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Abstract—The aggregate interference distribution in cognitive
radio networks is studied in a rigorous analytical way using
the popular Poisson point process model. While a number of
results are available for this model of regular (non-cognitive)
networks, cognitive ones present an extra level of difficulty for
the analysis, mainly due to the exclusion region around the
primary receiver, which are typically addressed via various ad-
hoc approximations (e.g. based on the interference cumulants)
or via the large-deviation analysis. Unlike the previous studies,
here we do not use ad-hoc approximations but rather obtain
the asymptotic interference distribution in a systematic and
rigorous way. This is in contrast to the large deviation analysis,
which provides only the (exponential) order of scaling but
not the outage probability itself. Unlike the cumulant-based
analysis, our approach provides a guaranteed level of accuracy
at the distribution tail. Additionally, our analysis also provides a
number of novel insights. In particular, we demonstrate that there
is a critical transition point below which the outage probability
decays only polynomially but above which it decays exponentially.
This provides a solid analytical foundation to the earlier empirical
observations in the literature and also reveals how typical outage
events occur in different regimes. In addition, the proposed
asymptotic expressions are also shown to be accurate in the non-
asymptotic regimes.

I. INTRODUCTION

As higher data rate services are required in wireless com-

munications over a limited spectrum, there is a need for higher

spectrum efficiency. Cognitive Radio (CR), which suggests

allowing secondary users (SU) to share the spectrum currently

not in use by a primary user (PU), is seen as the main way

to overcome the overcrowded spectrum problem and to use it

more efficiently [1]. Due to the uncertainty in the number

of SUs and their locations, the PU performance may be

seriously affected by the aggregate interference induced by the

SUs. Therefore, its accurate modeling is important to design

cognitive radio networks and also to estimate their potential

benefits.

There is an extensive literature dealing with aggregate

interference modeling of conventional (non-cognitive) net-

works [2]. The most popular elements of those models are

a Poisson point process (to model the interferers’ spatial

locations) and the standard propagation path loss models.

Based on that, Sousa and Silvester [3] studied the aggregate

interference power obtaining its characteristic function (CF)

and concluding that it is an α-stable random variable. Except

for some special cases, the closed-form probability density

function (PDF) is not available. Using the multivariate Lepage
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series representation, Ilow and Hatzinakos [4] obtained the

CF of the aggregate interference including the log-normal

and Rayleigh fading effects and concluding that the aggregate

interference is a spherically symmetric α-stable random vector.

Unlike the previous studies mainly based on the CF approach,

Mordachev and Loyka [5] studied the tail of the aggregate

interference distribution directly and found that, at the low

outage regime, the aggregate interference is dominated by the

nearest one, also under different fading models and interfer-

ence cancelation mechanisms. Based on the direct asymptotic

analysis, compact and accurate closed-form expressions for

the outage probability were obtained and a number of insights

were pointed out. The impact of optimum combining using the

standard array processing techniques (e.g. MMSE spatial filter)

has also been studied [6]. While in some special cases the

aggregate interference distribution of a large wireless network

approaches the Gaussian one [7], it is far from being accurate

in general.

The studies above are limited to the conventional (non-

CR) networks. The cognitive ones present an additional level

of difficulties for the analysis due to the presence of the

exclusion region around the PU receiver where no SUs are

allowed to transmit (to ensure the PU’s proper quality-of-

service), so that the distribution of the aggregate interference

is not α-stable any more and the models/results above cannot

be applied directly. Those difficulties are mainly addressed

in two typical ways: via various ad-hoc approximations (e.g.

using the interference distribution cumulants found from its

CF) [8][10] or via the large deviation analysis [11]. Addi-

tionally, numerical simulations provide a wealth of empirical

observations [9]. Since a direct analysis of the interference

distribution is challenging while the characteristic function is

much more amenable to the analysis, from which its cumulants

can be found, this approach was adopted in [8] and [10] to

obtain approximations of the interference distribution based

on the Edgeworth expansion and truncated stable distributions

respectively. While this approach predicts the main body of

the distribution well, its accuracy deteriorates significantly at

the distribution tail, i.e. at the practically-important low-outage

regime (high quality-of-service for the PU). This happens

because a limited number of cumulants (typically two) cannot

represent the tail sufficiently well. On the other hand, the

use of the large deviation analysis allows one to predict the

(exponential) rate of decay of the distribution tail [11] but

not the distribution itself (as all constants and slowly-varying

functions are neglected in the analysis).

