

> n, * -> m..* and * -> 0..n.

 123

Without injecting additional complex code, the system will not be able to manage the

association when changes occur to the unaware side, such as Student deleting him/herself. If

such situations must be managed, then a bi-directional association should be used. In practice

we find that the vast majority of associations would benefit from being bidirectional. Doing so

enables functionality that tends to be required anyway, and where the functionality is not

immediately required, the code is better suited to meet unanticipated future needs.

It should be pointed out that an advantage of using a tool like Umple is that a change from

directed to undirected associations could be accomplished almost instantly at a later stage of

development if necessary. When associations are written manually, the work involved in this

change can be time consuming and error prone.

5.4.3 Reflexivity and Symmetry

Where both ends of an association are the same class, we must consider several special cases. A

truly reflexive association allows an object to be linked to other objects of the same class

including itself. An association called lives-at-same-address would be reflexive.

It is also common to have irreflexive associations with both ends being the same class. The

added constraint is that a given object cannot be linked to itself. For example, a mother

relationship is irreflexive as you cannot be your own mother. It should be noted that some

literature call all associations from a class to the same class ‘reflexive’.

A symmetric association describes a mapping that reads the same as its inverse, for example, a

spouse association. An asymmetric association is not reversible, for example, a child

relationship. Finally, an anti-symmetric association is asymmetric except that is allows a

relationship to self. For example the relationship being-present-at-birth is anti-symmetric.

One could encode the mentor-student example using a single class, where all objects are

Persons, and some persons can mentor others. This would be an irreflexive asymmetric

association, since one cannot mentor oneself and the meaning of the association would be

different in each direction. The Umple notation would be: association {* Person

mentor -- 0..1 Person student;}.

The Umple language natively supports symmetric and asymmetric associations. Anti-symmetric

associations are currently not supported as we find them to be quite rare (they may be supported

in the future). The distinction between reflexivity and irreflexivity is currently not explicitly

managed, but applications can relatively easily be coded to prevent (or allow) an object to be

linked to itself.

 124

Asymmetric associations require code that is effectively identical to associations between two

different classes - as shown in Table 28 - except that the lower bound of both ends must be zero.

The top seven associations from Table 28 are therefore possible as asymmetric associations

from one class to itself. The reason the lower bound must be zero is to prevent infinite regress.

For example, in the case of class Person in the asymmetric association above, if every mentor

Person had to have a student Person, and since every student is also a mentor (by virtue of being

a Person), there would be an infinite chain of persons requiring a mentor.

A symmetric association specifies links between different instances of the same class, and must

have the same multiplicity on each end. The diagonal of Table 28 gives the cases to consider.

As a result of all the above analysis, a total of 42 different possible association types have been

identified (28 for ordinary binary associations, 7 for unidirectional associations, and 7 for

symmetric associations). In the following section we highlight certain implications that these

association types will have on code generation. This overview will serve as a guide when

comparing existing code generation tools and also as a template for building our own code

generation for systems programmed in the Umple modeling language.

5.5 Implications for Code Generation

The implementation of associations in a language like Java impacts the following aspects of a

class.

First, the class will have an additional member variable to reflect the other end of an association.

One and optional-one multiplicities can be declared as instance members of the other type, while

many multiplicities can be declared as lists (or some other type of collection class) containing

objects of the other type.

Second, the constructor may need an additional parameter to ensure mandatory association ends

like 1 or 1..*.

Finally, the class requires methods to set, get, add and remove links between objects. To be

consistent with the model of the associations, the implementation of those methods should

ideally maintain the referential integrity of all linked pairs of objects, as well as ensure that

multiplicity constraints are upheld.

In the following section, we analyze how existing code generators deal with the various

combinations of multiplicities and to what extent they behave according to the structure outlined

above. We then discuss the code generation available from the Umple language.

 125

5.6 Existing Code Generators

In the previous section we provided an overview of all the possible binary associations. We

briefly outlined the concerns that code generators should keep in mind when generating code for

associations. We will now look at existing tools to see how well they translate the semantics of

associations into a programming language.

The UML modeling tools considered are the same as those identified in the previous chapter in

Table 20. Each tool was configured to generate Java code for a simple 1 -- * relationship shown

in Figure 28.

This simple relationship was used to illustrate the tools’ source code transformation templates

for a one versus a many multiplicity end. The generated code provided in the following sections

has been modified only to provide a consistent layout/format, and comments have also been

removed to save space.

5.6.1 Code Generation Patterns

In general, all tools analyzed provide two basic code generation templates, one for 0..1 and 1

(referred to as one) multiplicities and a second for m..n multiplicities (referred to as many where

m ≥ 0, n > m, n > 1).

The template pattern for one multiplicities would generate a member variable to refer to the

other association end, as shown below.

private <ClassName> <associationEndName>;

The template pattern for many would generate a reference to a List or Set structure that could

contain multiple references to the other association end, as shown below.

private <ListStructure> <associationEndName>;

Some tools provide explicit code generation patterns for n relationships (where n > 1), as well as

m..* relationships (where m ≥ 0). Some tools provided explicit get and set methods in addition

to creating the necessary member variables. A discussion of each code generation pattern will be

provided based on the tools analyzed.

5.6.2 ArgoUML

ArgoUML is an open source modeling platform that provides code generation for Java, C++,

C#, PHP4 and PHP5 (see for Table 20 for the URL). Below is the generated code for Mentor

and Student as shown in Figure 28.

import java.util.Vector;

 126

public class Mentor {
 public Integer id;
 public Vector myStudent;
}

public class Student {
 public String name;
 public Mentor myMentor;
}

The generated code provides a mechanism to access each end of the relationship. The generator

provides little validation or constraint checking to ensure the relationship is maintained, and the

attributes are made directly available without the inclusion of accessor (get and set) methods.

In general, all 0..1 and 1 multiplicity ends generate similar structures as seen in the Student class

above, and all m..n multiplicity ends (where m ≥ 0 and n > m and n > 1) generate similar

structures to the Mentor class.

5.6.3 StarUML

StarUML is an open-source modeling tool. Below is the generated code for the Mentor and

Student example:

public class Mentor {
 public String name;
 public Student student;
}

public class Student {
 public Integer id;
 public Mentor mentor;
}

StarUML’s generated code does not account for the many multiplicity; the code is either un-

compliable or unusable without modification.

5.6.4 Bouml

Bouml is a free tool based on UML 2 that provides source code generation for C++, Java, Idl,

PHP and Python. Below is the generated code of Figure 28.

class Mentor {
 private List<Student> student;
 private String name;
}

class Student {
 private Mentor mentor;
 private int id;
}

 127

The source code generated above is very similar to that of ArgoUML. The Bouml source code

does not provide any mechanism to test, or ensure the constraints outlined in the model; this

code must be written by hand after code generation. In addition, the source code is incomplete

as no reference to the java.util.List class is provided; this means that the generated code must be

maintained by hand to ensure proper compilation into byte code.

5.6.5 Green Code Generator

Green UML is another UML editor that can generate source code from a class diagram. Below

is the generated code for the Mentor and Student example.

import java.util.List;
public class Mentor {
 private List<Student> student;
 java.lang.String name;
 public Mentor(List<Student> student2) {
 student = student2;
 }
}

public class Student {
 private Mentor mentor;
 int id;
 public Student(Mentor mentor2) {
 mentor = mentor2;
 }
}

Green does provide some additional code generation support by creating custom constructors

based on the association. Green supports the following types of multiplicities: 1, n, m..*, and *

(where n > 1 and m >= 0).

Green provides some enforcement of constraints, although the implementation is awkward and

not scalable. Below is the implementation of the mandatory relationship where a Mentor must

have n Students (e.g. n = 3).

public class Mentor {
 private Student student3;
 private Student student2;
 private Student student;
 java.lang.String name;

 public Mentor(Student student4,
 Student student5, Student student6) {
 student3 = student4;
 student2 = student5;
 student = student6;
 }
}

 128

This implementation provides little opportunity to access or manage the collection of students;

instead each must be accessed explicitly by name. It also does a poor job of maintaining the

constraint; as the variables could be set to null, violating the model’s intention.

Finally, Green provides some additional code to manage m..* relationships. Below is an

example implementation of a 2..* relationship.

import java.util.List;

public class Mentor {
 private List<Student> student;
 java.lang.String name;

 public Mentor(List<Student> student2) {
 student = student2;
 student.add(new Student());
 student.add(new Student());
 }
}

The implementation above presents two issues. First, the potentially unwanted side effect of

creating and inserting additional entities into the list argument (i.e. students). Second, the code

generator assumes that a default (and empty) constructor exists for the Student object, an

assumption that might not always be valid and could result in a generated system that does not

compile.

Although Green UML does attempt to provide some additional source code generation to

manage the various types of association multiplicities available; the results provide little, if any,

added benefit in representing the model’s intentions.

5.6.6 Rational Software Architect (RSA) and RSA Real-Time

IBM’s Rational Software Architect (RSA) and RSA Real-Time are full-fledged development

environments that support model-driven development including source code generation from

UML diagrams. The following is the code generated by these tools:

import java.util.Set;
public class Mentor {
 // code to declare+set+get attribute id cut to save space

 public Set<Student> students;
 public Set<Student> getStudents() {
 return students;
 }

 public void setStudents(Set<Student> students) {
 this.students = students;
 }

}

 129

public class Student {
 // code to declare+set+get attribute id cut to save space

 public Mentor mentor;
 public Mentor getMentor() {
 return mentor;
 }

 public void setMentor(Mentor mentor) {
 this.mentor = mentor;
 }
}

RSA’s model transformation into Java code provided some flexibility regarding the template

patterns including (a) which Java collection to use, and (b) whether or not to include get and set

methods for the attributes and association ends. As with all other source code generators, no

distinction between the various possible one or many relationships are presented in the

generated code; leaving the implementation of the modeling constraints up to manually-written

code. In addition to providing simple set and get methods, RSA’s member variables representing

the association ends are also public, presenting an encapsulation issue. This is an important

oversight considering the code already provides set and get methods.

5.6.7 Eclipse Modeling Framework (EMF)

EMF is described in detail in Section 3.8.1 . As shown below, classes are generated as

interfaces.

import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;

public interface Mentor extends EObject
{
 EList getStudents();
}

public interface Student extends EObject
{
 Mentor getMentor();
 void setMentor(Mentor value);
}

The implementation of each class above is shown below. For clarify, we do not include the

generic accessor methods (eSet, eGet, eIsSet, eUnset) as described in Section 4.4.6 .

public class MentorImpl extends EObjectImpl implements Mentor
{
 protected EList<Student> students;
 protected MentorImpl() { super(); }

 public EList<Student> getStudents() {
 if (students == null) {
 students = new EObjectResolvingEList<Student>(Student.class, this,
 AssociationPackage.MENTOR__STUDENTS);
 }

 130

 return students;
 }
}

public class StudentImpl extends EObjectImpl implements Student
{
 protected Mentor mentor;
 protected StudentImpl() { super(); }

 public Mentor getMentor() {
 if (mentor != null && mentor.eIsProxy()) {
 InternalEObject oldMentor = (InternalEObject)mentor;
 mentor = (Mentor)eResolveProxy(oldMentor);
 if (mentor != oldMentor) {
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, Notification.RESOLVE,
 AssociationPackage.STUDENT__MENTOR, oldMentor, mentor));
 }
 }
 return mentor;
 }

 public Mentor basicGetMentor() { return mentor; }

 public void setMentor(Mentor newMentor) {
 Mentor oldMentor = mentor;
 mentor = newMentor;
 if (eNotificationRequired())
 eNotify(new ENotificationImpl(this, Notification.SET,
 AssociationPackage.STUDENT__MENTOR, oldMentor, mentor));
 }
}

The EMF implementation of the Mentor and Student class with respect to associations has a

similar implementation as for attributes discussed in Section 4.4.6 , with the following

differences:

• A more complex get method that supports a proxy mechanism for retrieving objects

• The get method also includes the Observer pattern to notify others of a change to the

object when accessed via the proxy.

• A second get method is available (basicGetMentor) that circumvents the proxy check.

Similar to attributes, EMF consolidates multiplicities into two categories ‘one’, or ‘many’. No

additional constraint checking or validation is available to ensure the modeled multiplicities are

enforced.

There is no doubt that the code generated from EMF is more complex than that of the other code

generators analyzed. Upon closer analysis, the primary benefit of the EMF approach is the

availability of the Observer pattern to watch for changes to associations. The use of an interface

/ implementation approach for code generation could also be seen as a benefit (although one

might argue that it adds unnecessary complexity – and if classes are implemented as interfaces,

 131

what are interfaces implemented as?). Finally, EMF, much like all other code generators

analyzed above, provides no referential integrity or multiplicity constraint checking on modeled

attributes or associations.

5.7 Generating Association Code using Umple

The existing UML code generation tools analyzed in the previous section fall short of providing

robust code to implement associations. The generated code provides little implementation

support either to manage referential integrity or to ensure multiplicity constraints (beyond the

’one’ vs. ‘many’ distinction).

Tilevich investigated several approaches to implementing associations as classes in the Standard

Template Libary (STL) [140] (these should not be confused with UML association classes).

Part of his analysis considers the problem of representing associations, and in particular the use

of non-pair-associative containers. An example is shown below.

class Student {
 Mentor mentor;
}

class Mentor {
 List<Student> students;
}

For simplicity, the associations are implemented as public members. In the example above, the

containers (i.e. variables) share no relationship between one another (i.e. non-pair). This non-

pairing relationship implies that the relationship between both classes must be explicitly

maintained. In concrete terms, a system must set both ends of the link; setting the mentor to the

student and then adding the student to the mentor. The same is true when removing the link

between the objects.

The drawbacks of using a conventional non-pair-associative container within the class are (a) it

is hard to provide a consistent API for adding, deleting and searching the container, and (b)

understanding the associations within the code is difficult as there is little way to determine one-

to-many versus many-to-many relationships without analyzing both association ends as well as

their interactions between one another. Next, [140] prescribes the use of special-purpose classes

for each association, so that associations are externalized and kept together. An example from

[140] is shown below.

OneMany<Department*, Project*> ProjsByDept;

 132

Instead of using a class to externalize associations, Umple considers associations as first-class

entities with their own distinct syntax as shown below:

1 Department -- * Project.

The syntax above can be defined directly within a class for convenience, or externally using the

association construct (please refer to Section 3.5.2).

In this section, we provide our approach to code generation and identify implementation patterns

that go beyond the capabilities of current tools and add support for referential integrity and

managing multiplicity constraints. The code generated based on the association above does in

fact use non-pair-associative containers; but because this code is generated and not manually

maintained the limitations as identified by Tilevich do not apply.

5.7.1 Defining Association Variables

The first pattern to emerge is the distinction between having a multiplicity upper bound equal to

one versus greater than one. For convenience, we will use UB for upper bound and LB for lower

bound.

Table 29: Member Variable Patterns
Multiplicity Constraint Pattern Example
UB = 1 ObjectType associationEnd; Student student;
UB > 1 List<ObjectType> associationEnd; List<Student> students;

5.7.2 Association Ends as Constructor Parameters

The next patterns relate to a class’s constructor signature. The constructor defines how objects

should be created and indirectly affects the order in which objects can be instantiated. Three

signatures emerge from the various multiplicities:

a. The association end is not required (LB=0) and is not part of the constructor

b. Exactly one, the upper and lower bounds are exactly one

c. Mandatory Many, (LB > 0 and UB > LB)

The patterns in Table 30 work well when the multiplicity of at least one association end is zero,

allowing the creation of one object before the other.

 133

Table 30: Constructor Argument Patterns
Multiplicity Constraint Pattern Example
LB = 0 Empty (no argument)
LB=UB=1 ObjectType anAssociationEnd Student aStudent;
LB > 0 && UB > 1 List<Student> someAssociationEnds List<Student> allStudnets;
Below is an example constructor where a Mentor has exactly one Student.

public Mentor(Student aStudent)
{
 if (!setStudent(aStudent))
 {
 throw new RuntimeException("***");
 }
}

By using the setStudent method (which we will discuss in the interface patterns section), we are

able to encapsulate how students are set, including the verification that the set operation is

indeed valid (i.e. association multiplicity constraints are not violated). If we are unable to assign

the student, then an exception is thrown. The exact error message is not shown for simplicity.

When the upper bound is greater than one (and the lower bound is not zero), we must initialize a

list of associated members. We can use a similar mechanism as shown for the lower and upper

bound of one, using the setStudents (instead of setStudent) method to delegate the action and

verification of assigning the objects.

public Mentor(List<Student> allStudents)
{
 students = new ArrayList<Student>();
 boolean didAddStudents = setStudents(allStudents);
 if (!didAddStudents)
 {
 throw new RuntimeException("***");
 }
}

A chicken-and-egg issue is manifested when neither end of an association has a lower bound of

zero; meaning that each end requires the other in the constructor, resulting in deadlock as neither

constructor can be called before the other.

We will consider the one-to-one mandatory relationship as first shown in Figure 18. Here each

Mentor must have exactly one Student, and vice versa.

public Mentor(Student aStudent)
{
 __initialized = false;
 __deleted = false;
 student = aStudent;
 if (student != null)
 {
 if (!student.setMentor(this))

 134

 {
 throw new RuntimeException("***");
 }
 }
 __initialized = true;
}

The constructor for Student would be similar. Due to the difficulty in creating two instances

simultaneously, the system temporarily allows the one-to-one constraint to be violated. But, as

shown below, the object instances are unusable until the relationship is satisfied due to

constraint checking. This is achieved by injecting code into all methods to verify the relationship

(as shown below).

public Student getStudent()
{
 if (!isMandatoryStudentSatisfied()) { throw new RuntimeException("***") }
 return student;
}

public boolean isMandatoryStudentSatisfied()
{
 return __initalized && !__deleted && student == null;
}

Here is how a mandatory relationship must be created using the API generated by Umple.

Mentor m = new Mentor(null);
Student s = new Student(m);

Our original code generation approach attempted to create both objects simultaneously with the

use of a contructor that includes the parameters from both ends of the relationship (i.e. all

parameters for Mentor and for Student). Although the original approach worked well for simple

cases, it broke down when we considered more complex examples such as chains of mandatory

relationships, as shown below.

class Student { }
class Mentor { 1 -- 1 Student; }
class Supervisor { 1 -- 1 Mentor; }

Our current approach supports the relationships defined above.

Student student = new Student(null);
Supervisor supervisor = new Supervisor(null);
Mentor mentor = new Mentor(student,supervisor);

The approach also works for mandatory many relationships (LB > 0 and UB > LB). The only

difference is that the constructors now take a list of objects instead of a single object, and the

constraint verification considers not only the presence of a object, but also the number of

objects. As modelers, we are highly suspect of such chained mandatory relationships in general,

we feel that our support for such seemingly obscure cases does not detract from the quality of

the probably more common 1 -- 1 relationship as originally discussed.

 135

5.7.3 Get Method Code Generation Patterns

Next, we will consider the interface to access an association end. Table 31 is an outline of the

interface available to a Mentor based on the multiplicity at the Student end. The pattern in the

middle column is based on a generic association end name (name), and the association end’s

type (type).

