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On Optimum Power Allocation for the V-BLAST
Victoria Kostina and Sergey Loyka, Senior Member, IEEE

Abstract—A unified analytical framework for optimum power
allocation in the unordered V-BLAST algorithm and its compar-
ative performance analysis are presented. Compact closed-form
approximations for the optimum power allocation are derived,
based on average total and block error rates. The choice of the
criterion has little impact on the power allocation and, overall,
the optimum strategy is to allocate more power to lower step
transmitters and less to higher ones. High-SNR approximations
for optimized average block and total error rates are given. The
SNR gain of optimization is rigorously defined and studied using
analytical tools, including lower and upper bounds, high and
low SNR approximations. The gain is upper bounded by the
number of transmit antennas, for any modulation format and
type of fading channel. While the average optimization is less
complex than the instantaneous one, its performance is almost
as good at high SNR. A measure of robustness of the optimized
algorithm is introduced and evaluated. The optimized algorithm
is shown to be robust to perturbations in individual and total
transmit powers. Based on the algorithm robustness, a pre-set
power allocation is suggested as a low-complexity alternative to
the other optimization strategies, which exhibits only a minor
loss in performance over the practical SNR range.

Index Terms—Multi-antenna (MIMO) system, V-BLAST,
power allocation, performance analysis.

I. INTRODUCTION

THE V-BLAST algorithm [1] has attracted in recent years
significant attention as a signal processing strategy in

the MIMO receiver due to its relative simplicity and also the
ability to achieve, under certain conditions, the full MIMO
capacity. Unfortunately, the algorithm has a few drawbacks
as well. The optimal ordering procedure is computationally-
demanding, which is a limitation for some applications. Since
the successive interference cancellation is used, lower detec-
tion steps have on average a smaller SNR and thus produce
more errors, which further propagate to higher steps [6], [8]
so that the overall error performance may be not satisfactory,
especially if no coding is used.

A popular approach to improve the error performance of
the V-BLAST algorithm is to decrease the error rates at lower
steps by employing a non-uniform power allocation among
the transmitters1. Several techniques have been reported that
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find the transmit (Tx) power allocation that minimizes the
instantaneous (i.e. for given channel realization) total error
rate (TBER)2 of the V-BLAST, with or without the optimal
ordering [3]-[5]. The approximate solutions for the instanta-
neous Tx power allocation have also been found [3]-[5], based
on various approximations. In [2], the instantaneous BLER2

(rather than the TBER) is considered as an optimization
criterion, and the optimum Tx power allocation is found
numerically for the V-BLAST with two transmitters. Although
the instantaneous power allocation techniques proposed in [2]-
[5] do demonstrate a few dB performance improvement over
the original (unoptimized) V-BLAST, they also add consider-
ably to the system complexity, since new feedback session and
power reallocation are needed each time the channel matrix
changes; the instantaneous per-stream (transmitter) SNRs also
need to be sent to the Tx end. A less complex approach is
to use an average rather than instantaneous optimization, i.e.
the optimum power allocation is found based on the average
error rate (BLER or TBER). Since this ignores the small-
scale fading, only occasional feedback sections and power
reallocations are required, when the average SNR changes,
and only the average SNR needs to be fed back to the Tx
end. We adopt the latter approach in the present paper, but
also study some performance measures of the instantaneous
optimization for comparison purposes. We show that the
average optimization provides almost the same performance
improvement as the instantaneous one at high SNR, but at
much smaller complexity penalty. The unordered V-BLAST
is used as a baseline for optimization since (i) the optimum
power allocation is considered as an alternative to the opti-
mal ordering, and (ii) the optimal ordering presents serious
difficulties for analytical performance evaluation, especially
when no approximations are used [8],[16]. Similar approach
has been used in [6], where the optimum power and rate
allocation technique, based on minimizing the average error
rate for fixed total data rate, has been proposed. However, only
numerical techniques have been used there to find the optimum
power and rate allocation, and also to evaluate the performance
of the optimized system. On the contrary, we develop an
analytical approach to the optimization of the V-BLAST power
allocation3 in the present paper, which provides more insight
and is also less demanding in terms of computational power. In
several cases, the developed high-SNR approximations provide
reasonable accuracy in the whole useful range of SNR.

2 The TBER is defined as the error rate at the output stream to which all
the individual sub-streams are merged after the detection [8]. Thus, it takes
into account the actual number of errors at the transmitted symbol vector.
The block error rate (BLER) is defined as the probability to have at least one
error at the detected Tx symbol vector [8]. It does not take into account the
actual number of errors, but only the fact of their presence.

3but not rate, which applies to systems with power control only and a fixed
constellation. Some of our results, which are constellation-independent, can
also be extended to variable-rate systems.
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Performance evaluation of the optimized systems has been
done in [2]-[6] through simulations, by comparing optimized
and non-optimized error rate curves, and it was noted that the
optimum power allocation gives a few dB gain in terms of the
SNR. We present here an analytical performance evaluation of
the optimized system via a rigorous definition of the SNR gain
of the optimization and via a measure of robustness, in addi-
tion to the traditional error rate analysis. It is shown that the
SNR gain of the optimum power allocation cannot exceed m
(the number of transmitters). Additional properties of the gain,
including compact high and low-SNR approximations, are also
given. Since both the TBER and the BLER are widely used
in the current literature as performance measures, we employ
both of them and also provide a comparative analysis, which
reveals many similarities and a few differences. Specifically, it
is demonstrated that the TBER-based optimization results in
the same performance as the BLER-based one, with the latter
being more suitable for analytical techniques since it does
not require explicit characterization of the error propagation
effect. The impact of perturbations in the individual and total
Tx powers on the performance of the optimized system is
studied using a measure of robustness. It is demonstrated that
the optimized system is robust to such perturbations, which
also indicates that the closed-form approximations for the
optimum power allocation can be used without noticeable
loss in the performance. Based on this, a pre-set power
allocation is suggested as a low-complexity alternative to
other optimization strategies. Due to the robustness of the
proposed power allocation, it is expected that a significant
portion of the theoretically-predicted gain can also be achieved
in practice, even when a fixed set of discrete power levels is
used (as in 2G and 3G systems) instead of continuous power
control. Analytical results and conclusions are validated via
simulations.

Overall, this paper presents a unifying analytical framework
for optimization and performance analysis of the optimized
unordered V-BLAST, and comparative study of various op-
timization strategies. The major contributions are compact
closed-form approximations of the optimum power allocation,
a rigorous definition and analysis of the SNR gain of optimiza-
tion, and a definition and analysis of a robustness measure of
the optimized algorithm.

The paper is organized as follows. Section II introduces
the basic system model and gives a brief review of the
relevant error rate results [6],[8], and also presents some
additional expressions, which facilitate the optimization and
the performance analysis. Section III states and solves the
optimum power allocation problem for various optimization
criteria (TBER/BLER, average/instantaneous), and studies the
properties of the solutions. Section IV introduces and studies a
robustness measure of the optimization algorithm. Sections V
analyses the SNR gain of the optimization defined in several
ways. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND ERROR RATES

The following standard baseband discrete-time MIMO sys-
tem model is employed,

r = HAs + ξ =
∑m

i=1
hi
√

αisi + ξ (1)

where s = [s1, s2, ...sm]T and r = [r1, r2, ...rm]T are the
vectors representing the Tx and Rx symbols respectively, “T”
denotes transposition, H = [h1,h2, ...hm] is the n×m matrix
of the complex channel gains between each Tx and each Rx
antenna, where hi denotes i-th column of H, n and m are the
numbers of Rx and Tx antennas respectively, n ≥ m, ξ is the
vector of circularly-symmetric additive white Gaussian noise
(AWGN), which is independent and identically distributed
(i.i.d.) in each receiver4, A = diag

(√
α1, . . . ,

√
αm

)
, where

αi is the power allocated to the i-th transmitter. For the
regular (unoptimized) V-BLAST, the total power is distributed
uniformly among the transmitters, α1 = α2 = ... = αm = 1.
In the optimized system, αi are chosen to minimize the total
BER or the BLER, either average or instantaneous. Since we
rely on the BLAST error rate performance analysis in [6]-
[8], we also adopt the same basic assumptions: the channel
is quasistatic frequency-flat i.i.d. Rayleigh fading, the Tx
signals, noise and channel gains are independent of each
other; perfect channel knowledge is available at the receiver;
there is no performance degradation due to synchronization
and timing errors. Unless otherwise indicated, we consider
BPSK modulation. Throughout the paper, we assume that the
channel is a full-rank one, which is required for the V-BLAST
to operate. If this is not the case, some design changes are
required (e.g. changing the antenna array geometry, decreasing
(increasing) the number of Tx (Rx) antennas, etc.).