To overcome these difficulties, we develop a direct approach



to the outage probability analysis based on the heavy tail

and saddle-point approximation theories. The advantage of

this approach is that the distribution tail can be found in an

explicit closed-form with a guaranteed level of accuracy, to

the best of our knowledge, for the first time. Additionally, this

analysis provides a number of insights and the expressions

are also accurate in the non-asymptotic regime. Important

geometrical and system parameters affecting critically the

outage probability are clearly identified.

A similar CR scenario has been studied in [13][14] based on

the concept of typical outage events and using ad-hoc approxi-

mations in different regimes, which were validated via Monte-

Carlo simulations but not via the analysis. Unlike [13][14],

the present paper gives a rigorous analytical evaluation of the

asymptotic outage probability (summarized in Theorems 1, 2

and Corollaries 1, 2), from which the typical outage events

of [13][14] follow as a consequence and do not require any

ad-hoc assumptions or approximations.

Using the present approach, we demonstrate that there is a

critical point below which the outage probability decays poly-

nomially (i.e. slowly) but above which it decays exponentially

(i.e. very fast), as a function of the threshold interference-to-

noise ratio (INR), thus revealing a qualitative transition around

this point. This provides a rigorous analytical foundation for

the earlier empirical observations in the literature [9]. The

analysis also reveals the outage-forming mechanism that is

responsible for such behavior. The main analysis tools are the

heavy tail distribution theory for the below-critical region and

the saddle-point approximation theory for the above-critical

one.

The rest of the paper is organized as follows. Section

II introduces the system model. In section III, the rigorous

asymptotic analysis of the outage probability is presented,

and the non-asymptotic approximations are obtained based

on it and validated via Monte-Carlo simulations. Section IV

concludes the paper. The proofs are given in the Appendix.

II. SYSTEM MODEL

We consider a cognitive radio network which contains a

primary user receiver and many secondary users’ transmitters

(nodes) on a plane. The PU is located at the origin. The SUs

are randomly located according to a Poisson point process.

The density of SUs is λ [nodes/m2]. Interference from the SU

nodes outside the circle of a certain radius Rmax is assumed

to be negligible (alternatively, no SUs are located outside of

this circle). The CR protocol is that all SUs which are inside

of a forbidden (exclusion) region, i.e. the circle of the radius

Rs centered on the PU, cease their transmissions so that some

protection to the PU is provided. The geometry of the CR

network is illustrated in Fig. 1.

We assume that the desired signal, interferences and noise

are independent of each other. The received power at the PU

can be expressed as:

PPU = Pd +

N
∑

i=1

Ii + P0 (1)
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Fig. 1. The geometry of the CR network. Interference from the nodes outside
the circle of the radius Rmax is negligible. The interference coming from the
nodes outside of the circle of radius R0 is below the noise level. The average
number of nodes in the disk of the radius R1 is one. All SUs inside the
circle of the radius Rs centered on the PU, the forbidden region, cease their
transmissions.

where Pd is the desired signal power; Ii is the interference

signal power coming from the ith node; P0 is the noise power;

N is a Poisson random variable which denotes the number

of nodes in the ring between circles of the radii Rs and

Rmax, i.e. the potential interference zone. The power at the

receiver antenna input coming from a transmitter of power Pt

is given by the standard link budget equation, Pr = PtGtGrg,

where Gt and Gr are the transmitter and receiver antenna

gains; g is the propagation path gain. In this paper, we focus

on the impact of the network geometry on the interference

distribution (which is known to have a dominant contribution

in regular networks [2]) and consider a non-fading scenario 1

so that g = aνr
−ν is the average path gain, where ν is the path

loss exponent, r is the distance between the transmitter and

receiver, and aν is a constant independent of r; our method

can also be extended to fading channels [15]. For simplicity,

we assume the transmitter and receiver antennas are isotropic

with unity gain, and all SUs transmit at the same constant

power level Ps, so that Pr = Psg. The ith SU generates the

interference power Ii = Psaνr
−ν
i at the PU receiver, where ri

is the distance between the ith SU and the PU. Without loss

of generality, we normalize Psaν = 1, so Ii = r−ν
i .

