
The Dagstuhl Middle Model (DMM)
Version 0.006 – July 2002

Active contributors:

Timothy C. Lethbridge <tcl@site.uottawa.ca>
Erhard Plödereder <ploedere@informatik.uni-stuttgart.de>

Sander Tichelaar <tichel@iam.unibe.ch>
Claudio Riva <claudio.riva@nokia.com>

Panos Linos <linos@butler.edu>
Sergei Marchenko <smarchen@site.uottawa.ca>

There are other interested who subscribe to the DMM web site
See the DMM web site (http://scgwiki.iam.unibe.ch:8080/Exchange/2.)

Overview
The DMM is a middle-level model for representing software in reverse engineering
applications. It is intended to allow for exchange of information among tools. It can be
contrasted with low-level models consisting of abstract syntax graphs (ASGs), and high
level models representing architecture.

Data conforming to the DMM schema can be encoded using various different
formats. It was explicitly designed to be a schema for GXL (http://www.gupro.de/GXL/),
but could also be converted to an XML schema. DMM is described here as a seto of
UML class diagrams that describes the possible nodes and edges that will be represented
in GXL.

‘Dagstuhl Middle Model’ was originally a working name but has become permanent.
The name was chosen because the model was first developed at the Dagstuhl Seminar on
Interoperability of Re-engineering Tools, Jan 22-26, 2001. DMM represents a merger of
ideas from several pre-existing models developed by the active contributors.

Changes
The change process is as follows: Proposed changes and comments are sent to the
mailing list of active participants (dmm@iam.unibe.ch) and interested observers. All
changes are posted to the Wiki site http://scgwiki.iam.unibe.ch:8080/Exchange/2.
Changes from the previous version of this document should alwways be highlighted.

New changes reflected in the current version:
• Documents some proposed changes that need to be discussed.

Work plan
A draft paper about DMM has been written and should be submitted for publication soon.

Encodings
In this document, DMM is encoded in UML. At the web site you will find encodings in
GXL (using the GXL metamodel) and in TA.

The model
The model has been divided into four sub-hierarchies:

• The top level model: This shows the top-level classes and their relationships
• ModelObject hierarchy: Represent the abstract view of a program, independent of

the specific layout of the source code.

• SourceObject hierarchy: Pieces of source code that represent such things as
definitions, declarations and references to the model objects

• Relationship hierarchy: Relationships among the objects.

Top-Level Hierarchy of DMM classes

ModelRelationship

SourceObject ModelObject

BehaviouralElement

ModelElement

StructuralElement

Relationship*

SourceModelRelationship

SourceRelationship

*

Hierarchy of ModelObjects

ModelRelationship {abstract}

Package

FormalParameter

position

ExecutableValue

SourceObject
{abstract}

ModelObject {abstract}

name

Routine

0..1 defines

BehaviouralElement {abstract}

Field

Variable

Value

ModelElement {abstract}

EnumeratedType

EnumerationLiteral

Type

StructuralElement {abstract}

Method

StructuredType

Class

1..*

*

0..1

0..1 declares *

visibility

isConstructor
isDestructor
isAbstract
isDynamicallyBound
isOverideable

inheritsFrom
**

isSubpackageOf

*

isOfType
hasValue

0..1isDefinedInTermsOf

CollectionType

size

*

0..1 *

*
0..1

0..1

isSubclassable

isEnumerationLiteralOf

isFieldOf

isMethodOf

invokes
* *accesses* *

isParameterOf

imports

*

*

0..1

*

Descriptions of classes

Top level classes
• ModelObject {abstract}: Any logical object in program. DMM can represent its

location in source code one or more instances of SourceObject. A ModelObject can
have many SourceObjects that declares it, but only one that defines it.

• ModelElement {abstract}: A ModelObject that is not a relationship. These are the
most fundamental elements in the source code, classes, methods, types etc. The name
of a model element is a character string; there many be many ModelElements with
the same name in a system.

• ModelRelationship {abstract}: A ModelObject that relates two other ModelObjects.
Note that since it inherits from ModelObject, this has a place in the code where it is
defined (e.g. a the place where an instance of Invokes is defined is the place where one
Method calls Another)

Subclasses of ModelElement:

• Package: A logical grouping of ModelElements. Corresponds to a Java package or
C++ namespace. The contains relationship shows that it can contain any
ModelElement; this allows for flexibility; in existing languages only Classes would
be contained. The isSubpackageOf relationship allows for nested subpackages.

• StructuralElement {abstract}: A ModelObject that represents some form of data or
data structure.

• BehaviouralElement {abstract}: A ModelObject that executes. While executing it
accesses a set of structural elements. More details of the accesses relationship will be
described later.

Subclasses of StructuralElement
• Type: A StructuralElement that constrains what can be assigned to a Variable. it

can be that one Type isDefinedInTermsOf another: This would be the case when the
C/C++ typedef construct is used, or when a CollectionType type is defined to have
members that are of some other type. A union type is modelled by having a type
defined in terms of several others. A type can be, in some cases, unnamed; the name
attribute would then be the empty string. For so-called untyped languages, like
Smalltalk, types are simply omitted from the DMM data.

• Value: A piece of data that isOfType a certain Type. Given that DMM represents the
static view of a system, run-time values are not represented. However, if a value is
known, e.g. because it is a constant, then it can be represented in DMM. To represent a
manifest constant, the text used in the source code, whether it be a string or a number,
becomes the name.

Subclasses of Type
• EnumeratedType: A Type that has a fixed set of EnumerationLiterals as its

possible values.
• CollectionType: A Type that has members (whose type it isDefinedInTermsOf) and

a size. A pointer type is shown as a collection type of size 1.