Table 31: Method Signature Patterns for Accessor Get Methods
Multiplicity
Constraint

Pattern

Example

UB = 1 getName() : Type getStudent() : Student
UB > 1 getName(int index) : Type getStudent(int index) : Student
 getNames() : List<Type> getStudents() : List<Student>
 indexOfName(Type aName) : int indexOfStudent(Student aStudent) : int
 numberOfNames() : int numberOfStudents() : int
 hasNames() : boolean hasStudents() : boolean
The getStudent implementation is shown below.

public Student getStudent() {
 return student;
}

The difference between mandatory one (1) and optional one (0..1) is that the student member

might be null in the optional case; whereas the 1 multiplicity will never allow null.

When the upper bound multiplicity is greater than 1, there are four common accessor methods as

shown below.

public Student getStudent(int index) {
 return students.get(index);
}
public List<Student> getStudents() {
 return Collections.unmodifiableList(students);
}
public int numberOfStudents() {
 return students.size();
}
public boolean hasStudents() {
 return students.size() > 0;
}
public int indexOfStudent(Student aStudent) {
 return students.indexOf(aStudent);
}

Although you have access to all associated students, you are not able to alter the association by

manipulating a list retrieved using the get methods shown above. To change the number of

elements you must use the available add methods as shown below. The reason for this is to

prevent the caller of API methods from being able to violate the multiplicity constraints or

corrupt the referential integrity. Many implementations of the ‘many’ ends of associations

 136

simply pass the collection of objects around; however, we explicitly ensure that this never

happens. For example, in the Java generated code shown above we use an unmodifiable list,

whereas in the PHP generated code we send a copy of the list structure.

5.7.4 Set Method Code Generation Patterns

We now consider the manipulation interface to add, remove and set links of an association end.

Consistent with our previous examples, we will be adding Student instances to a Mentor object

based on various multiplicity constraints. Table 32 describes the generated interface.

Table 32: Method Signature Patterns for Set Methods
Multiplicity Constraint Pattern Example
UB = 1 setName(Type aName) setStudent(Student aStudent)
UB > 1 addName(Type aName) addStudent(Student aStudent)
 removeName(type aName) removeStudent(Student aStudent)
The implementation of set methods is considerably more complex than get methods. First, set

methods must undo any existing links between objects and establish the new links. Second, the

methods must ensure referential integrity; when creating one end of a binary association they

must create the other end as well. In addition, the API itself could be expanded to include

inserting and removing instances at a particular offset as is available with getMethod semantics.

The need for such enhancements might become apparent based on additional analysis of systems

written and refactored into Umple; but to date such a facility has been necessary.

Let us begin with the case where the upper bound is one. When the relationship is optional, the

following scenarios must be considered.

If adding a new link, be certain to set the inverse link as well. Conversely, if the inverse link has

already been set, then do not set it again. For example, if adding a Student to a Mentor, be sure

to add a Mentor to the Student (but ensure this call does not result in infinite mutual recursion).

If replacing or removing an existing link, be careful to remove both directions of the link. For

example, if a Mentor can only have one Student, then when assigning a Mentor to a new

Student, be sure to unassign that Mentor from the existing Student.

Whenever creating a new link, mandate that the multiplicity constraints on both ends are

satisfied. If a Mentor can only have four Students, then do not allow a Student to add a Mentor

such that the Mentor would now be linked to five Students.

 137

Finally, whenever removing an existing link, ensure that the multiplicity constraints on the

existing objects are satisfied. If a Mentor must have at least two Students, then do not allow a

Student to set itself to a new Mentor if the existing mentor is at its two-Student minimum.

We will outline two examples (one where UB = 1, and the other where UB > 1).

Below is the implementation of setMentor as defined in the Student class as part of the 0..1

Mentor -- 0..1 Student association.

 public void setMentor(Mentor newMentor) {
 if (newMentor == null) {
 Mentor existingMentor = mentor;
 mentor = null;

 if (existingMentor != null &&
 existingMentor.getStudent() != null) {
 existingMentor.setStudent(null);
 }
 return;
 }

 Mentor currentMentor = getMentor();
 if (currentMentor != null && !currentMentor.equals(newMentor)) {
 currentMentor.setStudent(null);
 }

 mentor = newMentor;
 Student existingStudent = newMentor.getStudent();

 if (!equals(existingStudent)) {
 newMentor.setStudent(this);
 }
 }

Next are the implementations of addStudent, and removeStudent for the Mentor class as part of

the 0..1 Mentor -- * Student association.

public boolean addStudent(Student aStudent)
{
 if (students.contains(aStudent)) {
 return false;
 }
 Mentor existingMentor = aStudent.getMentor();
 if (existingMentor == null) {
 students.add(aStudent);
 aStudent.setMentor(this);
 } else if (!existingMentor.equals(this)) {
 existingMentor.removeStudent(aStudent);
 addStudent(aStudent);
 } else {
 students.add(aStudent);
 }
 return true;
}

public boolean removeStudent(Student aStudent)
{
 if (!students.contains(aStudent)) {
 return false;

 138

 } else {
 students.remove(aStudent);
 aStudent.setMentor(null);
 return true;
 }
}

As mentioned earlier, in total there are 42 different combinations (28 for associations between

different classes, 7 for directed associations and an additional 7 for symmetric associations

where both ends are the same class). The spirit of each implementation follows the general

guidelines as shown in this section. The specifics of all other combinations can be explored

online at [3].

5.7.5 Code Generation Patterns for Support Methods

In addition to establishing relationships between objects, we also include methods to query the

minimum and maximum bounds of a relationship. Due to space constraints, we omit the full

details of the support methods, but Table 33 highlights the interface.

Table 33: Interface for support methods
Multiplicity Interface
n, m..n, m..*, 0..n, 0..* minimumNumberOfStudents() : int
n, m..n, 0..n maximumNumberOfStudents() : int
n requiredNumberOfStudents() : int

5.8 Summary

This chapter analyzed the extent to which associations are used in practice. First, we considered

seven open source projects and used a systematic approach to uncover candidate associations

extracted from the source code of those projects. Next, we looked at a series of UML models,

analyzing over 1800 associations from real systems, example systems, and from our repository

of UML models. We determined that in practice a small subset of the most-often-used

association multiplicity combinations (1--*, 0..1--*, *--*,0..1 -- 1, and 0..1--0..1) accounted for

about 85% of all uses of binary associations; leaving about 15% for the remaining types of

association multiplicities.

Next, we discussed the syntax of binary associations in the Umple model-oriented language. We

identified the 42 needed combinations of multiplicities for association ends to allow for full

binary support of associations in a modeling language. We analyzed the impact on code

generation based on supporting such a wide range of multiplicity ends. We reviewed the code

generation of five modeling tools, and found that none of them dealt with the complexities or

concerns identified during our analysis. This may be one reason why code generation is not as

 139

widely used in practice as might be expected. Two important qualities captured at the modeling

level were not being managed by the generated code; dealing properly with multiplicity

constraints, and managing referential integrity. These missing qualities of the generated code

imply that the application developer will have to manage the constraints and integrity by hand;

or, that the generated code must be manually edited (both situations are far from ideal). We then

provided an overview of how associations can be used in Umple. In particular, we showed how

code generated from Umple addresses both the multiplicity constraints imposed by the model

and the referential integrity when managing association ends.

 140

Chapter 6 Modeling Software Patterns
In the previous chapters we outlined a textual syntax to capture the semantics of UML attributes

and associations. This chapter will describe how several well-understood modeling and

programming concepts can be described in Umple. The syntax and semantics presented in this

chapter help to further reduce the amount of boilerplate code required. We will call the concepts

‘patterns’; some are classic patterns from the Gang of Four book [114], whereas others are

programming idioms that have been part of programming since long before the notion of

patterns became well known.

6.1 Singleton

Umple supports a singleton keyword as shown below:

class Application
{
 singleton;
}

This declares that the class should follow the Singleton pattern as presented in the Gang of Four

book [114]. The Java code generated from the singleton keyword is shown below:

public class Application
{
 private static Application theInstance = null;
 private Application() {}

 public static Application getInstance() {
 if(theInstance == null) { theInstance = new Application(); }
 return theInstance;
 }
}

Singleton classes are generated with empty constructors meaning that attributes and association

ends must not be required at construction. For Umple, this implies that attributes must each

have a default value and that association ends must have a lower bound of zero. Once a

singleton is declared in Umple, other objects can safely access the singleton via the getInstance

static method; which in turn initializes (if required) and returns the globally accessible instance.

6.2 Equality, Immutability and Keys

Support for the equality predicate is an important feature of a class to allow support for sets,

maps, vectors and hashes of instances of the class. Languages like C# and Java specify a

contract for their equals and hash code methods, which in turn enable the efficient

implementation of collection objects. The most basic notion of equality is reference equality

 141

where each object is uniquely identified. This notion of equality is inherited by default in Java.

Reference equality presents issues for systems where different object instances can be

considered the same (e.g. when data is sent and then later received from an external source). For

testing purposes, the other extreme can also be useful where all attribute and association values

of an object are compared; this is known as full equality. By default, Umple classes implement

reference equality. If a class contains a unique key, then equality is evaluated based on the

elements that form part of the key (as will be presented shortly).

The equals contract is required to maintain an equivalence relationship between two non-null

variables, supporting properties of the relationship between them such as reflexivity, symmetry,

transitivity, and non-nullability.

The difficulty in object equality stems back to an object identity crisis as discussed by Baker in

[141]. Baker’s approach to object equality is to consider the greatest number of properties as

possible. Baker includes all immutable components when analyzing immutable objects, and

refers to referential equality for mutable objects (i.e. ones that have mutable components).

Enforcing what should be used to define equality should be a design decision and not necessarily

one algorithmically enforced by the implementation language (a view shared with Rupakheti

and Hou ([10] – page 109). Our approach will introduce an equality syntax, providing a useful

tool to define the equality pattern that best suits the developers needs’ without dictating or

enforcing its use.

A review of the current implementation issues with equality is highlighted by Rupakheti and

Hou [10]. They cite problems including: flawed examples in textbooks, flawed code generation

in Eclipse and Netbeans, as well as buggy code within the Java JDK. In their paper they review

three types of equality including: type-compatible, type-incompatible and hybrid-equality. The

diagram from [10] (and reproduced below in Figure 29) visualizes the difference between type-

compatible and type-incompatible equality.

Figure 29: Visualizing Different Types of Equality (from [10])

 142

To summarize, type equality is based on a certain number of properties of an object and

compatibility means that objects within an inheritance hierarchy can be equal (and therefore

reducing the set of equality types to the super class); whereas incompatible equality checks will

also be false for different objects within a hierarchy. Please note that incompatible equality

checking breaks the Liskov Substitution Principle (LSP) [87] and therefore in these cases the

equals method cannot be used where subtypes can be substituted for supertypes. The hybrid-

equality mechanism allows mixing type-compatible and type-incompatible equals between

different subclasses of a hierarchy by introducing a delegate method to help ensure symmetry.

The authors also suggest that equals implementation be optimized for inclusion in collections of

objects, whereas other types of equality (e.g. full-equality for testing purposes) be relegated to

different method names like similar or identical.

Rupakheti and Hou then studied four Java projects to see how equals was implemented.

Common problems encountered included suspected flaws in null checks, type casting, and

implementing equals for other purposes.

Liskov and Guttag suggest using reference equality for mutable objects and value equality for

immutable objects [142].

Cohen [143] provided a similar overview of equality. Cohen promotes the use of composition

over inheritance to deal with the issue of maintaining the symmetry property of equality, and he

also promotes the use of a helper methods (called blindlyEquals instead of equalsDelegate).

Stevenson [144] provided a more technical analysis applying the Template Method Design

pattern to deal with equality. In [145], commentators to Cohen’s article suggest including an

equivalence class method to allow the developer to determine how equality should behave when

checking subclasses against superclasses.

Our approach to immutability, equality and keys has incorporated much of the lessons learned

above, and is also based on the pragmatics of current development environments. In Umple, we

provide the developer with the ability to define a key that comprises both attributes and

association ends from which the equality (and hash code) can be properly implemented.

Inheritance equality is implemented using a template method pattern to maintain the LSP. By

providing developers the flexibility to incorporate the use of an object key, Umple allows

developers to concentrate on what constitutes the unique identity of an object as opposed to the

deep technical implications of its implementation. Conversely, maximum flexibility is permitted

as the functionality of an object key can be completely omitted and the task of uniquely defining

equality can be left to the developer.

 143

6.2.1 The Umple ‘key’ Keyword to Support Equals and Hashing

To facilitate equality checking in Umple, we introduce the key keyword. As seen in the previous

literature, once the subset of attributes (and associations) of a class have been identified as

relevant to determining equality, then the mechanics of implementing the equals (and potentially

also the hashCode) methods results in mostly boilerplate code.

By abstracting the elements of equals into a defined key, we allow developers to determine what

constitutes relevant data of an object for determining uniqueness and the generated code can

take care of the mundane (and error prone) implementation. Below is a simple example of a key

for a Airline object.

class Airline
{
 immutable name;
 address;
 Date createdOn;

 key { name }
}

Above, we see that an Airline is uniquely identified by its name. By defining the key to be name

the generated Java code for the equals method would be as follows.

public boolean equals(Object obj)
{
 if (obj == null) { return false; }
 if (!getClass().equals(obj.getClass())) { return false; }

 Airline compareTo = (Airline)obj;

 if (name == null && compareTo.name != null)
 {
 return false;
 }
 else if (name != null && !name.equals(compareTo.name))
 {
 return false;
 }

 return true;
}

Here are a few key highlights regarding the implementation of equals above. First, we are using

the runtime getClass method to ensure the two objects are of the same class, as opposed to

simply checking if they are part of the same hierarchy using instanceOf. The issue of allowing

superclasses to be equal to subclasses causes symmetric equivalence validation problems as the

superclass might be equal to a subclass, but not vice versa. This is discussed at length in [143]

and [145]. Once the objects are determined to be the same class, we perform an equality

comparison on each relevant key property; ensuring that comparisons of null properties are

 144

correctly handled. The method delegates to equality checking of each property to ensure

consistency when using the same object type within a key.

The implementation of equals also satisfies the equals contract of the JDK (1.4 and above): it is

reflexive, symmetric (due to our strict enforcement that only objects of the exact same type can

be compared), transitive, consistent, and not equal to null.

In addition to implementing equals, the key property also creates the corresponding hashCode()

method; allowing for the efficient use of such objects as an index in any class that implements a

hash table. The implementation is shown below.

public int hashCode()
{
 if (cachedHashCode != -1)
 {
 return cachedHashCode;
 }
 cachedHashCode = 17;
 if (name != null)
 {
 cachedHashCode = cachedHashCode * 23 + name.hashCode();
 }
 else
 {
 cachedHashCode = cachedHashCode * 23;
 }

 canSetName = false;
 return cachedHashCode;
}

Our hashing approach is based on Josh Bloch's Effective Java[146] where the use of prime

numbers 17 and 23 help ensure unique hash code for different objects.

As the hashCode of an object should remain constant, two additional code segments were added.

First, we cache the results for improved performance. Second, we include a mechanism to

ensure that an object does not change after having called hashCode; using the same technique as

described in Section 4.5.2 for allowing the lazy-instantiation of immutable objects.

The implementation of equals and hashCode abides by the prerequisites of the equals contract of

the JDK since v1.4. It provides a high level pattern to describe the meaning of uniqueness

without having to be burdened with the implementation details (and complications) based on

that meaning (e.g. the improper and incorrect implementation of equals). The key allows

developers to define keys across all properties; Umple enforces immutability on all key

properties in the same manner as if the ‘immutable’ keyword had been used.. And, finally

declaring a key is optional; should the implementation needs of the developer be different from

what the above implementation supports, the key can simply be left undeclared.

 145

6.2.2 Keys on Attributes and Associations

An Umple key can be comprised of attributes, as well as associations, as illustrated by the

following example.

class Flight
{
 id;
 * -- 1 Airline;
 key { id, airline }
}

In this example, a flight is uniquely identified but not only by the id, but also by the Airline that

it belongs to. This design allows flights on different airlines to have the same flight numbers

without breaching equality. Keys can be used on attributes and association with multiplicities of

one (UB=1) or many (UB>1).

6.3 Pre/Post Conditions and Operations

The default implementation for access methods (such as set and get) of attributes and

associations has been discussed in detail in previous chapters.

Embley et al. [147] observed that modeling language constructs are not sufficient to express

many types of constraints so, for completeness, a general-purpose sublanguage is required to

augment the modeling language. OCL performs this role for UML, as we will discuss in the

coming paragraphs. Our approach in Umple is instead to use the base language (Java, PHP,

Ruby, etc.) as the general purpose sublanguage, which should reduce the mental burden of

attempting to introduce yet another new language (Umple is not a new language, but instead can

be viewed as an enhancement or preprocessor to existing languages).

Object Constraint Language (OCL) is an expression-based language that enables modellers to

enhance a UML model with constraints and queries. In particular, OCL is used to specify

invariants of classes, as well as pre and post-conditions that apply to operations and state

transitions.

OCL provides both metamodel and a formal mathematical approach to provide semantic

descriptions of the language. These approaches are examined by Flake in [148], where he

analyzes the elements presented in the OCL standard, but not in the formalism. The formal

semantics lack descriptions for ordered sets, global OCL variable definitions, UML Statechart

states and OCL messages. Flake presents an extension to the formalism to deal with these

problems.

 146

OCL is a context-free language that is designed to be only an observer and not to alter the

underlying state of the model entity being constrained or queried. The major limitation with

such an approach is that OCL cannot be used to take actions based on the constraints; thus

requiring yet another mechanism to manage the behaviour of the system following a constraint

violation.

In summary, a limitation with current mechanisms to describe modeling languages is that their

definitions reference a specification document and not a technical artefact like an XMI

document of the metamodel. In general, existing modeling languages require intermediate

models to add additional structure to the semantic descriptions that are not available in the

definition of the language itself. In addition, the semantics of these languages are defined (either

directly or indirectly) by natural language statements.

Skene [57] critiques visual languages, stating that a diagram can be only a projection of a model,

as there is typically insufficient information within a diagram to unambiguously determine the

intent of the modeller. He concludes that diagrams should be used to reference aspects of a

model with a concrete textual representation.

OCL at its core is quite similar to existing programming languages like C or Java. But,

Bauerdick’s [149] analysis found several syntactic and type errors in the UML specification.

Umple has been developed as a programming language first with model language features added

to enhance that language. Umple has eliminated the intermediary sub-languages like OCL and

instead provides a more direct link to the target platform language. By using the underlying

target language we allow for very rudimentary control over the system, but we also provide the

possibility of extending the modeling concepts to incorporate higher-level constraint definitions,

allowing for a syntax like OCL.

In the next section, we will describe a mechanism for injecting either action semantics or object

constraints within the generated Umple API code. This code injection technique allows for

complete customization of system functionality and lays the foundation for adding Umple

syntax to support higher level languages like Alf and OCL.

6.3.1 Injecting Custom Behaviour using before and after Keywords

As introduced in Section 3.8.12 , Umple provides a basic aspect-oriented approach for weaving

advice into systems using the before and after keywords. Umple’s implementation is currently

limited to support only before and after advice; but support for around is being considered.

Also, Umple’s approach to pointcuts is built directly into the advice syntax (i.e. first define a

 147

pointcut based on a certain predicate and then define advice for a particular pointcut). Extending

Umple to support explicit pointcuts could be added to the language, but further analysis outside

the scope of this work is required to ensure the appropriate trade-off between added complexity

and added freedom.