III. AGGREGATE INTERFERENCE DISTRIBUTION AND

OUTAGE PROBABILITY

When the signal to interference plus noise ratio (SINR) is

less than a certain threshold η, there is significant performance

degradation of a wireless link and it is considered to be in

outage. This is equivalent, under the adopted channel model, to

the aggregate interference power Iag exceeding the threshold

Ith = Pd/η − P0, so that the outage probability is

1The results will also apply to fading scenarios and delay-insensitive
applications, where the PU performance is determined by the average (over
fading) powers [9].



Pout = Pr{SINR < η} = Pr{Iag > Ith} (2)

Defining the INR as

γ =

N
∑

i=1

Ii/P0 (3)

Its threshold value is D = Ith/P0, so that the outage

probability is:

Pout = Pr{γ > D} = 1− F (D) (4)

where F (D) is the CDF of the INR.

A. Asymptotic Results

In this section, we present our main contributions in Theo-

rem 1 and 2, and Corollaries 1, 2, which are further extended

to the non-asymptotic regime in the next section.

Since the CR protocol forces all SU nodes inside the

forbidden region of the radius Rs to cease their transmissions,

the interference generated by a single node can not exceed

Imax = R−ν
s , i.e. the value coming from an active SU node

at the closest possible distance, so that the maximum INR

caused by a single node is Dmax = Imax/P0. Let us compare

the CR network with the forbidden region of the radius Rs

and a corresponding conventional (non-CR) network, which

is identical to the CR one except that there is no forbidden

region (i.e. Rs = 0). The relationship of their respective

outage probabilities Pout and Pc in the asymptotic (low-

outage) regime is characterized as follows.

Theorem 1: Let D = d · Dmax, where the normalized

threshold INR d is bounded away from unity, d < 1, and

D → ∞. The CR outage probability is then asymptotically

proportional to the conventional one:

Pout = (1− d2/ν)Pc · (1 + o(1)) (5)

where o(·) is the small o function 2.

Proof: see the Appendix. �

From Theorem 1 and the corresponding result for the

conventional network in [5], it follows that the aggregate

interference tail is dominated by the nearest node when d < 1,

which is formalized below.

Corollary 1: Let Pni = Pr{I[1] > Ith} be the probability

that the nearest node interference exceeds the threshold (thus

causing an outage event). When d < 1 and D → ∞,

Pout = Pni · (1 + o(1))

= (1 − d2/ν)N0D
−2/ν · (1 + o(1)) (6)

where N0 = πλR2
0 is the average number of nodes in the disk

of radius R0.

Proof: see the Appendix. �

For finite but large D when D < Dmax, the results above

can serve as accurate approximations (without o(1) term), as

2y = o(x) if limD→∞ y/x = 0.

we demonstrate below in Section III-B. Note that (6) gives the

tail behavior of Pout with a guaranteed accuracy level as an

explicit function of geometrical and system parameters.

While Theorem 1 holds for the D < Dmax case, the

opposite case of D > Dmax is also of considerable practical

interest for CR networks. In fact, while the outage probability

decreases only polynomially with D in the 1st case (i.e. com-

paratively slowly), Corollary 2 below shows that it decreases

exponentially in the latter case (i.e. very fast), thus revealing a

remarkable qualitative transition around the D = Dmax point.

To better understand why this happens, observe that d < 1
in Theorem 1 implies D < Dmax, so that single-node inter-

ference can exceed the threshold and cause an outage event.

Corollary 1 further demonstrates that this is a typical outage

event. On the other hand, when D > Dmax, the single-node

interference can not exceed the threshold so that a combined

effect of several nodes is required. Let n = ⌈D/Dmax⌉, where

⌈x⌉ = min {n ∈ Z | n ≥ x} is a ceiling function. The

outage occurs when the combination of at least n nodes’

interference exceeds the threshold. When Dmax < ∞ and

D → ∞, we have n → ∞, so that some form of the

central limit theorem (CLT) should apply, which results in

the Gaussian approximation being a main candidate. As is

well-known, this applies around the mean of the distribution

but quickly deteriorates as one moves to the distribution tail,

i.e. the region we are interested in (that is the low-outage

region), when n is not sufficiently large. To overcome this

problem, we use the saddle-point theory (also known as the

tilted Edgeworth expansion), which suggest tilting the original

distribution in a way that the point of interest is always around

the mean (akin to the importance sampling technique) [12]. An

immediate effect is that the relative rather than absolute error

becomes small, which has a dramatic positive consequence for

the distribution tail.