The detection of a Tx symbol vector in the standard V-
BLAST algorithm proceeds in steps (i.e. the i-th transmitter
symbol is detected at step i) and includes 3 major procedures
at each step: 1) interference cancellation from already de-
tected symbols, 2) interference nulling from yet-to-be-detected
symbols, 3) optimal ordering (based on after-detection SNR).
A more detailed description of the algorithm can be found
elsewhere [1]. Following [6],[8], we consider the un-ordered
V-BLAST in the present paper. This allows performance
evaluation and optimization to be carried out analytically and
in closed-form. The optimum power allocation is considered
as a low-complexity alternative of the optimal ordering, which
results in almost the same performance.

Analytical closed-form error performance evaluation of the
un-ordered V-BLAST in uncorrelated Rayleigh fading channel
have been reported in [6],[8]5. Below we outline the major
results and extend them so that they can be used as a
tool for the optimum power allocation. Following [8], BPSK
modulation is assumed for simplicity, although the results
below can also be generalized to other modulation formats (e.g
M-QAM [6]), which results, however, in significantly more
bulky expressions.

A. Block Error Rate

The BLER is defined as a probability of having at least one
error in the detected Tx symbol vector, which can be expressed

4the case of unequal noise power per Rx can also be considered within the
present framework, by properly re-defining A.

5While [6] considers the QR-based V-BLAST, it can be shown that its
performance is identical to the regular (zero-forcing successive interference
cancellation) V-BLAST [14], [8].
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as [6]-[8],

PB = 1 −
m∏

k=1

(1 − Pei) (2)

where Pei = Pe (γi) is the instantaneous, i.e. for given channel
realization, conditional (no errors at the previous steps) error
rate at step i, γi is the after-processing instantaneous SNR
at step i.The BLER is relatively easy to analyze as it does
not require explicit error propagation characterization. The
average (over all channel realizations) BLER PB can be
expressed in a similar way [6]-[8],

PB = 1 −
∏m

i=1
(1 − P ei) (3)

where P ei = 〈Pei〉H is the average conditional error rate at
step i, which is the same as the average error rate with (n−m+
i)-th order maximum ratio combining (MRC), and is known
in closed form for many modulation formats [18]. Specifically,
for BPSK modulation,

P ei = P
MRC

(n−m+i) (αiγ0) =

=
[
1−μi

2

]n−m+i n−m+i−1∑
k=0

Ck
n−m+i−1+k

[
1+μi

2

]k (4)

where

μi =
√

αiγ0

1 + αiγ0
, Ck

n =
n!

k!(n − k)!
,

γ0 = 1/σ2
0 and αiγ0 are the average per-Tx SNR for the

unoptimized and optimized V-BLAST, and σ2
0 is the noise

variance in each receiver.

B. Total Bit Error Rate

The TBER, i.e. the error rate in the output data stream to
which all the individual Tx streams are merged, is given by

Pet =
1
m

m∑
i=1

Pui, (5)

where Pui = Pui (γ1 . . . γi) is the unconditional error prob-
ability at step i, which includes the errors propagating from
the preceding steps. To account for different combinations of
errors in the first i-1 steps, the error vector is introduced:
Ei−1 = [e1, e2 . . . ei−1], where ek = ŝk − sk represents
demodulation error at step k, ek ∈ {0,±2}, and ŝk denotes
the symbol demodulated at step k. Pui can then be expressed
as:

Pui =
∑
Ei−1

Pei|Ei−1PEi−1 , (6)

where Pei|Ei−1 = Pei|Ei−1 (γi) is the probability of error at
i-th step conditioned on the error vector Ei−1, and PEi−1 =
PEi−1 (γ1 . . . γi−1) is the probability that such error vector
occurs, which can be expressed as:

PEi−1 =
i−1∏
k=1

Pr {ek|Ek−1},

Pr{ek|Ek−1} =
{

Pek|Ek−1 , ek �= 0
1 − Pek|Ek−1 , ek = 0

(7)

Rather than considering the TBER as a sum of uncondi-
tional BERs Pui as in (5) [8], where each Pui includes the
errors propagating from steps 1 to i−1, the sum in (5) can be
regrouped to emphasize the errors that occurred for the first
time at step i and then propagated further to steps i+1, . . . , m.
To this end, let us regroup the error vectors by the position of
the first error, i.e. group i includes all error vectors that can
be written as Ẽj−1 = [0, . . . 0,±2, ei+1 . . . ej−1] .The TBER
can then be written as

Pet = 1
m

m∑
i=1

aiPei

i−1∏
k=1

(1 − Pek),

ai = 1 + Pei+1|±2+

+
m∑

j=i+2

∑
[ei+1...ej−1 ]

Pej |Ẽj−1

j−1∏
k=i+1

Pr
{
ek|Ẽk−1

}
,

am = 1

(8)

where ai describes the after-effects of the error that first
occurred at step i. If there were no error propagation, then all
ai = 1; the error propagation effect increases ai, resulting in
higher TBER. In many cases (i.e. intermediate to high SNR),
(8) is easier to deal with than (5)-(6), since simple but accurate
approximations are straightforward to obtain.

Note that (5)-(8) hold for both instantaneous and average
error rates. In the latter case, similarly to [8], the average step
BER conditioned on Ei−1 is:

P ei|Ei−1 = P
MRC

(n−m+i)

(
γeff

i

)
,

γeff
i = αi

|Ei−1Ai−1|2 + σ2
0

,

(9)

where the unequal power distribution is taken into account
by using Ai−1 = diag

(√
α1, . . . ,

√
αi−1

)
, and γeff

i is
the “effective step SNR”, which includes propagating errors
from the past decisions as interference. Finally, the average
TBER can be evaluated using (9) in (5)-(8). If there is no
error in the earlier decisions, γeff

i = αi

/
σ2

0 = αiγ0. At
intermediate to large SNR, earlier errors greatly reduce γeff

i

since |Ei−1Ai−1| >> σ0.
To find the instantaneous TBER, we need to evaluate

Pei|Ei−1 . This can be accomplished by considering the deci-
sion variable at step i (after the interference cancellation and
nulling),

r̂i = w+
i hi

√
αisi + w+

i

∑i−1

j=1
hj

√
αjej + w+

i ξ (10)

where + denotes Hermitian conjugate, wi are the optimum
combining weights that completely eliminate the inter-stream
interference from yet-to-be-detected symbols and maximize
the output SNR [8]. For the binary decision rule applied to r̂i,
one obtains:

Pei|Ei−1 = 1
2P (Re {r̂i} > 0|si = −1,Ei−1)

+ 1
2P (Re {r̂i} < 0|si = +1,Ei−1) =

= 1
2Q
(
Re
{
w+

i hi
√

αi − w+
i

∑i−1
j=1 hj

√
αjej

})
+ 1

2Q
(
Re
{
w+

i hi
√

αi + w+
i

∑i−1
j=1 hj

√
αjej

})
, (11)
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where Q(x) =
√

2π
−1 ∫∞

x
e−t2/2dt is the Q-function6. The

instantaneous TBER is obtained by substituting (11) into (5)-
(8).

C. Average Error Rates in High SNR Region

An accurate high-SNR approximation of (3) can be obtained
by approximating P ei and keeping only the leading term in
each αi,

PB (α) ≈
m∑

i=1

P ei ≈
m∑

i=1

Ci

(4αiγ0)
n−m+i , (12)

where Ci = Cn−m+i
2(n−m+i)−1. Due to increasing diversity order

with step number in un-optimized V-BLAST (α1 = α2 =
... = αm = 1), the average BLER is well approximated by
the first step BER [8],

PB ≈ P e1 for γ0 >> 1, (13)

As we demonstrate below, this approximation also holds for
the optimized system (see section III-B).