To support pre and post-condition advice in a generic manner, we introduce the before and after

keywords to the Umple language. Let us begin with a simple example.

class Person {
 name;

 before setName {
 if (aName != null && aName.length() > 20) { return false; }
 }

 after setName {
 System.out.println("Successfully set name to : " + aName);
 }
}

In the code above, we have a constraint that names cannot be more then 20 characters using the

before injection. We also have a debugging injection that logs each time the attribute is set,

using the after injection.

The code provided in the before block will be run prior to desired operation (i.e. setName) and

the code block provided in the after block runs after (or just before returning) from the desired

operation.

The Java code generated from the Umple code for the setName method is shown below.

public boolean setName(String aName)
 {
 boolean wasSet = false;
 if (aName != null && aName.length() > 20) { return false; }
 name = aName;
 wasSet = true;
 System.out.println("Successfully set name to : " aName);
 return wasSet;
 }

For pragmatic purposes, to avoid relying on third party AOP tools, the implementation of before

and after is injected into the join point (i.e. method call). Much like the decision to integrate

more closely with EMF is left to the developer so too is the decision to integrate with 3rd party

AOP tools.

The before and after mechanisms can be used with any Attribute as discussed in Chapter 4 or

Association as discussed in Chapter 5. A summary of the operations is described below.

 148

Table 34: Applying before and after operations to Attributes and Associations
Operation Applies To (UB = Upper Bound)
setX Attributes, Associations (UB <= 1)
getX Attributes, Associations
addX List Attributes, Associations (UB > 1)
removeX List Attributes, Associations (UB > 1)
getXs List Attributes, Associations (UB > 1)
numberOfXs List Attributes, Associations (UB > 1)
indexOfX List Attributes, Associations (UB > 1)

Before and after can also be applied to an object’s other generated methods such as the

constructor. This mechanism can be used, for example, to provide additional constraints to a

class, or to initialize several internal variables. Example usage is shown below.

class Operation {
 query;

 before constructor {
 if (aQuery == null)
 { throw new RuntimeException("Please provide a valid query"); }
 }

 after constructor {
 if (DEBUG) { System.out.println("Created " + query); }
 }
}

The code above provides a precondition on the initialization of the query attribute (ensuring it is

not null). There is also a DEBUG trace statement that is executed following the completion of

the constructor. The Umple code above is translated into the following Java.

public Operation(String aQuery) {
 if (query == null)
 { throw new RuntimeException("Please provide a valid query"); }
 query = aQuery;
 if (DEBUG) { System.out.println("Created " + query); }
}

An operation can have several before and after invocations. This chaining effect allows before

and after statements to focus on a particular aspect of the system being described such as a

precondition check of inputs, or a post-condition verification of the state of the system.

The examples shown above provide a single location / join-point emphasis where Umple allows

for specific code injections on a particular API call. Umple does, however, support some

crosscutting capabilities including wildcard inclusions.

class Student
{
 firstName;
 lastName;
 cityOfBirth;

 before get*Name { System.out.println("accessing the name"); }
}

 149

The example above would inject the additional code prior to accessing the firstName and

secondName attributes, but not the cityOfBirth attribute. Umple also supports exclusions using

the not (!) operator. The same semantic example from above is shown below using the ! filter.

class Student
{
 firstName;
 lastName;
 cityOfBirth;

 before get*,!getCityOfBirth { System.out.println("accessing the name"); }
}

It should be noted that the syntax of Umple’s before and after mechanism is purposely generic

with a relatively fine-grained level of control. Currently, Umple only supports injecting code

into the constructor method, attribute APIs, and association APIs. Future work is being

considered to extend this capability for user-defined methods. The intent of this mechanism is to

act as a building block to include additional constraint-like syntaxes for common conditions

such as non-nullable, boundary constraints and access restrictions. By including before and after

code injections at the model level, additional code injection facilities are possible at the model

level, without having to modify the underlying code generators. For example, the immutable

property discussed in Section 4.5.2 is implemented internally using before conditions on the set

methods.

6.3.2 Injecting Custom Behaviour using Mix-ins

In addition to supporting before and after advice from aspect-oriented programming, Umple also

includes a convenient mix-in mechanism to weave additional features into existing models.

Umple’s approach to mix-ins allows developers to directly inject structure and behaviour into a

class without the need for using either inheritance or composition.

For example, our Student/Mentor example from Section 3.8 can be extended with additional

attributes, associations, advice and custom action semantics as shown below.

// Original example from Section 3.8
class Student {}
class Mentor { 0..1 -- * Student; }

// Mixing in additional behaviour in the Student class
class Student {
 Integer id;
 * tutor -- * tutee;
 before getMentor { System.out.println(“Accessing Mentor”);}
 public void toString() {
 System.out.println("Id: " + getId() + ", Mentor: " + getMentor());
 }
}

 150

The result of applying the mix-in above to the Umple code from Section 3.8 would be

equivalent to the following Umple code (and the resulting Java / PHP / Ruby code would be the

same as well).

class Student {
 Integer id;
 * tutor -- * tutee;
 before getMentor { System.out.println("Accessing Mentor");}
 public void toString() {
 System.out.println("Id: " + getId() + ", Mentor: " + getMentor());
 }
}

class Mentor {
 0..1 -- * Student;
}

The benefit of allowing mix-ins is that they provide developers with the ability to effectively

deal with cross cutting concerns such as bridging two components with additional attributes and

associations), bringing features of aspect-oriented programming into an object-oriented syntax.

Currently our mix-in behaviour only supports augmenting a class with additional structure and

behaviour, but with our upcoming support of state machines, we are looking to also support the

removal and replacement of structures and behaviour.

6.4 Summary

Umple is more than simply a textual notation for UML. Umple provides a full-fledged

programming language enhanced with model-oriented concepts. In additional to our textual

notation for attributes and associations; this chapter provided an overview of a few common

patterns available natively in Umple. The primary patterns include supporting singleton objects,

managing keys, immutability, and equality. An additional low-level feature of Umple is the

ability to enhance methods operating on model entities such as attributes and associations with

pre- and post- operations. These generic operations provide the foundation for adopting a yet-to-

adopted UAL standard for modeling actions. For now, this mechanism has been used internally

to ease code generation for immutable attributes.

The foundations that motivated the development and guided the use of Umple have been

discussed at length in the preceding chapters. The next chapter considers the impacts that Umple

can have as a development and modeling language.

 151

Chapter 7 Quality and Validity of the Research
In order to ensure that the results presented in this thesis are of high engineering quality and are

as valid as possible from a scientific perspective, several approaches need to be followed. These

include:

a) Ensuring that the decisions made are grounded in empirical data and sound analysis.

b) Demonstrating that the engineering process used follows best practices.

c) Showing certain desirable properties of the results have been achieved.

d) Demonstrating that the final results can be used by software engineers for real tasks by

showing that they have been used in practice to solve problems arising from approach a.

e) Conducting usability evaluation and other forms of qualitative evaluation, such as grounded

theory studies, to discover weaknesses in the result, feeding back the results into further

development.

f) Conducting experiments in which the results are compared formally and quantitatively with

the best-available alternative approaches.

In this thesis we have performed approaches a through d. We leave approaches e and f for other

researchers and future work, largely because Umple has so many features that performing e and

f if done well would likely require a second PhD thesis.

In general all six of the above approaches should be conducted in an iterative manner. The

results of approaches c, d, e and f should generate additional empirical data that can be used as

input for additional sound engineering work, b, and lead to more and more adoption and

practical use of the tool, d. In addition, the sound engineering work, b, is needed in order to

ensure that the tool has sufficient quality to be put into actual use, d. Many university research

tools have failed to be adopted because they are simply prototypes tested on ‘toy’ problems.

Regarding approach a, as discussed in Chapter 2, our first step in dealing with the model-code

divide, was to understand from software practitioners what they like and disliked about model-

centric and code-centric development approaches. The results indicated that many developers

revert back to coding despite strong agreement that modeling approaches tend to be the better fit

for most software development tasks. As we discussed, this observation aligns with our

professional experiences in software development.

 152

With this evidence in hand, we developed Umple, in which the model is the code and the code is

the model. Throughout this thesis we have shown how our decisions have been justified by what

we believe is sound analysis, another key part of approach a.

To facilitate adoption and other types of evaluation (approaches d, e and f above), we put into

place an engineering process centered around test-driven development, approach b. This is

discussed in the next section and is designed to mitigate the risk that the participants are

distracted by weaknesses in the tools as opposed to the underlying concepts being evaluated.

The process allows our team to react to feedback and analysis from our studies and make

changes to Umple for follow-up studies.

This chapter is organized as follows: in the next section we present our test-driven approach

(approach b) used by Umple developers to balance the constant change with the stability

necessary to build industrial examples and allow for formal evaluation. Our approach to

constructing and testing the Umple language is generalized and could be extended to other

research languages as a process model to mitigate the risks of constant change. Next, we

evaluate the comprehension qualities of systems built in Umple relative to their base language

such as Java (approach c). This evaluation provides some evidence that systems written in

Umple can exhibit more readable qualities and be less complex. Next, we evaluate Umple’s

code generation process, also an aspect of approach c. Finally, we provide four case studies of

actual systems that were built and deployed using Umple; one of which is Umple itself

(approach d).

7.1 Building Umple using a Test Driven Design (TDD) Strategy

The tools and language to implement Umple are built using a test-driven approach. This

approach enabled our team to quickly develop a functional version of the language, without

hindering future development or features. Test-driven development (TDD) [150] enables the

software to evolve based on feedback received from early adopters, and enabled our team to use

early versions of the Umple language to develop and enhance future versions (i.e. the Umple

toolset and language that was originally written in Java is now 100% implemented in Umple).

For more details on testing and software quality, the reader is referred to [151].

The following project characteristics have been observed during the development of Umple;

these align with the cited benefits of following a TDD approach.

• Maintaining modular system design. For example, we moved from parsing Umple

code using Antlr [80] to an in-house solution that focuses on the niche of building

 153

libraries of languages and to deal with limitations of earlier releases of the Antlr library.

Conversely, we moved away from a custom templating mechanism to using JET

Templates. Finally, we recently incorporated Xtext and Eugenia to allow our models to

be shared using XMI and Ecore.

• Fewer feature regressions. As a software system evolves, newer features will conflict

with existing ones (either as a result of added functionality, inaccuracies in existing

implementation, or based on updated requirements).

• More confident refactoring. Based on the two points above, our team members are

more willing to make internal changes to the system with high confidence about not

introducing latent bugs, avoiding or at least detecting feature interaction, and

maintaining existing features unchanged. This has helped to keep the code base concise,

consistent and flexible in the face of enhancements and changes in technologies.

The qualitative benefits observed above are consistent to test-driven approaches, but it should be

noted that benefits are subjective by nature and merely align with past test-driven projects of the

team members.

The testing and quality approach developed to support Umple provides some valuable insights

into patterns and processes to test a new programming language; especially in cases where the

language is implemented in itself. Taken out of context, simply claiming to have a lot of

automated tests does not necessarily imply much about the underlying quality of a software

system. But, as you will see in the coming sections, when you combine test-driven development

with a structured approach to manage application development, bug fixes and feature requests,

one can become much more confident regarding the health of a software system.

The following subsections outline the testing infrastructure in place; as well as the software

development processes used to perform the following tasks:

• Adding new features to the system

• Making minor modifications to an existing feature

• Resolving and identifying defects

7.1.1 Testing Infrastructure

The Umple tools include: a parser, a component that encapsulates Umple’s metamodel, a

synchronization engine (between diagram and text), as well as several code-generators and

model-to-model transformation engines. Testing these components helps to provide confidence

 154

that Umple code is correctly tokenized and processed into an internal representation consistent

with the metamodel. The internal representation is then tested to ensure it is properly translated

into other artefacts (either additional models like EMF, Yuml, xUML; or source code such as

Java or PHP or Ruby).

Figure 30: Umple Testing Infrastructure

The Umple testing process in Figure 30 is only capable of testing within the scope of Umple. In

other words, you are only testing Umple and not testing the set of possible systems created using

Umple. This means that, so far, you can only test that the outputs are syntactically correct. To

achieve the additional level of testing whereby you validate the semantics of system built using

Umple, one must build and test sample Umple applications and perform the testing against those

sample systems. Currently, Umple provides sample application for each base language

supported by Umple: Java, PHP, and Ruby.

At present, there are over 1600 tests that span all areas above and are run as part of our

automated quality process as shown below in Figure 31.

Figure 31: Umple Automated Testing Report

In the subsequent sections we provide an overview of the each aspect of the Umple testing

approach.

7.1.2 Testing the Umple Parser

Testing the Umple parser is centered on the tokenization of Umple code. Our tests ensure that

Umple models are parsed and tokenized as we expect.

 155

Figure 32: Process to Test the Umple Parser

A simple parser test is shown below that verifies the class Student written in Umple is properly

parsed, and then properly tokenized by the UmpleModel.

@Test
public void emptyClass()
{
 String input = "class Student{}";
 String expectedOutput = "[classDefinition][name:Student]";

 UmpleModel model = new UmpleModel(new UmpleFile("test.ump"));
 UmpleParser parser = new UmpleParser(model);

 boolean answer = parser.parse("program", input).getWasSuccess();
 Assert.assertEquals(true, answer, "Unable to parse Umple code");
 answer = parser.analyze(false).getWasSuccess();
 Assert.assertEquals(true, answer, "Unable to analyze Umple code");
 Assert.assertEquals(expectedOutput, parser.toString());
}

The pattern for parser-related tests is as follows.

@Test
public void someSyntaxToVerify()
{
 // Step 1: Load external source file
 // Step 2: Parse file (ensure parsing successful)
 // Step 3: Verify tokenization
 // Step 4: Clean up
}

To verify the tokenization process, we opted to include a convenience toString method in the

UmpleParser. This is a mechanism to facilitate testing as well as debugging; we must of course

not forget to test the toString method as well.

At present, there are about 200 parser related tests for Umple.

7.1.3 Testing the Metamodel Classes

Testing the metamodel classes ensures that Umple will be able to maintain valid internal

representations of a model, i.e. instances of the metamodel. Umple’s metamodel is presented in

Section 3.7.2 . This most closely aligns to unit testing as described in most TDD books (such as

[150]). These tests follow the standard unit testing pattern:

@Test
public void someSpecification()
{
 // Step 1: SetUp
 // Step 2: Execute

 156

 // Step 3: Verify
 // Step 4: TearDown
}

It is important to document not only how the system behaves under normal conditions, but also

how it behaves in abnormal scenarios where, for example, preconditions are not satisfied.

Here is a sample test case for the Multiplicity metamodel class. Below we see that setting the

range on a Multiplicity properly sets both the upper and lower bound.

@Test
public void setRange_ExplicitBounds()
{
 Multiplicity m = new Multiplicity();
 m.setRange("1", "2");
 Assert.assertEquals(1,m.getLowerBound());
 Assert.assertEquals(2,m.getUpperBound());
}

At present, there are about 700 metamodel-related tests for Umple.

Some may question the value of such simplistic tests. It should be noted that the test is merely

an example to demonstrate the structure of a meta-model test and is simplistic to demonstrate

the overarching structure of a metamodel test. But, more importantly, the spirit of following

test-driven design (as well other driven approaches) is the concept of evolving design through

tests. By following a test-driven approach, the tests (and the ability to run them over and over

again in an automated fashion) is a welcome side effect but the true power of the approach is in

the initial design whereby you first exploit the common uses of your meta-model and only then

do you concern yourself with the implementation.

7.1.4 Testing Code Generators

The Umple language provides several model-to-model and model-to-code transformations. The

input to a code (or model) generator is a populated metamodel instance and the output is the

base language or simply a transformation into another model syntax. In addition to overall setup

and tear down, the high-level approach to testing code generation is shown below.

@Test
public void verifyGeneratedCode()
{
 // Step 1: Prepare Metamodel
 // Step 2: Run Code Generator
 // Step 3: Verify results
}

To prepare the metamodel instance, there are two approaches: populating the model by direct

calls to the available API of the metamodel (or perhaps using a mock object facility[152]); or,

parsing source code using the existing infrastructure (as shown above in Section 7.1.2).

 157

The first approach (to populate the metamodel instance directly using the API) has several

drawbacks: The setup code can become quite cumbersome and complex, which could make the

test code less readable and maintainable. And, it can also be error prone, as the testing developer

must properly populate the metamodel. The primary benefit of this approach is the isolation of

the code generator's behaviour from that of the code that parsed the source and generated the

metamodel instance. Issues related to the parsing phase (translating Umple code into the Umple

metamodel instance) of the project would not interfere with testing the code generator.

For example, the following code creates a Student class with three attributes (id, name and

program).

UmpleModel m = new UmpleModel(null);
UmpleClass student = m.addUmpleClass("Student");
student.addAttribute(new Attribute("id","Integer",null,null,true));
student.addAttribute(new Attribute("name","String",null,null,false));
student.addAttribute(new Attribute("program","String",null,"SEG",false));

The second approach where the test begins at the Umple source code that is then parsed into the

metamodel (which is then used as input to the code generators) has two primary benefits. First,

it is easier to express a system in its own syntax as opposed to building it using a metamodel's

API. Second, you provide additional testing for the parsing aspect of the system. The obvious

drawback is that these tests are no longer pure unit tests, and that failing tests in this component

could be resulting from the parser or the code generator.

Here is the same example from above, but written using the Umple syntax directly.

class Student
{
 Integer id;
 name;
 program = "SEG";
}

Regardless of the approach, the metamodel needs to be populated before the code generation can

be tested. Instead of crafting a new means to populate that model, it makes more pragmatic

sense to simply reuse the existing (and tested) parsing approach as described in the previous

section.

By parsing the model code directly, an added benefit is that you can create a generic

TemplateTest to manage the test artefacts (i.e. input model code, expected output system code);

leaving the testing mostly boilerplate-code free.

The outline of such a template class is shown below.

public class TemplateTest
{
 @Before
 public void setUp()

 158

 {
 //configure paths to Umple data files
 //this can be configured to support multiple languages
 }

 @After
 public void tearDown()
 {
 //clean up any temporary or generated files
 }

 public void assertTemplate (String modelFile, String expectedGeneratedFile)
 {
 // Parse / tokenize modelFile
 // Create an instance of meta model
 // Generate code for the underlying system
 // Compare the actual generated code with the expectedGeneratedFile
 }
}

The method signatures will vary slightly depending on the type of code generator that is being

created; but the overall structure remains intact. Below is a code snippet of relevant lines in the

Umple TemplateTest class.

public class TemplateTest
{
 public String pathToInput;
 public String pathToRoot;
 public String language;
 public String languagePath;

 @Before
 public void setUp()
 {
 pathToInput = "test/cruise/umple/implementation";
 pathToRoot = "../cruise.umple";
 language = "Java";
 languagePath = "java";
 }

 @After
 public void tearDown()
 {
 //omitted for brevity
 }

 public void assertUmpleTemplateFor(String umpleFile, String codeFile)
 {
 assertUmpleTemplateFor(umpleFile, codeFile, null);
 }

 public void assertUmpleTemplateFor
 (String umpleFile, String codeFile, String className)
 {
 UmpleModel model = createUmpleSystem(pathToInput,umpleFile);

 if (model.getUmpleClass(className) == null)
 {
 Assert.fail("Unknown class:" + className);
 }

 159

 String actual = model.getUmpleClass(className).getGeneratedCode();
 File expected = new File(pathToInput,codeFile);
 System.out.println(actual);
 SampleFileWriter.assertFileContent(expected,actual);
 }

 public UmpleModel createUmpleSystem(String path, String filename)
 {
 UmpleParser parser = new UmpleParser();

 String input = SampleFileWriter.readContent(new File(path,filename));
 ParseResult result = parser.parse("program", input);

 if (!result.getWasSuccess())
 {
 Assert.fail("Syntax Failed at:" + result.getPosition());
 }

 UmpleModel model = parser.getModel();
 model.setUmpleFile(new UmpleFile(new File(path,filename)));

 result = parser.analyze(true);
 if (!result.getWasSuccess())
 {
 Assert.fail("Semantics Failed at:" + result.getPosition());
 }

 return model;
 }
}

With the infrastructure shown above in place, adding new code generation tests is

straightforward, as the template encapsulates the distracting elements of the test setup. A

sample code generator test is shown below.