A summary of the saddle-point approximation theory is

given in Lemma 1 in the Appendix. Based on it, we have

the following result.

Theorem 2: When Dmax < ∞ and D → ∞, which implies

D > Dmax, the CR outage probability can be expressed as:

Pout = Q

(

z + z−1 ln

√

z−2θ̂2d1N
−ν/2
s

)

(1 + o (1)) (7)

where Q(x) = 1/
√
2π

∫∞

x
exp

(

−u2/2
)

du is the standard

Q-function, z = (2d1(θ̂ − N
ν/2
s ) − 2Ns)

1/2, d1 = D/D1,

D1 = 1/Rν
1P0 = (πλ)ν/2/P0, and R1 is the radius of the

disk with on average one node in it (so that D1 is the INR

from the boundary of that disk3); Ns = πλR2
s is the average

number of nodes in the forbidden region of the radius Rs, and

θ̂ = Nν/2
s (lnw + ln lnw) + o(ln lnw) (8)

is the saddle-point, where w = νd1N
ν/2−1
s /2 (ν > 2).

3It is also a critical value which separates the high and low outage
probability regions in non-CR networks.



Proof: see the Appendix. �

In the next section, we show that (7) can be used as an

accurate approximation (without o(1) term) for finite but large

D when D > Dmax, so that the saddle-point approach reduces

the approximation error significantly compared to the Gaussian

or Edgeworth approximations. Further analysis shows that,

unlike the outage probability in (6) which decays polynomially

in D, that in (7) decays exponentially, i.e. much faster [15].

Corollary 2: When Dmax < ∞ and D → ∞, the outage

probability in (7) scales as

Pout = exp{−Nν/2
s d1 ln d1(1 + o(1))} (9)

where d1 = D/Dmax. This qualitative transition around the

D = Dmax point is in agreement with the earlier empirical

observations in [9].

B. Non-asymptotic outage probability

The asymptotic results above can be used as approximations

(without o(1) terms) for finite but large D under certain

conditions, which we summarize below based on the concept

of typical outage events by considering 3 typical cases.

• Case 1: D1 ≪ D < Dmax.

From Theorem 1 and Corollary 1, for finite but large D
and D < Dmax, Pout ≈ Pni. The key question is: At what

value is D sufficiently large so that the approximation is

accurate? From [5], the nearest interferer approximation is

accurate in the non-CR networks when D ≫ D1, where

D1 = (πλ)ν/2/P0 is a critical value which separates the high

and low outage probability regions, and is the INR coming

from the boundary of the disk (centered on the PU) with on

average one node in it. As Theorem 1 links Pout and Pc,

the corresponding condition also applies to the former, so that

large D means Dmax > D ≫ D1, the aggregate interference

is dominated by the nearest node and Pout ≈ Pni. This is

possible when D1 ≪ Dmax, which implies Rs ≪ R1, i.e. a

small forbidden region.

Fig. 2 shows the outage probability in this case. When

D1 ≪ D < Dmax, it is well approximated by the nearest

node Pni. On the other hand, the nearest node interference

cannot exceed Dmax, so the above approximation breaks down

when D > Dmax. These observation have been validated via

extensive Monte-Carlo simulations for a wide range of system

parameters, of which Fig. 2 is only a sample.

• Case 2: Rs ≪ R1 and D > Dmax, or Rs < R1 but not

Rs ≪ R1.

When Rs ≪ R1 and D > Dmax, or Rs < R1 but

not Rs ≪ R1, for practically-important outage range (say

Pout > 10−10), the number n of nodes contributing to a

typical outage event is not sufficiently large and Gaussian

or Edgeworth approximations are not accurate, as Fig. 2

shows. On the other hand, as explained above, the saddle-point

method tilts the original distribution and makes the relative

error small so that its accuracy is much better at the tail.

Fig. 2 shows the saddle-point approximation when Rs ≪
R1. When D > Dmax, its accuracy is remarkably good. On the
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Fig. 2. Outage probability when Rs ≪ R1. The simulation parameters
are ν = 4, Rs = 10m, R1 = 56m, R0 = 200m, Rmax = 103m,
λ = 10−4 [nodes/m2], D1 = 22dB, Dmax = 52dB. MC denotes Monte-
Carlo simulations.

other hand, when D < Dmax, the saddle-point approximation

is not accurate since the aggregate interference is dominated

by the nearest node and the CLT-type argument is not expected

to work well in this case. Extensive Monte-Carlo simulations

confirm that arguments hold for a wide range of system

parameters.