Using (8), the high-SNR approximation of the average
TBER for the un-optimized systems is as follows [8]:

P et ≈ a1
m P e1,

a1 = 1 + P e2|±2 +
m∑

i=3

∑
[e2...ei−1]

P
ei|Ẽi−1

i−1∏
k=2

Pr
{
ek|Ẽk−1

}
,

P ei|Ẽi−1
≈ P

MRC

(n−m+i)

(∣∣∣Ẽi−1

∣∣∣−2
) ,

(14)
where only the error patterns with an error at 1st step,
Ẽi−1 = [±2, e2 . . . ei−1], are considered; ā1 quantifies the
contribution of the error propagation effect to the TBER and
is independent of the average SNR. This expression will be
instrumental in comparing the impacts of error propagation on
the performance of the non-optimized and optimized systems.
Since the 1st step BER has a dominant effect on the overall
performance in the high SNR region, whether TBER or BLER
is used as a performance criterion, it follows then that optimum
power allocation algorithm should reduce the 1st step BER
by allocating most of the power to the 1st transmitter. As we
demonstrate below, this is indeed the case.

For the optimized system at high SNR, the average TBER
can be well approximated by using the high-SNR approx-
imations of P ei (similarly to the average BLER approxi-
mation) and the approximated error propagation probability,
P ei|Ei−1 ≈ 1/2 if |Ei−1|2 �= 0 ; see section III-C for further

details.

III. OPTIMUM POWER ALLOCATION

Under the total Tx power constraint, individual (per Tx or
stream) powers can be optimally allocated in such a way as
to minimize the TBER or the BLER, either instantaneous or
average. While the instantaneous (i.e. for each channel real-
ization) power allocation requires an instantaneous feedback
in order to supply the Tx end with the optimum allocation

6Due to the fast-decaying behavior of the Q-function, Pei|Ei−1 is well
approximated by Pei|Ei−1 ≈ Q (xmin) /2,

xmin = min

[
Re

{
w+

i hi
√

αi ± w+
i

∑i−1

j=1
hj

√
αjej

}]

for each channel realization, the average power allocation
does not require instantaneous feedback (only the average
SNR needs to be known at the Tx end) and hence does not
incur significant penalty in complexity. Below we provide a
comparative analysis of the optimizations based on the BLER
and the TBER, both instantaneous and average.

The problem of optimum power allocation can be formu-
lated as follows:

minimize P (α) , subject to
m∑

i=1

αi = m, (15)

where P is the objective function equal to the BLER or the
TBER, either instantaneous or average, whose argument is the
power allocation coefficients α = [α1, α2, ...αm]T 7. For the
non-optimized system (uniform power allocation), α1 = α2 =
... = αm = 1.

A. Uniqueness of the Solution

The optimization problem in (15) is a convex one and
thus has a unique (global) solution when the BLER is used
as the objective, P (α) = PB(α) or P (α) = PB(α). The
uniqueness of the solution for P (α) = PB(α) has been
demonstrated in [6]8. In the case of the instantaneous BLER,
P (α) = PB(α), the uniqueness follows from the same
argument since Pei = Pe (γi) is a convex function of γi for
BPSK modulation. This significantly simplifies the analysis
since any found solution is automatically the global minimum.

If the instantaneous TBER is used as an objective, it can
be shown through numerical evidence that it can be non-
convex, depending on a channel realization, i.e. some channel
realizations produce convex P (α) = Pet(α), and some –
non-convex, so that the uniqueness of the solution cannot
be guaranteed. While the problem can be solved numerically
anyway, care should be taken when choosing a starting point
in the numerical algorithm as it affects to which particular
local minimum the algorithm will converge. It may also affect
the convergence speed of the algorithm. To ensure that the
numerical algorithm employed finds the global optimum in
most cases, we use in our numerical simulations below several
starting points, which results in several local minima, and
choose the best one.

In the case of average TBER, the uniqueness of the solution
is an open problem. Extensive numerical evidence indicates
that it is unique (i.e. only one global minimum). At high
average SNR, the uniqueness follows from the high-SNR
approximation of the TBER, which is convex (see subsection
III-C for details).

B. Power Allocation Optimum in the Average BLER

In this case, the average BLER is the objective function
in (15), P (α) = PB(α). Using the Lagrange multiplier

7It is also a function of γ0 and, in the case of instantaneous optimization,
of the instantaneous per-stream SNRs

8while QAM modulation has been considered in [6], the argument there
holds true for BPSK modulation as well, by noting that Q(

√
γ) is a convex

function. We note that this result also extends, in a non-trivial way, to any
1-D or 2-D constellation, and also to some multi-dimensional constellations
[15].
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technique for constrained optimization with the following
Lagrangian9,

L (α) = PB (α) + λ
(∑m

i=1
αi − m

)
, (16)

the optimum α are found from

∂L (α)/∂αi = ∂PB (α)
/
∂αi + λ = 0, i = 1...m (17)

where λ ≥ 0 is the Lagrange multiplier, which is found
from the total power constraint,

∑m
i=1 αi(λ) = m, i.e. (17)

and the constraint are considered together as a system of
equations10. Since the objective is convex, the solution is the
global minimum. Using (3) and after some manipulations, (17)
reduces to,

∂ ln(1 − P ei)
∂αi

= − 1
1 − P ei

∂P ei

∂αi
=

λ

1 − PB

, i = 1...m

(18)
Note that the optimality conditions (18) do not require all P ei

be equal; rather, their normalized derivatives should be equal.
Unfortunately, (18) together with the total power constraint
is a system of nonlinear transcendental equations, which in
general cannot be solved analytically in closed form. Thus,
some approximations are required.

For high SNR, (18) can be approximated as

∂ ln(1 − P ei)
∂αi

≈ −∂P ei

∂αi
≈ λ, i = 1...m (19)

so that the optimality requires all the derivatives ∂P ei/∂αi be
equal, which is what one would intuitively expect based on
the total power constraint.

A compact and accurate analytical solution of (19) can be
obtained using the Newton-Raphson method and the approx-
imation in (12) (see Appendix A for details):

αopt
i ≈ mα̃i

m∑
k=1

α̃k

,

α̃i ≈ bi

(4γ0)
i−1

n−m+i+1

(
1 − b2

mc1 (4γ0)
1

n−m+3

)ci

,

(20)

where the numerical coefficients bi, ci are given by

bi =
(

Ci (n − m + i)mn−m+2

C1 (n − m + 1)

) 1
n−m+i+1

,

ci =
(n + 1)!

(n − m + 1)! (n − m + i + 1)

(21)

The first equality in (20) assures the total power constraint
holds for the approximated allocation. Noting that b1 = m,
(20) can be further approximated as,

αopt
1 ≈ m −

m∑
i=2

αopt
i , αopt

i ≈ bi

(4γ0)
i−1

n−m+i+1

, i = 2 . . .m,

(22)
i.e. almost all the power goes to the 1st Tx as γ0 → ∞, and
αopt

1 is quite close to m for finite but large γ0. Referring to

9similar approach to optimization of power allocation has been developed
in [19].

10strictly speaking, an additional constraint αi ≥ 0, i = 1...m, is required.
However, since our solutions always satisfy it, we do not include it explicitly.

(13), this is explained by the fact that 1st step has lowest
diversity order (n−m+1) and hence its error rate dominates.
The power allocation algorithm tries to reduce the BLER by
allocating more power to the 1st stream and thus reducing the
1st step BER. It should be noted that while the approximation
in (20) is more accurate than that in (22), the latter is simpler
and more insightful.

Example: the average BLER-based optimum power alloca-
tion for the 2 × 2 V-BLAST,

αopt
1 ≈ 2 − αopt

2 , αopt
2 ≈ 3

√
6/γ0, (23)

As expected, optimization reduces the dominating 1st step
BER,

P
opt

e1 ≈ 1/(8γ0), (24)

if compared to the unoptimized one, P e1 = 1/(4γ0) [8]. The
low power allocated to the 2nd transmitter, αopt

2 , however,
results in decreased diversity order at the 2nd step,

P
opt

e2 ≈ 3(
4αopt

2 γ0

)2 ≈ 3

16 3
√

36γ4/3
0

, (25)

so that the optimized 2nd step BER is higher compared to that
of the un-optimized system, P

opt

e2 � P e2 ≈ 3/(4γ0)
2. The 1st

step BER is therefore reduced at the price of increased 2nd

step BER, but the dominant effect of 1st step BER is still
preserved in the V-BLAST with optimum power allocation,
since P

opt

e1 � P
opt

e2 at sufficiently high SNR. However, this
region is achieved at significantly higher SNR ( 3

√
γ0 � 1)

compared to the un-optimized system (γ0 � 1). Note also
that P

opt

e2 exhibits a fractional diversity order. Using (12) and
(22), it is straightforward to show that P

opt

e1 is the dominant
contribution to P

opt

B in the general case as well.
Fig.1 demonstrates that the approximate solution for the

optimum power allocation is quite accurate at moderate to
high SNR.