@Test
 public void Association()
 {
 assertUmpleTemplateFor(
 "AttributeTest.ump",
 languagePath + "/ AttributeTest."+ languagePath +".txt","Student");
 }

The test above requires a model file (AttributeTest.ump), as well as a source code file based on

the selected language. In Umple, we currently support Java, PHP and Ruby. Using the test case

above, the same model file can be reused to test against the Java generated code

(java/AttributeTest.java.txt), the PHP generated code (php/AttributeTest.php.txt), and the Ruby

generated code (ruby/AttributeTest.ruby.txt). This infrastructure can easily be extended to add

testing for other generated languages.

At the time of writing, there are about 300 code generation / syntax tests.

 160

7.1.5 Testing Generated Systems

The previous sections described testing the Umple system itself, but not Umple generated

systems. The semantics of Umple’s modeling components are quite rich so it is also important

to provide adequate testing of generated systems to ensure that the semantics of an Umple model

is upheld in the underlying base language (i.e. Java, PHP or Ruby). This level of testing ensures

the appropriate behaviour of the generated Umple executable artefacts, which is essential to

support our industrial case studies.

Let us consider a simple example of testing the semantics of a class attribute.

class Student {
 name;
}

The specifications for an attribute as defined above includes the following properties and

behaviour: the attribute is included as a constructor argument, the attribute can also be modified

and retrieved. Based on the above description of an attribute, we could write the following tests

(the tests are written using JUnit4 syntax).

@Test
public void attributeBehaviour()
{
 Student s = new Student("james");
 Assert.assertEquals("james",s.getName());
 s.setName("henry");
 Assert.assertEquals("henry",s.getName());
}

This test can be equally expressed in PHP using PHPUnit as shown below (an xUnit testing

framework for PHP applications).

public function test_attributeBehaviour()
 {
 $s = new Student("james");
 $this->assertEqual("james",$s->getName());
 $s->setName("henry");
 $this->assertEqual("henry",$s->getName());
 }

By capturing the properties and behaviour of systems built with Umple, we are able to build up

an extensive library of executable specifications which more concretely demonstrate the realized

behaviour of the system, as opposed to its documented behaviour (and as most software

practitioners are aware, it is common for documentation to get stale and out of sync quickly

[153]).

 161

7.1.6 Managing Defects and Minimizing Regressions

Despite having over 1600 automated tests that span all facets of the toolset from parsing to code

generation, our system will inevitably contain defects. In this section, we discuss how our

testing infrastructure allows for better defect management by representing bugs as failing tests,

effectively diminishing the time and effort required to perform regression testing.

When a defect is uncovered, it might be one of the following:

1. Defects in the way in which the Umple language is tokenized into an abstract syntax tree

2. Incorrect population of the Umple metamodel instance from the tokenized language.

3. Inappropriate behaviour of the metamodel classes

4. Syntax errors in the generated base language code (e.g. Java, PHP or Ruby)

5. Semantic errors (i.e. the incorrect behaviour) in the generated base code

In addition to the defect scenarios above, there is a possibility of usability and training defects

where the intended or expected behaviour differs from its actual implementation. Dealing with

these types of defects is outside the scope of our work, and instead, we focus our attention on

well-defined, repeatable issues.

As defects are uncovered, it is not always apparent which category of defects has been

uncovered. In situations where the root cause of a defect is unknown, we resort to bottom-up

defect resolution approach. The bottom-up approach resembles our testing process in place. We

start by verifying the tokenization, then the metamodel, followed by the generated code, and

finally, the application level testing.

Step 1: Identify the problematic Umple code with a failing test

The first step is to identify the Umple component responsible for the problematic outputs. This

process may involve a few iterations to isolate the exact symptoms causing the issue, but that is

not always necessary.

For illustration purposes, our sample defect is that untyped attributes are not reflected in the

generated code. The following code shows the potentially problematic Umple code.

class Student { id; }

The test case would perform an end-to-end high level test that properly documents the identified

issue with a failing test.

 162

Step 2: Verify the tokenization of the problematic Umple code

With our high-level failing test in place, we now analyze each step of the process to identify the

root cause of the problem. We start with the Umple parser.

The process for verifying the parser are already available. We simply add an additional test

using the problematic Umple code as the input and we verify the output.

To continue with the example above, we first make sure that untyped attributes are properly

parsed and tokenized. The expected result “[class][name:Student][attribute][name:id]”

represents a toString view of the tokenization sequence used to assert equality in a human

readable form.

@Test
public void untypedAttributes()
{
 assertParse("untyped.ump", "[class][name:Student][attribute][name:id]");
}

If this test fails, we resolve it and re-run our test from Step 1. If that test succeeds then it is

likely that the problem is now properly resolved and the debugging process is complete. If not,

then we move on to the next step.

Step 3: Verify the instance of the Umple metamodel

Once the Umple source has been shown to parse correctly (but that the observed issue persists),

we then validate that the instance of the Umple metamodel is consistent with the Umple input.

Here, we are ensuring that the metamodel was properly populated following the parser

tokenization process.

To test the metamodel, we enhance the test identified in Step 2 as follows.

@Test
public void untypedAttributes()
{
 assertParse("untyped.ump", "[class][name:Student][attribute][name:id]");
 UmpleClass aClass = model.getUmpleClass("Student");
 Assert.assertEquals("Student",aClass.getName());
 Attribute attr = aClass.getAttribute("id");
 Assert.assertEquals("id", attr.getName());
 Assert.assertEquals("String", attr.getType());
}

Here, we assert that the Student class is created, and that it has an attribute of type String with

the name id. If this test fails, we follow the same steps from the previous step: re-test our high-

level test and proceed to the next step only if that test still fails.

 163

Step 4: Validate the proper behaviour of the metamodel

Once the Umple code appears to be parsed correctly, and the metamodel is properly populated,

we then investigate if there is any special behaviour that is performed by the metamodel instance

that may not be handled properly.

For example, an Attribute has an operation isPrimitive which checks for the Umple predefined

types, and perhaps this operation is not functioning as expected. Below is a test case

demonstrating the expected behaviour.

@Test
public void isPrimitive()
{
 Attribute av;

 av = new Attribute("a",null,null,null,false);
 Assert.assertEquals(true,av.isPrimitive());

 av.setType("String");
 Assert.assertEquals(true,av.isPrimitive());

 av.setType("Integer");
 Assert.assertEquals(true,av.isPrimitive());
 av.setType("Double");
 Assert.assertEquals(true,av.isPrimitive());
 av.setType("Boolean");
 Assert.assertEquals(true,av.isPrimitive());
 av.setType("Date");
 Assert.assertEquals(true,av.isPrimitive());
 av.setType("Time");
 Assert.assertEquals(true,av.isPrimitive());

 av.setType("Address");
 Assert.assertEquals(false,av.isPrimitive());
}

Dealing with this type of testing is difficult to categorize, and each scenario will need to be

analyzed individually. If the behaviour of the metamodel appears to be working correctly (but

our high-level test still fails), we continue to the next step.

Step 5: Compare the expected versus actual generated code

Next, we analyze the expected code versus actual generated code. Here, we are testing that the

syntactic translation of the Umple metamodel instance into the generated base language is

correct.

The example test case would resemble the following code.

@Test
public void untypedAttributes()
{
 assertUmpleTemplateFor("attribute.ump","attribute.java.txt”,"Student");
}

 164

Where the “attribute.ump” would be the problematic Umple code and the “attribute.java.txt”

would contain the desired Java code to be generated from the model.

Step 6: Test the behaviour of the generated code

If all other tests are passing successfully, the final aspect to test in the Umple system is that the

generated code conforms to the semantics of the model. It might be the case where we are

producing what is believed to be the correct code, when in fact the generated code does not

behave as the intended by the model.

In our on-going example presented above, we write unit tests against a sample application that

contains a Student with an id attribute.

@Test
public void constructor()
{
 Student s = new Student("x");
 Assert.assertEquals("x",s.getId());
}

@Test
public void setAndGetStringAttribute()
{
 Student s = new Student("x");
 s.setId("y");
 Assert.assertEquals("y",s.getId());
}

The steps outlined above provide a high-level approach to deal with issues as they arise. The

most important first step in the process is to create a failing test that exhibits the invalid

behaviour of the system. The granularity of this test is not important, as we have developed a

systematic approach to verify each step of the Umple compiler to help determine the root cause

of the issue.

By adopting a test-driven approach, we can grow our regression test suite to deal with new

issues and at the same time mitigate the risk of regressing on existing functionality. In the next

section we look at how the current infrastructure supports future potential enhancements.

7.1.7 Enhancing the Umple Language

A missing feature can also be described as a defect; in other words, something is missing that

should not be. The approach to adding new features can follow a similar path as described in the

previous section, but that might not always be possible; resulting in more of a top-down

approach compared to the bottom up approach for regular defects.

By starting at the last step (Step 6) from the previous section, our team is able to specify the

desired behaviour of a new language feature without that feature being available. And, because

 165

Umple is written in itself, we are able to implement most behaviour using existing Umple

constructs.

In the example below, we will be adding an OCL-like constraint syntax placed on attributes. The

semantic test below assumes the OCL constraint that age >= 18 for any Student.

Before implementing the change, we first write a test case in the base language demonstrating

the desired functionality. This test would need to be translated into each language. Below is a

sample test case written for Java.

@Test
public void cannotSetTo17()
{
 Student s = new Student(18);
 Assert.assertEquals(18,m.getAge());
 Assert.assertEquals(false,s.setAge(17));
 Assert.assertEquals(18,m.getAge());
}

Next, we use Umple itself to implement the feature using existing constructs.

class Student
{
 Integer age;
 before setAge {
 if (aAge < 18) { return false; }
 }
 after getAge {
 if (age < 18) { throw new RuntimeException("Age must be >= 18") }
 }
}

Once the behaviour is validated with sufficient (and passing) test cases within our base

languages we then enhance the parser and metamodel with the new language constructs.

The potential Umple syntax might look like the following.

class Student
{
 Integer x;
 // this is the potential invariant syntax
 inv x >= 18;
}

Next, we migrate the custom code written in the behaviour tests into the code generation process

to validate the generated syntax. Following that, we deploy a new version of Umple itself and

update the original behaviour tests to use the new language constructs (as opposed to having to

write the behaviour by hand, as was required before the feature was available). These tests

themselves remain relatively unchanged; we simply update the tests to use the new language

constructs.

In pure TDD methodology, the process is not just about testing; but rather about designing the

system in a modular fashion maintaining low coupling and well-defined interfaces. The process

 166

is also about capturing the intention of the software (i.e. automated tests) that can be easily

verified (i.e. re-running the test suite) so that little effort goes to waste.

For example, the act of manually testing and modifying (i.e. debugging) an application until it

works benefits only the developer performing the task. It cannot be replicated easily, as the

debugging steps are not documented and are lost once the debugging exercise is complete.

Conversely, by capturing the testing process through automation, all developers can benefit as

knowledge is gained about the true behaviour of the system that can be easily re-run and re-

verified.

In the case of building a new programming language (or in the case of Umple, extending

existing base languages), we first need to be concerned with testing the tooling itself. But,

because the outputs of such systems are systems too, they can also be tested (i.e. semantic

testing of systems generated using the new language).

In addition, because Umple is implemented in itself, we are able to capture the debugging effort

of new code generation behaviour in our automated tests, and then modify the underlying Umple

language to replicate that behaviour natively, as shown with the OCL constraint example. In

summary, we enhance the Umple language so that we can refactor our Umple tooling (which is

written in Umple) to make use of the enhanced language elements; eating our own dog food, so-

to-speak.

7.1.8 Validating Umple through Testing

Our first step towards validating the merits of Umple as a language was to provide the necessary

constructs to enable continuous enhancements and improvements to the language, to the code

generation, and to the supporting Umple tools. In the previous sections, we outlined the

compartmentalization of Umple into well-defined components including a parser, a metamodel,

a code generator (and model transformer) as well as a test-bed for validating the semantics of

systems built using Umple. We demonstrated a generic approach to testing programming

languages as well as provided some patterns for resolving defects in the tools as they are

discovered.

The following section presents our next approach to validate Umple; analyzing it to see whether

certain desirable properties are present. In particular, we will look at certain program

comprehension qualities of an Umple-built system.

 167

7.2 Improving Program Comprehension with Umple

Umple, we anticipate, should help increase software program comprehension by allowing

developers to describe a system at a more abstract level, and also by significantly reducing the

amount of code that needs to be written and later understood relative to base languages like

Java, PHP and Ruby. A summary of the findings discussed in this section is published in [19].

As discussed earlier in the thesis, Umple’s objective is to simplify software systems by

incorporating higher-level abstractions in programming languages. One of the motivations for

our work is our research reported in Chapter 2 indicating that a large part of the development

community remains steadfastly code-centric; hence visual modeling tools are not being adopted

as widely as might be desired. Another motivation is that there is much repetitive code in object-

oriented programs; and a language like Umple, which incorporates abstractions to remove

boilerplate code, should be able to promote understandability and reduce code volume.

This section analyzes properties inherent to an Umple program (versus its equivalent in the

generated base language) that allow developers to work at a higher abstraction level, providing

the opportunity at reduced complexity. We compare several systems developed using Umple vs.

their counterparts in Java, PHP. Finally, we discuss general benefits to comprehension that

appear to be achieved using Umple’s model-based syntax.

7.2.1 Reducing Complexity and Improving Readability

Software complexity metrics take into account properties such as the overall size of the system,

the classes and its methods. Readability refers to how easily a text can be understood and tends

to be based on local factors such as number of identifiers per line [154].

Aggarwal claims that source code readability is critical to the maintainability of a software

project [155]. Buse and Weimer [154] conducted empirical work to isolate the quality of

readability; trying to eliminate context and complexity from their study. Using a tool called

SnippetSniper, they asked participants to rate readability of snippets of code, each limited to

about 3 statements. They found a strong statistical correlation between having fewer identifiers

and characters per line and readability where less-is-more.

Buse and Weimer also suggested that new programming languages should encourage readability

by providing language constructs that take advantage of their findings. Umple follows their

recommendation, as we illustrate the following sub-sections.

In addition to encouraging readability, Umple also allows developers to write less-complex

code. Mohan et al.’s [156] investigation into three spatial complexity metrics showed that they

 168

all shared a strong correlation to variation of a significantly simpler metric; lines of code (LOC).

As the authors suggest, more complex metrics do not seem to offer any advantages over LOC to

measure complexity. We therefore adopt LOC as our complexity metric, and compare lines of

Umple code to both lines of code in Java systems that were converted to Umple, as well as lines

of generated code that the Umple compiler emits.

There are arguments for and against considering white-space and comments in lines-of-code

calculations, but as long as we maintain a consistent choice, this issue is moot. Using lines of

code is criticized if used to measure human programmer productivity, but that is not the concern

here.

Sajaniemi [157] states that variables are not used in arbitrary ways, and that there are patterns

that re-occur in programs. Umple has enhanced the declaration of a variable by distinguishing

between attributes and associations. Umple further enhances the semantic meaning of an

attribute by providing additional notations that better highlight the variable’s intention such as

immutable, unique and defaulted. A discussion of Umple attributes is presented in Chapter 4.

7.2.1.1Reducing Complexity with Umple Associations

The following Umple code shows two classes linked by an association.

class Mentor {
 1 -- * Student;
}
class Student{}

The declaration of an association consists of a single line of Umple. If the association had

instead been implemented in Java, an extra 90 lines of code would typically have been required.

This includes declarations of member variables in both classes, methods to add, delete, query

and iterate through links, as well as code in the constructors. Some of the needed code serves to

enforce the multiplicities. From our study of associations presented in Section 5.2 , referential

integrity was not observed and often the many-end was presented as a list structure; with code to

access the association being calls to generic methods that were defined on that list structure. As

such, no additional code is required in the associated classes. It should be noted that such an

approach has its drawbacks (i.e. difficulty maintaining referential integrity). Regardless, due to

the lack of extra code observed in practice we considered only the declaration of the variables

needed for the one-to-many association in our analysis.

//In the Mentor class
private List<Student> students;

//In the Student class
private Mentor mentor;

 169

To assess readability, in Table 35 we see a comparison of the declaration of the Mentor-Student

association in Umple versus Java.

Table 35: # Characters of Umple versus Java
 1 line Umple 2 lines Java % Improvement
Characters 12 49 75%
Identifiers 3 5 40%

Note that we do not count ‘private’ as an identifier, since it is a keyword. Also, the Java code

follows best practices of making variables private and using genericity (templates), but even

without this style, the improvement on lines of code and characters per line would have still

been 54% and 25% respectively.

First, we see that Umple can declare an association in just one line (where Java requires two).

Second, we see that Java can take up to four times as many characters compared to Umple.

Finally, for associations, the number of identifiers is fewer in Umple.

In addition to declaring the variables for associations, the Java language must also provide the

necessary methods to manage them. To appreciate the complexity of properly managing

associations, below is the generated implementation of just one of the required methods, whose

job is to add a Student to a Mentor as defined by the association above.

public boolean addStudent(Student aStudent)
{
 if (students.contains(aStudent))
 {
 return false;
 }

 Mentor existingMentor = aStudent.getMentor();
 boolean isNewMentor = existingMentor != null
 && !existingMentor.equals(this);
 if (isNewMentor)
 {
 aStudent.setMentor(this);
 }
 else
 {
 students.add(aStudent);
 }
 return true;
}

With Umple, large amounts of boilerplate code are thus avoided. One simply declares the

associations and lets the compiler take care of the rest. This benefits both the developer and the

subsequent maintainer. Please refer to Chapter 5 for more information on generating source

code for Umple associations.

 170

The boilerplate code above might appear overly complex, so we will demonstrate by example its

necessity. The examples are written in Java, and would be unchanged in an Umple program.

They illustrate the usage and traversal of instances of Student and Mentor. All examples assume

the following objects have been instantiated to the following types: Mentor mrJones, Mentor

missHenderson, Student andrew, and Student jamie.

First, the addStudent method should disallow duplicate links.

mrJones.addStudent(andrew);

//This call will return false;
mrJones.addStudent(andrew);

Second, a Student and Mentor can be linked from either end of the bi-directional relationship.