• Case 3: Rs > R1.

When Rs > R1, i.e. a large forbidden region, n is large

in the low outage range, i.e. a typical outage event is when

the combination of interference from many nodes exceeds

the threshold, and the aggregate interference is closely ap-

proximated by a Gaussian random variable,
∑N

i=1 Ii ∼ N
[9][14]. As Fig. 3 demonstrates, the Gaussian and Edgeworth

approximations are accurate with 1 − 2 dB gap at the tail,

and the saddle-point approximation is the most accurate one

with 0.1 dB gap at the tail. The closed-form expression of the

saddle-point approximation is less accurate than the numerical

one, since the former was based on the asymptotic solution.

IV. CONCLUSION

This paper provided the accurate, closed-form outage prov-

ability expressions for CR networks, which are based on the

asymptotic analysis and the saddle-point theory and are an

important evaluation tool in the deployment of the future

CR networks. The asymptotic analysis revealed the qualita-

tive transition in the outage probability behavior around the

critical point, when the decay changes from polynomial to

exponential, thus providing a rigorous analytical foundation

for the earlier empirical observations in the literature. All

results and conclusions are validated via extensive Monte-

Carlo simulations.

APPENDIX

Proof of Theorem 1:
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Fig. 4. Geometry of non-CR and CR wireless networks

Let nD be the number of nodes in disk 1 of the radius RD

in Fig. 4.a, and n1 be the number of nodes in ring 1 which is

between the circles with radii Rs and RD in Fig. 4.b. Let ring

2 be the ring between the circles with radii RD and Rmax in

Fig. 4. Define the following probabilities: P1 = Pr{nD ≥ 1},

P2 = Pr
{

∑

i⊆ring 2 Ii > DP0

}

, P3 = Pr{n1 ≥ 1}. The non-

CR probability can be now expressed as:

Pc = P1 + (1− P1)P2

From the Poisson point process, P1 = 1− exp(−λπR2
D), and

from Theorem 1 in [5], as D → ∞,

(1− P1)P2/P1 = o(1) (10)

The CR outage probability can be expressed as:

Pout = P3 + (1 − P3)P2

Since D = d·Dmax, one obtains P3 = 1−exp[−λπR2
D(1−

d2/ν)]. When d < 1 and D → ∞, the limit of the ratio of

the CR and non-CR outage probabilities can be evaluated as

follows:

lim
D→∞

Pout

Pc
= lim

D→∞

(

P3

P1
+

(1− P3)P2(1− P1)

P1(1− P1)

)

(11)

×
(

1 +
(1− P1)P2

P1

)−1

= (1− d2/ν)

from which (5) follows. �

Proof of Corollary 1:

From [[5] Theorem 1], when D → ∞,

Pc = N0D
−2/ν · (1 + o(1)) (12)

where N0 = πλR2
0. When d < 1 and D → ∞, one obtains

from (5) and (12),

Pout = N0(D
−2/ν −D−2/ν

max ) · (1 + o(1)) (13)

where Dmax = D/d. On the other hand, using the Poisson

point process probabilities when d < 1,

Pni = N0(D
−2/ν −D−2/ν

max ) (14)

Comparing (13) and (14), when d > 1 and D → ∞, Pout =
Pni · (1 + o(1)). �

Proof of Theorem 2:

The following lemma summarizes the main saddle-point ap-

proximation results and is instrumental for the further analysis.

Lemma 1: Let Y1, · · · , Yn be independent and identically

distributed (i.i.d) random variables with the Moment Genera-

tion Function (MGF) M (θ) with sup{θ : M (θ) < ∞} = τ2,

and Sn =
∑n

i=1 Yi, where n is a Poisson random variable

with mean υ with the MGF

Mc(θ) = E [exp(θSn)] = exp {υ [M (θ)− 1]} (15)

where the subscript c stands for compound.