C. Optimum Power Allocation Using the Average TBER

Similarly to the BLER-based optimization, the average
TBER can be used in (16) as an objective function in the
Lagrange multiplier technique to find the optimum power
allocation. As it was indicated above, the average TBER
is convex in α at high SNR; numerical evidence also sug-
gests that it is convex at low to moderate SNR. Hence,
the optimum power allocation is unique for arbitrary SNR.
Closed-form analytical solution is not feasible due to the
complexity of the problem11. Since the problem is convex,
efficient numerical algorithms can be employed to solve it
[9]. At high SNR mode, an accurate approximate closed-form
solution can be obtained using the Newton-Raphson method.
As in the case of BLER-based optimization, the 1st step
BER has the dominant effect on the overall performance [8],
and hence the optimization algorithm will have to reduce the
1st step BER by allocating most of the power to the first
transmitter, i.e. αopt

1 → m, αopt
2 , . . . , αopt

m → 0 as γ0 → ∞.
Therefore, for the V-BLAST with “close to optimum” power
allocation at high SNR, γeff

i , i = 2, . . . , m, are small, and

11as in the previous case, the Lagrange equations are the system of non-
linear transcendental equations
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Fig. 1. Optimum power allocation for 3x3 V-BLAST with BPSK modulation
for various optimization strategies.

the probability of error propagation can be approximated as
P ei||Ei−1| ≈ 1/2 if |Ei−1|2 �= 0. Using this, (8) can be

approximated as

P et (α) =
1

2m

m∑
i=1

(m − i + 2)P ei

≈ 1
2m

m∑
i=1

(m − i + 2)Ci

(4αiγ0)
n−m+i

(26)

Since P et(α) is convex (because each term in the sum is
convex), the solution to the optimization problem is the unique
global minimum. The solution is similar to that for the BLER-
based optimization, so that (22) can be used with bi given by

bi = n−m+i+1

√
Ci (n − m + i) (m − i + 2)mn−m+2

C1 (m + 1) (n − m + 1)
, (27)

and, as before, b1 = m, which means that almost all the
power goes to the 1st Tx at high SNR. The difference in the
solution for the BLER and TBER-based optimizations is due
to the fact that, in the latter case, the error propagation gives a
contribution which does not appear in the former case. Since
the probability of error propagation is small [8], this difference
in the solutions is not large, as we demonstrate below.

Fig.1 compares the approximate solutions above with the
accurate numerical ones. The approximate solutions are al-
ready accurate for intermediate to large SNR, γ0 ≥ 5dB.
Moreover, the BLER and TBER-based optimum power al-
locations are very close to each other and hence the choice
of the optimization criteria does not affect significantly the
final result. This is not a surprise as the 1st step error rate is
dominant, due to the lowest diversity order, in terms of both
the average BLER and TBER and hence most of the total
power goes to the 1st transmitter, regardless of the criterion.

D. Instantaneous versus Average Power Allocation

In the case of instantaneous optimization, the best power
allocation is found for each channel realization. Since an
analytical solution is either not feasible or too complicated,
with little insight available, a numerical algorithm is used
to minimize the instantaneous TBER (see (11), (7), (8)) or
BLER (see (2)), subject to total power constraint, for every
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Fig. 2. Average TBER of 3x3 V-BLAST with BPSK modulation for various
optimization strategies.

channel realization H. Since Pet and PB are functions of
instantaneous per-channel SNRs, the instantaneous feedback
of these SNRs to the Tx end is required. As indicated above,
the optimum allocation in terms of the BLER is unique for
a variety of modulation formats. This uniqueness facilitates
numerical evaluation as there is only one global minimum
and no local minima. In the case of instantaneous TBER, the
solution is not unique so we use several starting points for the
numerical algorithm and choose the best solution to insure
that the global optimum is found for most of the channel
realizations.

The average TBER of instantaneous and average power
optimizations is shown in Fig.2. Clearly, the results are quite
close to each other, especially for γ0 ≥ 20dB. Essential differ-
ence between these two is that the instantaneous optimization
performs better in terms of instantaneous TBER, especially
for some channel realizations that do not favor the average
power allocation. However, the cost of using the instantaneous
optimization is higher as each channel instant requires its own
optimization and feedback session. On the other hand, the
average optimization requires only one computation of αopt

as long as the average SNR stays the same. Furthermore, no
computationally-expensive numerical optimization is required
as the approximate expressions above provide good accuracy,
and only γ0 needs to be fed back to the transmitter. Thus, the
main conclusion here is that the average power optimization
can be used instead of instantaneous one at high SNR without
any visible penalty in the average error rate, but with much
smaller complexity.12

IV. ROBUSTNESS OF THE OPTIMUM POWER ALLOCATION

When the optimization algorithm is implemented in a
practical system, there are various sources of inaccuracies and
perturbations, which may affect its performance but which
were ignored in the idealistic analysis above. These may

12An additional advantage of the average or pre-set (see section IV) power
allocation is a simpler design of a power amplifier. Note, however, that all
the power allocation algorithms discussed in this paper are compatible with
2G and 3G systems, which employ dynamic power control [20][21]. The
proposed algorithms can also accommodate a number of fixed (discrete) power
levels, which are used in 2G and 3G systems instead of continuous power
allocation, because of algorithms’ robustness, as discussed in section IV (see,
for example, Fig. 4).
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include numerical inaccuracies of the optimization (due to,
for example, limited numerical precisions, i.e. fixed point
arithmetic devices, various approximations, etc.), inaccurate
or outdated estimate of the average SNR, which result in
inaccuracies in the optimum power allocation coefficients
αopt

i . They may also result from using a finite set of fixed
(discrete) power levels instead of continuous power control, as
in 2G and 3G systems. A robust algorithm, which is insensitive
to all these factors, is desired from the practical perspective.

In order to estimate the impact of these factors on the system
performance, let us introduce the measure of robustness δ
(sensitivity) of the average error rate (either BLER or TBER)
with the optimum power allocation, P = P (αopt), to the
changes in system parameter u,

δ =
∣∣∣∣ΔP/P

Δu/u

∣∣∣∣ , (28)

where u may represent the total Tx power, u =
∑m

i=1 αi, or
the power allocated to any of the transmitters, u = αi. The
measure of robustness (28) is the ratio of the normalized vari-
ation in the performance ΔP/P to the normalized variation in
the system parameter Δu/u, which causes this performance
variation. Note that the use of normalized differences in
the definition is essential as it makes the measure to be
independent of the scale. The algorithm is robust to variations
in the system parameter u if relatively small change in u leads
to relatively small change in the error rate P , i.e. when δ is
small or moderate number.

When both the perturbation in the system parameter Δu and
in the system performance ΔP are small enough, one can use
the derivatives in (28) instead of the finite differences,

δ ≈ δ′ =
∣∣∣∣∂P

∂u

u

P

∣∣∣∣ , (29)

so that ∂P/∂u determines the algorithm robustness, and δ′

serves as a measure of local robustness. It follows from (17)
that ∂P

/
∂αi = ∂P

/
∂u = −λ, so that

δ ≈ δ′ =
λu

P
, (30)

Thus, the Lagrange multiplier λ, evaluated at the optimum
point and appropriately normalized, is the measure of local
sensitivity13 of the average error rate to variations in the
total or individual Tx power. The normalized variation in
the average error rate can be evaluated from the normalized
variation in the system parameter using (30),∣∣ΔP

∣∣
P

= δ
|Δu|

u
≈ δ′

|Δu|
u

, (31)

For the average BLER-based optimization at high SNR, the
Lagrange multiplier can be approximated as (see Appendix
A),

λ ≈ n − m + 1
mn−m+2

C1

(4γ0)
n−m+1 , (32)

and from (12), (13), (22), the average optimized BLER is,

PB

(
αopt
) ≈ C1

(4mγ0)
n−m+1 (33)

13an extended discussion of this issue in the general framework can be
found in [9].