// Student sets the Mentor
jamie.setMentor(mrJones);

// Or, Mentor adds the Student
mrJones.addStudent(andrew);

And finally, a Student can only be linked to one Mentor (for a one-to-many relationship), so re-

assigning a Student to a new Mentor must remove the link to the existing Mentor.

// Add Jamie as a mentor to Mr. Jones
jamie.setMentor(mrJones);

// Mr. Jones will no longer
// be Jamie’s mentor
missHenderson.addStudent(jamie);

The above analysis shows that by introducing the association abstraction, Umple substantially

improves readability, measured in the number of identifiers or characters to make basic

declarations, and also substantially reduces complexity, measured by the number of lines of

code the developer or maintainer must deal with.

7.2.1.2Reducing Complexity with Umple Attributes

Umple attributes provide several opportunities to reduce code complexity. First, attributes can

remain untyped (defaulted to a String implementation) and generate both set/get accessor

methods, which further reduces the code volume and code density.

The grade attribute in the Registration class could be declared as follows in Umple;

grade;

In contrast, the same attribute as declared in Java would require code similar to that shown

below; assuming best practices are followed.

private String grade;

public void setGrade(String aGrade)

 171

{
 grade = aGrade;
}

public String getGrade()
{
 return grade;
}

In Umple, the API for set methods returns a Boolean to reflect whether or not the attribute (or

association) was properly set or not – with the addition of attribute contraints it is not guaranteed

that setting an attribute will update its value (i.e constraint fails and method return false).

From the perspective of readability, the Java code declaration contains an extra identifier and 12

extra characters. If the ‘String’ data-type had been made explicit in Umple, there would have

been smaller, but still noticeable savings.

Regarding complexity, the Java version has an additional 6 or 8 lines to capture the get/set API

(the number would vary depending on formatting preference).

Let us now consider an attribute that can contain multiple values. The Umple code to manage a

list of contact addresses is shown below.

Address[] contacts;

UML also allows multi-valued attributes (although it uses a slightly different syntax). An

alternative to the Umple syntax above would be to use of a unidirectional one-to-many

association. However, attributes typically represent properties of a class and hence have a

simpler implementation, lower coupling and greater reusability of the attribute’s data-type.

Please note there are also subtle differences in code generation between attributes and

unidirectional associations. For example, by default attributes are included in the constructor of

an object (unless explicitly qualified with the lazy keyword) whereas only associations with

lower bounds > 0 are included in the constructor’s signature.

The code needed to declare a multi-valued attribute in Java is shown below. Readability is

improved because there is a one fewer identifier needed and 39% fewer characters.

private List<Address> contacts;

Complexity is also significantly reduced since the mechanism to manage a list attribute does not

have to be coded. This API includes methods like adding and removing entities, retrieving one

or all entities as well as asking how many entities belonging to the instance.

By analyzing Umple systems from first principles by analyzing lines of code and code density

there is seems to be quantifiable support that Umple systems could be more readable and exhibit

 172

qualities of high program comprehension. In the next section, we analyze actual systems built

using Umple and compare them to similar systems written in a base language.

7.2.2 Analyzing Systems Written in Umple

Umple was designed to bring additional abstractions to OO languages like Java. As such, using

Umple you can "say more" by "writing less". In the previous section, we illustrated the potential

for Umple code to be more concise and written in fewer lines of code than existing OO

languages. We used Code Analyzer [158], an open source application to track software source

metrics, to count lines of code of Java, PHP and Umple files.

In the subsequent section we provide a detailed analysis of program size of two systems, one

written in Java and the other in Umple, to compare the relative sizes of the two systems.

We then investigate two systems written in Umple to assess the amount of generated code

required (in Java, PHP) compared to the source Umple code.

7.2.2.1Refactoring Umple into Itself

Before we compare systems written in Umple to the code the Umple compiler generates, it is

important to first gauge how well the source code generated from Umple compares to the source

code written by a developer without the use of Umple.

As it turns out, we can use Umple itself to make this comparison, since Umple version 1.0 was

written in Java, and version 1.3 (the next stable version) was a re-write largely into Umple itself.

In this section we discuss the process of refactoring Umple into itself, and in the next section we

analyze the source code of both systems (Java-Based versus Umple-Based).

The effort to refactor Umple into itself provides two main benefits. First, we provide a practical

test-bed for identifying language and code generation features required to build real systems. As

we encountered code blocks in the Java code that were not supported in Umple; we enhanced

Umple, adding the necessary support for the missing feature so that we could continue with our

migration from Java to Umple. Second, it provided a realistic migration scenario demonstrating

that Umple can be used in existing systems and more importantly existing systems can be

migrated towards Umple. As most software development effort is maintenance, it is important

that Umple integrates nicely not only into the base language, but also the existing software

process and toolset [159]. Requiring a big-bang effort to migrate towards Umple is not practical

and would severely limit its adoption.

 173

As we refactored our Java based Umple system into an Umple based system, several less-than-

ideal modeling decisions were uncovered in the Java code; these were then reflected in Umple’s

visualization as a less-than-ideal model. This can somewhat be explained by the fact that the

design of the first model for Umple was separate from its implementation, with few facilities

beyond reverse engineering tools to visually inspect the dependencies and relationships added to

the system that were not part of the original design.

The original Umple metamodel, developed in UML (not Umple) is shown below in Figure 33

and the current Umple metamodel (as developed in Umple itself) is shown in Figure 11 (Section

3.7.2).

Figure 33: Original Umple Metamodel

These less-than-ideal modeling decisions that were made were not uncovered until we attempted

to model the Umple system itself in Umple. For example, an AssociationVariable (in addition

to an Association itself) was introduced to capture the variable being used in the generated code

to represent one end of an association, instead of using the UmpleAssociationEnd directly;

resulting in redundant code. This resulted in the association between UmpleClass and

UmpleAssociationEnd being omitted from the implemented system resulting in no direct link

between the two classes. A third example is the addition of an unmodelled class

GeneratedClass, which, if given the opportunity, would have been modeled quite differently.

The current implementation is tightly coupled to the UmpleClass, when in reality code

generation is not always compartmentalized by class, which is particularly true for model-to-

model transformations (where code generation is at the entire model level, not at a class-by-class

level).

These issues and omissions were only discovered during our migration of Umple towards

Umple, and some issues remain. Had a language like Umple been available for our first version

 174

of the system, these issues could have been avoided due to the following properties of the

Umple language:

• Additional (and yet to be modelled) elements such as extra classes, or associations added

while working with the model would appear in the UML diagram, providing a visual

cue for discussion during code reviews.

• Absent elements such as classes and associations missing during the translation of model

to code would not occur at all because the model itself is the code and missing entities

would have been discovered during the development of the model in Figure 33.

Further improvements to the underlying metamodel can be achieved, including those less-than-

ideal examples identified above. Nonetheless, Umple provided an excellent environment for

model-level code inspections and as enhancements to the model are made, the results will

instantaneously be achieved in the code itself; as they are one-in-the-same.

Figure 34: Umple State Machine Meta Model

 If we now compare the quality of the code relative to the model of upcoming features in Umple

such as state machines (modeled entirely in Umple and is shown above in Figure 34), the

models are much more concise, and by virtue of being designed in a model-oriented language

are of higher quality with no possibility for translation errors between model and code (as they

are one and the same).

 175

We are not stating that a model developed in Umple is without issues. Rather, we are stating that

the implementation of an Umple model represents the exact intentions of the model itself with

no translation errors, omissions or additions. This is because the mode and code are one in the

same without the need for a process to transcribe the model into code; a process that was

required in the case the first version of Umple.

Code generated from Umple has similar qualities as code written by hand. We based our code

generation templates on the Java code that was originally written by hand when developing the

first version of Umple. In the next section we will evaluate Umple’s source code generator by

analyzing how well the generated code follows the practices of high quality code generators.

7.2.2.2Evaluating the Umple Source Code Generators

Model-based approaches allow for more automation, but the complete and cost-efficient

implementation is very difficult to achieve [160]. Some manual coding and manual verification

is still required because MDA technologies currently do not generally provide an efficient

approach to generating the entire system and because most software re-use will be from non

MDA systems not written within the context of (i.e. not compatible with) MDA [160].

The code generation approach in “Real-time Java from an automated code generation

perspective” [160] compensates for the issues identified above; but a major limitation in our

view is that the extension mechanisms to support arbitrary code impose unnecessary complexity

into the system. In essence, a class in a class diagram would result in two implementation

classes; a super class that contains all of the generated code and a sub class that can be

augmented with developer code (outside of the system).

Umple provides a simple yet effective approach to both issues above; first Umple provides

several mechanism to write all code in the model, and second Umple explicitly supports the

integration of external artefacts; providing an in-model bridge to support code re-use.

In addition to describing the code generation techniques, [160] also defines the framework under

which source code generators can be evaluated. Below we provide an overview of how well

Umple compares to the code generation requirements.

7.2.2.3(R1) The Code Generation Should be Easy to Validate

This requirement is broken into three sub-categories

• R1.1: The generated code should be compact

• R1.2: Model-to-code traceability should be direct

 176

• R1.3: Code generator development tools should allow easy model navigation

Generated Umple code is of similar complexity to code written by hand (R1.1). The approach

used for code generation mimicked the implementation of the Umple system itself (and was then

later replaced by Umple). Umple’s translation to code is direct with no additional hierarchical

constraints or support classes required. Requirement 1.2 was verified using automated unit tests,

which was discussed in Section 7.1 . The suite of Umple tools does provide some visualization

to navigate models, but this area has been identified as a candidate for future work (R1.3).

7.2.2.4(R2) Separation of Concerns

This requirement is broken into three subsections.

• R2.1: Separating generated from manually-written code should be easy

• R2.2: The separation between functional and non functional semantics should be

maintained

• R2.3: The integration of concurrent and sequential semantics should be easy

To achieve R2.1, the code generator typically uses an inheritance structure where the super class

contains the generated code based on the model and a stubbed-out (i.e. un-implemented) sub-

class is generated to allow for manually written code. Umple allows manually-written code to be

provided within the model itself, making R2.1 readily satisfied. This approach also makes the

generated code less complex; as the underlying representation of a class-level model is now just

a base-language class.

But Umple does provide a separation using source code comments to provide the distinction

between code generated due to the model and additional code written by the modeller.

7.2.2.5(R3) The Generated Code Should be High-Quality

Despite the mantra that generated code need not be inspected (just like you would not inspect

byte-code or machine code generated from traditional compilers), the quality of the generated

code remains important as it must still conform to industry coding standards and it might be

verified, maintained or controlled manually.

This requirement is subjective by nature. However, Umple aims to provide generated code that

looks like code written by hand. An empirical evaluation of the generated code has been

delegated to future work, but as mentioned, the generated version of Umple was based on the

written-by-hand first version.

 177

7.2.2.6(R4) Expressiveness of Target Programming Language

This requirement is broken into two sub-requirements.

• R4.1: The concurrency semantics of the target programming language should be

expressive and fully encompass the computational model of choice

• R4.2: The target language should support OO semantics

Support for concurrency is being addressed by other researchers with the upcoming

implementation of state machines into Umple’s syntax.

Umple’s expressiveness is explicitly based on the target programming language and is therefore

satisfied as Umple is based on both Java, PHP and Ruby; three languages that provide OO

semantics and they encompass the computational requirements of the models described in

Umple.

7.2.3 Analyzing LOC of Umple (Java Versus Generated Java)

The breakdown of lines of code of Umple v1.0 is shown below in Table 36.

Table 36: Umple v1.0 Java Code

 LOC % Total LOC

All Java Code 12,938 100%
Java code written by hand 5,481 42%
Java code generated by Umple (which did not yet exist) 0 0%
Java code generated by grammar (from 701 grammar LOC) 7,457 58%

The first version of Umple, written completely in either Java or as a BNF-style grammar, was

around 13 KLOCs, excluding template code and test code (see next paragraph). Of that, 58%

was generated by the Antlr parser code-generator and 42% was written by hand.

We have explicitly excluded our templating code to translate Umple into other base languages

for simplicity. This templating code is a form of data, written using JET Templates [79] to

describes what the output of the compiler should look like, and the templates are compiled into

Java code. The JET package is currently outside of Umple’s domain. It was never the intention

to model our code generation templates in Umple, as JET already provides an efficient

mechanism to build a code generator. We also did not consider our test code for this analysis; as

the amount of test code written depends on one’s software process and in particular one’s

attitudes towards automated testing.

 178

We believe that comparing v1.0 of Umple to v1.3 is fair, since Umple was not available when

v1.0 was written, yet v1.3 has similar requirements and features. Our analysis below should

therefore provide reasonably unbiased evidence as to whether an Umple system has more, less,

or the same amount of code compared to a Java implementation of the same system.

Our transition from Umple v1.0 to Umple v1.3 included the following changes:

• Almost half of the manually written code was converted into Umple code.

• Our parser and grammar code were also converted to Umple code. This change was

brought about to deal with limitations encountered using Antlr [80] (a discussion of

which is outside the scope of our work).

• We followed a Test-Driven approach to development, resulting in significantly more test

code, but as discussed above, we have ignored that issue, since we could just as well

have had the test code in v1.0.

The breakdown of lines of code of Umple v1.3 is shown below in Table 37.

Table 37: Umple v1.3 Java Code
 LOC % Total LOC
All Java Code 9,449 100%
Java code written by hand 3,103 33%
Java code generated by Umple (from 1998 Umple LOC) 3,280 35%
Java code generated by grammar (from 469 grammar LOC) 3,066 32%
The Umple code written for v1.3 replaced about 43% of the manually written Java. Table 38

compares the amount of manual code written in v1.0 to the amount of manual plus generated

code from v1.3.

Table 38: Comparing Umple Generated Code
 v1.0 v1.3 % Change
Java code written by hand 5,481 3,103 -43%
Java code generated by Umple 0 3,280 --
Total LOC of Java 5,481 6,383 +16%
From the above, we see the generated system in v1.3 had an additional 16% more lines of code

than v1.0, but as with code from any compiler, this should not need to be seen by software

developers. Part of the excess code is the generation of methods in the API which might not

actually be used anywhere; some of this would have been omitted in the hand-written code. The

difference seems also within reason if you consider that development between v1.0 and v1.3

included bug fixes, language enhancements, and overall maintenance.

 179

Most importantly, over half of the Java code in the running system was generated by Umple.

Total manually written code in v1.0 (excluding tests, templates and grammar code) was 5481

lines of Java. Total manually written code in V1.3 was 5101 (3103 lines of Java and 1998 lines

of Umple). This represents a very conservative savings of 7%. Savings would be greater if the

addition of features and improvements to the grammar were taken into account.

One more consideration is that for v1.0 we also maintained a UML model. For v1.3 we no

longer needed to maintain this UML model; the Umple code was the model, and if we wanted a

diagram we could just display it.

In the following sections we provide additional examples comparing the size of Umple based

systems and their generated Java, PHP and Ruby equivalents.

7.2.4 Comparing LOC of Systems Written in Umple

In the previous section, we saw that the code generated by Umple was roughly similar to source

code that would be generated by hand. We compared two relatively similar version of Umple in

terms of feature set, one of which was partially migrated to Umple. In this section, we will look

at five systems built using Umple and compare the Umple version versus the base language

version.

The five systems being analyzed include:

• Umple (v1.10): The latest version of the Umple tooling written in Umple+Java

• Elevator (Java): An elevator simulation written in Java, details are provided below.

• Elevator (PHP): The Umple+Java simulation re-written in Umple+PHP

• Schedule Management: A management tool for a local restaurant chain written in

Umple+PHP. Details of the design of the system will be discussed in Section 7.3.3 .

• Distance Learning Reporting: A reporting tool for a computer based training program

written in Umple+PHP. Details of the design of the system will be discussed in 7.3.4 .

The latest version of Umple (v1.10) has been completely refactored into the Umple language

and includes many additional features such as code injections, additional software patterns, and

state machines.

The simple elevator simulator had two versions: one was written in Java using the Swing user

interface toolkit and the second was a version of the same system ported to PHP using HTML.

The PHP implementation is available for demonstration at [161].

 180

Table 39 provides an overview of the sizes of the five systems. The second column is the ‘pure’

Umple; i.e. declarations of classes, attributes, associations, state machines etc. The third column

is the code for the methods that are embedded in the Umple programs; these are written in the

syntax of the base language, but are considered to be an integral part of the Umple code. The

fourth column is code that is manually written, is separate from the Umple code, and is

compiled by the base language compiler.

Apart from Umple itself (which is 100% written in Umple), all other systems were about ¼

Umple and ¾ custom code. This discrepancy is due to the nature of Umple. The elevator

systems, and management tools all had user interfaces that are better written natively in the UI

toolkit of the base language (Swing/SWT for Java and HTML for PHP). Conversely, Umple’s

UI is a set of command line tools and did not require a separate toolkit. Please note that an

Umple system contains modeling constructs like classes, attributes, associations and software

patterns (LOC Umple Models) as well as embedded base language code (LOC Umple Embed

Code). The % of Umple code represents the sum of both Umple model and embedded code.

Table 39: LOCs of Umple Based Systems
Application

LOC
Umple
Model
Code
(A)

LOC
Umple
Embeded
Code
(B)

LOC
Hand
Coded
Java/PHP
(C)

Total
LOC
(D)

%
Umple
(A+B)/D

Umple v1.10 342 10,246 0 10,588 100%
Elevator (PHP) 44 195 214 453 53%

Elevator (Java) 44 139 678 861 21%
Schedule Management (PHP) 35 231 646 912 29%

Distance Learning Reporting
(PHP)

174 2,570 6,628 9,372 29%

The amount of Umple represented in each system above (i.e. an average of about 25%) is not

necessarily representative because of a somewhat unfair comparison. As was observed in

Section 7.2 systems written in Umple can be more concise than if written in their native base

language. To take the potential for efficiency gains by using Umple, Table 40 considers the

LOC of the same systems above, but considers the amount of generated code to provide a more

accurate understanding of the weight the Umple model has on the overall size of the system. The

amount of generated code is divided into that generated from the model code (column 2), and

generated code from the action semantics; i.e. the base language embedded code that is passed

 181

through unedited by the Umple compiler (column 3). Columns 3 and 4 are the same as in Table

39.

Table 40: LOCs of Generated Java/PHP Based Systems
Application LOC Gen.

From Umple
Model Code
(W)

LOC Gen.
From
Embeded
Code (X)

LOC Hand
Coded
Java/PHP
(Y)

Total
LOC
(Z)

%
Umple
(W+X)/Z

Umple v1.10 5,737 10,246 0 15,983 100%

Elevator (PHP) 930 195 214 1,339 84%

Elevator (Java) 902 139 678 1,719 61%

Schedule
Management (PHP)

128 231 646 1,005 36%

Distance Learning
Reporting (PHP)

3,867 2,570 6,628 13,065 49%

The percent of code represented by the Umple model increases dramatically for the Elevator

system (up to about 84% of the code base in PHP and 61% in Java) and more conservatively for

the industrial systems (36% and 49% of the code bases). This difference can be explained by the

fact that the Elevator system is not a commercial software system so has a much simpler user

interface relative to the schedule management and distance learning application.

The 10-to-1 potential code savings from using Umple that was theoretically possible as shown

in Section 7.2 is supported by our results below. For the five applications below, if we consider

Umple in isolation the savings ranged from 26% to 57% for the real system and as high as 82%

for our elevator simulator.