When M (θ) is finite for θ < τ2 with τ2 > 0, and M (θ) →
∞ for θ → τ2, then, the probability of that Sn is greater than

or equal to threshold s is

Pr (Sn ≥ s) = Q(RL)
{

1 +O[ρc4(θ̂)]
}

(16)

where θ̂ is the saddle point which is the solution of υM ′(θ) =
s;

RL = R+R−1 ln(U/R)

and

ρck(θ̂) =
K

(k)
c (θ̂)

[σc(θ̂)]k
=

υM (k)(θ̂)

[υM ′′(θ̂)]k/2
.

In RL,

R = sgn(θ̂)(2θ̂s− 2υ(M(θ̂)− 1))1/2

and

U = θ̂σc(θ̂) = θ̂

√

υM ′′(θ̂)

where sgn(x) is a sign function, that is, sgn(x) = 1 for x ≥ 0
and sgn(x) = −1 for x < 0.



The proof is given in [[12], Ch.7]. �

One important property of Poisson point process is that

the number of nodes in the region S is independent with

that in any other disjoint region. Based on that, the distances

between a random picked node and the origin on a plane are

independent with each other, so that the interference powers

coming from a single node without ordering are i.i.d random

variables in non-fading channels.

The pdf of the interference power I coming from a single

node (without ordering) in non-fading channels is:

f(I) =

{

2
ν

I−1−2/ν

R2
max

−R2
s

R−ν
max ≤ I ≤ R−ν

s

0 otherwise
(17)

Let x1, · · · , xN be the INRs coming from a single node

without ordering after normalizing by D1, so that the pdf of

x = I/(PoD1) is

f(x) =

{

2
ν
x−1−2/ν

Nr
N

−ν/2
max ≤ x ≤ N

−ν/2
s

0 otherwise
(18)

where Nr = πλ(R2
max−R2

s) is the average number of nodes in

the ring between the circles with radii Rmax and Rs; Nmax =
πλR2

max is the average number of nodes in the disk of the

radius Rmax; Ns = πλR2
s is the average number of nodes in

the disk of the radius Rs.

The MGF of x can be expressed as:

Mx(θ) =
2

νNr

∫ N−ν/2
s

N
−ν/2
max

exp(θx) x−1−2/νdx (19)

When Dmax < ∞, we have 0 < N
−ν/2
s < ∞. Since 0 <

N
−ν/2
max < ∞, 0 < N

−ν/2
s < ∞, and 0 < exp(θx) x−1−2/ν <

∞ with N
−ν/2
max < x < N

−ν/2
s and θ < ∞, we have 0 <

Mx(θ) < ∞, and

sup{θ : Mx (θ) < ∞} = ∞ (20)

It satisfies the conditions of Lemma 1, so the saddle-point

approximation in Lemma 1 can be used.

Firstly, we find the asymptotic solution of the saddle point

θ̂ by solving NrM
′
x(θ) = d1, where d1 = D/D1. After

changing variables, the equation is d1 = p
∫ b

a exp(θx) x−pdx,

where p = 2/ν < 1, (ν > 2); a = N
−ν/2
max and b = N

−ν/2
s .

When d1 → ∞, we have θ → ∞. Using integration by parts,

the asymptotic solution is:

d1 =
p exp(θb)

θbp
[1 + o(1)] (21)

The asymptotic solution of θ̂ (keeping two terms) is:

θ̂ =
1

b
ln

(

d1b
p−1

p

)

+
1

b
ln ln

(

d1b
p−1

p

)

(1 + o(1))

= Nν/2
s (lnw + ln lnw) + o(ln lnw) (22)

where w = νd1N
ν/2−1
s /2.

Secondly, we calculate R and U . R =

sgn(θ̂)
{

2d1(θ̂ − b−1)− 2Ns

}1/2

and U = θ̂
√
d1b. Let

z =

√

2d1(θ̂ −N
ν/2
s )− 2Ns, so that

RL = z + z−1 ln

(

z−1θ̂

√

d1N
−ν/2
s

)

Thirdly, the asymptotic solution of ρc4(θ) is

ρc4(θ) =
ν

2

∫ N−ν/2
s

N
−ν/2
max

exp(θx) x3−2/νdx
[

∫ N
−ν/2
s

N
−ν/2
max

exp(θx) x1−2/νdx

]2

=
νb

2

θb2/ν

exp(θb)
[1 + o (1)] (23)

From (21),

ρc4(θ̂) =
b

d1
[1 + o (1)] (24)

and using (24) in (16), one finally obtains

Pout = Q(RL) [1 + o (1)] (25)

�
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