For small variations in the system parameter, u ≈ m ≈ α1,
so that the robustness measure with respect to the variations
in the total or 1st transmitter power is

δ′1 ≈ n − m + 1, (34)

i.e. equal to the diversity order of the system. The algorithm is
locally robust as long as (n−m) is not too large; δ′1 ≈ 1 and
consequently

∣∣ΔP
∣∣ /P ≈ |Δu| /u if n = m. This result is a

consequence of the fact that the high-SNR average BLER is
dominated by the 1st step BER (see (33)) so that its diversity
order and hence the sensitivity to the Tx power is minimum
when n = m; increasing (n−m) results in increasing diversity
order and hence in increasing sensitivity to the Tx power.
Thus, the beneficial effect of higher diversity order with more
Rx antennas is accompanied by the negative effect of higher
sensitivity to variations in system parameters.

The robustness measure with respect to α2...αm can be
approximated as

δ′i ≈
n − m + 1

m

bi

(4γ0)
i−1

n−m+1+i

� 1, i = 2...m, (35)

where bi is given by (21). Thus, the algorithm is also robust in
terms of α2, . . . , αm at high SNR. Furthermore, higher steps
exhibit better robustness since, comparing (34) and (35), δ′1 >
δ′i, i = 2...m. It should be noted that this robustness of the
algorithm is an unexpected by-product, which was not a goal
of the original design.

For the TBER-based optimization, (34) and (35), and hence
the conclusions above also hold true; bi is given by (27) in
this case. As an example, Fig. 3 shows the average TBER
versus α1 for 2x2 V-BLAST. When α1 is far away from αopt

1 ,
the slope of the curves is quite steep and determined by the
diversity order of the dominating step; thus, allocating too
little power to the 1st Tx increases the 1st step BER, making it
dominant, whereas giving too much power to the 1st Tx boosts
the 2nd step BER. Note that the slope is steeper in the domain
of the dominating 2nd step BER, apparently because of its
higher diversity order. But as the power allocation algorithm
attempts to balance these two extremes and approaches αopt

1 ,
the curves become very flat, confirming local (in the vicinity
of αopt

1 ) insensitivity of the TBER to variations in α1.
Thus, small inaccuracies in αopt do not affect the average

error rate significantly. This hints at the conclusion that the
approximate closed-form αopt will result in almost the same
average error rate as the accurate numerical one. Fig.2 con-
firms this expectation: there is no performance gap between
these two. Therefore, the closed-form approximate solution
can be used instead of numerical optimization algorithm for
the whole range of γ0, and not only for γ0 > 5dB, where the
closed-form solution is more accurate (see Fig.1). The choice
of the optimization criteria (BLER or TBER) does not affect
significantly the final result either (since they are indistinguish-
able on Fig.2, a single curve represents both). Thus, BLER or
TBER can be used equally well as a performance criterion for
optimization. From the analytical viewpoint, the BLER (either
instantaneous or average) is more advantageous choice since
it is convex and has a simple closed-form. It should also be
remarked that the effect of the error propagation, which is
what differentiates the TBER from the BLER, does not have
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any significant impact on the optimum power allocation, since
both the TBER and BLER are dominated by the 1st step error
rate [8].

Small sensitivity of the BLER/TBER to α suggests even
further simplification in the optimization algorithm: since αopt

changes slowly with the SNR (see Fig.1), we can pick up
only one fixed (pre-set) value of α and still get performance
improvement for a wide range of γ0. Such simplified al-
gorithm does not require any feedback at all, and yet, as
Fig. 4 demonstrates, it attains almost the same performance
as the dynamically optimized system. In this example, the
3x3 V-BLAST with α = [2, 0.6, 0.4]T is considered, and its
performance is very close to the optimized V-BLAST in the
range of γ0 = 0 . . . 35 dB. It follows that the proposed power
allocation algorithms can also accommodate a number of fixed
power levels, as in 2G and 3G systems [20][21], by quantizing
the continuous power allocation (i.e. each SNR interval gets
its own pre-set α).

It should also be noted that it is the robustness of the
algorithm that is responsible for small difference between
instantaneous and average optimization at high SNR.

The robustness considered above is local robustness, i.e.
for small variations in the vicinity of the unperturbed values

of the system parameter. When variations are not small, the
finite differences in (28) cannot be accurately approximated
by the derivatives and the approximations in (29), (30), (34),
(35) may not be accurate. In such a case, one has to consider
a measure of global robustness. To this end, let us consider
the average error rate of the perturbed system P (α; u + Δu),
where Δu is not necessarily small and u is the total Tx power.
Let αopt

Δu denote the optimum power allocation of the perturbed
system, so that the optimum allocation for the unperturbed sys-
tem is αopt

0 = αopt
Δu=0 , the optimized average error rate of the

unperturbed system is P
(
αopt

0 ; u
)
, and the optimized average

error rate of the perturbed system is P
(
αopt

Δu; u + Δu
)
. From

the general theory of convex optimization [9], the last two
quantities are related by the following global inequality,

ΔP = P
(
αopt

Δu; u + Δu
)− P

(
αopt

0 ; u
) ≥ −λΔu, (36)

where λ is evaluated at Δu = 0, and the equality is achieved
for Δu = 0. It follows that if Δu is positive, i.e. the total
Tx power is increased, the optimal value of P decreases by
no more than λΔu; if Δu is negative, i.e. total Tx power is
decreased, the optimal value of P is guaranteed to increase
by at least λ |Δu|. Dividing (36) by P , one obtains

ΔP

P
≥ −δ′

Δu

u
, (37)

where δ′ is given by (30). Therefore, δ′, which was introduced
as a measure of local robustness in (30), also serves as a
measure of global robustness in (37). Since ΔP , Δu may be
positive as well as negative (they always have opposite sign),
we re-write (37) in the form which includes only positive
terms,∣∣Δ P/P

∣∣
Δu/u

≤ δ′, Δu > 0;
ΔP/P

|Δu/u| ≥ δ′, Δu < 0 (38)

δ′ gives upper and lower bounds on the normalized variation
in the error rate due to any (not necessarily small) variation
Δu in the total Tx power, for positive and negative Δu (i.e.
increasing and decreasing the total Tx power), respectively.
Thus, when the total Tx power is increased by Δu, the
average error rate decreases by not more than δ′PΔu/u; when
the total Tx power is decreased by Δu, the average error
rate increases by at least δ′P |Δu| /u, so that the positive
effect never exceeds the negative one. Since the inequality
in (37) transforms into the approximate equality for small
perturbations (see (31)), these two effects are equal in that
case.

Clearly, the Lagrange multiplier λ plays a key role not only
in the local, but also in the global robustness. Since it is
not known in closed-form for arbitrary SNR, the high-SNR
approximation in (32) can be used with reasonable accuracy
(for γ0 > 0 dB), as Fig. 5 shows.

V. SNR GAIN OF OPTIMUM POWER ALLOCATION

In this section, we explore some properties of the SNR
gain of optimization using mostly analytical techniques, and
use numerical results only as the last resort. The analysis and
conclusions below are valid for any modulation format, unless
otherwise stated.
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The SNR gain of optimum power allocation is defined as
the difference in the SNR required to achieve the same error
rate in the optimized and unoptimized systems, i.e. from

P
(
αopt

1 , ..., αopt
m

)
= P (α, ..., α) , (39)

where P is the performance criterion, i.e. the BLER or the
TBER, either instantaneous or average; the left-hand side
represents the optimized error rate under the total power
constraint

∑m
i=1 αopt

i = m, the right-hand side represents the
error rate for the uniform power allocation, αi = α, and the
SNR gain is G = α. For the average optimization, the average
error rate is used in (39). For the instantaneous optimization,
one may use both instantaneous and average error rate in
(39). In the former case, one obtains the instantaneous gain
of the instantaneous optimization, and in the latter case, one
obtains the average gain (i.e. in terms of the average error
rate) of the instantaneous optimization. To be able to compare
the instantaneous and average optimizations below, we use
the average gain of the instantaneous optimization Ginst. It
compares to the gain of the average optimization Gav as
follows

Ginst ≥ Gav (40)

i.e. the instantaneous optimization is at least as good as the
average one. This follows from the inequality min

x
{f(x, y)} ≤

min
x

{
f(x, y)

}
, where the expectation is over y.

We consider below the SNR gain defined in terms of the
BLER and the TBER, and also compare the properties of these
two different definitions, which share many similarities.