Table 41: Comparing Umple Code To Generated Java/PHP Code

Application

% Imp.
From Umple
Model
(W-A)/W

% Imp. Both
Umple Model
and Embed
(W+X)-
(A+B)/(W+X)

% Imp. Over
Model, Embed
and Hand
Code (Z-D)/Z

Umple v1.10 94% 34% 34%

Elevator (PHP) 95% 79% 66%

Elevator (Java) 95% 82% 50%

Schedule Management (PHP) 73% 26% 9%

Distance Learning Reporting (PHP) 96% 57% 28%

Please note that the calculations are based on the columns from Table 39 (columns A,B,C,D),

and Table 40 (columns W,X,Y,Z).

 182

We analyzed the amount of code that is saved by using Umple. We performed three

comparisons. First, we considered the amount of Umple model code compared to the resulting

generated code. Second, we looked at all Umple code (model + embedded action semantics)

versus all Umple generated code. Finally, we looked at the overall system (model + embedded

action semantics + hand-coded base language) compared to the overall generated system. The %

improvements are summarized in Table 41.

The amount of actual savings in the context of the overall system varies depending on the

amount of application logic required (i.e. the amount of action semantic application code).

Because Umple is geared towards describing models, additional code must be written to manage

persistence (i.e. database tier) and display the user interface (i.e. UI tier). When taken in the

context of the entire system, the savings drop to between 9% and 28% of our industrial systems

and 50% to 66% for the elevator example.

For the elevator systems, we see substantially fewer lines of Umple code relative to the amount

of generated Java code. This dramatic improvement can be attributed to the following

explanations. First, the system provides a fairly simple decision algorithm to control the

simulation; therefore little code is required to manage the state of the elevator system. Second,

the system is mostly comprised of code for describing and navigating the domain model of an

elevator; something which Umple does really well. In Umple you can easily describe Floors,

Elevators, and Passengers as well as the relationships between them.

The code improvements for the Schedule Management system were not as dramatic as the

Elevator system, but that is to be expected as the schedule management application represents a

real application with much more application and UI logic relative to our simple elevator

simulator. This application also had a relatively simple model, also resulting in less code

savings.

As demonstrated by the applications above, it is likely that systems built in Umple will generally

contain substantially fewer lines of code than equivalent systems written in PHP or Java. As

discussed earlier, the LOC metric has been shown to be a fair indicator of complexity (despite

being a simple metric).

7.3 Industrial Examples of Umple

A practical approach to validating our work is to build real software system using the Umple

language. We took three approaches to building real and practical examples of Umple. First, we

used Umple to build realistic models of several systems. Second, we used our first versions of

 183

Umple (written in Java) to explore refactoring a Java system into Umple. Finally, we worked

with several businesses to solve their real-world problems and built production-quality systems

using Umple.

7.3.1 Umple as a Modeling Language

To date, we have built the models for the following types of systems:

1. 2D Shapes
2. Access Control
3. Accidents
4. Accommodations
5. Afghan Rain Design
6. Airline
7. Banking System (2 versions)
8. Election
9. Elevator (2 versions)
10. Genealogy (3 versions)
11. Geographical Information Systems
12. Hotel
13. Insurance

14. Inventory Management
15. Library
16. Mail Order
17. Manufacturing Plant Controller
18. Police
19. Political Entities
20. Private Lending System
21. Real Estate
22. Telephone
23. Traffic Lights
24. University
25. Warehouse

The most up-to-date list of examples is available at [3]. The models above were built based on

the following resources [2]. The model created for the Private Lending System was later used as

a design for an application built using Ruby on Rails and is described below.

7.3.2 Private Lender Business Domain

A private lender acted as our domain expert and is in the business of managing higher risk

secondary mortgages. The system being built is designed to manage the full life-cycle of a deal,

as well as provide timely reporting for both investors and borrowers from the private lender. In

this example, Umple was used as a data model and Ruby on Rails was used as the application

platform. Below is the data model of a private lending system; displayed as a class diagram (as

it appears in the UmpleOnline tool).

 184

Figure 35: Private Lending Data Model

The diagram view of the model was used as a communication aid as the model was being built

and validated with the domain experts. The Umple code to represent the diagram above is

shown below.

class Deal {
 name; // defaulted to street address of mortgaged property?
 status { Pending, Funded, Open, Default, Closed }

 Date advance_date;
 Date maturity_date;
 Date payment_start_date;
 Double mortgage_amount;
 Double mortgage_balance;
 Integer mortgage_order; //e.g. first mortgage, second mortgage, etc
 Double advance_amount;
 Double interest_rate;

 0..1 -- * Investor;
 0..1 -- 0..1 Borrower;
 * -> 0..1 Lender;
 0..1 -> * Fee;
 0..1 -> * Transaction;
 * -> * Person; // e.g. laywer, accountant, etc
 * -- * Reminder;
 * -- * Note;
}

 185

class Note {
 text;
 Date created_on;
}

// A simple reminder system to add to a deal
class Reminder {
 name;
 notes;
 offset_rules; // simple DSL like 1 day after advance_date
 Date notify_me_on; //
 Boolean ignore; // i.e. don't send the reminder anymore
}

// Automatic transaction log stating when payments and collections should be
// made
class Transaction
{
 Double amount;
 Date processed_on;
 type { PaymentToInvestor, PaymentToPrivateLender, CollectionFromBorrower,
PrincipalAdjustment }
 status { Unconfirmed, Confirmed, Declined }
}

class ContactInfo {
 data;
 1 -> 0..1 ContactType;
 1 -> 0..1 ContactLocation;
}

class Lender {
 name;
 type;

 1 -> * ContactInfo;
 * -> 0..1 LenderType;
}

class LenderType {
 type { Internal, External }
}

class ContactType {
 type { Email, Address, Phone, Fax, TTY, IM }
}

class ContactLocation { location; }

class ExternalMortgage {
 lender;
 Integer mortgage_order;
 * -> * ContactInfo;
}

class Fee {
 description;
 Double amount;
 Boolean is_funded_via_deal;
}

// I am thinking instead of having a just Client, Lawyer class, to have a
// generic Person, which could include a lawyer, realtor, etc

 186

// Drop downs could then be based on the type of person
class Person {
 name;
 role { Laywer, Accountant, Banker, Client, Realtor }
 * -> 0..1 Person referredBy;
 0..1 -> * ContactInfo;
}

class Investor {
 Double credit_amount;
 Double interest_rate;
 Double lender_residual_rate;

 * -- 1 Person;
 * -> 0..1 BankAccount;
 * -> 0..1 InvestmentVehicle;
}

class Borrower {
 * -- 1 Person;
 * -> 0..1 BankAccount;
}

class BankAccount {
 Double account_number;
 1 -> * NsfActivity;
}

class NsfActivity {
 Double amount;
 Date posted_date;
}

class InvestmentVehicle {
 name { TFSA, RRSP, Trust, None }
}

class Property {
 address;
 * -- * Deal;
}

Please note the ease in which comments can be attached to certain aspects of the model without

cluttering the diagram. These comments acts as developer documentation, as well as to provide

some additional information to document the decision making process, as well as provide a

means to communicate between developers during development. For example, the comment

below was used to justify a change to the model, to which a other developers can respond to or

address in future revisions.

// I am thinking instead of having a just Client, Lawyer class, to have a
// generic Person, which could include a lawyer, realtor, etc
// Drop downs could then be based on the type of person

Other conventions such as TODO, HACK and FIXME can be applied to the textual version of

the model and would be integrated into maintenance approaches like Waypoints [162].

 187

It should be noted that the example above uses enumerated types, which are internally modeled

as state machines. The display of state machine entities in UmpleOnline is not currently

supported in the diagrammatic view of the system and is therefore are not included in Figure 35.

The private lending application was later built using Ruby on Rails, a framework currently not

supported by Umple. In this case, Umple was used as a data modeling tool, but our team is

looking to provide support for additional languages, such as the Rails DSL, that sits on top of

Ruby. A screenshot of the application is shown in Figure 36.

Figure 36: Private Lending Application Screenshot

7.3.3 Schedule Management Web Application

Umple was used to manage schedules for a medium-sized restaurant chain with approximately

250 staff members including servers, bartenders, cooks and managers. This web application

incorporates the ability to upload new schedules, allows staff to view those schedules online, as

well as provides them with the ability to post to a weekly bulletin board either looking to pick

up additional shifts, or drop existing one.

The application was built using Umple, PHP and HTML; it runs on Apache. Below in Figure 37

is the design of the scheduling aspect of the application.

 188

Figure 37: Scheduling Model

The Umple model for the diagram above is shown below.

class Schedule
{
 kegName;
 directory;
 internal files = array();
 1 -- * WhiteBoard;
}

class WhiteBoard
{
 Date startDate;
 * -> 7 MessageArea pickUpShiftMessage;
 * -> 7 MessageArea dropShiftMessage;
}

class MessageArea
{
 String[] entry;
}

class Manager
{
 kegName = null;
 kegLabel = null;

 0..1 -- * Schedule;

}

Although the model above is small there was considerable effort saved by using Umple. The

model (28 LOC) was combined with an additional 270 LOC of Umple action semantics (i.e.

PHP code) resulting in a generated system over 900 LOCs (generated in PHP). Of the generated

code, over 600 lines are attributed to the boilerplate code required to implement the model

above. Overall, the Umple system represents 67% less code.

7.3.4 Distance Learning Progress Reporting Tool

Umple was used to build a progress reporting tool for several distance learning courses. The

application was written using Umple+PHP, with HTML as the user interface and MySQL for

storage. A screenshot of the application is shown below in Figure 38.

 189

Figure 38: Screenshot of Distance Learning Program Reporting Tool

In the business model of this application, a program is made up of several modules, and a

module occurs over a set number of weeks. A week has one or more lessons, and a week also

has one or more scheduled contacts between a facilitator (similar to a teacher) and a student.

During a scheduled contact, the facilitator tracks the answers to several questions like “How is

your progress so far?” The UML model is displayed below in Figure 39.

Figure 39: Umple model of a distance learning management application

Because a course can be given at any time, when a student registers, the system uses the

week/contact template to create WeekOccurrences and ContactOccurrences which reflect

individual contacts between a facilitator and a student.

The Umple model used to generate the diagram in Figure 39 is shown below.

 190

class Program
{
 Integer id;
 Integer position;
 name;
 internal Boolean areStudentsLoaded
= false;

 0..1 -- * Module;

 key { id }
}

class Module
{
 Integer id;
 Integer position;
 name;
 * -- * Week;

 key { id }
}

class Week
{
 Integer id;
 Integer position;
 description;
 moduleDescription = null;
 * -- * Lesson;
 * -- * Contact;

 key { id }
}

class Lesson
{
 Integer id;
 Integer lessonNumber;
 name;

 key { id }
}

class Contact
{
 Integer id;
 name;
 * -- * Question;

 key { id }
}

class QuestionType
{
 Integer id;
 name;

 key { id }
}

class Role
{
 Integer id;
 type;
 name;
 Integer position;

 key { id }
}

class Status
{
 Integer id;
 type;
 name;
 Integer position;

 key { id }
}

class User
{
 Integer id;
 username;
 firstName;
 lastName;
 Integer[] roleId;
 String[] role;

 1 facilitator -- *
ContactOccurrence;

 key { id }
}

class Student
{
 * -- * Program;
 1 -- * WeekOccurrence;
 1 -- * ContactOccurrence;

 Integer id;
 firstName;
 lastName;

 key { id }
}

class WeekOccurrence
{
 Integer id;
 description;
 Date startDate;

 * -> 1 Module;
 * -> 1 Week;
 * -> 1 Status;

 key { id }
}

 191

class Option
{
 Integer id;
 name;
 abbr;

 key { id }
}

class Question
{
 Integer id;
 description;
 * -- 1 QuestionType;
 * -- * Option;

 key { id }
}

class StudentOverview
{
 * -> 1 Program;
 * -> 0..1 Module;
 * -> 0..1 WeekOccurrence;
 * -> 1 Student;
 * -> 1 User facilitator;
 * -> 1 Status;
}

class ProgramSummary
{
 Integer numberOfStudents = 0;
 Integer numberGraduated = 0;
 ModuleSummary[] moduleSummary;
}

class ModuleSummary
{
 String name;
 Integer numberOfStudents;
}

class ContactOccurrence
{
 Integer id;
 Boolean isCompleted;
 notes;
 Date contactDate;
 * -> 1 Program;
 * -> 0..1 WeekOccurrence;
 * -> 0..1 Contact;

 key { id }
}

class ContactAnswer
{
 Integer id;
 answer;
 Date answeredDate;

 * answer -- 1 ContactOccurrence;
 * -> 1 Question;

 key { id }
}

class DocumentType {
 Integer id;
 name;

 key { id }
}

class Document {
 Integer id;
 name;
 path;
 * -- 1 DocumentType;

 key { id }
}

class Schedule {
 * -> * ContactOccurrence;
}

Please note that the following classes were excluded from the UML diagram: StudentOverview,

Schedule, ProgramSummary, and Module Summary. These four classes are secondary to the

domain model, but are relevant to the application for summary and reporting features. For

example, the Schedule object helps to answer which tasks a facilitator has to accomplish over

the upcoming weeks. These objects had several relationships to other classes and would have

over-complicated the diagram.

 192

7.3.5 Frequency of Multiplicity Usage in Commercial Umple Systems

In Section 5.2 , we analyzed several open source software systems in an attempt to uncover the

types of association used in practice (and in particular the types of association multiplicities in

use). We noted the relative difficulty in accurately identifying the multiplicity of association

ends in those systems beyond differentiating between one and many. We then analyzed the

multiplicities used in UML diagrams found in textbooks as well as several UML specification

documents. In contrast to analyzing source code, it is extremely straightforward to analyze the

types of associations in use in UML and in Umple systems because associations are first-class

entities of the language and explicitly defined.

In Table 42, we compare the industrial use of associations in Umple compared to earlier analysis

of associations found in the UML specifications, in examples from UML books, and finally

from our own repository of Umple examples.

We see that the usage of multiplicities reported earlier has some important differences as

compared with the usage of multiplicities in the systems built using Umple discussed in this

chapter.

Table 42: Frequency of Multiplicity Usage in Umple Based Applications
Industry Use Of Umple Rank

Multiplicity Frequency Ratio (%) In UML
Specs

Examples
in Book

In Umple
Repository

1 <- * 10 20.41% 6 N/A 6
* -- * 10 20.41% 4 2 3
1 -- * 8 16.33% 2 1 1
0..1 <- * 8 16.33% 7 N/A 5
0..1 -> * 3 6.12% N/A N/A N/A
* -> * 3 6.12% 3 9 4
0..1 -- * 2 4.08% 1 4 2
0..1 <- 1 2 4.08% N/A N/A N/A
1 -> * 2 4.08% N/A N/A N/A
0..1 -- 0..1 1 2.04% 8 6 N/A
 TOTALS 49 100.00%

The first major difference is that the systems in this chapter made much greater use of directed

associations (navigable in one direction only). There are several possible explanations: 1) We

may not have correctly identified all associations in the previous work, and may have counted

some of them as attributes; Umple just makes it obvious which are associations. 2) The freedom

 193

Umple provides to change the directionality easily may have meant that we were more confident

in using a one-way associations, whereas in the systems we examined earlier, bidirectional

associations may have been used just in case both directions of navigation were needed.

The second major difference is the prevalence of many-to-many associations. Analagous

explanations to those discussed in the last paragraph may apply here too.

7.4 Summary

In this chapter we evaluated the Umple language from various perspective. First, we approached

the Umple language and tooling from a systematic approach with regard to quality. We

demonstrated a re-usable approach to language design that allows for agile responses to change

without overly compromising the need for quality. Next, we analyzed the qualities of an Umple

system to demonstrate the potential for improved program comprehension based on the

conciseness of the language. Finally, we successfully incorporated Umple into three commercial

software projects.

We have demonstrated that Umple has the potential to be a very useful and relevant approach to

software engineering.

 194

Chapter 8 Conclusions
Software practitioners and researchers tend to agree that software modeling is considered a good

practice in software engineering and a suitable next step in applying additional engineering rigor

to the practice of software development. However, from our research and experiences, code-

centric approaches tend to be the prevalent practice. Our research is motivated by asking why

this is the case, and how to address or improve modeling practices.

Umple is best described as a model-oriented programming language that helps bridge the model-

code divide. Below will outline how Umple addresses the issues identified in our first research

question (RQ1): “Why do software practitioners resist the current style of software modeling

and show a tendency to prefer to design directly in code?”

i. Habituation: We argue that Umple is not “yet another programming language”; instead,

it is an extension to existing base languages including Java, Ruby and PHP. Umple will

therefore feel and behave in a way that is familiar to developers since its constructs for

modeling elements such as attributes and associations are built on top of their preferred

language.

ii. Efficacy: Umple maintains strong roots in code-centric thinking with the addition of a

model-centric / diagrammatic perspective. By providing an all-keyboard solution to

software modeling, Umple allows context-assist, short-cuts, and copy-and-paste

functionality that code-centric developers are used to. Conversely, Umple dos not

abandon the ability to edit diagrams perceived as so important to some. The question of

whether text or diagrams are perceived or actually better is now moot; the choice can

now be left to developer experience and expertise.

iii. Politics and Practices: Another issue that is mitigated by Umple’s ability to operate in

both code- and model-centric approaches is that an organization’s preference towards

either is now irrelevant. Umple allows Java developers to continue to deliver Java code.

It also allows PHP and Ruby developers the same luxury. As more language support is

provided for Umple, more software development processes will be able to introduce

Umple into their development process without requiring a major shift in underlying

processes and tool usage such as application structures, third party frameworks, unit

testing, build scripts, continuous integration and bug tracking and software deployment.

iv. Software Process: Umple development follows a similar construction path as existing

programming languages, but with the advantage that structural prototyping (i.e.

 195

modeling) can be more easily accomplished with fewer lines of code. Umple supports

several software development processes such as big-design up-front,

iterative/incremental, agile, and evolutionary prototype. Umple can be used to create

extensive platform-independent models by relying solely on the modeling constructs of

the language and differing in base language implementation. Conversely, a more agile,

iterative/incremental approach can be adopted by implementing platform-specific

models to address certain features or architectural concerns and then incrementally

adding more modeling / coding aspects in tandem. Finally, Umple provides the ability to

simulate models [3, 105] to help validate an early prototype.

v. Tool Weaknesses: Umple provides different levels of tool integration depending on the

type of user. Umple is available online [3], offering a zero-footprint installation. This

allows potential Umple developers to try the language without having to invest any

effort in software installation. Umple includes several command line tools to de-couple

the development environment from the compilation process. This allows developers to

continue using their preferred text editor such as VI, Emacs, TextMate, etc. Finally,

Umple has been deeply integrated with Eclipse with an Umple IDE plugin. Umple has

addressed the concern that modeling tools are large and complex. Future work geared

towards model level trace and debugging will only further improve support for model-

centric development without abandoning Umple’s dual code-centric and model-centric

roots.

vi. Intrinsic Utility: Umple can be developed entirely in the comfort of a text editor

without the need to worry about diagrammatic inefficiencies such as layout of the

diagram and the amount of mouse ‘clicks’ required to work in a graphical user interface.

vii. Software Engineering Education: UML Class Diagrams can now be taught

interactively in any classroom [3]. Teaching UML does not require full-fledged

modeling software where features of the tool interfere with concepts of the language (in

this case UML). Software educators can use Umple to not only showcase variability in

UML models, but they can only show how design decisions affect the underlying

implementation code.

viii. Domain suitability: Umple has been successfully used in data dominant software as

shown in the previous chapter. As more systems are built, it should be clearer in which

domains Umple is most suited.