• StructuredType: A Type (e.g. a C struct, Pascal or Cobol record,) that is broken
down into a list of named fields. Note that in C++ a struct can have methods (little
known to most people) so it should be a class. It is proposed to merge this with Class.

Subclasses of Value
• Variable: A variable is modelled in DMM as a Value that not only has a name, but

also, at least at run time, hasValue some other value. A constant is modelled as a
variable whose value is fixed.

• EnumerationLiteral: A constant Variable that isEnumertionLiteralOf an
EnumeratedType. In some programming languages, such as Pascal, these only have
a name ; in languages like C, they can be given a value as well.

• Field: A Variable that isFieldOf a StructuredType
• FormalParameter: A Variable that isParameterOf a BehaviouralElement

Subckasses of BehaviouralElement
• UnknownBehaviouralElement: Allow for the representation of items such as calls to

routines that are stored in variables, or calls to polymorphic operations (where one of
several methods may be ultimately called).

• Routine: Anything executable, that is not part of a class, including a procedure, a
function, a Cobol paragraph etc.

Hierarchy of SourceObjects

SourceUnit

name

Resolvable

name

Definition

SourceFile

path

*

Declaration Reference

SourcePart

startLine
startChar
endLine
endChar

SourceObject

*

contains

includes

MacroDefinition

name

MacroArgument

name

ModelObject* *

MacroExpansion

isExpansionOf

*

Comment

*

describes

Descriptions of classes.

• SourceUnit: Represent editable chunks of code that can be displayed by the user.
These are normally files, but may not be in languages where source is retrieved from a
repository.

• SourceFile: Represent files that can have inclusion relationships. If the path attribute
is omitted, it means that it is unknown (e.g. when including a file, and the include path
will be defined later)

• SourcePart: Represent specific parts of source units that represent model objects.

• Definition: Any part of the source code that explicitly defines something of interest.
• MacroDefinition: A definition of a macro at the purely source-code level. Will

disappear following pre-processing (optional).
• MacroArgument: An argument to a MacroDefinition (optional).

• Resolvable: A named element of source code, that refers to some model element (e.g.
a variable access or a routine call), but which requires a linker to make a definitive
resolution. A resolvable could resolve to different model elements depending on the
particular SourceUnits included in a build.

• Declaration: A declaration that some model element exists.

• Reference: A reference to a model element (e.g. routine call, variable access).
• Comment: Source code attached to some other source code, that acts as a comment

(optional).

Hierarchy of Relationships
In the following diagram, the domain and range are shown. Showing this inside the class
box is not conventional UML, however it seemed the easiest way to represent the
information.

Sets

IsPartOfSignatureOf

IsActualParameterOf

ModelElement
Invokes

IsFieldOf

Field
StructuredType

IsMethodOf

Method
Class

IsEnumerationLiteralOf

EnumerationLiteral
EnumeratedType

isPartOf Invokes

BehavioralElement
BehavioralElement

Accesses

BehaviouralElement
StructuralElement

IsOfType

StructuralElement
Type

Imports

IsReturnValueOf

Type
BehaviouralElement

IsParameterOf

FormalParameter
BehaviouralElement

TakesAddressOfComponent

TakesAddressOfObjectUsesObjectSetsObject

SetsComponent UsesComponent

TakesAddressOfUses

SourceRelationship

Class
LogicalPackage

ModelRelationship

Relationship

IsDefinedInTermsOf

Type
Type

Includes

ModelElement

SourceFile

Contains

SourceUnit
SourcePart

ModelElement
SourceObject
SourceObject

SourceFile

SourceModelRelationship

Defines Declares

SourceObject
ModelObject

IsExpansionOf

MacroDefinition
MacroExpansion

Describes

SourceObject
Comment

this class hierarchy
shows domain and
range of each
association class,
rather than link
attributes.

inheritsFrom

Class
Class

access

Descriptions of classes

• ModelRelationship (ModelElement -> ModelElement): Superclass of all
relationships between model elements.

• SourceRelationship (SourceObject -> SourceObject): Superclass of all relationships
between chunks of source code.

• SourceModelRelationship (SourceObject -> ModelElement): Superclass of all
relationships that relate a source object to a model element.

• Sets (BehavioralElement -> Variable): BehavioralElement contains code that sets
Variable (e.g., with an assignment). This means that the value of Variable (potentially)
changes.

• SetsObject (BehavioralElement -> Variable): BehavioralElement contains code that
sets Variable as a whole. (Could be assignments of whole arrays or StructuredTypes if
the language provides for it.)

• SetsComponent (BehavioralElement -> Field): BehavioralElement contains code
that sets the Field of a Variable that has a StructuredType.

• Uses (BehavioralElement -> StructuralElement): BehavioralElement contains code
that uses (i.e., does a read access to) StructuralElement (e.g., it accesses a Variable or
EnumerationLiteral).

• UsesObject (BehavioralElement -> StructuralElement): BehavioralElement
contains code that does a read access to StructuralElement as a whole.

• UsesComponent (BehavioralElement -> Field): BehavioralElement contains code
that uses the Field of a Variable that has a StructuredType.

• TakesAddressOf (BehavioralElement -> StructuralElement): BehavioralElement
contains code that takes the address of StructuralElement (e.g., the address of a
Variable or a Routine). (Obviously, not all programming language provide constructs
that allow this kind of functionality.)

• TakesAddressOfObject (BehavioralElement -> StructuralElement):
BehavioralElement contains code that takes the address of StructuralElement. This
address denotes StructuralElement as a whole.

• TakesAddressOfComponent (BehavioralElement -> Field): BehavioralElement
contains code that takes the address of Field of a Variable that has a StructuredType

Issues to resolve:
• What elements must be transmitted by compliant tools? We need a clearly defined set

of minimal information; for example a tool could just generate Accesses relationships
instead of its subclasses.