A. BLER SNR Gain of the Optimum Power Allocation

In this section, we consider the BLER-based optimization
strategies and present universal bounds on the BLER SNR
gain, either instantaneous or average, which hold for arbitrary
modulation and fading. These results are further refined in the
case of BPSK modulation and Rayleigh-fading channel.

Theorem 1: The BLER SNR gain of optimum power alloca-
tion, either instantaneous or average, for arbitrary modulation

and fading, is bounded as follows

1 ≤ G ≤ m (41)

Proof: The key to the proof is the fact that the BLER,
either instantaneous or average, is a monotonically decreasing
function in each argument α1, ..., αm, which follows from
(2), (3), and the fact that Pei is a monotonically decreasing
function of the SNR. Based on this fact and also on the
inequality PB

(
αopt

1 , ..., αopt
m

) ≤ PB (1, ..., 1), which simply
states that the optimized system is at least as good as the
unoptimized one, the lower bound in (41) follows. Using the
monotonic-decreasing property of the BLER and the fact that
αi ≤ m, which follows from the total power constraint, one
concludes that PB

(
αopt

1 , ..., αopt
m

) ≥ PB (m, ..., m). Compar-
ing this inequality with the definition of the gain in (39) in
view of the monotonic-decreasing property of the BLER, the
upper bound follows. Q.E.D.

Below we explore the small-SNR behavior of the SNR gain
in terms of the average BLER, which is related to the lower
bound in Theorem 1, for the BLER-based optimization and
for a variety of modulation formats.

Theorem 2: Small-SNR behavior of the BLER SNR gain
for the average BLER-based optimization is as follows:

Gav → G0 ≥ 1 as γ0 → 0, (42)

where

G0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m
∑

i a2
i

(
∑

i ai)
2 , ai =

∂P ei

∂
√

αiγ0

∣∣∣∣
αiγ0=0

, coherent

m
max

i
|bi|∑

i |bi| , bi =
∂P ei

∂ (αiγ0)

∣∣∣∣
αiγ0=0

, noncoherent

(43)
and ai, bi are the coefficients at the 1st term of MacLaurin’s

series expansion of P ei. The equality in (42) is achieved, i.e.
G0 = 1, if and only if all ai or all bi are equal, for coherent
and non-coherent detection respectively.

Proof : see Appendix B.
This result is valid for a variety of modulation formats for

which the error rate admits MacLaurin’s series expansion in
SNR or

√
SNR about SNR=0. In most cases, the strict inequal-

ity in (42) holds, i.e. there is an SNR gain of optimization
even at very low SNR, since different P ei exhibit different
behavior so that the expansion coefficients are also different.
For coherent BPSK and non-coherent BFSK,

aBPSK
i = −n − m + i

2
+

1

2n−m+i

n−m+i−1∑
k=0

Ck
n−m+i+k−1

k

2k
,

bBF SK
i = aBPSK

i

/
2,

(44)
and G0 = 0.17 dB and 0.79 dB respectively for 2x2 system.
Corollary 2.1. The result in (42), (43) also applies to the

instantaneous gain of the instantaneous optimization, in which
case Pei should be used in (43) instead of P ei, and the
coefficients ai, bi and hence the gain depend on the channel
realization, as long as the derivatives in (43) exist and are not
all equal to zero simultaneously.

Corollary 2.2. The average SNR gain of the instantaneous
optimization is also lower bounded by G0 in (43), Ginst ≥
G0 ≥ 1, because of (40).
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Thus, we conclude that (42) holds for a variety of scenarios
for BLER-based optimization.

We now show that the upper bound in (41) is achieved at
high SNR.

Theorem 3: High-SNR behavior of the average BLER SNR
gain, for both instantaneous and average optimizations using
either BLER or TBER as an objective, with BPSK modulation
in Rayleigh fading channel, is as follows:

G → m as γ0 → ∞ (45)

Proof: From the high SNR approximation of the average
BLER (12) with αopt given by (22), one concludes that

PB → P e1 =

⎧⎪⎨⎪⎩ P
MRC

n−m+1 (γ0) , unoptimized

P
MRC

n−m+1 (mγ0) , optimized
as γ0 → ∞

(46)
i.e. the first step dominates for both unoptimized and op-

timized systems. Using this in the gain definition in (39),
one concludes that for the average optimization, Gav → m
as γ0 → ∞. Using (41) and (40), this also holds for the
average gain of the instantaneous optimization, Ginst → m
as γ0 → ∞. Q.E.D.

Corollary 3.1. Theorem 3 also extends to any modula-
tion/fading for which (46) holds, i.e. for which the first step
error rate dominates the average BLER at high SNR. Based
on the diversity order argument, this condition should hold for
most modulation formats in Rayleigh-fading channels.

For the average BLER-based optimization with BPSK mod-
ulation in a Rayleigh fading channel, a high-SNR approxima-
tion of the average BLER SNR gain is given by

Gav ≈ G∞
n−m+1
√

1 + cm,n (4γ0)
−1/(n−m+3)

,

cm,n =
C1 (n − m + 1) bn−m+3

2 + C2m
n−m+3

mbn−m+2
2

(47)

where G∞ = m and b2 is given by (21). This approximation
follows along the lines of the proof of Theorem 3: first, a high
SNR approximations of the average BLER of the optimized
and unoptimized systems are obtained by keeping the first
two terms of the Taylor series expansion of the exact BLER
expressions about 1/γ0 = 0; secondly, they are used in the
gain definition in (39) to obtain (47). Note that (47) reduces
to (45) for γ0 → ∞, as it should be. The convergence to the
upper bound in (45) is however slow, since the convergence
condition is n−m+3

√
γ0 >> 1.

It follows from (47) that the BLER SNR gain of the
average BLER-based optimization with BPSK modulation is
an increasing function of the average SNR in the high-SNR
range. Numerical evidence indicates that this also holds for
low to intermediate SNR, see Fig. 6. This conclusion is further
reinforced by the following Theorem.

Theorem 4: Under the total power constraint
∑m

i=1 αi = u,
where u is the total Tx power, the BLER SNR gain of BLER-
based optimization in (39), either instantaneous or average, is
a monotonically increasing function of u:

∂G

∂u
= − λ

∂PB (α . . . α)/∂α
≥ 0 (48)

Proof: see Appendix B.

B. TBER SNR Gain of the Optimum Power Allocation

In this section, we adapt the results of the previous section
to the SNR gain defined in terms of the average TBER. To
accomplish this, we will need the following generic properties
of the average TBER, which serve as a substitution to the
monotonically decreasing property of the BLER14.

Property 1. For regular (unoptimized) V-BLAST, the aver-
age TBER decreases with SNR or total Tx power,

∂P et (α, . . . , α) /∂α < 0 (49)

This property is supported by the results in [6], [8], and also by
extensive results in the literature on the error rate performance
of diversity systems with co-channel interference [10]-[13]15,
since the error propagation in V-BLAST effectively “creates”
co-channel interference and thus it is similar to diversity
combining with interference. Note that since all the Tx powers
are increased in (49) simultaneously, the effective signal-to-
interference ratio for propagating errors stays the same or
even decreases due to decrease in the probability of error
propagation [8].

Property 2. For a partially-optimized V-BLAST, in which
αopt

i are used up to the stream k¡m, the TBER decreases when
the SNR at the unoptimized streams increases:

∂P et

(
αopt

1 , . . . , αopt
k , α . . . , α

)
/∂α < 0 (50)

This property follows from Property 1 and (5), since first k
errors rates Pu1, . . . , Puk are fixed and the others are those
of the unoptimized system and behave according to Property
1, i.e. decrease with the SNR. The same reasoning also holds
for instantaneous TBER.

Property 3. For the average TBER-based optimization, the
following inequality holds,

αopt
k−1 ≥ αopt

k , k = 2...m (51)

The rationale behind this property is the fact that according to
the optimum power allocation strategy, more power is granted
to the more significant source of errors. Since lower steps
generate on average more errors due to lower average after-
processing SNR16 and the effect of error propagation, they
are allocated more power. This property is also supported
by numerical evidence. This, however, does not hold for the
instantaneous TBER-based optimization since some channel
realization may “favor” lower steps, which may thus have
higher SNR and fewer errors than higher steps, so that they
will get less Tx power.