 196

Our second research question (RQ2) asked, “What is the level of modeling adoption in industry,

and what are the factors affecting this?” Answers to this question were solicited in the form of a

survey and discussed at length in Chapter 2. One prevalent theme from the survey participants

was the apparent desire to want (or the feeling of a need) to apply more model-centric

approaches to software development. But, most continued development in a code-centric style

with very few adopting a model-only approach.

Our proposed solution to help bridge the model-code divide was the development of the Umple

model-oriented language. Umple’s approach to modeling is inherently text based with a visual

equivalent. We coined the term text-diagram duality where an Umple system can be equally

expressed in text as well as in diagrammatic form. By enabling coders to model and modelers to

code, as well as enabling the coordination between the two where modelers model and coders

code – but in the same language, we have effectively bridged the mode-code divide with a

solution that tailors to both software development approaches and both software developer

archetypes (model-first versus code-first).

Our final research question (RQ3), “Can programming languages be enhanced with model-

oriented constructs and provide benefit to software developers?” helped to frame are research to

validate our proposed solution.

To help guide and evaluate our approach to address the model-code divide, we started by

creating a taxonomy of software applications and surveyed a number of software practitioners

and researchers. This work provided the foundation for our later research and was primarily to

answer RQ2 and provide early indications that Umple might succeed at bringing modeling to the

forefront of software development.

In Umple, modeling abstractions are incorporated into widely familiar and adopted object-

oriented programming languages. At a high level, our approach encapsulates the following

concepts:

- Modeling is programming and vice versa. Umple code can be viewed and edited

diagrammatically or textually.

- Because models and code are treated uniformly, the need for code generation and reverse

engineering is significantly minimized.

- An Umple program can be nothing but UML abstractions. In this case, Umple code is purely

a model, with no algorithmic implementations.

 197

To evaluate Umple, we focused on the fact that we were able to produce real commercial

products with Umple, as well as on quantitative properties of the language and of the generated

system.

Our early focus with Umple was the representation of attributes and associations as first-class

entities. We dissected each element to understand how the rich semantics at the modeling level

could be (a) represented textually and (b) unambiguously defined for correct execution. We

analyzed existing software systems to understand the practice of using attributes and association.

Our next evaluation step was to analyze the Umple program constructs for qualities that promote

program comprehension. We uncovered that a system written in Umple can be more concise

than similar systems developed in base languages. We found a 10-to-1 code ratio for code

saving for platform independent models. For platform specific models (where the action

semantics of Umple are the same as the underlying base system) the savings were still

considerable at around two-to-one.

Our final evaluation step was to build real systems with the language, to ensure that the

foundation of our theory of Umple fit within practical software development. We first migrated

the Umple tools to be written in Umple itself, and our experiences led to several techniques for

Umple refactoring (known as umplifications) [41]. Later, we worked with three companies

where Umple was successfully used to (a) build a new web application for schedule

management, (b) enhance an existing online system for tracking distributed learning courses,

and (c) model a private lender’s business domain which was used later developed in Ruby on

Rails.

Future work with Umple is focusing in three domains:

1) Enhancing the Umple language with state machine syntax. By tightly integrating state

machines with class diagrams, we hope to further improve the model capabilities within our

textual language. Our team’s decision to consider state machines as the next model

constructs to analyze is based on industry needs and the observation that there seem to be

more interesting research opportunities in that area.

2) Empirical studies of software practitioners using Umple. To date we have theoretically

demonstrated the benefit of Umple, as well as demonstrated its industrial practicality by

building real systems with the language. A next logical step, outside the scope of this thesis,

is to evaluate the Umple language and its syntax with a representative set of software

practitioners. The output of such studies would help refine the current syntax, identify any

 198

cognitive gaps between the language’s syntax, semantics and the pragmatics of the

developer’s mental model.

3) Improve Umple tools to support better IDE integration including model-level debugging and

trace analysis. Umple relies heavily on the compilers and interpreters of supported base

languages during Umple compilation. This approach effectively forces developers to work

at the modeling level but debug at the level of generated code.

Other potential areas of future work include: Investigating code generation optimizations for

specific platforms (e.g. deploying an Umple system to a mobile handset versus a large JSEE

cloud computing platform). Investigating the integration of automatic refactoring algorithms to

deal with consistent refactorings amongst the structural aspects of Umple code, and the

algorithmic action semantics (i.e. if I change the name of an attribute, then API calls for that

attribute also should be updated).

Despite work with Umple being far from complete, the contributions presented in this thesis lay

the necessary foundation for the future of Umple. In summary, the contributions of this thesis

include:

• A taxonomy of software applications that can be used in empirical studies to help

provide application context when analyzing experiment results [18]

• A survey of software practitioners providing a quantitative perspective on software

practitioners attitudes towards [19, 163]

• The implementation and analysis of integrating model-oriented features into existing

programming languages; resulting in the Umple language [36, 41, 163]

• An online modeling environment [3] which can be used (a) to introduce people to Umple

and popularize it, (b) to create UML diagrams for publications such as this thesis, (c) for

software engineering teaching, and (d) as a light-weight development environment.

• The development of four significant systems built using Umple to demonstrate the

effectiveness of Umple. The first of these was Umple itself, which was refactored from

the first Java-only version; the other three were commercial systems.

• The development of a large online repository of modeling examples available at [3]

 199

Glossary
Action Semantics: Part of the specification of the semantics of a programming or modeling

language and is composed of syntax for defining entities, operations and their interactions. In

other words, the parts of a programming language responsible for doing stuff.

Active Record: [109] An object-relationship pattern and has several concrete implementations.

The Active Record pattern is implemented in many languages such as Ruby (on Rails) [110],

PHP (symfony), and Python (Elixir).

Advice: [115] The action taken by an aspect at a particular join point and can occur either

“before” the join point, “after”, or instead of (called “around”).

Ant: An XML-based build tool maintained by the Apache that is geared towards building Java

projects.

Application Programming Interface (API): A set of capabilities (i.e. methods, attributes, etc)

expressed as an interface that enables interaction with other software systems.

Aspect: [115] The modularization of a concern and is composed of pointcuts, advice bodies,

inter-type declarations, and possibly classes and methods.

Association: A relationship between one or more classes describing the references or links that

will exist at run time between instances of the class or classes. An association can be named, and

the ends can be adorned with role names, ownership, multiplicity, and visibility; among other

properties.

Attribute: A simple property of an object such as age, name, or date of birth. Attributes should

be contrasted with associations, which represent relationships among objects. The data in an

attribute does not have any reference back to the object containing the attribute.

Boilerplate Code: Near duplication of sections of code with only slight systematic alterations.

Boilerplate code is sometimes referred to as a template implementation, where the code

structure is defined with placeholders for each particular case. Examples include set/get

methods, add/remove methods, and standardized implementations for software patterns in

general (like Singleton). The duplication is sometimes necessary depending on the

characteristics of the underlying language, and is not necessarily a sign of poor quality code.

Boilerplate code can be reduced using macros, meta-programming, code generation and / or

“convention over configuration”.

 200

Cardinality: The number of ends participating in a link of an association at run time. In

contrast, multiplicity refers to the potential range of cardinalities.

Code-Centric: An approach to software development where practitioners write the code for a

system entirely in a (usually textual) programming language; the code is then compiled and

linked with libraries to create a working system.

Convention over configuration: A strategy for software design to decrease the variability of

design choices and instead relying on an accepted convention, which can lead to simpler

systems by exploiting the design assumptions. The process includes conventions relating to

naming classes, variables and methods, database design (which also includes naming

conventions), project hierarchy (e.g. grouping like entities in a similar location), and many

more.

Eclipse Modeling Framework (EMF): A modeling framework and code generation tool based

on the Eclipse platform.

EclipseUML (or EclipseUML2): A plugin to Eclipse that allows the creation of UML2

diagrams.

Ecore: The underlying metamodel (written in XMI) that is used for describing EMF models. It

is tightly aligned with Meta-Object Facility (MOF).

Emfactic: [85] A text-based editor for managing Ecore models that uses a Java-like

programming syntax as opposed to editing the Ecore XMI directly, or building the Ecore model

using a visual editor.

Eugenia: [88] A tool that enhances Emfactic / Ecore models with graphical editor annotations

to allow to the generation of GMF tools based solely on the annotated Ecore.

Graphical Editing Framework (GEF): An Eclipse-based framework that provides code

generation of rich graphical editors for the Eclipse platform including view components, tool

palettes and request/commands for editing.

Graphical Modeling Framework (GMF): An Eclipse framework that provides tool generators

for building graphical editors that acts as a bridge between tools based on EMF and GEF

models. This tool is used to build tools to graphically edit EMF/GEF tools (e.g. to create UML

modeling tools based on the UML2 EMF model).

Human-Usable Textual Notation (HUTN): [67] An OMG standard for storing models in a

more human understandable format (somewhat as an alternative to XMI). HUTN uses C-like

syntax of curly braces instead of XML start and end tags.

 201

Intentional Association: [9] An approach to constructing associations that does not use bag or

set semantics to define association ends. Instead, it is defined as an intention of the model

which then designates how to derive the collection from the links.

Join point: [115] A point of execution in a program (i.e. method execution or exception

handling).

Likert scale: Commonly used in questionnaires where respondents provide their level of

agreement to a certain statement or scenario (e.g. highly disagree to highly agree). Similar, but

not synonymous to a rating scale.

Mock Objects: An approach to isolated unit testing of an object by simulating the responses of

subsidiary objects (i.e. objects that are required due to the design of the system but not currently

under test) to limit the affect of these secondary objects on the proper testing of the object under

test.

Model-Centric: An approach to software development where the system is instead largely

generated from more abstract models created using modeling languages.

Model-Code Divide: The divergence of both practice and attitude towards model-centric and

code-centric approaches to software development. The practice of software development

appears to be dominated by code-centric approaches whereas a majority opinion is that model-

centric approaches are now a ‘best practice’.

Model-Driven Development (MDD): A software development methodology based on creating

models describing the problem/solution domain, which in turn generate (or support) the creation

of source code. Similar terms are model-driven software development (MDSD), model-driven

architecture (MDA), and model-driven engineering (MDE) [164].

Meta-Object Facility (MOF): A metamodeling architecture to define UML that is divided into

four layers including: M3 (meta-meta model) models to build metamodels; M2 models, which

are the result of M3 modeling (i.e. the UML meta model); M1 models, which are the result of

using an M2 model (i.e. a particular design using UML); and M0 (data), the real-world objects.

Mix-in: Some code that can be logically incorporated in different places, as though it had been

physically copied there, but without the maintenance issues associated with that. It is a similar to

an interface with implementation methods and attributes being integrated into the class, as

opposed to using inheritance. The concept of the mix-in was first popularized in the Ada

language [165]. It allows independently developed code to be injected into a set of classes, and

thus supports composition of a system.

 202

Model: See ‘software model’.

Multiplicity: A constraint placed on an association end that defines the upper and lower bounds

on the number of links between objects at run time that can participate in the association

relationship. It answers the questions, how many of something, and is it mandatory. It should be

contrasted with ‘cardinality’, which is the actual number of links at run time.

Naked Objects: [44] An architectural pattern using software construction whereby the user

interface is a direct representation of the domain objects; which in direct completely capture all

business logic. It was introduced 2004.

Object Identity Crisis: [141] The crisis is the problem of providing clean, efficient semantics

for "object identity" in a programming language.

Papyrus: An open source UML2 modeling and code generation tool based on Eclipse. It is a

component of the Model Development Tools (MDT) subproject that provides integrated, user-

consumable environment for editing UML (and other related) models.

PHP (Hypertext Pre-processor): A general-purpose scripting language geared towards web

development created in 1995.

Platform-Independent Model (PIM): A model of a system that makes no specific reference to

the underlying technology platform required to implement the system (i.e. platform agnostic).

Platform-Specific Model (PSM): A model of a system that has references to an underlying

technology platform such as programming language, operating system, prototype, or database.

Pointcut: [115] A predicate that matches one or more join points and is associated with certain

advice to execute. For example, the predicate of a method (the pointcut) with a certain name

(join points) is associated with a before execution (advice).

Referential Integrity: A property whereby the bi-directionality of bi-directional references

between objects is maintained throughout the life-cycle of a relationship. For example, to ensure

referential integrity in a bi-directional association, if an object A points to object B, then when

this link is deleted, references stored in both the A and the B end must be deleted.

Rational Software Modeling Tools (RSx): A generic reference to IBM’s suite of software

modeling tools including Rational Software Architect (RSA) and Rational Software Modeller

(RSM). These tools integrate UML modeling with C++/Java development environment

supporting round trip engineering between model and code.

Software model: An artefact that represents an abstraction of the software system being built. A

model can typically be viewed as a set of diagrams and/or pieces of structured text. It can be

 203

recorded on a white board, paper, or using a software tool. A model could use formal syntax and

semantics but this is not necessary.

Specification Description Language (SDL): [98] A programming/modeling language aiming

to unambiguously describe the behaviour of a system. Originally applied to telecommunication

systems, it has been broadened to deal more generally with process control and real-time

applications.

State machine: A model defining the behaviour of an entity based on a finite number of states,

transitions between those states based on events, and the actions or activities that occur in the

system as the entity changes states (e.g. entry and exit actions, or activities while in a state)

Taxonomy: (1) The process of hierarchical classification based on a predefined criteria, scale,

or constraint. (2) The model or document resulting from such a process.

Test Driven Development (TDD): A software technique that uses what is known as Red-

Green-Refactor approach to software construction. The technique dictates that the specification

of the software bit being built (such as a new class, interface, methods, etc) is written as an

automated unit test prior to development the system to meet that specification. In other words,

developers write failing tests first, then implement the necessary code to make the tests pass and

then work to refine and improve the implementation (i.e. refactor the code) without breaking

those automated tests.

Text-Diagram Duality: An observation whereby the underlying representation of an

abstraction such as a model can be equally expressed and manipulated both textually and

diagrammatically. This observation allows for programming and modeling languages to

converge into model-oriented software development where the code is the model (a.k.a.

diagram) and the model is the code.

TextUML: [73] A UML2 modeling and diagram generation tool based on Eclipse.

Unified Modeling Language (UML): A standardized general-purpose modeling language that

is managed by the Object Management Group.

UML2 Tools: A set of GMF-based editors that allow viewing and editing UML models.

Umlet: An open source UML editor.

Umple: A model-oriented programming language and adds additional modeling elements as

first-class entities on top of existing object-oriented languages like Java, PHP and Ruby. Umple

supports class diagram entities like associations, attributes and multiplicity, it supports state

 204

machine entities like states, events, transitions as well as software patterns like singleton,

equality, software mix-ins and aspect-oriented code weaving.

Violet: An open source UML editor.

XML Metadata Interchange XMI: An OMG standard for storing and exchanging metadata

and is written in XML. Most commonly used for exchanging UML models.

Xtext: A framework for building programming languages and domain specific language (DSL)

editors. Xtext is meant to be the EMF for IDEs.

 205

References
[1] Bourduas, S. "Generation of SDL Specifications from UML and MSC use Cases".
Concordia University. Thesis (Master's), 2001. Available:
http://spectrum.library.concordia.ca/1447/
[2] Lethbridge, T. C. and Laganière, R. Object-Oriented Software Engineering: Practical
Software Development using UML and Java. New York, NY, USA: McGraw-Hill, 2005.
[3] Forward, A. " UmpleOnline", accessed 2010, http://cruise.site.uottawa.ca/umpleonline/.
[4] Budinsky, F., Brodsky, S. A. and Merks, E. Eclipse Modeling Framework. Pearson
Education, 2003.
[5] Balz, M., Striewe, M. and Goedicke, M. "Continuous Maintenance of Multiple Abstraction
Levels in Program Code," in Future Trends of Model-Driven Development - FTMDD, 2010. pp.
68-79.
[6] Vaccare Braga, Rosana T. and Marchesini, Rodrigo H. R. "Implementing Relationships
among Classes of Analysis Pattern Languages using Aspects," in RAOOL '09: Proceedings of
the Workshop on Relationships and Associations in Object-Oriented Languages, 2009. pp. 9-16.
[7] Harrison , W., Barton, C. and Raghavachari, M. "Mapping UML Designs to Java". 2000.
ACM SIGPLAN Notices, vol 35, ACM New York, NY, USA. pp. 178-187.
[8] Jifeng, H., Liu, Z., Li, X. and Qin, S. "A Relational Model for Object-Oriented Designs".
2004. Lecture notes in computer science, Springer. pp. 415-436.
[9] Miliev, D. "On the Semantics of Associations and Association Ends in UML". 2007. IEEE
Trans. Software Eng., IEEE Computer Society. pp. 231-258.
[10] Rupakheti, C. R. and Hou, D. "An Empirical Study of the Design and Implementation of
Object Equality in Java," in CASCON, 2008. pp. 9.
[11] Mohagheghi, P. and Dehlen, V. "Where is the Proof? - A Review of Experiences from
Applying MDE in Industry," in ECMDA-FA '08: Proceedings of the 4th European Conference
on Model Driven Architecture, 2008. pp. 432-443.
[12] Forward, A. and Lethbridge, T. C. "Problems and Opportunities for Model-Centric Versus
Code-Centric Software Development: A Survey of Software Professionals," in MiSE '08:
Proceedings of the 2008 International Workshop on Models in Software Engineering, 2008. pp.
27-32.
[13] Levkowitz, H., Holub, R. A., Meyer, G. W. and Robertson, P. K. "Color Vs. Black-and-
White in Visualization". Proceedings of the 2nd Conference on Visualization (VIS), pp. 336-
339, 1991.
[14] Brestovansky, D. "Exploring Textual Modeling using the Umple Language". University of
Ottawa, 2008. Available: http://www.site.uottawa.ca/~tcl/gradtheses/dbrestovansky/
[15] Böhm, C. and Jacopini, G. "Flow Diagrams, Turing Machines and Languages with Only
Two Formation Rules". 1966. Commun ACM, vol 9, ACM. pp. 366-371.
[16] Owe, O., Krogdahl, S. and Lyche, T. From Object-Orientation to Formal Methods, Essays
in Memory of Ole-Johan Dahl. 1st ed., vol. 2635, Germany: Springer, 2004,
[17] Sebeok, T. A. Current Trends in Linguistics. 2nd ed., vol. III, Paris: Mouton, The Hague,
1970, pp. 541.
[18] Forward, A. and Lethbridge, T. C. "A Taxonomy of Software Types to Facilitate Search
and Evidence-Based Software Engineering," in CASCON '08: Proceedings of the 2008
Conference of the Center for Advanced Studies on Collaborative Research, 2008. pp. 179-191.