We can now show that Theorem 1 also holds for the average
TBER SNR gain. The lower bound in (41) follows from the

14Unfortunately, the TBER is not necessarily monotonically decreasing in
α1...αm since increasing power of some transmitters at lower steps increases
inter-stream interferences to the others at higher steps due to the effect of
error propagation. Hence, the TBER may potentially increase if the error
propagation effect is strong enough.

15to the best of our knowledge, it has never been observed in the literature
that error rate may increase with SNR, even when co-channel interference is
present. This strongly supports Property 1.

16projecting out interference from yet-to-be-detected higher-step symbols
results in SNR loss. Since the dimensionality of the projected out space
decreases for higher steps, the SNR loss decreases as well.
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fact that optimization can not increase the TBER, so that
P et (αopt) ≥ P et (1, . . . , 1); using Property 1 gives the lower
bound.

To prove the upper bound in (41) we note that by Property
2 for k = m − 1, P et

(
αopt

1 , . . . , αopt
m−1, α

)
is a decreasing

function of α, and by Property 3, αopt
m−1 ≥ αopt

m ; therefore,
P et

(
αopt

1 , . . . , αopt
m−1, α

opt
m

) ≥ P et

(
αopt

1 , . . . , αopt
m−1, α

opt
m−1

)
.

Repeating this for k = m − 2, . . . , 1, one obtains

P et

(
αopt
) ≥ . . . ≥ P et

(
αopt

1 , . . . , αopt
1

) ≥ P et (m, . . . , m)
(52)

The last inequality here is due to Property 1 and αi ≤ m,
which follows from the total power constraint. Using (52) in
the gain definition in (39) and relying on Property 1, the upper
bound follows.

For the SNR gain defined in terms of instantaneous TBER
for instantaneous optimization, analytical proof of the upper-
bound in (41) presents serious difficulties, but numerical
evidence suggests that it is still valid.

Theorem 2 still holds for the average TBER SNR gain, with
the substitution of P ei → P et in (43).

Theorem 3 is no longer valid, i.e. the upper bound m is
never attained if the gain is defined in terms of the TBER.
Instead, the following holds.

Theorem 5: High SNR behavior of the average TBER SNR
gain for the average optimization is as follows:

Gav → G∞ as γ0 → ∞, G∞ = m

(
2ā1

m + 1

) 1
n−m+1

< m,

(53)
where ā1 is given by (14).

Proof: From the high SNR approximations of the average
TBER for optimized and unoptimized systems in (14) and
(26), one concludes that

P et →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ā1

m

C1

(4γ0)
n−m+1 , unoptimized

m + 1
2m

C1

(4mγ0)
n−m+1 , optimized

, as γ0 → ∞

(54)
Using (54) in (39), it follows that Gav → G∞ as γ0 → ∞.
Q.E.D.

Thus, the improvement in average TBER is less than the
upper-bound in (41). The reason for this is the increased power
of propagating errors for the optimized system, due to higher
power going to lower steps, compared to the unoptimized one.
For example, the optimum power allocation algorithm gives
most of the power to the 1st Tx trying to avoid the errors
at the 1st step. But if the error does occur at the 1st step,
its amplitude is higher than that for the unoptimized system,
which makes the error propagation effect more severe.

The high-SNR approximation in (47) holds for the TBER
SNR gain, with G∞ given by (53) and

cm,n =
C1 (m + 1) (n − m + 1) bn−m+3

2 + C2m
n−m+3

m (m + 1) bn−m+2
2

,

(55)
where b2 is given by (27).

C. Examples and Comparisons

Below we consider the 2×2 V-BLAST to get some insight.
The average BLER at high SNR is,

PB ≈

⎧⎪⎨⎪⎩ P e1 (γ0) ≈ 1/ (4γ0) , unoptimized

P e1 (2γ0) ≈ 1/ (8γ0) , optimized

(56)

so that Gav = 2 (3 dB), which is the same as upper-bound
in (41). This is not the case for the average TBER SNR gain.
At high SNR, the probability of error propagation for the
unoptimized V-BLAST is P e2|2 ≈ 1/5 [8], and P e2|2 ≈ 1/2
for the optimized V-BLAST. The average TBER is,

P et ≈ P e1

(
1 + P e2|2

)
/2 ≈

≈

⎧⎪⎨⎪⎩ 3P e1 (γ0) /5 ≈ 3/ (20γ0) , unoptimized

3P e1 (2γ0) /4 ≈ 3/ (32γ0) , optimized

(57)

so that Gav = 8/5 (2 dB) at high SNR, which is less than
the 3 dB upper-bound in (41). The high-SNR behavior of the
average BLER and TBER gains is as follows,

Gav,BLER ≈ 2
[
1 +

9
2 3
√

36γ0

]−1

,

Gav,TBER ≈ 8
5

[
1 +

3
2 3
√

2γ0

]−1

. (58)

The condition for convergence to the upper bound in (58)
is 3

√
γ0 >> 1, i.e. the convergence is slow. Specifically, the

upper bound is achieved approximately when the second term
in the brackets in (58) does not exceed 0.1, which results in
γ0 ≥ 35dB and γ0 ≥ 30dB for the BLER and TBER gains
respectively.

The simulation results validate these conclusions. Fig.6(a)
demonstrates that the average BLER gain of the optimized
2× 2 V-BLAST monotonically increases with SNR and tends
to 3 dB, which is the upper bound. The average BLER gain
of the instantaneous optimization also tends to 3 dB and
attains this bound, but much faster than that of the average
optimization. The average TBER SNR gain of the same system
approaches 2 dB at high SNR, monotonically and slowly
increasing. For the instantaneous optimization, this gain is
higher and it approaches higher than 2 dB upper bound
faster. Thus, in the case of TBER-defined gain, an additional
advantage of using the instantaneous optimization is that its
average SNR gain achieves higher upper bound than that of
the average optimization at high SNR.

Whether the gain is defined using the TBER or the BLER,
it exhibits roughly the same behavior: it is bounded as in (41),
it approaches the lower bound at low SNR, and it increases
monotonically with the SNR. In both cases, the instantaneous
optimization attains the upper-bound at γ0 ≈ 20...25 dB. In
both cases, the gain of average optimization increases with
the SNR much slower than that of the instantaneous one. The
only significant difference is that the BLER gain of average
optimization attains the upper bound = m, and the TBER gain
does not. However, since the upper bound is achieved by the
BLER SNR gain at rather high SNR, this difference seems
to be less important from practical perspective. As indicated
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Fig. 6. Average BLER (a) and TBER (b) SNR gains vs. SNR for 2x2
V-BLAST with BPSK modulation (MC- Monte-Carlo simulations).

by Fig. 6(a) and 6(b), both gains are close to each other at a
practical SNR range.

The SNR gain of the optimum power allocation is almost
the same, at high SNR, as that of the optimal ordering
procedure (see [7] for details). The computational complexity,
however, of the former is much less than that of the latter.
Hence, the average power optimization can be used instead of
the optimal ordering with roughly the same performance.

VI. CONCLUSION

Based on recent results on the error rate performance of
the unordered V-BLAST [6], [8], optimum power allocation
techniques for this algorithm, which are based on various
criteria, i.e. average and instantaneous block and total error
rates, have been systematically studied and compared to each
other. Accurate high-SNR approximations in a compact closed
form have been derived for the optimum power allocation
based on average BLER and TBER. Due to the dominant
contribution of lower steps to the error rate, these steps get
more power in the optimized system, with the 1st step getting
most of it. The allocation strategies based on the average
BLER and TBER are almost the same, since in both cases
1st step is dominant in terms of the average error rate.

The error rate performance of the optimized system has
been investigated; closed-form expressions for optimized error

rates at high SNR have been obtained. In spite of the non-
uniform power allocation in the optimized system, 1st step
still dominates in terms of the error rate. Conditional error
rates of the higher steps exhibit fractional diversity order.
While the instantaneous optimization requires instantaneous
feedback and thus is more complex than the average one,
which requires only the average SNR be fed back to the
transmitter, its average error rate performance is only slightly
better than that of the average optimization. At high SNR, both
strategies exhibit the same average error rate. The average op-
timum power allocation can be considered as a low-complexity
alternative to the optimal ordering.

The SNR gain of the optimization has been rigorously de-
fined for various criteria (average and instantaneous BLER and
TBER) and investigated. Universal bounds have been derived,
which hold true for any optimization strategy, modulation
format and channel fading type. Specifically, the gain is upper
bounded by the number of transmit antennas. The upper bound
is achieved at high SNR for the average BLER-defined SNR
gain, but is not for the TBER-defined gain, which is due to
increased power of the error propagation in the optimized
system. Closed-form high SNR approximations of the gain
have been obtained.

Robustness of the optimized algorithm in terms of variations
in total and individual Tx powers have been studied. Using the
measure of robustness introduced, it has been demonstrated
that the optimized algorithm is not sensitive to small variations
in the above-mentioned parameters. This suggests a simplified
power allocation strategy, which does not require any feedback
at all but rather relies on pre-set values of transmit powers.
The performance of this strategy is close to that of dynamical
optimization over the practical SNR range.

The analytical results and approximations above have been
validated via simulations.
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APPENDIX A
CLOSED-FORM EXPRESSIONS FOR OPTIMAL POWER

ALLOCATION

In the high SNR range, PB is approximated by (12), and
(17) is transformed into

∂L (α)
∂αi

= − (n − m + i)Ci

(4γ0)
n−m+i αn−m+i+1

i

+ λ = 0, i = 1 . . .m

(A1)
It follows that each αi can be expressed via the single
parameter λ:

αi =
ai

n−m+i+1
√

(4γ0)n−m+iλ
, ai = n−m+i+1

√
(n − m + i)Ci,

(A2)
Substituting (A2) into the total power constraint

∑m
i=1 αi = m

and introducing a new variable x = λ−(n+1)!/(n−m+1)!, we
obtain the following equation for x:

m∑
i=1

(4γ0)
− n−m+i

n−m+i+1 aix
ci = m,

ci =
(n + 1)!

(n − m + 1)! (n − m + i + 1)

(A3)
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Following the Newton-Raphson method [17], the zero-order
approximate solution to (A3) is found when all only the
leading term (i = 1) is kept in (A3),

x0 =
c1

√
m (4γ0)

n−m+1
n−m+2 /a1 (A4)

First-order approximate solution can be written as x =
x0 (1 + δ), where δ is a small increment. By substituting x
into the left-hand side of (A3), one obtains

m∑
i=1

(4γ0)
− n−m+i

n−m+i+1 aix
ci
0 (1 + δ)ci =

=
m∑

i=1

bi (1 + δ)ci (4γ0)
1−i

n−m+i+1 = m,

bi = aia
− n−m−2

n−m+i+1
1 m

ci
c1 =

=
(

Ci(n−m+i)mn−m+2

C1(n−m+1)

) 1
n−m+i+1

(A5)

Keeping only the first two leading terms in (A5), i = 1, 2, one
obtains:

m (1 + c1δ) + b2 (4γ0)
−1/(n−m+3) = m, (A6)

from which it follows that

δ = −b2 (mc1)
−1 (4γ0)

−1/(n−m+3) (A7)

and

x = x0 (1 + δ) =

=
c1

√
a−1
1 m (4γ0)

n−m+1
n−m+2

[
1 − b2

mc1(4γ0)1/(n−m+3)

]
,

λ = x−(n−m+2)c1

= 1
(4γ0)n−m+1

(
a1
m

)n−m+2
[
1 − b2

mc1(4γ0)1/(n−m+3)

]−(n−m+2)c1

(A8)
Finally, the optimum power allocation αopt is found by

substituting λ from (A8) into (A2):

α̃i = bi (4γ0)
1−i

n−m+i+1

(
1 − b2

mc1(4γ0)
1/(n−m+3)

)ci

,

αopt
i = mα̃i/

m∑
k=1

α̃k

(A9)

The last equality here is to assure the total power constraint
for the approximate solution.

APPENDIX B
THE GAIN OF OPTIMIZATION FOR SMALL SNR

The main idea of the proof of Theorem 2 is to use the
small SNR approximations of PB to find αopt. The gain is
then found in closed form using the definition (39). The small
SNR approximation of P ei is found via the MacLaurin’s series
expansion. For coherent modulation formats, the error rate is a
function of

√
SNR [18] so that the expansion in

√
αiγ0 about

zero is used17 as a low-SNR approximation,

P ei ≈ 1
2

+ ai
√

αiγ0, ai =
∂P ei

∂
√

αiγ0

∣∣∣∣
αiγ0=0

. (B1)

where we keep only the two leading terms. For the BPSK
modulation, aBPSK

i
are given by (44). The small SNR ap-

proximation of the BLER is obtained by using (B1) in (3)

17recall that
√

x cannot be expanded in MacLaurin’s series.

and keeping only first-order terms in
√

αiγ0,

PB (α) ≈ 1 − 1
2m

+
1

2m−1

m∑
i=1

ai
√

γ0αi. (B2)

Using (B2) as the objective function in (17), one finds αopt:

∂L (α)
∂αi

∣∣∣∣
α=αopt

=
ai

2m

√
γ0

αopt
i

+ λ = 0 → αopt
i =

ma2
i∑m

i=1 a2
i

,

(B3)
where we have also used the constraint

∑m
i=1 α2

i = m to find
λ. The optimized BLER can now be expressed as PB (αopt) =
1 − 2−m + 2−m+1√mγ0

√∑
i a2

i . Comparing it to the non-
optimized one in the gain definition in (39), PB (α, α, ..., α) =
1 − 2−m + 2−m+1√αγ0

∑
i ai, one finds the gain G0 = α,

G0 =
m
∑

i a2
i

(
∑

i ai)
2 ≥ 1 (B4)

By the Cauchy-Schwartz inequality, the equality holds if all
ai are equal. We note that the same argument holds for the
instantaneous BLER and hence also holds as long as the
approximation in (B1) applies, which is the case for BPSK
modulation, as well as for some other modulation formats [18].

For non-coherent modulation formats (e.g. DPSK, FSK), the
MacLaurin’s series expansion in terms of SNR can be used as
a low-SNR approximation of the error rate,

P ei ≈ 1
2

+ biγ0, bi =
∂P ei

∂ (αiγ0)

∣∣∣∣
αiγ0=0

, (B5)

For the BFSK detected non-coherently, bBFSK
i are given by

(44). Similarly to the coherent case, the small SNR approxi-
mation of the BLER is,

PB (α) ≈ 1 − 1
2m

+
1

2m−1

m∑
i=1

biαiγ0. (B6)

The derivatives ∂L (α) /∂αi = −bi2m−1γ0 + λ cannot be
now all equal to zero simultaneously unless bi are the same,
which means that there exists no stationary point inside of
the feasible region and the solution is located on the region
boundary. It follows from (B6) that the BLER is minimized
when all the power is allocated to the stream for which |bi| is
maximum18,

αopt
imax

= m, αopt
i = 0, i �= imax, where imax = argmax

i
|bi|
(B7)

When all bi are equal, any power allocation gives the same
BLER. Finally, using (B7) in the definition of the SNR gain
(39), one obtains:

G0 = m
max

i
|bi|∑

i |bi| ≥ 1. (B8)

The equality holds if all bi are equal, in which case, as
expected, there is no gain due to the optimization. It should
be pointed out that the argument above holds for the instan-
taneous BLER as long as the approximation in (B5) holds,
which is the case for many non-coherent modulation formats
[18]. Thus, (B8) also applies to the instantaneous gain of the

18the magnitude is required since all bi are non-positive



1012 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 6, JUNE 2008

instantaneous optimization, in which case bi and hence the
gain depend on channel realization.

For the instantaneous BLER-based optimization, the aver-
aged over H gain cannot be worse than that of the average
optimization, see (40), hence the former is also subject to the
inequalities in (B8) and (B4).

The proof of Theorem 4 is as follows. From the total power
constraint,

m∑
i=1

∂αopt
i

∂u
= 1, (B9)

and from the optimality condition (16)

∂PB

(
αopt
)
/∂αopt

i = −λ ≤ 0 (B10)

Taking the derivative of (39) with respect to αopt
i ,

∂PB (αopt)
∂αopt

i

=
∂PB (α . . . α)

∂α

∂α

∂αopt
i

→

→ ∂α

∂αopt
i

=
∂PB (αopt)

∂αopt
i

/
∂PB (α . . . α)

∂α
(B11)

Using (B9)-(B11), one obtains:

∂α

∂u
=

m∑
i=1

∂α

∂αopt
i

∂αopt
i

∂u
= − λ

∂PB (α . . . α)
/
∂α

≥ 0 (B12)

The same reasoning holds true if the instantaneous BLER is
used to define the SNR gain.
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