 206

[19] Forward, A., Badreddin, O. and Lethbridge, T. C. "Perceptions of Software Modeling: A
Survey of Software Practitioners," in 5th Workshop from Code Centric to Model Centric:
Evaluating the Effectiveness of MDD (C2M:EEMDD), 2010. Available:
http://www.esi.es/modelplex/c2m/papers.php
[20] Forward, A. " Computer Science PhD Thesis, Appendices, and Supplementary Material",
accessed 2008, http://www.site.uottawa.ca/~tcl/gradtheses/aforwardphd/.
[21] France, R. and Rumpe, B. "Model-Driven Development of Complex Software: A Research
Roadmap," in FOSE '07: 2007 Future of Software Engineering, 2007. pp. 37-54.
[22] Lavaggno, L., Martin, G. and Selic, B. UML for Real: Design of Embedded Real-Time
Systems. Norwell, MA, USA: Kluwer Academic Publishers, 2003.
[23] Hertel, G., Niedner, S. and Herrmann, S. "Motivation of Software Developers in Open
Source Projects: An Internet-Based Survey of Contributors to the Linux Kernel". 2003.
Research Policy, vol 32, pp. 1159-1177.
[24] Afonso, M., Vogel, R. and Teixeira, J. "From Code Centric to Model Centric Software
Engineering: Practical Case Study of MDD Infusion in a Systems Integration Company," in
MBD-MOMPES '06: Proceedings of the Fourth Workshop on Model-Based Development of
Computer-Based Systems and Third International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software, 2006. pp. 125-134.
[25] Berenbach, B. and Konrad, S. "Putting the "Engineering" into Software Engineering with
Models," in Modeling in Software Engineering, 2007. MISE '07: ICSE Workshop 2007.
International Workshop on, 2007. pp. 4-4.
[26] Anda, B., Hansen, K., Gullesen, I. and Thorsen, H. "Experiences from Introducing UML-
Based Development in a Large Safety-Critical Project". 2006. Empirical Software Engineering,
vol 11, pp. 555-581.
[27] Dobing, B. and Parsons, J. "How UML is used". 2006. Commun ACM, vol 49, ACM Press.
pp. 109-113.
[28] Arisholm, E., Briand, L. C., Hove, S. E. and Labiche, Y. "The Impact of UML
Documentation on Software Maintenance: An Experimental Evaluation". 2006. IEEE Trans.
Software Eng., vol 32, pp. 365-381.
[29] Agarwal, R. and Sinha, A. P. "Object-Oriented Modeling with UML: A Study of
Developers' Perceptions". 2003. Commun ACM, vol 46, ACM Press. pp. 248-256.
[30] Agarwal, R., De, P., Sinha, A. P. and Tanniru, M. "On the Usability of OO
Representations". 2000. Commun ACM, vol 43, ACM Press. pp. 83-89.
[31] Hannay, J. E., Hansen, O., Kampenes, V. B., et al. "A Survey of Controlled Experiments in
Software Engineering". 2005. IEEE Trans. Software Eng., vol 31, pp. 733-753.
[32] Sultan, F. and Chan, L. "The Adoption of New Technology: The Case of Object-Oriented
Computing in Software Companies". 2000. IEEE Trans. on Engineering Management, vol 47,
pp. 106-126.
[33] Tzitzikas, Y., Spyratos, N. and Constantopoulos, P. "Mediators Over Taxonomy-Based
Information Sources". 2005. The VLDB Journal, vol 14, Springer-Verlag New York, Inc. pp.
112-136.
[34] Tukey, J. W., "Data analysis and behavioral science or learning to bear the quantitative's
man burden by shunning badmandments," in The Collected Works of John W. Tukey. , vol. III,
L. W. Jones, Ed. Wadsworth, Monterey CA: 1986, pp. 187-389.
[35] Harris, T. " YUML", accessed 2009, http://yuml.me/.

 207

[36] Forward, A., Badreddin, O. and Lethbridge, T. C. "Umple: Towards Combining Model
Driven with Prototype Driven System Development," in IEEE International Symposium on
Rapid System Prototyping (RSP), 2010.
[37] Medvidovic, N., Egyed, A. and Rosenblum, D. S. "Round-Trip Software Engineering using
Uml: From Architecture to Design and Back," in Proceedings of the Second International
Workshop on Object-Oriented Reengineering (WOOR’99), Toulouse, France, 1999. pp. 1-8.
[38] Farah, H. and Lethbridge, T. C. "Temporal Exploration of Software Models: A Tool
Feature to Enhance Software Understanding," in Reverse Engineering, 2007. WCRE 2007. 14th
Working Conference on, 2007. pp. 41-49.
[39] Starr, L. Executable UML: How to Build Class Models. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2001.
[40] Hen-Tov, A., Lorenz, D. H., Pinhasi, A. and Schachter, L. "ModelTalk: When Everything
is a Domain-Specific Language". 2009. IEEE Softw., vol 26, IEEE Computer Society Press. pp.
39-46.
[41] Lethbridge, T. C., Forward, A. and Badreddin, O. "Umplification: Refactoring to
Incrementally Add Abstraction to a Program," in Working Conference on Reverse Engineering,
2010. pp. 220-224.
[42] Miller, J. "What UML should be". 2002. Commun. ACM, vol 45, pp. 67-69.
[43] Selic, B. "The Pragmatics of Model-Driven Development". 2003. IEEE Softw., vol 20,
IEEE Computer Society Press. pp. 19-25.
[44] Pawson, R. and Matthews, R. "Naked Objects: A Technique for Designing More
Expressive Systems". 2001. j-SIGPLAN, vol 36, pp. 61-67.
[45] Pawson, R. "Naked Objects". 2002. IEEE Software, vol 19, pp. 81-83.
[46] Spinellis, D. "On the Declarative Specification of Models". 2003. IEEE Software, vol 2,
IEEE Computer Society. pp. 95-96.
[47] Lange, C., Chaudron, M. R. V., Muskens, J., Somers, L. J. and Dortmans, H. M. "An
Empirical Investigation in Quantifying Inconsistency and Incompleteness of UML Designs," in
Workshop on Consistency Problems in UML-Based Software Development, 6th International
Conference on Unified Modeling Language, UML, 2003. pp. 26-34.
[48] Treude, C., Berlik, S., Wenzel, S. and Kelter, U. "Difference Computation of Large
Models," in Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
2007. pp. 295-304.
[49] Alanen, M. and Porres, I. "Difference and Union of Models". 2003. Lecture Notes in
Computer Science, Springer. pp. 2-17.
[50] Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger, W. and
Wimmer, M. "AMOR-Towards Adaptable Model Versioning," in Proc. of the 1st International
Workshop on Model Co-Evolution and Consistency Management, 2008.
[51] Grönniger, H., Krahn, H., Rumpe, B., Schindler, M. and Völkel, S. "Text-Based
Modeling," in International Workshop on Language Engineering (ateM), 2007. Available:
http://megaplanet.org/atem2007/ATEM2007-22.pdf
[52] Petre, M. "Why Looking Isn't always Seeing: Readership Skills and Graphical
Programming". 1995. Commun ACM, vol 38, ACM. pp. 33-44.
[53] Gogolla, M., Büttner, F. and Richters, M. " USE - A UML-Based Specification
Environment", accessed 2010, http://www.db.informatik.uni-bremen.de/projects/USE.

 208

[54] Jacobson, I. and Cook, S. "The Road Ahead for UML". vol. May, 2010.
[55] Cook, S. " Future Development of UML RFI", accessed 2010, http://www.omg.org/cgi-
bin/doc?ad/2008-12-12.
[56] Miller, J. and Mukerji, J., "MDA Guide Version 1.0.1". Object Management Group
(OMG), 2003.
[57] Skene, J. and Emmerich, W. "Specifications, Not Meta-Models," in GaMMa '06:
Proceedings of the 2006 International Workshop on Global Integrated Model Management,
2006. pp. 47-54.
[58] Object Management Group (OMG). " Concrete Syntax for a UML Action Language RFP",
accessed 2010, http://www.omg.org/cgi-bin/doc?ad/2008-9-9.
[59] Object Management Group (OMG). " Semantics of a Foundation Subset for Executable
UML Models", accessed 2010, http://www.omg.org/spec/FUML/.
[60] Mellor, S. J., Tockey, S. R., Arthaud, R. and Leblanc, P. "An Action Language for UML:
Proposal for a Precise Execution Semantics". 1999. Lecture notes in computer science, Springer.
pp. 307-318.
[61] Mentor Graphics Corporation. " Concrete Syntax for a UML Action Language, Action
Language for Foundational UML", accessed 2010,
http://lib.modeldriven.org/MDLibrary/trunk/Applications/Alf-Reference-Implementation/doc/.
[62] Object Management Group (OMG). " Object Management Group, Unified Modeling
Language (UML), Version 2.1.2", accessed 2008,
http://www.omg.org/technology/documents/formal/uml.htm.
[63] Oracle. " JavaServer Faces Technology", accessed 2010,
http://java.sun.com/javaee/javaserverfaces/.
[64] Zend Technologies Ltd. " Zend Framework", accessed 2009, http://framework.zend.com/.
[65] Anonymous " Hibernate: Relational Persistence for Java and .NET", accessed 2009,
http://www.hibernate.org/.
[66] Object Management Group (OMG). " MOF 2.0 / XMI Mapping Specification, v2.1.1",
accessed 2009, http://www.omg.org/technology/documents/formal/xmi.htm.
[67] Object Management Group (OMG). " Human-Usable Textual Notation", accessed 2010,
http://www.omg.org/technology/documents/formal/hutn.htm.
[68] avishn. " ModSL - Text-to-Diagram UML Sketching Tool", accessed 2010,
http://code.google.com/p/modsl/.
[69] Fadila, A. and Said, G. "A New Textual Description for Software Process Modeling". 2006.
Information Technology Journal, vol 5, pp. 1146-1148.
[70] Fliedl, G., Kop, C. and Mayr, H. C. "From Textual Scenarios to a Conceptual Schema".
2005. Data Knowl Eng, vol 55, pp. 20-37.
[71] Bock, C. "UML without Pictures". 2003. IEEE Software, vol 20, pp. 33-35.
[72] Steel, J. and Raymond, K. "Generating Human-Usable Textual Notations for Information
Models," in Proceedings of the Fifth International Conference on Enterprise Distributed Object
Computing (EDOC 2001), Seattle, Washington, USA, 2001.
[73] Chaves, R. " TextUML", accessed 2009, http://abstratt.com/.
[74] Demeyer, S., Ducasse, S., Tichelaar, S. and Tichelaar, E. "Why Unified is Not Universal:
UML Shortcomings for Coping with Round-Trip Engineering". pp. 630-644, 1999.

 209

[75] Horstmann, C. and Pellegrin, A. d. " Violet UML Editor: Easy to use, Completely Free",
accessed 2010, http://alexdp.free.fr/violetumleditor/page.php.
[76] Auer, M., Poelz, J., Fuernweger, A., Meyer, L. and Tschurtschenthaler, T. " UMLet, UML
Tool for Fast UML Diagrams", accessed 2010, http://www.umlet.com/.
[77] IBM. " IBM Rational Software Architect Modeling Tool", accessed 2009, http://www-
01.ibm.com/software/awdtools/architect/swarchitect/.
[78] Anonymous " The Papyrus UML", accessed 2010, http://www.papyrusuml.org.
[79] The Eclipse Foundation. " Eclipse Modeling - M2T - Home (Jet Project)", accessed 2009,
http://www.eclipse.org/modeling/m2t/?project=jet.
[80] Terence, P. " ANTLR Parser Generator", accessed 2010, http://www.antlr.org/.
[81] Forward, A. and Lethbridge, T. C. " Umple Language", accessed 2009,
http://cruise.site.uottawa.ca/umple/.
[82] The Eclipse Foundation. " Eclipse Modeling Framework Project (EMF)", accessed 2010,
http://www.eclipse.org/modeling/emf/.
[83] The Eclipse Foundation. " Package Org.Eclipse.Emf.Ecore", accessed 2010,
http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/package-
summary.html#details.
[84] Bacvanski, V. and Graff, P. "Mastering Eclipse Modeling Framework," in EclipseCon,
2005.
[85] The Eclipse Foundation. " Emfatic", accessed 2008, http://wiki.eclipse.org/Emfatic.
[86] Senac, A. and Sevilla, D. " EMF4CPP", accessed 2010,
http://www.catedrasaes.org/trac/wiki/EMF4CPP.
[87] Liskov, B. "Data Abstraction and Hierarchy". 1987. ACM SIGPLAN Notices, vol 23, pp.
17-34.
[88] The Eclipse Foundation. " EuGENia: Epsilon Project", accessed 2010,
http://epsilonblog.wordpress.com/2008/08/04/eugenia-kick-start-your-gmf-editor-development/.
[89] The Eclipse Foundation. " The Eclipse Graphical Modeling Framework (GMF)", accessed
2010, http://www.eclipse.org/modeling/gmf/.
[90] Object Management Group (OMG). " OMG Model Driven Architecture", accessed 2010,
http://www.omg.org/mda/.
[91] Mellor, S. J. and Balcer, M. Executable UML: A Foundation for Model-Driven
Architectures. Addison-Wesley, Boston, 2002.
[92] Mentor Graphics Corporation. " BridgePoint", accessed 2010,
http://www.mentor.com/products/sm/model_development/bridgepoint/.
[93] Kavanagh Consultancy Limited. " OOA Tool", accessed 2010,
http://www.ooatool.com/OOATool.html.
[94] Moten, D. " Xuml-Compiler", accessed 2010, http://code.google.com/p/xuml-compiler/.
[95] Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference
Manual. Boston, MA: Addison-Wesley, 2005.
[96] ITU. " Languages and General Software Aspects for Telecommunication Systems",
accessed 2010, http://www.itu.int/rec/T-REC-z.
[97] Piefel, M. and Scheidgen, M. "Modelling SDL, Modelling Languages," in Cybernetics and
Information Technologies, Systems and Applications (CITSA), 2006. pp. 298.

 210

[98] NTNU. " SDL-2000", accessed 2010, http://www.item.ntnu.no/fag/ttm4115/sdl-2000.htm.
[99] Grammes, R. and Gotzhein, R. "SDL Profiles: Formal Semantics and Tool Support," in
FASE'07: Proceedings of the 10th International Conference on Fundamental Approaches to
Software Engineering, 2007. pp. 200-214.
[100] SDL Forum Society. " Towards SDL-2010", accessed 2010, http://www.sdl-
forum.org/ftp/pub/SDL-2010/index.htm.
[101] The Eclipse Foundation. " Xtext - a Programming Language Framework", accessed 2010,
http://www.eclipse.org/Xtext/.
[102] Microsoft. " Oslo: Making a New Class of Model-Driven Applications Mainstream",
accessed 2009, http://www.microsoft.com/soa/products/oslo.aspx.
[103] Purdy, D. " MUrl: A DSL for RESTful Clients", accessed 2009,
http://www.douglaspurdy.com/2009/03/20/murl-a-dsl-for-restful-clients/.
[104] Karras, C. " C# Code Generation using MGrammar", accessed 2009,
http://www.nootaikok.com/2009/01/c-code-generation-using-mgrammar.html.
[105] Solano, J. "Exploring how Model Oriented Programming can be Extended to the UI
Level". University of Ottawa. Thesis (Master's), 2010. Available:
http://www.site.uottawa.ca/~tcl/gradtheses/jsolano/
[106] van Meegen, M. " Slime UML - the Lean and Mean Modeling Tool", accessed 2010,
http://www.slimeuml.de.
[107] Anonymous " PlantUML Open-Source Tool in Java to Draw UML Diagrams", accessed
2010, http://plantuml.sourceforge.net.
[108] Vokáč, M. and Glattetre, J. "Using a Domain-Specific Language and Custom Tools to
Model a Multi-Tier Service-Oriented Application - Experiences and Challenges". Model Driven
Engineering Languages and Systems, vol. 3713, pp. 492-506, 2005.
[109] Anonymous " Active Record Pattern", accessed 2010,
http://en.wikipedia.org/wiki/Active_record_pattern.
[110] Tate, B. and Hibbs, C. Ruby on Rails: Up and Running. O'Reilly Media, Inc., 2006.
[111] Filman, R. E., Elrad, T. and Clarke, S., Mehmet A. Aspect-Oriented Software
Development. Boston: Addison-Wesley, 2005.
[112] Rajan, H. and Sullivan, K. J. "Unifying Aspect- and Object-Oriented Design". 2009. ACM
Trans.Softw.Eng.Methodol., vol 19, ACM. pp. 1-41.
[113] Pearce, D. J. and Noble, J. "Relationship Aspects," in AOSD '06: Proceedings of the 5th
International Conference on Aspect-Oriented Software Development, 2006. pp. 75-86.
[114] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. New Jersey: Addison-wesley Reading, MA, 1995.
[115] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. and Irwin, J.
"Aspect-Oriented Programming," in ECOOP, 1997.
[116] The Eclipse Foundation. " The AspectJ Project", accessed 2010,
http://www.eclipse.org/aspectj/.
[117] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W. "Getting
Started with ASPECTJ". 2001. Commun ACM, vol 44, ACM. pp. 59-65.
[118] Long, Q., Liu, Z., Li, X. and Jifeng, H. "Consistent Code Generation from Uml Models,"
in Software Engineering Conference, 2005. Proceedings. 2005 Australian, pp. 23-30.

 211

[119] Brisolara, L. B., Oliveira, M. F. S., Redin , R., Lamb, L. C., Carro, L. and Wagner, F.
"Using UML as Front-End for Heterogeneous Software Code Generation Strategies". 2008.
Design, Automation and Test in Europe, 2008.DATE'08, pp. 504-509.
[120] Xi, C., JianHua, L., ZuCheng, Z. and YaoHui, S. "Modeling SystemC Design in UML and
Automatic Code Generation," in Proceedings of the 2005 Conference on Asia South Pacific
Design Automation, 2005. pp. 932-935.
[121] Hoare, C. A. R. Unifying Theories of Programming. Prentice Hall, 1998.
[122] Sutton, A. and Maletic, J. I. "Recovering UML Class Models from C++: A Detailed
Explanation". 2007. Inf. and SW Tech, vol 49, Elsevier. pp. 212-229.
[123] Gueheneuc, Y. "A Reverse Engineering Tool for Precise Class Diagrams," in Proc.
CASCON 2004, 2004. pp. 28-41.
[124] Kollman, R., Selonen, P., Stroulia, E., Systa, T. and Zundorf, A. "A Study on the Current
State of the Art in Tool-Supported UML-Based Static Reverse Engineering," in Proceedings of
the Ninth Working Conference on Reverse Engineering (WCRE'02), 2002. pp. 22-30.
[125] Lange, C. F. J. and Chaudron, M. R. V. "An Empirical Assessment of Completeness in
UML Designs". 2004. Proceedings of the 8th International Conference on Empirical
Assessment in Software Engineering (EASE ‘04), pp. 111–121.
[126] Sutton, A. and Maletic, J. I. "Recovering UML Class Models from C++: A Detailed
Explanation". 2007. Inf. and SW Tech, vol 49, Elsevier. pp. 212-229.
[127] Norton, D., "Open-Source Modeling Tools Maturing, but Need Time to Reach Full
Potential". Gartner, Inc., Tech. Rep. G00146580, 20 April 2007, 2007.
[128] Anonymous " Wikipedia Listing of UML Modeling Tools.", accessed 2009,
http://en.wikipedia.org/wiki/List_of_UML_tools

